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Abstract: Glutamate is the major excitatory neurotransmitter in the central nervous system. Gluta-
matergic transmission can be mediated by ionotropic glutamate receptors (iGluRs), which mediate
rapid synaptic depolarization that can be associated with Ca2+ entry and activity-dependent change
in the strength of synaptic transmission, as well as by metabotropic glutamate receptors (mGluRs),
which mediate slower postsynaptic responses through the recruitment of second messenger systems.
A wealth of evidence reported over the last three decades has shown that this dogmatic subdivision
between iGluRs and mGluRs may not reflect the actual physiological signaling mode of the iGluRs,
i.e., α-amino-3-hydroxy-5-methyl-4-isoxasolepropionic acid (AMPA) receptors (AMPAR), kainate
receptors (KARs), and N-methyl-D-aspartate (NMDA) receptors (NMDARs). Herein, we review
the evidence available supporting the notion that the canonical iGluRs can recruit flux-independent
signaling pathways not only in neurons, but also in brain astrocytes and cerebrovascular endothe-
lial cells. Understanding the signaling versatility of iGluRs can exert a profound impact on our
understanding of glutamatergic synapses. Furthermore, it may shed light on novel neuroprotective
strategies against brain disorders.

Keywords: glutamate; ionotropic glutamate receptors; AMPA receptors; kainate receptors; NMDA
receptors; flux-independent signaling; non-canonical signaling

1. Introduction

The distinction between ionotropic and metabotropic receptors was introduced in 1979
by Eccles and McGeer [1] and is based on the distinct signaling modes of neurotransmitter
receptors. Ionotropic receptors are ligand-gated channel proteins that directly gate the flow
of ions across the plasma membrane (PM), thereby leading to rapid postsynaptic excita-
tion or inhibition, typically lasting a few milliseconds. Metabotropic receptors induce the
postsynaptic response via G-proteins, which modulate ion channel activity either directly
or via intracellular second messengers. Metabotropic receptors are therefore also termed
G-protein coupled receptors (GPCRs) and are responsible for slow synaptic transmission [2].
Metabotropic receptors also include tyrosine kinase receptors (TKRs) and guanylate cyclase
receptors [3], but they do not play a primary role in synaptic transmission. Over the last
three decades, however, it has been increasingly recognized that this traditional classifica-
tion no longer reflects the versatile intracellular signaling pathways that can be mediated by
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ionotropic receptors [4–8]. Several neurotransmitters, including glutamate, acetylcholine,
and γ-aminobutyric acid (GABA), bind to both ionotropic and metabotropic receptors
in the central nervous system [8,9]. However, unexpected evidence has shown that the
ionotropic receptors do not simply act as neurotransmitter-gated ion-conducting pores
whose opening results in rapid membrane depolarization (e.g., glutamate or acetylcholine)
or hyperpolarization (e.g., GABA). Ionotropic receptors can also respond to ligand bind-
ing by recruiting multiple downstream signaling pathways via the functional interaction
with effector proteins that do not require ion flux [4–8,10–12]. Thus, ionotropic receptors
can engage “non-canonical” signaling pathways that are activated independently of their
“canonical” mode of action and regulate a different panel of cellular functions [8]. The
non-canonical signaling mode of ionotropic receptors is also known as metabotropic-like,
as it requires a conformational change in the receptor protein that directly activates an
intracellular second messenger pathway [8]. At a recent online meeting sponsored by the
American Society for Biochemistry and Molecular Biology (ASBMB), it was suggested that
these definitions can be replaced with the term “flux-independent” signaling [7]. Herein, we
aim at providing a comprehensive view of the flux-independent signaling mechanisms by
which ionotropic glutamate receptors (iGluRs) regulate a broad range of functions not only
in neurons but also in non-excitable cells, such as brain astrocytes and endothelial cells.

2. Flux-Independent Signaling by iGluRs

Glutamate is the primary excitatory neurotransmitter in the brain [13] and also serves
as a neuromodulator to couple rhythmic activity with synaptic transmission in neuronal net-
works [14]. The postsynaptic response to glutamate is mediated by iGluR and metabotropic
glutamate receptors (mGluRs). The iGluRs consist of tetrameric non-selective cation chan-
nels that can be further subdivided into three sub-families [13,15]: α-amino-3-hydroxy-5-
methyl-4-isoxasolepropionic acid (AMPA) receptors (AMPARs), kainate receptors (KARs),
and N-methyl-D-aspartate (NMDA) receptors (NMDARs). The iGluRs share a similar
molecular structure, including the topology of the ion-conducting pathway and the abil-
ity to open rapidly upon glutamate association with an extracellular ligand binding do-
main [15]. However, whereas AMPARs (and possibly KARs) only conduct inward Na+

currents, NMDARs are also permeable to extracellular Ca2+ and can directly engage Ca2+-
dependent signaling pathways [9,16]. The synaptic release of glutamate activates a fast
excitatory postsynaptic current (EPSC) that is mediated by AMPARs (AMPAR-EPSC) and
followed by a slower NMDAR-mediated EPSC (NMDAR-EPSC) [17]. The mGluRs are
GPCRs that are also subdivided into three main groups based on their synthetic agonist
sensitivity, G-protein coupling, and sequence homology: Group 1, consisting of mGluR1
and mGluR5, which mainly stimulate phospholipase Cβ (PLCβ) via Gq/11 protein; Group 2,
consisting of mGluR2 and mGluR3; and Group 3, consisting of mGluR4, mGluR6, mGluR7,
and mGluR8, which inhibit adenylate cyclase (AC) via Gi/o proteins and modulate several
ion channels via the release of the Gβγ dimer [13,18]. Based on their sequence similarity,
a fourth sub-family of iGluRs was discovered in the mid-1990s, i.e., the δ (GluD) recep-
tors, which exist in two isoforms, GluD1 and GluD2 [19]. GluD receptors do not bind
glutamate and were long considered as “orphan” receptors until it was discovered that
D-serine was able to activate them [20]. However, GluD receptors do not function as
canonical ionotropic receptors but rather associate with trans-synaptic protein complexes
that primarily trigger metabotropic-like signaling pathways in the postsynaptic termi-
nals [19,21]. The ion conduction pathway of GluD receptors, however, is not blocked, as
evidenced by the inward currents mediated by GluD1 and GluD2 following the stimulation
of Group 1 mGluRs [22,23]. We refer the reader to several recent reviews that provide a
comprehensive and exhaustive description of the structural and mechanistic features of
GluD receptors [8,19,21]. Interestingly, parallel studies have shown that canonical iGluRs
can also signal in a flux-independent manner in excitatory pyramidal neurons, inhibitory
interneurons, astrocytes, and cerebrovascular endothelial cells [6–9,24]. Thus, the ability to
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utilize both flux-dependent and flux-independent signaling modes is an integrative feature
of glutamate-gated iGluRs.

3. Flux-Independent Signaling by AMPARs

AMPARs are composed of the assembly of different combinations of GluA1-GluA4
subunits that are encoded by the Gria1-4 genes [13,15]. Heteromeric AMPARs are the main
iGluRs that mediate the fast, excitatory synaptic transmission in the brain and relieve
NMDARs from Mg2+-dependent inhibition at glutamatergic synapses [13,15]. GluA2 and
GluA3 are the most abundant AMPAR isoforms in glutamatergic pyramidal neurons,
while inhibitory GABAergic interneurons mainly express GluA1 and a small amount of
GluA2 and GluA3 [25,26]. It has long been thought that most AMPAR assemblies include
GluA2/GluA3 and GluA1/GluA2 heterodimers [27,28]; however, a recent investigation
demonstrated that native AMPARs may also be heterotrimeric channels composed of
GluA1, GluA2, and GluA3 subunits [29]. The GluA2 messenger ribonucleic acid (mRNA)
can be edited during fetal development: a single aminoacidic residue, i.e., glutamine (Q)
(Ca2+-permeable), can be replaced by arginine (R) (Ca2+-impermeable) within the ion pore.
Incorporation of the edited GluA2 into the heteromeric AMPAR structure abolishes its
inward rectification and strongly reduces its Ca2+ permeability. Conversely, AMPARs that
lack GluA2 mediate both Na+ and Ca2+ entry [16]. The role of Ca2+-permeable AMPARs
in the regulation of receptor trafficking, synaptic plasticity, learning, and memory has
been increasingly recognized [30]. Moreover, some auxiliary proteins, such as stargazin
and cornichon-2, can increase the Ca2+ permeability of AMPARs by subtly modifying the
narrow constriction of the filter pore [16]. In addition to the biophysical heterogeneity of
their ionotropic signaling, AMPARs can also signal in a flux-independent manner [7,8].

3.1. Flux-Independent Signaling by AMPARs Involves Multiple Metabotropic Signaling Pathways

AMPARs were the first iGluR shown to signal in a flux-independent mode [31]. Early
work showed that the selective agonist AMPA induced AMPARs to inhibit AC activity
through the recruitment of Gi/o proteins either directly or via an indirect association with
an adaptor protein (Figure 1) [31]. This seminal discovery paved the way for subsequent
studies aimed at assessing the functional consequences of flux-independent signaling by
AMPARs. AMPARs can recruit Gi/o proteins to activate the phosphoinositide-3-kinase–
protein kinase B/Akt (PI3K-PKB/Akt) and the extracellular signal-regulated kinase (ERK)
pathways, which induce rat cerebellar granule cell (GrC) survival (Figure 1) [32]. Addi-
tionally, in rat hippocampal neurons, AMPARs trigger the association of the Gi/o protein-
derived β subunit with voltage-gated Na+ channels, thereby inducing Na+ entry that
promotes mitochondrial Ca2+ release by reversing the mitochondrial Na+/Ca2+ exchanger
(Figure 1) [33]. Furthermore, flux-independent signaling by AMPARs stimulates the mi-
gration of rat oligodendrocyte progenitor cells by inducing the formation of a αV/myelin
proteolipid protein complex, which in turn elicits a pro-migratory oscillatory Ca2+ sig-
nal [34,35]. Recruitment of Gi/o proteins is also used by AMPARs to inhibit the expression
of the Arc gene (Figure 1) [36], which is critical for maintaining synaptic potentiation and
long-term consolidation of memory [37]. However, the primary role of flux-independent
AMPAR signaling is to modulate synaptic activity [8]. Climbing fibers (CFs) project from
the inferior olive to provide an excitatory input to the molecular layer of the cerebellum,
where they induce complex spikes that are critical for motor behavior [38]. Presynaptic
AMPARs are activated by CFs to restrain GABA release from cerebellar interneurons, i.e.,
stellate cells and basket cells, by inhibiting voltage-gated Ca2+ channels (CaV2.1) through
Gi/o proteins (Figure 1) [39]. The same flux-independent pathway underlies AMPAR-
mediated inhibition of presynaptic CaV2.1 currents and glutamate release from the calyx
held in the rat auditory brainstem [40]. The flux-independent activity of AMPARs can also
suppress the nitric oxide (NO)-induced, cyclic guanosine monophosphate-gated currents
in rat retinal ganglion cells, as well as playing a role in visual processing [41].
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through the mitochondrial Na+/Ca2+ exchanger (mNCX). In addition, AMPARs can signal through 
Gi/o proteins to accelerate vesicle recycling or induce BDNF gene expression through ERK activation, 
which is mediated by the interaction between AMPARs and the tyrosine kinase, Lyn. Alternately, 
AMPARs can activate the ERK phosphorylation cascade to promote cell survival via the Gi/o protein-
dependent recruitment of the PI3K/Akt pathway. Finally, AMPARs can also signal through Gi/o pro-
teins to inhibit the expression of the Arc gene. 
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nary reports suggest that the AMPAR interactome does not include signaling proteins, 
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Figure 1. Flux-independent signaling pathways activated by AMPARs in neurons. AMPARs can
signal in a flux-independent manner to recruit several signaling pathways. AMPARs can interact
with Gi/o proteins to either inhibit voltage-gated CaV2.1 channels or activate voltage-gated Na+

channels (NaV). Extracellular Na+ entry through NaV channels can promote mitochondrial Ca2+

release through the mitochondrial Na+/Ca2+ exchanger (mNCX). In addition, AMPARs can signal
through Gi/o proteins to accelerate vesicle recycling or induce BDNF gene expression through ERK
activation, which is mediated by the interaction between AMPARs and the tyrosine kinase, Lyn.
Alternately, AMPARs can activate the ERK phosphorylation cascade to promote cell survival via
the Gi/o protein-dependent recruitment of the PI3K/Akt pathway. Finally, AMPARs can also signal
through Gi/o proteins to inhibit the expression of the Arc gene.

