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Abstract: Background: MRI magnetization-prepared rapid acquisition (MPRAGE) is an easily avail-
able imaging modality for dementia diagnosis. Previous studies suggested that volumetric analysis
plays a crucial role in various stages of dementia classification. In this study, volumetry, radiomics
and demographics were integrated as inputs to develop an artificial intelligence model for various
stages, including Alzheimer’s disease (AD), mild cognitive decline (MCI) and cognitive normal (CN)
dementia classifications. Method: The Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset
was separated into training and testing groups, and the Open Access Series of Imaging Studies
(OASIS) dataset was used as the second testing group. The MRI MPRAGE image was reoriented
via statistical parametric mapping (SPM12). Freesurfer was employed for brain segmentation, and
45 regional brain volumes were retrieved. The 3D Slicer software was employed for 107 radiomics
feature extractions from within the whole brain. Data on patient demographics were collected from
the datasets. The feed-forward neural network (FFNN) and the other most common artificial intelli-
gence algorithms, including support vector machine (SVM), ensemble classifier (EC) and decision tree
(DT), were used to build the models using various features. Results: The integration of brain regional
volumes, radiomics and patient demographics attained the highest overall accuracy at 76.57% and
73.14% in ADNI and OASIS testing, respectively. The subclass accuracies in MCI, AD and CN were
78.29%, 89.71% and 85.14%, respectively, in ADNI testing, as well as 74.86%, 88% and 83.43% in
OASIS testing. Balanced sensitivity and specificity were obtained for all subclass classifications
in MCI, AD and CN. Conclusion: The FFNN yielded good overall accuracy for MCI, AD and CN
categorization, with balanced subclass accuracy, sensitivity and specificity. The proposed FFNN
model is simple, and it may support the triage of patients for further confirmation of the diagnosis.

Keywords: Alzheimer’s disease; mild cognitive impairment; dementia; radiomics; volumetry; feed
forward neural network; artificial neural network

1. Introduction

With an increasingly aging global population, the incidence of dementia is rapidly
increasing. In 2016, there were 47 million people living with dementia worldwide. This
figure is projected to increase to more than 131 million by 2050 [1]. The most common
cause of dementia is Alzheimer’s disease (AD), which accounts for approximately 40%
of all dementia cases. With recent pharmacological advancements, drug therapies for
ameliorating the progression of AD [2] and improved preventive measures and therapies
for AD have been developed. The early detection and accurate diagnosis of the prodromal
stage of dementia, i.e., mild cognitive impairment (MCI), are crucial to reduce mortality,
improve the quality of life and extend the lifespan of patients with dementia.
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MRI magnetization-prepared rapid gradient-echo (MPRAGE) imaging is a down-
stream imaging modality, which captures high tissue contrast with superior spatial resolu-
tion in a short scan time [3]. The three-dimensional application of whole-brain scans has
been extensively used for AD diagnosis and disease progression monitoring. It provides
detailed structural images of the brain, allowing physicians to visualize and assess the
brain abnormalities associated with dementia. It is easily available and plays a crucial role
in dementia diagnosis.

One of the MRI MPRAGE image applications is brain volumetric analysis. A