AMPARs can also signal in a flux-independent mode by interacting with Lyn
(Figure 1) [42], a protein tyrosine kinase of the Src family [8], in primary rat cerebellar
cells. GluA2 physically associates with Lyn, which activates the ERK pathway and induces
the expression of brain-derived neurotrophic factor (BDNF) (Figure 1) [42]. In addition, the
AMPAR-mediated activation of ERK leads to synapsin I phosphorylation, which enhances
synaptic vesicle recycling and likely contributes to the regulation of short-term plasticity
(Figure 1) [43].

3.2. The Molecular Determinants of Flux-Independent Signaling by AMPARs

The molecular basis of AMPAR-induced recruitment of distinct flux-independent path-
ways is far from being understood. The modular architecture of AMPARs includes four
domains, i.e., the extracellular NH2-terminal domain (NTD), the external ligand-binding
domain, the transmembrane domain, and the cytosolic COOH-terminal domain (CTD). The
CTD enables interaction with several auxiliary subunits that regulate AMPAR trafficking
and gating, but little information is available about the components of the AMPAR interac-
tome that are recruited to generate flux-independent signals [44,45]. Preliminary reports
suggest that the AMPAR interactome does not include signaling proteins, with the excep-
tions of the Gi/o protein and Lyn [46,47]. Nevertheless, knowledge of flux-independent
AMPAR signaling is likely to be expanded by unexpected findings derived from the in-
vestigation of other signaling cascades. For instance, store-operated Ca2+ entry (SOCE) is
a ubiquitous voltage-independent Ca2+ entry pathway that is activated upon depletion
of the endoplasmic reticulum (ER) Ca2+ store to refill the ER lumen with Ca2+. SOCE is
mediated by the physical association between STIM and Orai, which, respectively, serve
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as sensors of the ER Ca2+ concentration and Ca2+ entry channel on the PM in the main
cellular components of the neurovascular unit, i.e., neurons, astrocytes, and endothelial
cells [48–53]. Surprisingly, STIM proteins can interact with both GluA1 and GluA2 in rat
cortical neurons and astrocytes. In addition, the pharmacological blockade of AMPARs
with 2,3-dihydroxy-6-nitro-7-sulphamoyl-benzo(F)quinoxaline and cyanquixaline (6-cyano-
7-nitroquinoxaline-2,3-dione) strongly reduced SOCE in both cell types [54]. This study did
not assess whether the AMPARs that support SOCE include the GluA2(Q) (Ca2+-permeable)
or the GluA2 (R) (Ca2+-impermeable) subunit, but it provided clear-cut evidence that AM-
PARs interact with other signaling proteins and that this interaction does not require ligand
binding, as is also highlighted in the next section.

3.3. Flux-Independent Signaling by AMPARs May Involve a Structural Component

The extracellular NTD of GluA2 can bind to the presynaptic and postsynaptic cell-
adhesion protein N-cadherin to form a trans-synaptic scaffolding complex that promotes
synaptogenic signaling and facilitates synaptic spine formation in rat primary hippocampal
cortical neurons [55,56]. Accordingly, GluA2 overexpression increases spine density and
width in primary cortical pyramidal neurons and also induces the appearance of dendritic
spine-like formations in GABAergic interneurons, which normally lack this type of PM
protrusion [56]. In agreement with these findings, GluA2 is also required to promote
spine formation in the subset of hippocampal and cortical GABAergic neurons that carry
dendritic spines [8,57,58]. By contrast, the overexpression of a GluA2 protein mutant
lacking the NTD inhibits spine morphogenesis [56]. The interaction between GluA2 and
N-cadherin is enabled by human natural killer (HNK)-1 [59,60], a glyco-epitope expressed
by some cell adhesion molecules in the nervous system [61]. Thus, the genetic suppression
of either HNK-1 [60] or GluA2 [62] leads to a reduction in the number of mushroom-like
mature spines and an increase in the number of immature filopodium-like spines. In accord
with this, the physical association between the NTD of GluA2 and N-cadherin sustains long-
lasting synaptic plasticity in the hippocampus. Genetic deletion of GluA2, but not GluA3,
prevents mGluRs-dependent long-term depression (LTD) at the Schaffer collateral (SChC)-
CA1 synapse: the GluA2/N–cadherin interaction is required to activate the Rho GTPase
Rac1 and thereby induce cofilin-dependent actin reorganization [63]. Furthermore, the loss
of HNK-1 expression impairs NMDAR-dependent long-term potentiation (LTP) and spatial
memory formation at the same synaptic contact in the hippocampus [64]. Intriguingly, only
GluA2(Q)-containing AMPARs, which are expressed in the developing cortex, are able
to stimulate spine morphogenesis [65]. Therefore, the GluA2(Q) variant may be critical
for regulating developmental synaptogenesis by promoting trans-synaptic signaling that
does not require agonist binding [8]. However, the NTD of postsynaptic GluA2-containing
AMPARs can also stabilize the presynaptic terminal in a flux-independent manner in adult
rat cortical [66] and hippocampal [67] pyramidal neurons. Nevertheless, the trans-synaptic
signal conveyed to presynaptic terminals does not require the interaction with N-cadherin
in mature synapses [67]. These findings suggest that the structural signaling by GluA2-
containing AMPARs contributes to spine formation in a developmentally regulated manner
and to synaptic stabilization in the adult in both the cortex and hippocampus. In addition,
it has recently been shown that the upregulation of HNK-1 also increases GluA2 expression
in the cerebellum [68]. Future work will have to assess whether GluA2 is also able to
transmit trans-synaptic signals aimed at stabilizing synaptic contacts in this brain structure,
which plays a crucial role not only in motor control and motor learning [69–73], but also in
cognitive functions [38].

4. Flux-Independent Signaling by KARs

KARs are composed of the assembly of various combinations of GluK1-GluK5 subunits
that are encoded by the Grik1-5 genes. The low-affinity GluK1-GluK3 subunits can form
homomeric or heteromeric receptors that are gated by high concentrations of glutamate and
the selective agonist kainate (KA). The high-affinity GluK4 and GluK5 are sensitive to lower
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agonist concentrations and combine with GluK1-GluK3 to form di-, tri-, or tetra-heteromeric
receptors [74–77]. The molecular heterogeneity of KARs is enhanced by the existence of
multiple GluK1-GluK3 splice variants and by the pre-mRNA editing of GluK1 and GluK2
subunits at the Q/R site [8,77]. The Q/R editing of GluK2 pre-mRNA by the nuclear
enzyme ADAR2 reduces single-channel conductance and Ca2+ permeability and decreases
KAR surface expression [78,79]. In addition, either presynaptic or postsynaptic KARs can
interact with an increasing number of proteins, including the two integral transmembrane
proteins, Neuropilin Tolloid-like 1 and Neuropilin Tolloid-like 2 (Neto1 and Neto2) [77].

KARs are widely distributed throughout the nervous system, including the hippocam-
pus, cerebral cortex, cerebellum, amygdala, striatum, retinal bipolar cells, and dorsal root
ganglia (DRG) [74,75,80]. KAR subunits have also been found in non-neuronal cells, such
as astrocytes and oligodendrocytes, but not in cerebrovascular endothelial cells [81]. GluK2
is the most abundant isoform present in principal cells (e.g., hippocampal and cortical
pyramidal cells; hippocampal and cerebellar granule cells; GrCs), whereas GluK1 is more
abundantly expressed in hippocampal and cortical interneurons. GluK4 has been mainly
detected in the dentate gyrus, CA3 pyramidal neurons, neocortex, and Purkinje cells,
whereas GluK5 is abundantly expressed throughout the brain [74,77]. KARs can be located
either in the postsynaptic neuron to facilitate neuronal excitability or at the presynaptic
terminal to fine-tune neurotransmitter release [74,75]. In accord with this, KARs carry
part of the EPSC induced by synaptically released glutamate at certain central synapses,
including the mossy fiber (MF)-CA3 synapse and the SchC-CA1 synapse in the hippocam-
pus, the parallel fiber (PF)-Golgi cell synapse in the cerebellum, and at thalamocortical
connections [75,77]. KAR-mediated EPSCs (KAR-EPSCs) differ from AMPAR-EPSCs due
to their smaller amplitude and slower activation/deactivation kinetics [82]. The slow
kinetics of the postsynaptic KAR-EPSCs are likely dependent on Neto proteins [77] and are
critical for synaptic integration and synchronization of network activity in the brain [74,75].
By contrast, KAR-dependent regulation of neurotransmitter release and other neuronal
functions requires both ionotropic and flux-independent signaling [74,75,77].

4.1. Flux-Independent Signaling by Presynaptic KARs Regulates GABA Release
in the Hippocampus

Presynaptic KARs can modulate GABA and glutamate release through flux-independent
signaling (Figure 2 and Table 1) [74,75,77]. Pharmacological activation of presynaptic KARs
with KA reduces the probability of GABA release by CA1 interneurons in the hippocampus
through a metabotropic-like mechanism (Figure 2) [83–85]. KARs engage a signaling path-
way that comprises pertussis toxin (PTx)-sensitive Gi/o proteins, PLC, and conventional
protein kinase C (cPKC) (Figure 2). The cPKC could then reduce the Ca2+ sensitivity of
the Ca2+ machinery involved in vesicle exocytosis from presynaptic terminals [83,84,86].
Recruitment of cPKC to the PM requires both diacylglycerol (DAG) and Ca2+, which is
released from the ER by the intracellular second messenger inositol-1,4,5-trisphosphate
(InsP3) [87]. Notably, both DAG and InsP3 are produced by the PLC-dependent hydroly-
sis of phosphatidylinositol 4,5-bisphosphate (PIP2) [88], and PTx-sensitive Gi/o proteins
can activate PLCβ2 and PLCβ3 through their βγ dimers [89–91]. In agreement with
this hypothesis, parallel work has shown that KAR activation is able to induce intracel-
lular Ca2+ release, which is a proxy for PLC activation [10,92], in mouse DRG neurons
(Figure 2) [93]. Ionotropic KARs activated during synaptic activation could facilitate the
release of 2-arachidonoylglycerol, which activates presynaptic cannabinoid type 1 (CB1)
receptors and inhibits GABA mobilization [94]. However, CB1 inhibitors do not prevent
the inhibitory effect of KARs on GABA release [95]. This observation suggests that phar-
macologically activated KARs primarily signal the inhibition of GABA mobilization in a
flux-independent manner [94]. On the other hand, the endogenous activation of presy-
naptic KARs stimulates GABA release from hippocampal CA1 interneurons through an
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ionotropic mechanism that enhances presynaptic depolarization [96,97]. To reconcile these
discrepancies, it has been proposed that low concentrations of glutamate stimulate KARs
to trigger rapid ionotropic signals that increase GABA release, whereas an increase in
agonist concentration induces KARs to switch into the flux-independent signaling mode
to reduce GABAergic inhibition [74,98–100]. Therefore, by means of their dual signaling
mode, presynaptic KARs can sense the level of neuronal activity at individual synapses
and trigger the most appropriate intracellular signal to fine-tune synaptic inhibition and
maintain network homeostasis [74].
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Figure 2. Flux-independent signaling by KARs modulates the intracellular Cl− concentration ([Cl−]i)
and the reversal potential for GABA (EGABA). (A) Pharmacological stimulation of postsynaptic KARs
with KA (green circle) reduces the [Cl−]i in hippocampal CA3 pyramidal neurons. Upon permissive
cPKC-dependent phosphorylation, KARs promote the recycling of the K+–Cl− cotransporter 2 (KCC2)
from Rab11-containing vesicles to the PM; the tight interaction between KAR and KCC2 stimulates K+

and Cl− efflux into the extracellular milieu, thereby reducing the [Cl−]i and increasing extracellular
Cl− influx through GABAARs. (B) Synaptically released glutamate (red circle) stimulates flux-
independent signaling by KARs, which engage cPKC to phosphorylate extrasynaptic GABAARs and
thereby increase extracellular Cl− influx in hippocampal CA1 pyramidal neurons.

4.2. Flux-Independent Signaling by Presynaptic KARs Regulates Glutamate Release
in the Hippocampus

Flux-independent signaling by presynaptic KARs can also modulate glutamate release
(Table 1) [75]. In the neonatal rat hippocampus, GluK1-containing KARs that are located on
MFs (i.e., the axons projected by GrCs in the dentate gyrus) tonically inhibit or promote glu-
tamate release onto CA3 pyramidal cells and GABAergic interneurons, respectively [101].
KARs are activated by ambient glutamate to inhibit glutamate release in a Gi/o protein-
and cPKC-dependent manner [101]. The Gi/o protein βγ dimers could directly inhibit
presynaptic CaV2.1 currents, thereby restraining glutamate release [75]. By contrast, the
mechanisms by which KARs facilitate glutamate release onto CA3 interneurons remain
unclear [101]. Intriguingly, in both CA3 pyramidal cells and GABAergic interneurons,
endogenous KAR stimulation enhances GABAergic transmission in a flux-dependent man-
ner [101]. Therefore, presynaptic KARs signal in both an ionotropic and a flux-dependent
manner to regulate the synchronous network activity that contributes to rat hippocampus
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development [75,101]. In fact, the tonic activation of presynaptic KARs in the hippocam-
pal CA3 region is downregulated at two weeks after birth [101]. This may be due to the
downregulation of GluK1 expression in mature pyramidal neurons [74].

In the neonatal rat hippocampus, GluK1-containing KARs are also tonically acti-
vated by ambient glutamate to inhibit glutamate release from the SchCs projected by CA3
neurons onto the CA1 region (Table 1) [102]. In agreement with this observation, the exoge-
nous administration of KA reduces voltage-dependent Ca2+ transients at the SchC [103],
thereby suggesting that presynaptic KARs may directly modulate CaV2.1 channels via
the recruitment of Gi/o proteins (Figure 2) [102]. As observed at the MF-CA3 synapse,
the tonic inhibition of glutamate release onto CA1 pyramidal cells is lost during develop-
ment [102,104]. Physiological activation of presynaptic KARs therefore fine-tunes synapse
formation and maturation in the glutamatergic circuitry of the CA1 region in a Gi/o- and
cPKC-dependent manner [105]. Switching the molecular assortment of GluK subunits
could reduce the sensitivity of KARs to ambient glutamate (e.g., due to the downregulation
of high-affinity GluK4 or GluK5 subunits) and/or decouple the presynaptic receptor from
neighboring Gi/o proteins in adult rats [104]. However, the pharmacological stimulation
of presynaptic KARs at the SchC-CA1 pyramidal neuron synapse can also inhibit gluta-
mate release via Gi/o proteins in the fully developed hippocampus [106]. This observation
suggests that the flux-independent mechanism that restrains glutamate release in the CA1
region is still at work in the adult hippocampus, where presynaptic KARs are likely to serve
as inhibitory auto-receptors to shape short-term plasticity [106]. Interestingly, the inhibitory
effect of KARs on glutamate release is prevented by the prior stimulation of adenosine or
GABAB receptors, suggesting that classical metabotropic receptors and metabotropic-like
KARs converge on the same signaling pathways [107].

Parallel studies have confirmed that presynaptic KARs also regulate glutamate release
in the adult mouse hippocampus (Table 1) [75]. It has been suggested that at the MF-
CA3 synapse, low nanomolar concentrations of KA (<50 nM) activate KARs to stimulate
glutamate release through an ionotropic mechanism that requires the inclusion of the low-
affinity GluK2 and the high-affinity GluK5 in the heteromeric channel protein [75,108–110].
Another investigation reported that GluK2-/GluK3-containing ionotropic KARs are ac-
tivated by high concentrations of glutamate to favor synaptic transmission at this same
synaptic site [111]. By contrast, high nanomolar concentrations of KA (>100 nM) inhibit
glutamate release by stimulating KARs to signal in a flux-independent-mode [75,112,113].
Genetic deletion of GluK5 does not impair this effect, whereas GluK2 is likely involved in
both signaling modes [109,114,115]. A recent investigation showed that the GluK2 Q/R
editing inhibits the metabotropic-like function in mouse CA3 postsynaptic KARs [116].
Therefore, edited and unedited GluK2 subunits could stimulate and inhibit glutamate
release, respectively, the former probably in association with GluK5. Presynaptic KARs
inhibit glutamate release at the mouse MF-CA3 synapse by recruiting Gi/o proteins to
inhibit AC activity, thereby reducing cyclic AMP (cAMP) production and protein kinase
A (PKA) activation [112]. This results in reduced exocytosis of neurotransmitter vesicles
from the glutamatergic MFs, which is stimulated by PKA-dependent phosphorylation
of the secretory machinery [117]. Consistent with this model, Group 2 mGluRs are also
coupled to PKA via Gi/o proteins [13,18], and their prior inhibition can prevent KA-induced
suppression of glutamate release [113]. The evidence that Go proteins are part of the GluK1
interactome [118] strongly suggests that the low-affinity GluK1 is part of the heteromeric
KAR protein that negatively regulates glutamate release. It should, however, be pointed
out that its role in KAR-mediated glutamate release is highly controversial [115,119].

4.3. Flux-Independent Signaling by Presynaptic KARs Regulates Neurotransmitter Release
in the Cerebellum

Presynaptic KARs can also modulate neurotransmitter release in a flux-independent
manner in the cerebellum (Table 1) [75,80].
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Table 1. Modulation of neurotransmitter release by presynaptic KARs signaling in the flux-
independent mode.

Brain Region Effect Signaling Pathway(s) Function Ref.

Rat hippocampus
CA1 interneurons GABA ↓ Gi/o proteins, PLC,

cPKC Regulation of PN excitability [83–85]

Rat hippocampus
SChC-CA1

Neonate
Glu ↓ Gi/o proteins, cPKC Synaptic maturation and plasticity [102,104,105]

Rat hippocampus
SChC-CA1

Adult
Glu ↓ Gi/o proteins, cPKC Unknown [106,107]

Rat hippocampus
MF-CA3
Neonate

Glu ↓ onto PNs Gi/o proteins, cPKC Hippocampus development [101]

Rat hippocampus
MF-CA3
Neonate

Glu ↑ onto GIs Unknown Hippocampus development [101]

Rat hippocampus
CA3 (A/C) Glu ↓ Gi/o proteins Vesicle release [120]

Mouse hippocampus
MF-CA3

Adult
Glu ↓ Gi/o proteins, AC

inhibition Unknown [112,113]

Mouse cerebellum
PF-PuC
Adult

Glu ↓ Gi/o proteins, AC
inhibition Synaptic maturation [75,80,121]

Mouse amygdala
MGN-LA

Adult
Glu ↓ PKA Plasticity and oscillations at the

theta and gamma bands? [122]

Rat globus pallidus Glu ↓ Gi/o proteins, cPKC Unknown [123]

Abbreviations: GIs: A/C: association/commissural; AC: adenylate cyclase; cPKC: conventional protein kinase C;
Glu: glutamate; LA: lateral nucleus of the amygdala; MF: mossy fiber; MGN: thalamic medial geniculate nucleus;
PF: parallel fiber; PKA: protein kinase A; PNs: pyramidal neurons; PuCs: Purkinje cells; SChC: Schaffer collateral;
↓: reduction; ↑: increase.

PFs are the specialized axons that project from GrCs into the molecular layer. Herein,
PFs bifurcate and give raise to T-shaped branches that convey information via excita-
tory glutamatergic terminals to the dendritic spines of Purkinje cells (PuCs) [38]. Single-
channel studies suggested that GrCs express homomeric unedited GluK1 homotetramers,
which carry a significant Ca2+ permeability [78]. Presynaptic KARs can either facilitate
or inhibit synaptic transmission depending on the concentration of the synthetic ago-
nist domoate [75,124]. Furthermore, they can be gated by endogenous glutamate to dif-
ferentially modulate neurotransmitter release during both low- and high-frequency PF
stimulation [124]. Falcón-Moya et al. found that presynaptic KARs facilitate synaptic
transmission at low agonist concentrations by mediating Ca2+ influx, which in turn triggers
Ca2+-induced Ca2+ release (CICR) from the ER, thereby resulting in a large presynaptic
Ca2+ transient [80,124,125]. The Ca2+ signal then engages calmodulin to stimulate neu-
rotransmitter release via the AC/cAMP/PKA signaling pathway [80,125]. By contrast,
at high agonist concentrations, inhibition of glutamate release requires flux-independent
signaling: presynaptic KARs inhibit AC via Gi/o proteins, and their activity is not impaired
by the depletion of the ER Ca2+ store [75,121]. In the molecular layer of the cerebellum,
presynaptic KARs could function in both a flux-dependent and flux-independent manner
to sense low or high agonist concentrations, thereby fine-tuning the consolidation and
maturation of the PF-PuC synapse during development [75,80]. Interestingly, presynaptic
KARs are involved in LTD induction at the PF-PuC synapse, which is modulated by the
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paired stimulation of climbing fibers (CFs) [126]. However, the latter lack KARs [75]. Fu-
ture work will have to assess whether presynaptic KARs contribute to LTD induction by
signaling in a flux-independent mode.

In addition to the hippocampus and cerebellum, flux-independent signaling by KARs
can also modulate glutamate release in the mouse amygdala and rat globus pallidus, as
summarized in Table 1.

4.4. Flux-Independent Signaling by Postsynaptic KARs Regulates Neuronal Excitability and
Synaptic Plasticity in the Hippocampus

Flux-independent signaling by postsynaptic KARs could regulate neuronal excitability
in the hippocampus either by modulating the intracellular Cl− concentration ([Cl−]i)
(Figure 2) or by regulating the after-hyperpolarizing K+ current (IAHP) (Figure 3).
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Figure 3. Flux-independent signaling by KARs modulates neuronal excitability and synaptic plasticity.
Flux-independent signaling by KAR can increase neuronal excitability by inhibiting IsAHP and ImAHP

via Gi/o proteins and cPKC. Additionally, KARs can stimulate the exocytosis of AMPARs from
Rab1-containing vesicles on the PM of dendritic spines. KARs trigger a signaling cascade involving
Gi/o proteins and phospholipase C (PLC). PLC, in turn, synthesizes the two intracellular second
messengers: DAG, which activates cPKC, and InsP3, which induces ER Ca2+ release through InsP3

receptors (InsP3Rs). The combined effect of cPKC and Ca2+ release results in the recruitment of Rab11
endosomes to the PM, thereby increasing the surface expression of AMPARs.

In mouse CA3 pyramidal neurons, GluK2 can physically interact with the K+–Cl− co-
transporter 2 (KCC2), which extrudes intracellular Cl− across the PM, thereby lowering the
[Cl−]i and enabling type A GABA receptor (GABAAR)-dependent hyperpolarization and
reduction in neuronal excitability (Figure 2A) [74,127,128]. The tight association between
GluK2 and KCC2 is likely mediated by Neto2, which binds both proteins [74,127,129].
GluK2 is required to recycle KCC2 from the Rab11-dependent pathway to the PM, but for
this to occur, GluK2 must be phosphorylated by cPKC at the COOH-terminal residues S846
and S868 (Figure 2A) [130]. Ion flux through KARs is not involved in KCC2 recycling to the
PM, which therefore depends only on direct protein–protein interaction [74,130]. In agree-
ment with these findings, the pharmacological activation of GluK1-/GluK2-containing
KARs with KA induced a significant hyperpolarization of the reversal potential for GABA
(EGABA) and increased the driving force that sustains extracellular Cl− entry, which in
turn increases the strength of synaptic inhibition (Figure 2A) [128]. Additionally, the
pharmacological activation of KARs with KA stimulates extrasynaptic GABAARs in CA1
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pyramidal neurons, thereby enhancing tonic inhibition and protecting the neurons from
over-excitation during intense synaptic activity (Figure 2B) [131].

The IAHP can be activated by a submembrane Ca2+ pulse upon the activation of
voltage-gated L-type Ca2+ channels during the neuronal action potential. The IAHP is car-
ried by big-conductance Ca2+-dependent K+ channels (BKCa, responsible for the fast after-
hyperpolarization, or fAHP: IfAHP), small-conductance Ca2+-dependent K+ channels (SKCa,
responsible for the medium AHP, or mAHP: ImAHP), and intermediate Ca2+-dependent
K+ channels (IKCa, responsible for the slow AHP, or sAHP: IsAHP) [132]. The IAHP shapes
the neuronal output during synaptic activation by limiting the firing frequency, leading
to spike adaptation [71,132,133]. Low concentrations of KA (200 nM) reduce IsAHP in rat
CA1 pyramidal neurons by stimulating KARs to signal in a flux-independent manner:
KARs inhibit SKCa channels, thereby increasing neuronal excitability, via Gi/o proteins
and cPKC (Figure 3) [134]. A similar signaling mechanism has been reported in the rat
CA3 region, where KARs inhibit both IsAHP and ImAHP via cPKC activation [135,136].
The flux-independent regulation of IsAHP and ImAHP in the CA3 region is abolished in
transgenic mice lacking GluK2 and GluK5, but not GluK1 [135–137]. GluK5 cannot be
targeted to the PM in the absence of GluK2 [8], which explains why KA fails to inhibit IsAHP
and ImAHP in GluK2-deficient neurons. However, the GluK2 Q/R editing prevents the
suppression of IsAHP induced by synaptic MF activation in CA3 pyramidal neurons [116].
Flux-independent signaling by KARs also regulates membrane excitability in CA3 interneu-
rons. In juvenile rats, KARs are tonically activated by ambient glutamate to inhibit ImAHP
through Gi/o proteins, thereby increasing the interneuron firing rate. During development,
KARs are uncoupled from SKCa channels, and this regulation is lost in the adulthood,
thereby strongly reducing interneuron firing [138]. Similarly, flux-independent KAR signal-
ing suppresses ImAHP in immature mouse CA3 interneurons, where GluK2 is targeted to
the postsynaptic membrane only in the presence of Neto1 [139].

Repetitive synaptic activation of KARs in mouse CA3 pyramidal neurons leads to
a rundown of IsAHP that recovers 10 sec after stimulation [137]. Therefore, a burst of
synaptic activation could increase pyramidal cell excitability for a significant period of
time via the KAR-dependent suppression of IsAHP [93]. KAR-mediated MF-CA3 synaptic
transmission can undergo LTD upon high-frequency MF stimulation, resulting in GluK5
phosphorylation by Ca2+/Calmodulin-dependent protein kinase II (CaMKII) [140,141].
LTD of KAR-mediated postsynaptic responses relieves IsAHP inhibition, thereby increasing
NMDAR-dependent excitability in response to natural stimulus patterns that mimic GrC
activity in vivo [140,141]. Metabotropic-like KARs are also engaged by synaptic activa-
tion to reduce IsAHP at the SchC-CA1 synapse, although the rundown at this site was
irreversible [94]. Synaptic activation of KARs does not induce EPSCs in CA1 pyramidal
cells [94], although they are expressed and functional in the dendritic spines [142]. It has
therefore been proposed that ionotropic and metabotropic-like KARs are, at least in part,
physically segregated in the postsynaptic compartment of the CA1 pyramidal cell [8], as
was originally proposed for DRG cells [93].

Postsynaptic KARs in the mouse CA1 region can also utilize flux-independent signal-
ing to induce NMDAR-independent LTP. High-frequency stimulation of the SchC pathway
causes an increase in surface expression of functional AMPARs and in spine size that is not
mediated by NMDARs [143]. Synaptically released glutamate stimulates GluK2-containing
KARs to trigger the signaling cascade leading to LTP, which involves the recruitment of
Rab11-containining endosomes to dendritic spines (Figure 3) [143]. Ionotropic signaling
does not contribute to KAR-dependent LTP in CA1 pyramidal neurons. By contrast, post-
synaptic KARs activate Gi/o proteins, PLC, and PKC. InsP3-induced ER Ca2+ release in
dendritic spines is also required to induce LTP (Figure 3) [143]. Notably, the pharmacologi-
cal blockade of Group I and Group II mGluRs did not prevent KAR-dependent increase in
spine size or synaptic AMPARs [143]. KAR-dependent LTP could also be induced by a more
physiological pattern of hippocampal activity, i.e., the sharp-wave/ripple-like stimulation
pattern [143]. It is still unclear whether KAR-mediated LTP induction in the hippocampus
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is facilitated by the IsAHP downregulation. Flux-independent signaling can be activated
by KARs to increase neuronal excitability and enable the neuronal ensemble to enter a
“learning mode” state in the pyriform cortex (PC) [144], which plays a critical role in the
olfactory perception and discrimination. Direct administration of KA or a short tetanic stim-
ulation stimulates KARs to increase the excitability of PC pyramidal neurons by inhibiting
IsAHP. KARs signal the downregulation of IsAHP by activating cPKC and ERK, whereas
synaptic activation fails to increase neuronal excitability in GluK2-deficient transgenic
mice and in wild-type mice, in which this signaling cascade is inhibited by successful odor
discrimination rule learning [144]. In accord with this, complex odor leaning capability is
impaired in GluK2-deficient mice and enhanced by viral-mediated GluK2 overexpression
in ex vivo slices [144]. LTP is more readily inducible when the IAHP is reduced [133]. The
long-term storage of the olfactory information in the PC may, therefore, be favored by the
KAR-mediated suppression of IsAHP. However, the odor learning-induced suppression of
IsAHP is impaired in PC pyramidal neurons from old mice, suggesting that GluK2 may rep-
resent a promising target to alleviate cognitive decline during aging [145]. Taken together,
these preliminary findings strongly suggest that flux-independent signaling by KARs is
more prone to induce LTP rather than LTD.

4.5. Flux-Independent Signaling by KARs Regulates Axon Growth and Synaptic Differentiation

Presynaptic KARs can bidirectionally regulate the rapid motility of axonal filipodia
in the mouse hippocampus during development [93]. Low concentrations of KA (1 µM)
released from the target CA3 pyramidal cells activate KAR-mediated depolarizing inward
currents that stimulate motility by activating voltage-gated Ca2+ channels [146]. By contrast,
an increase in KA concentration (10 µM) stimulates presynaptic KARs to inhibit filopodial
motility through Gi/o proteins [146]. It has been proposed that in the early stages of
development, the larger distance between the source (CA3 pyramidal cell) and the target
(axonal filipodia) dilutes glutamate concentration, thereby facilitating ionotropic signaling
by KARs. When filopodia contact the CA3 pyramidal cell and stop moving, the reduction
in free extracellular space increases glutamate concentration, which stimulates presynaptic
KARs to stabilize the synapse in a flux-independent manner [146].

Similarly, metabotropic-like KARs regulate neurite outgrowth [8]. In mouse DRG
neurons, low concentrations of KA (300 nM) stimulate KARs to promote neurite extension
via flux-dependent signaling, whereas high concentrations of KA (3 and 10 µM) stimulate
KARs to inhibit neurite extension by mediating ion flux [147]. Flux-independent signaling
by KARs involves the Gi/o protein-dependent activation of cPKC [147], which is likely due
to PLC activation [93]. The microtubule-associated Collapsin Response Mediator Proteins 2
and 4 (CMRP2 and CMRP4) are part of the GluK5 interactome [147] and control many pro-
cesses during neuronal development, including neuronal migration, neuronal polarity, and
neurite outgrowth [8]. In addition, cPKC is recruited by flux-independent KAR signaling
to phosphorylate at S9 and thereby inhibit the glycogen synthase kinase-3β (GSK-3β) [147].
The cPKC-dependent inactivation of GSK-3β reduces CMRP2 phosphorylation at T514,
which suppresses CMRP2-mediated neurite extension [147]. Physical coupling to different
signaling cascades may explain why flux-independent signaling by KARs inhibits filopo-
dial motility in the hippocampal CA3 region, whereas it promotes axonal outgrowth in
mouse DRG neurons [147].

4.6. Flux-Independent Signaling by KARs: Future Perspectives

Most of the reports indicate that metabotropic-like KARs transduce synaptic activation
into an intracellular signal via Gi/o proteins, PLC, and cPKC. It has been reported that
KARs can also interact with Gq proteins in a heterologous cell system [137], but this mode
of signaling has not yet been reported in a more physiological context. An adaptor protein
could connect GluK1-containing KARs to Gi/o proteins [115], but this hypothesis also
requires further support. Presynaptic KARs primarily modulate neurotransmitter release in
developing neuronal networks by signaling in a flux-independent manner. The molecular
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mechanisms that contribute to shutting down metabotropic-like activity at some synapses,
e.g., MF-CA3 and SchC-CA1, in adulthood remain an open question. The molecular
underpinnings that enable presynaptic KARs to serve as ionotropic or metabotropic-like
receptors of low and high glutamate concentrations, respectively, also have yet to be
elucidated. Postsynaptic KARs mainly signal in a flux-independent manner to increase
neuronal excitability by suppressing the IAHP, thereby potentially favoring LTP induction,
as shown in [143]. The requirement for cPKC to inhibit IsAHP and ImAHP suggests that PLC
must be activated by KARs via Gi/o proteins to generate the PKC agonist, DAG. However,
PLC activation always results in InsP3-induced ER Ca2+ release, which can be evoked by
KAR activation in DRG neurons [93] and in CA1 pyramidal neurons [143]. If postsynaptic
KARs can activate a Ca2+-dependent conductance, such as the IAHP, we speculate that
the Ca2+ signal generated by the concomitant recruitment of ER-embedded InsP3Rs is
not directed towards the PM, where it would activate the IsAHP. Additionally, future
investigation will have to assess whether ionotropic and metabotropic-like KARs coexist
at the same postsynaptic sites or whether they are physically separated and converge on
different signaling outputs, i.e., depolarization and Gi/o protein activation, respectively.
Finally, unraveling how KARs interact with their protein partners will benefit from the
elucidation of their full-length structure. To date, cryo-electron microscopy (cryo-EM) has
only captured the structure of either homomeric (GluK2 and GluK3) or heterotetrameric
(GluK2/GluK5) KARs in their desensitized state [148]. We envision that capturing the
cryo-EM structure of KARs signaling in the flux-independent mode, which is certainly
a challenging task, will be useful in understanding how KARs use distinct molecular
configurations to utilize different signaling modes.

5. Flux-Independent Signaling by NMDARs

NMDARs are heterotetrameric channels containing multiple subunits: GluN1, GluN2A,
GluN2B, GluN2C, GluN2D, GluN3A, and GluN3B [15,17]. Two obligatory GluN1 subunits
can assemble with either two GluN2 subunits or a combination of GluN2 and GluN3
subunits [9,10]. GluN1 has eight splice variants, although their functional differences and
roles remain unclear [149]. Canonical NMDARs consist of two GluN1 subunits, which bind
to the NMDAR co-agonists, i.e., glycine or D-serine, and two GluN2 subunits, which bind
to the physiological agonist, i.e., glutamate. In addition, GluN1 is necessary for proper
assembly and surface delivery of the whole NMDAR protein to the PM [15,17]. Canonical
NMDARs mediate the influx of both extracellular Na+ and Ca2+ and undergo a strong
Mg2+-dependent inhibition at negative resting potentials. Therefore, NMDARs can serve
as coincidence detectors, as their activation requires the simultaneous presynaptic release
of glutamate and postsynaptic depolarization, which relieves Mg2+ inhibition by extruding
Mg2+ ions from the channel pore. The extracellular concentration of D-serine (or glycine) is
usually sufficient to promote their gating [15,17]. Recent evidence suggests that, at least
in certain synapses, D-serine and glycine, respectively, gate synaptic and extrasynaptic
NMDARs [150]. An alternative but not mutually exclusive hypothesis is that glycine serves
as an NMDAR co-agonist in early developmental stages, whereas D-serine fulfils this role
in the adult [150–152].

NMDARs are barely activated during the baseline (i.e., low frequency) activity of
excitatory glutamatergic synapses, mainly because of the Mg2+-dependent inhibition. Con-
versely, as the frequency of synaptic activation increases, the AMPAR-mediated postsynap-
tic depolarization is sufficient to repel Mg2+ ions from the channel pore, thereby activating
the slower NMDAR-EPSCs that last up to hundreds of milliseconds and allow the influx of
a substantial amount of Ca2+ into the postsynaptic spine [15,17]. GluN2A- and GluN2B-
containing NMDARs show a relatively high single-channel conductance (50 pS) and bear
a robust permeability for Ca2+ (PCa/PCs ≈ 7) [149]. This high Ca2+ permeability enables
NMDARs to transduce specific patterns of synaptic activation into long-lasting changes
in synaptic strength, such as LTP and LTD [9,15,17,149]. However, the inclusion of GluN2
or GluN2D can significantly impact the biophysical properties of NMDARs, which show
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reduced single-channel conductance (37 pS), Ca2+ permeability (PCa/PCs ≈ 4.5), and Mg2+-
dependent inhibition (IC50 = 80 µM vs. 35 µM) [9,15,17,149]. The role of GluN3, which
also avidly binds glycyne, has only recently been recognized [153,154]. Incorporation of
the GluN3A subunit into tri-heteromeric GluN1/GluN2/GluN3 channels further reduces
the single-channel conductance and Ca2+ permeability and abolishes the Mg2+ sensitiv-
ity at negative membrane potentials [153–155]. Recently, di-heteromeric GluN1/GluN3
channels have been discovered that are not activated by glutamate, as they lack the GluN2
subunit, but are gated by glycine [153]. GluN1/GluN3 channels serve as glycine-gated
excitatory receptors that lack Ca2+ permeability and Mg2+-dependent inhibition and can
mediate neurotransmission in some brain regions, including the medial habenula and the
juvenile hippocampus [153,154]. This new evidence led to the hypothesis that neuronal
NMDARs co-exist as glutamate-gated GluN1/GluN2 and GluN1/GluN2/GluN3 receptors
and glycine-gated GluN1/GluN3 [153,154].

Extracellular Ca2+ entry through conventional NMDARs plays a primary role in the
processes of learning and memory formation due to its ability to modulate the strength of
synaptic transmission in both the short and long term [17,156]. However, a flurry of studies
have convincingly shown that NMDARs can also signal in a flux-independent manner to
regulate a variety of neuronal functions, ranging from neurotransmitter release to synap-
tic plasticity, whereas excessive metabotropic-like NMDAR signaling is associated with
excitotoxicity [5,6,8,24]. Furthermore, flux-independent signaling by GluN1/GluN2 and
GluN1/GluN2/GluN3 receptors has also been described in astrocytes [157,158] and cere-
brovascular endothelial cells [9,159,160]. This growing body of evidence further expands
the versatility of NMDAR signaling at the neurovascular unit.

5.1. Flux-Independent Signaling by NMDARs in Neuronal Physiology

Flux-independent signaling by NMDARs regulates several neuronal functions, includ-
ing NMDAR internalization and trafficking, spine morphology, LTD, and glutamate release
(Figure 4).
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internalization via the adaptor protein AP-2. High concentrations (10 µM) of glycine alone increase the
interaction with AP-2, thereby priming NMDARs for dynamin-dependent endocytosis upon agonist
binding. (B) Agonist and co-agonist binding to GluN1-containing NMDARs can stimulate the p38
MAPK in a flux-independent manner to promote AMPAR endocytosis, resulting in Ca2+-independent
LTD induction. (C) Flux-independent signaling by NMDARs regulates spine morphology. In the
presence of weak Ca2+ entry, NMDARs promote dendritic spine shrinkage by triggering a signaling
pathway that requires interaction between nNOS and NOS1P, involving p38 MAPK, MK2, and
cofilin, which promotes actin depolymerization. This signaling pathway is supported by mTORC1,
which is likely to drive new protein synthesis. In the presence of strong Ca2+ influx (highlighted
in red), the Ca2+-dependent recruitment of CaMKII leads to dendritic spine growth via inducing
actin polymerization. (D) Flux-independent signaling by postsynaptic NMDARs regulates glutamate
release by stimulating Src kinase to activate pannexin 1 (PANX1) channels, which clear synaptic
anandamide (AEA) and prevent AEA-induced activation of presynaptic TRPV1 channels. This causes
a reduction in [Ca2+]i at the presynaptic terminal and therefore decreases Ca2+-dependent glutamate
release. By contrast, upon agonist and co-agonist binding, presynaptic NMDARs promote glutamate
release via the JNK2-dependent signaling pathway. In all the panels, the red circle indicates the
agonist, whereas the blue circle indicates the co-agonist. ↑: increase.

5.1.1. Flux-Independent Signaling by NMDARs Controls NMDAR Internalization
and Trafficking

An early report showed that glutamate binding to NMDARs induces NMDAR inter-
nalization in a flux-independent manner with the aid of the clathrin-adaptor protein AP-2
(Figure 4A) [161]. This effect is induced by repeated applications of glutamate (1 mM),
requires the presence of glycine, and is dependent on GluN2A dephosphorylation [161].
This mechanism may explain the downregulation of NMDAR currents caused by tyro-
sine phosphatase activity during whole-cell patch-clamp recordings [162]. A reduction
in the surface expression of NMDARs can also be induced by co-agonist binding alone
(Figure 4A). High concentrations (10 µM) of glycine prime NMDARs for clathrin-mediated,
dynamin-dependent endocytosis, which is induced by subsequent binding to glutamate
in isolated rat hippocampal CA1 neurons [163]. The priming effect of glycine does not
require ion flux, is mimicked by D-serine, and requires AP-2 (Figure 4A) [163]. Furthermore,
glycine-primed internalization of NMDARs does not depend on the GluN2 subunit that
interacts with GluN1 but is tightly regulated by a single aminoacidic residue, i.e., A714, in
the glycine-binding site [164]. Alternative splicing that removes the N1 polypeptide cassette
from the GluN1 subunit is required to gate glycine-induced NMDAR internalization [165].
Thus, glycine priming of NMDARs for endocytosis can only occur in hippocampal neurons,
but not in interneurons, which express N1-containing GluN1 subunits [6].

By contrast, spontaneous synaptic activity in the hippocampal CA1 region leads to
the incorporation of GluN2A but not GluN2B subunits into postsynaptic NMDARs [166].
Synaptic incorporation of GluN2A requires glutamate and co-agonist binding but is inde-
pendent of the ion flux through the NMDAR channel pore [166]. This signaling pathway
may promote the progressive enrichment of GluN2A-containing NMDARs by adulthood,
thereby fine-tuning synaptic maturation, neuronal network formation, and cortical de-
velopment [167]. The synaptic content of GluN2B-containing NMDARs could be further
reduced by D-serine, which decreases the basal surface trafficking of GluN2B, while glycine
is ineffective [152]. The D-serine induced reduction in GluN2B trafficking requires a confor-
mational change in the long CTD of GluN2B, which contains several domains involved
in the interaction with several postsynaptic density proteins [152], including postsynaptic
density-95 (PSD-95) [24,152]. Therefore, fluctuations in the extracellular availability of
D-serine (decreases) or glycine (increases) could control the recruitment of GluN2B from
the extrasynaptic pool [152], thereby regulating the molecular arrangement of synaptic
NMDARs through flux-independent signaling.
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5.1.2. Flux-Independent Signaling by NMDARs Controls Synaptic Plasticity

Earlier evidence suggested that hippocampal CA1 neurons may undergo LTD upon
low-frequency stimulation of the SchC in the absence of ion flux through NMDARs
(Figure 4B) [6,168]. Subsequent investigations confirmed that when NMDAR-mediated
Ca2+ entry is inhibited either with the selective NMDAR channel pore inhibitor MK-801 or
with the co-agonist blocker 7-chlorokynurenic acid (7-CK), NMDAR-mediated LTD can
still be induced [169] and lead to spine shrinkage in a Ca2+-independent manner [170].
Conversely, LTD is not manifest upon inhibition of glutamate binding with D-2-amino-
5-phosphonopentanoate or 3-((RS)-2-carboxypiperazine-4-yl)-propyl-1-phosphonic acid.
These findings suggest that NMDARs recruit the signaling pathways that weaken synaptic
transmission via a conformational rearrangement that is not associated with Ca2+ en-
try [6,169–171] and does not depend on the GluN2 subunit assortment [172]. Intrigu-
ingly, blocking flux-dependent signaling with either MK-801 or 7-CK converted high-
frequency stimulation-induced LTP into LTD, thereby confirming that NMDARs can signal
in a flux-independent manner to reduce synaptic strength [169,170]. Several signaling
pathways, including p38 mitogen-activated protein kinase (MAPK) and neuronal NO
synthase (nNOS), can sustain the ion flux-independent LTD (Figure 4B) [169,170,173].
The NO synthase 1 adaptor protein (NOS1AP) mediates the interaction between NM-
DARs and nNOS [173], which is necessary to recruit p38 MAPK to the signaling complex
(Figure 4C) [174]. Furthermore, flux-independent NMDAR signaling involves MK2, which
is targeted by p38 MAPK to recruit the actin-binding protein cofilin, thereby promoting den-
dritic spine shrinkage (Figure 4C) [173,175]. CaMKII has long been known to induce LTP
but has also been recently implicated in LTD [176]. In accord with this, the pharmacological
blockade of CaMKII inhibits the dendritic spine shrinkage induced by flux-independent
NMDAR signaling [173]. Förster resonance energy transfer (FRET) imaging revealed that
agonist binding to the GluN2 subunit induces a conformational movement of the GluN1
CTDs, which move away from each other and enable protein phosphatase 1 (PP1) to access
and dephosphorylate NMDAR-bound CaMKII at T286. PP1-mediated dephosphorylation
could reorientate CaMKII within the signaling complex, thereby relocating its catalytic
sites in proximity to molecular targets that promote LTD rather than LTP [177]. It has
been proposed that dephosphorylated CaMKII, which can be tethered to either GluN1
or GluN2 [177], is responsible for the GluA1 phosphorylation at S567 that occurs during
LTD [178,179]. Furthermore, nNOS [180] and CaMKII [176] are Ca2+-dependent enzymes,
which may explain why buffering basal Ca2+ levels prevents NMDAR-mediated LTD [169].
In parallel, basal Ca2+ signaling likely stimulates calcineurin to restrain AMPAR expression
and reduce AMPAR-EPSCs at the SchC-CA1 synapse [169].

However, other investigations failed to support the emerging evidence of flux-inde-
pendent NMDAR signaling in the hippocampal CA1 area, as LTD was not induced in the
presence of the use-dependent NMDAR channel pore blocker MK-801 [6,178,181]. The
possibility of a modest increase in dendritic Ca2+ concentration due to interaction between
NMDARs and mGluR1/mGluR5, which can occur in cerebrovascular endothelial cells
(CECs) [159], was ruled out [170,173]. Flux-independent recruitment of intracellular sig-
naling pathways is mediated by the conformational movement of the GluN1 CTD upon
glutamate or NMDA binding to GluN2 [171,177]. It has been shown that an increase in PSD-
95 expression reduces NMDA-induced conformational movement in the NMDAR CTD and
inhibits flux-independent LTD [182]. Conversely, the overexpression of PSD-95 does not
affect NMDAR-mediated, flux-dependent LTD [182,183]. The expression levels of PSD-95
undergo an age-dependent upregulation [184]. Therefore, the PSD-95-dependent obstruc-
tion of GluN1 CTD could increase during the first postnatal weeks, thereby promoting
flux-independent LTD at more immature synapses [6,182].

Recently, an in vitro investigation showed that the co-agonist glycine can potentiate
the AMPAR function by binding to NMDARs containing GluN2A but not GluN2B. This
effect occurs in the absence of glutamate and is sensitive to the inhibition of ERK 1/2
while being independent of the ion flux [185]. Interestingly, earlier work has shown that
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NMDARs stimulate synapse-to-nucleus communication through the Ca2+-independent
recruitment of the ERK pathway. NMDARs have been shown to synergize with mGluR5 in
a PSD-95-dependent manner to induce ERK phosphorylation and promote the expression
of the immediate early gene c-fos [186]. Future studies will have to assess whether this
mode of metabotropic-like NMDA signaling also occurs in intact hippocampal circuits,
thereby replacing the LTD-inducing flux-independent signaling pathways that are inhibited
by an increase in PSD-95 expression.

5.1.3. Flux-Independent Signaling by NMDARs Bidirectionally Regulates
Spine Morphology

As outlined in Section 5.1.2, flux-independent signaling by NMDARs drives dendritic
spine shrinkage following LTD induction at the SchC-CA1 synapse [173,187]. The signaling
pathways by which NMDARs drive spine shrinkage are illustrated in Figure 4C and
include the mammalian target of rapamycin complex 1 (mTORC1) [188]. The mTORC1
pathway could promote the constitutive protein synthesis that is necessary to induce rapid
changes in spine morphology [188]. Alternately, mTORC1 may regulate spine morphology
by regulating lysosomal Ca2+ release. Synaptic activity redirects lysosomal vesicles into
dendritic spines [189], and emerging evidence suggests that lysosomal signaling can exert
a bidirectional regulation of synaptic strength through two-pore channel (TPC)-mediated
Ca2+ release [190]. The mTORC1 phosphorylates TPCs to inhibit local perilysosomal Ca2+

signals [191,192]. Flux-independent NMDAR signaling could therefore stimulate mTORC1
to inhibit TPC-mediated Ca2+ release, thereby promoting dendritic spine shrinkage and
LTD induction.

Surprisingly, a recent investigation showed that flux-independent signaling by NM-
DARs can also be engaged during LTP induction to promote spine growth (Figure 4C) [193].
The same signaling pathways by which the metabotropic-like activity of NMDARs induces
spine shrinkage also support spine growth upon a high-frequency pattern of glutamater-
gic stimulation: the interaction between NOSP1 and nNOS recruits p38 MAPK into the
NMDA signaling complex, followed by MK2-dependent cofilin activation and actin cy-
toskeleton disassembly (Figure 4C) [193]. However, LTP induction is not affected by the
pharmacological blockade of p38 MAPK, whereas Ca2+ influx must be associated with the
metabotropic-like activity of NMDARs to promote spine growth [193]. It has, therefore,
been proposed that flux-independent NMDAR signaling plays a critical role in bidirectional
spine structural plasticity: glutamate binding during synaptic activity stimulates NMDARs
to engage the p38 MAPK signaling pathway through a conformational modification of
their CTD. In the presence of low Ca2+ entry, such as during LTD induction, cofilin-induced
severing of F-actin leads to dendritic spine shrinkage (Figure 4C). In the presence of strong
Ca2+ entry, such as during LTP induction, severed G-actin monomers provide the build-
ing blocks for CaMKII-dependent F-actin polymerization, extension, and spine growth
(Figure 4C) [6,193].

5.1.4. Flux-Independent Signaling by NMDARs Regulates Spontaneous Glutamate Release

Flux-independent NMDAR signaling regulates spontaneous glutamate release both in
hippocampal CA1 pyramidal neurons [194] and at the excitatory connections onto layer
5 pyramidal neurons in the visual cortex [195]. In the hippocampus, postsynaptic NM-
DARs inhibit spontaneous glutamate release via flux-independent trans-synaptic signaling.
NMDARs are gated via the simultaneous binding of glutamate and the co-agonist to initi-
ate Src-mediated phosphorylation of pannexin-1 (PANX-1), which mediates anandamide
(AEA) entry into the postsynaptic neuron, thereby promoting AEA degradation via the
fatty acid amid hydrolase (FAAH) (Figure 4D) [194]. AEA can serve as an endogenous
ligand for the non-selective cation channel Transient Receptor Potential Vanilloid 1 (TRPV1),
which mediates Ca2+ entry [196,197] and regulates the spontaneous exocytosis of glutamate
vesicles [194]. The clearance of synaptic AEA prevents TRPV1-mediated Ca2+ entry into
the presynaptic terminal and reduces spontaneous glutamate release (Figure 4D) [194].
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By contrast, presynaptic NMDARs stimulate glutamate release during evoked activity
through Ca2+ influx, whereas they support spontaneous release via a C-Jun N-terminal
kinase-2 (JNK2)-dependent mechanism that is insensitive to Mg2+-dependent inhibition
(Figure 4D) [195]. It remains to be elucidated whether ionotropic and flux-independent
NMDARs are located at different presynaptic sites to control the release of different synaptic
pools. This hypothesis is supported by the evidence that the Rab3-interacting molecules
(RIM) RIMα and RIMβ, which function as both scaffolding and signaling proteins at the
release sites [198], are required by ionotropic but not flux-independent NMDARs [195].

5.1.5. Flux-Independent Signaling by NMDARs in Neuronal Physiology: Future Perspectives

The discovery that the low-frequency glutamatergic stimulation of NMDARs can
induce LTD even when the ion flux through the channel pore is inhibited argued against
the role of a weak increase in dendritic Ca2+ concentration [6,169,177,179]. However, other
investigations showed that the use-dependent NMDAR open channel pore blocker MK-801
prevented LTD in the hippocampal CA1 area [178,181,199]. As outlined in Section 5.1.2, an
increase in PSD-95 expression during the first postnatal weeks prevents the conformational
modifications that occur in the GluN1 CTD1 upon glutamate binding to GluN2. Therefore,
LTD induction may require flux-independent NMDAR signaling in younger animals,
whereas it relies on NMDAR-mediated extracellular Ca2+ entry in older mice [6]. Future
studies are mandatory to resolve this discrepancy and should therefore be carried out
under more homogenous recording conditions, taking into account the multiple variables
that could have led to these contrasting findings, including methods of hippocampal slice
preparation, LTD induction protocols, MK-801 treatment, intracellular and extracellular
solution, etc. [6]. It would also be worthwhile to investigate whether flux-independent
NMDAR-mediated LTD can occur in other brain regions, such as the cortex, amygdala, and
cerebellum [72,200,201].

The conformational movements of the GluN1 CTD also deserve careful investigation,
as this long cytosolic domain is critical for the interaction with the signaling proteins re-
cruited upon glutamate binding. Interestingly, while agonist binding causes the GluN1
CTDs to move away from each other independently of the ion flux [171,177], FRET fluores-
cence lifetime imaging showed that the co-agonist D-serine causes the GluN1 CTDs to move
closer to each other [152]. By contrast, the other co-agonist, i.e., glycine, does not induce any
FRET-detectable movement in the GluN1 CTDs [152], although it could cause movements
of the GluN2 CTD that have not yet been captured [6]. D-serine-induced conformational re-
arrangement of the GluN1 CTD is required to fine-tune NMDAR trafficking and localization
to the postsynaptic density. Notably, glutamate causes the GluN1 CTDs to move away from
each other both in the presence and in the absence of the co-agonist [152,171]. Therefore, fu-
ture work could attempt to shed light on the reason why D-serine does not counterbalance
GluN1 CTD movements during agonist-induced flux-independent NMDAR signaling.

5.2. Flux-Independent Signaling by NMDARs in Brain Astrocytes and Microvascular
Endothelial Cells

The neurovascular unit (NVU) represents the smallest functional unit of the brain and
fine-tunes synaptic activity and plasticity, neuronal metabolism, local cerebral blood flow
(CBF), and the integrity of the blood–brain barrier (BBB) [51,202,203]. At the NVU, NM-
DARs have also been found in astrocytes [204], vascular smooth muscle cells (VSMCs) [205],
and microvascular endothelial cells [9]. Ionotropic NMDARs sense synaptically released
glutamate to regulate heterosynaptic plasticity in astrocytes [206] and local changes in
CBF in both arteriolar VSMCs [205] and CECs [207]. However, recent findings have re-
vealed that NMDARs can also signal in a flux-independent manner in both rat cortical
astrocytes [157,158] and human brain microvascular endothelial cells [159,160].
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5.2.1. Flux-Independent Signaling by NMDARs in Brain Astrocytes

Astrocytic NMDARs consist of heteromeric trimers of two GluN1 subunits, one
GluN2C or GluN2D subunit and one GluN3 subunit [204,208]. The role of ionotropic
NMDARs in brain astrocytes is still controversial [209], although preliminary evidence
suggests that they can be activated during high-frequency stimulation of the SchC-CA1
synapse to induce LTD at adjacent non-stimulated inputs [206]. Nevertheless, several re-
cent studies have shown that NMDARs signal an increase in [Ca2+]i in a flux-independent
manner in rat cortical astrocytes. NMDA was first found to induce Ca2+ release from the
ER, which was inhibited by the selective inhibition of GluN2B with ifenprodil but still
occurred in the absence of extracellular Ca2+ (0Ca2+) [210]. NMDA-evoked Ca2+ signals
are dose-dependent: they arise at 0.1 nM and reach a maximum amplitude at 100 nM [210].
The intracellular Ca2+ response to NMDA is shaped by InsP3-induced ER Ca2+ release
through InsP3Rs) [210]. Type 2 InsP3Rs (InsP3R2) are the major ER Ca2+-releasing channels
in astrocytes [211], which do not express ryanodine receptors that can amplify InsP3-evoked
Ca2+ release via CICR in neurons [212]. The amplitude of the Ca2+ response is reduced
under 0Ca2+ conditions, whereas its duration is curtailed [210]. The Ca2+ entry pathway
responsible for NMDA-induced Ca2+ entry has not been investigated, but it could be pro-
vided by SOCE [213]. SOCE is the main Ca2+ source for ER Ca2+ refilling in astrocytes upon
InsP3-induced depletion of the ER Ca2+ store [49,214]. In addition, the interplay between
STIM proteins and GluA1/GluA2 subunits may also contribute to astrocytic SOCE [54].
Future work could investigate whether InsP3-induced ER Ca2+ release sets in motion an
unexpected communication between NMDARs and AMPARs in astrocytes. A subsequent
report confirmed that NMDA induces a dose-dependent (1–100 µM) delayed and sustained
increase in [Ca2+]i in rat cortical neurons that is initiated by InsP3-induced ER Ca2+ release
and maintained via Ca2+ entry [215]. The kinetics of the long-lasting influx of Ca2+ induced
by the prolonged application of NMDA are again consistent with SOCE activation [50], but
this hypothesis remains to be supported by experimental data. NMDA-evoked Ca2+ signal-
ing recruits an antioxidant defense program in rat cortical astrocytes: the increase in [Ca2+]i
recruits protein kinase Cδ to phosphorylate and stabilize p35, which is a cyclin-dependent
kinase-5 (Cdk5) cofactor [215]. The active p35/Cdk5 complex promotes the nuclear translo-
cation of Nrf2 through phosphorylation of T395, S433, and T439, thereby inducing the
expression of several antioxidant genes [215]. Furthermore, the NMDARs–Cdk5–Nrf2
signaling pathway promotes the release of glutathione (GSH) precursors, leading to an
increase in neuronal GSH in co-culture. Astrocytes-derived GSH, in turn, affords protection
against oxidative stress to neighboring neurons [215]. The InsP3-dependent astrocytic
Ca2+ response to NMDA was confirmed by a third independent investigation showing
that the Ca2+ signal was unaffected by MK-801, whereas it was suppressed by the genetic
deletion of GluN1 [157]. This response is elicited by a rather high NMDA concentration
(1 mM) that may be within the range of glutamate levels reported during high neuronal
activity at glutamatergic synapses [24,157]. This rather high NMDA concentration results
in acidification of the extracellular milieu that reaches pH ≈ 6.0 [157]. A follow-up study
revealed that NMDARs can serve as pH sensors in rat cortical astrocytes and that the
Ca2+ signal does not occur when 1 mM NMDA is administered through an extracellular
solution buffered at a pH of 7.0 [158]. Therefore, astrocytic NMDARs may play a critical
role during intense synaptic activity and may also be activated by pathological conditions
that lead to acidification of the extracellular milieu, such as hypercapnia, inflammation,
and stroke [157,158].

Future work is required to assess whether flux-independent NMDAR signaling elicits
intracellular Ca2+ waves or any other signaling pathways in astrocytes from other brain
regions. In addition, the contribution of the lysosomal Ca2+ pool, which triggers the
InsP3-evoked Ca2+ pulse in neurons, astrocytes, and CECs, to NMDAR-dependent ER
Ca2+ release should also be assessed [216]. The interaction between NMDARs and STIM-
regulated proteins also requires careful consideration [48,49]. On the one hand, the ER
resident STIM proteins could sense the decrease in ER Ca2+ concentration induced by
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NMDA-induced Ca2+ release through InsP3Rs, as outlined above. On the other hand,
STIM activation by flux-independent NMDAR signaling could promote GluN1, GluN2A,
and GluN2B endocytosis, as reported in rat cortical neurons [217,218]. Current evidence
suggests that NMDAR-mediated currents are only detectable in vivo and not in cultured
astrocytes [204]. It has been proposed that a signaling switch occurs in cortical astrocytes
maintained in culture [204]. STIM-dependent endocytosis may be one of the mechanisms
contributing to suppress NMDA-evoked non-selective cation currents in primary astrocyte
cultures. Therefore, assessing whether flux-independent NMDAR signaling occurs only
in culture or can also be activated in vivo is essential to understand its potential physio-
pathological relevance.

5.2.2. Flux-Independent Signaling by NMDARs in Human CECs

Endothelial cells line the inner lumen of blood vessels and are therefore critical for
regulating the exchange of solutes between the streaming blood and parenchymal tis-
sues [35,219]. The primary role of CECs has long been associated with the maintenance of
the structural and functional integrity of the BBB [220]. The BBB is composed of capillary
endothelial cells, pericytes, and astrocyte end-feet that cooperate to supply neurons with
oxygen and nutrients and to remove their catabolic waste [221]. Recent studies have pro-
vided further insight into the physiological function of CECs, which have also been shown
to trigger neurovascular coupling (NVC) by translating the local increase in cortical activity
into an increase in local CBF [88,222]. Several ionic signaling mechanisms enable CECs
to sense neuronal activity [88,222], including NMDARs, which are normally located in
the basolateral membrane, i.e., in the most suitable position to sense synaptically released
glutamate [223]. Studies conducted in mouse brain microvasculature have shown that
in pre-capillary arterioles, endothelial NMDARs increase local CBF by stimulating the
Ca2+-dependent endothelial NO synthase [223,224], whereas they promote an increase in
BBB permeability at the capillary level [225,226]. Interestingly, NMDARs have also been
shown to signal in a flux-independent manner in human CECs [9].

Primary CECs isolated from human microvessels express GluN1 [226,227], whereas the
hCMEC/D3 cell line, which is the most widely employed model of human BBB [228,229],
expresses GluN1, GluN2C, and GluN3B subunits [159]. Assembly of GluN1 with GluN2
and GluN3B would reduce the single-channel conductance, Ca2+ permeability, and sensitiv-
ity to extracellular Mg2+ of the resulting NMDAR [9,230]. Electrophysiological recordings
showed that NMDA failed to elicit inward currents in hCMEC/D3 cells either in the ab-
sence or in the presence of extracellular Mg2+, nor could currents be gated in the presence of
the co-agonist D-serine [159]. However, NMDA induced a robust increase in NO levels that
was abolished by the genetic deletion of GluN1, by the removal of extracellular Ca2+, and
by the blockade of the NMDAR channel pore with MK-801 [159]. These findings strongly
suggest that the human NMDAR is a hetero-trimeric channel consisting of (1) two GluN1,
i.e., the obligatory subunit for channel assembly; (2) one GluN2C, which is required for
agonist binding; and (3) GluN3C, which is responsible for a low-amplitude current that
falls below the resolution limit of whole-cell amplifiers and weak Ca2+ permeability that
results in a spatially restricted submembrane Ca2+ microdomain [9,159]. Consistent with
this, single-cell Ca2+ imaging revealed that NMDA induces a dose-dependent (3–300 µM)
biphasic increase in [Ca2+]i that was only curtailed but not abolished in the absence of
extracellular Ca2+. Moreover, the Ca2+ response to NMDA was strongly reduced by the
genetic deletion of GluN1 and by the pharmacological blockade of agonist binding with
2-amino-5-phosphonopentanoic acid APV, whereas it was unaffected by MK-801. Therefore,
extracellular Ca2+ entry through the channel pore is not sufficient to trigger a global Ca2+

wave, and NMDARs must signal the increase in [Ca2+]i in a flux-independent manner [159].
In agreement with this hypothesis, the intracellular Ca2+ response to NMDA was abolished
by preventing ER Ca2+ release through InsP3Rs and lysosomal Ca2+ mobilization through
TPCs [159]. In the endothelial lineage, nicotinic acid dinucleotide phosphate (NAADP)
gates lysosomal TPCs to elicit local Ca2+ release that is then amplified by juxtaposed
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InsP3Rs through the CICR process, thereby triggering the Ca2+ response to extracellular au-
tacoids [231–233]. In contrast to astrocytic NMDARs, strong evidence has been provided for
SOCE as the major Ca2+ entry pathway that sustains Ca2+ entry during flux-independent
NMDAR signaling in hCMEC/D3 cells [159]. Furthermore, the metabotropic Ca2+ response
to NMDA was suppressed by the pharmacological and genetic blockade of mGluR1 and
mGluR5 [159]. This finding strongly suggests that NMDARs are either functionally or
structurally coupled with Group 1 mGluRs, which could induce the synthesis of InsP3 and
NAADP by recruiting PLCβ and Dual NADPH oxidase 2 (DUOX2), respectively [10,234].
This hypothesis is supported by the evidence that ERK activation in rat striatal neurons
requires flux-independent NMDAR signaling and mGluR5 stimulation [186], as outlined in
Section 5.1.2. Furthermore, NMDARs and mGluR5 are closely associated with regards to
postsynaptic density [235,236]. The vasorelaxing gasotransmitter NO also plays a crucial
role in NVC in human brain microvasculature, although the underlying NOS isoform(s)
remain(s) to be identified [237,238]. Ionotropic NMDARs may drive a fast hemodynamic re-
sponse that follows the onset of neuronal activity, whereas the flux-independent prolonged
increase in [Ca2+]i signal may maintain NO release during sustained stimulation.

A parallel investigation confirmed that extracellular Ca2+ entry through NMDARs in
hCMEC/D3 cells is not detectable via Ca2+ imaging [160]. However, NMDAR activation
via the co-application of NMDA and tissue-type plasminogen activator (tPA) or glycine and
tPA recruits the RhoA-/Rho-associated protein kinase (ROCK) signaling pathway; ROCK,
in turn, induces the myosin light chain (MLC) kinase (MLCK)-dependent phosphorylation
of MLC, thereby increasing hCMEC/D3 cell permeability [239]. The underlying remodeling
of the actin cytoskeleton could also be influenced by the NMDAR-mediated increase in
[Ca2+]i [240], but this hypothesis requires further support.

Endothelial NMDARs have been reported to function only as ionotropic receptors
in mouse CECs [9,230]. However, the Anderson group suggested that NMDARs may
elicit NO release in response to neural activity through a non-ionotropic mechanism [224].
Mouse brain microcirculation has long been investigated to gain cellular and molecular
mechanisms that regulate the functions subserved by the human BBB [51,220,240,241].
However, emerging evidence suggests that the blend of ion channels by which CECs detect
neuronal activity can differ between mouse and human microvasculature [242–244]. Future
work could assess whether NMDARs also signal in a flux-independent manner in mouse
brain microvascular endothelial cells.

6. Flux-Independent Signaling by NMDARs in Brain Disorders

It has long been known that excessive Ca2+ entry through NMDARs can result in Ca2+

overload and thereby induce neuronal excitotoxicity, which can manifest as either rapid
lytic death (necrosis) or slower programmed cell death (apoptosis) [245,246]. NMDAR
hyperactivation can occur upon massive glutamate release, e.g., during epilepsy or acute
brain ischemia, or when neurons experience metabolic or oxidative stress, e.g., in neurode-
generative disorders or after traumatic brain injury [245,246]. However, recent studies
showed that flux-independent NMDAR signaling can also lead to neuronal dysfunction
and excitotoxicity [6].

6.1. Neuronal Excitotoxicity

Early work showed that high concentrations of NMDA (200 µM) induce an increase
in [Ca2+]i in mouse cortical neurons that requires D-serine but is affected by neither the
removal of extracellular Ca2+ nor by extracellular Mg2+ (Figure 5A) [247]. Conversely,
the Ca2+ response to NMDA is prevented by prior depletion of the ER Ca2+ pool [247],
suggesting that NMDARs can also recruit ER-embedded InsP3Rs in neurons (Figure 5A). ER
Ca2+ release through InsP3Rs promotes NMDAR-mediated phosphorylation of eukaryotic
Elongation Factor 2 (eEF-2), which in turn dampens protein synthesis (Figure 5A) [247].
This observation may help us explain how excitotoxic glutamatergic stimulations lead to the
inhibition of protein synthesis during brain ischemia. A subsequent investigation confirmed
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that flux-independent signaling by NMDARs can stimulate pro-death signaling pathways
during stroke [248]. Furthermore, NMDAR-dependent, Src-mediated phosphorylation
of PANX1 results in robust inward currents and Ca2+ entry through PANX1 channels
in mouse hippocampal neurons (Figure 5A). This Ca2+ influx drives the mitochondrial
permeability transition pore (mPTP) formation and neuronal apoptosis during oxygen and
glucose deprivation in vitro (Figure 5A). PANX1 is phosphorylated by Src kinase at Y308,
which is located on its COOH-terminal tail. Preventing PANX1 phosphorylation with TAT-
Panx308, an interfering peptide that mimics the COOH-terminal epitope of PANX1, reduces
the size of brain lesions and rescues sensorimotor deficits after a stroke in mice [248].
Finally, high concentrations of NMDA (100 µM) can lead to excessive reactive oxygen
species (ROS) production by stimulating flux-independent NMDAR signaling in mouse
cortical neurons (Figure 5A) [249]. Glutamate binding alone promotes the interaction
between the COOH-terminal domain of GluN2B and the p85 regulatory subunit of PI3K
(Figure 5A). This enables PI3K to stimulate ROS production by neuronal NADPH oxidase-2
(NOX2) [249], which may occur via the phosphorylation of the NOX2 p47phox subunit
at S328 [250]. However, NMDAR-mediated NOX2 activation also requires an increase in
[Ca2+]i, although the source of this Ca2+ signal (e.g., ionotropic NMDARs or voltage-gated
Ca2+ channels) does not seem to be relevant [249]. The excessive increase in intracellular
ROS levels induces NMDAR-dependent excitotoxic DNA damage, lipid peroxidation, and
neuronal cell death [249].
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Figure 5. Flux-independent signaling by NMDARs in brain disorders. (A) Flux-independent signaling
by NMDARs leads to neuronal excitotoxicity upon massive glutamatergic stimulation. NMDARs
trigger InsP3-induced ER Ca2+ release, which inhibits the EF-2 protein and interferes with protein
synthesis. Furthermore, NMDARs can stimulate Ca2+ entry through PANX1 channels via Src-
dependent phosphorylation of PANX1. Excessive Ca2+ entry leads to mitochondrial Ca2+ overload,
mPTP opening, and apoptosis. Finally, agonist binding to GluN2B-containing NMDARs can remove
the p85 regulatory subunit from the catalytic domain of PI3K, thereby inducing PI3K-dependent
NADPH oxidase-2 (NOX2) activation. NOX2 can also be activated via Ca2+ entry through ionotropic
NMDARs and lead to cytotoxic superoxide production. The red circle indicates the agonist, whereas
the blue circle indicates the co-agonist. (B) The Aβ protein binds to GluN2B-containing NMDARs
to induce a flux-independent signaling pathway that leads to AMPAR removal from the PM and
dendritic spine shrinkage via the p38 MAPK signaling pathway. ↓: decrease; ↑: increase.

These findings strongly support the notion that flux-independent NMDAR signaling
may exacerbate or even trigger brain damage and loss of cognitive functions after stroke. In
agreement with this hypothesis, clinical trials showed that blocking the NMDAR channel
pore with either aptiganel (Cerestat) [251] or Mg2+ (the FAST-Mag trial) [252] does not
afford significant neuroprotection to stroke patients. Therefore, the flux-independent
signaling pathway recruited via agonist and co-agonist binding to NMDAR may represent
an alternative molecular target for neuroprotective strategies.

6.2. Alzheimer’s Disease

One of the major hallmarks of Alzheimer’s disease is the excessive production of the
amyloid β (Aβ) protein, which can accumulate to form extracellular amyloid deposits
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and thereby impair neuronal activity and synaptic transmission in the brain [253]. Two
independent studies showed that the Aβ protein-induced depression of synaptic activ-
ity at the hippocampal SchC-CA1 synapse depends on flux-independent signaling by
GluN2B-containing NMDARs (Figure 5B) [254,255]. The Aβ protein-induced synaptic
deficit requires agonist binding to GluN2B and is driven by AMPAR endocytosis and
removal from the PM (Figure 5B) [254,255]. A subsequent investigation demonstrated that
Aβ oligomers stimulate flux-independent NMDAR signaling to increase p38 MAPK activity
and promote dendrite spine shrinkage (Figure 5B), which is a hallmark of synaptic loss and
cognitive decline [256]. The evidence that flux-independent NMDAR signaling can lead to
LTD (see Section 5.1.2) and to Aβ protein-induced synaptic loss via p38 MAPK recruitment
suggests that the synaptic dysfunction associated with AD may involve non-canonical
NMDAR activation [6]. This hypothesis was supported by the finding that Aβ protein
induces a conformational change in the GluN1 CTD that mimics that induced by agonist
binding to GluN2B in the absence of the co-agonist [257]. In addition, as reported for LTD
induction in Section 5.1.2, PSD-95 overexpression prevents Aβ-induced conformational
change in the CTD and synapse weakening at the SChC-CA1 synapse [257]. These findings
suggest that the pharmacological blockade of PSD-95 depalmitoylation, which maintains
PSD-95 at the PSD, is a promising strategy to prevent cognitive decline in AD patients [6].

6.3. Schizophrenia

Schizophrenia has been associated with a decrease in cerebrospinal fluid D-serine
levels and an increase in kynurenic acid, which is an endogenous blocker of the co-agonist
binding site of NMDARs [6]. These conditions may favor agonist binding in the absence
of the co-agonist [6], which has been shown to induce flux-independent elimination of
dendritic spines [170] and synaptic weakening [169]. A recent investigation found that
in a mouse model of schizophrenia lacking serine racemase (i.e., the enzyme responsible
for D-serine production), high-frequency stimulation of CA1 pyramidal neurons results in
spine shrinkage due to flux-independent NMDAR signaling [258]. It has been proposed
that in the absence of the co-agonist, a larger fraction of postsynaptic NMDARs signal in a
flux-independent manner, whereas ionotropic Ca2+ entry is reduced and is not sufficient
to drive CaMKII-dependent spine growth [258]. This preliminary finding suggests that
NMDAR hypofunction caused by lower D-serine levels may exacerbate flux-independent
NMDAR signaling, thereby driving a bias towards spine shrinkage and contributing to the
reported reduction in spine density associated with schizophrenia [6,258].

7. Conclusions

Evidence from the last three decades supports the notion that the dogmatic classifica-
tion of postsynaptic glutamate receptors into iGluRs and mGluRs should be replaced by a
more flexible interpretation of their signaling activities. A plethora of in vitro and ex vivo
studies revealed that AMPARs, KARs, and NMDARs can signal in both a flux-dependent
and flux-independent manner. This versatility expands the repertoire of functions that are
regulated by iGluRs, which can exert opposing effects on the same neuronal processes,
depending on whether they carry an inward ionic current or activate an ion-independent
signaling cascade. This dual role of iGluRs is made clear by the requirement for ionotropic
or non-ionotropic NMDARs to induce LTD or LTP, respectively. Nevertheless, this novel
facet of iGluR signaling is fully consistent with the emerging concept of multifunctional
or pleiotropic proteins, which regulate multiple functions through the distinct signaling
modules of their quaternary structure. Understanding the molecular determinants that
enable iGluR to switch from one signaling mode to the other, which may also depend on
the local microenvironment (e.g., D-serine or glycine) or the concomitant activation of other
signaling pathways (e.g., Ca2+ entry/release channels), is paramount to understanding
how they regulate brain functions. Furthermore, this novel signaling mode may provide
an unexpected target to design more effective neuroprotective strategies aimed not only at
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blocking ion flux but also at preventing the agonist-induced conformational rearrangement
of cytosolic domains.
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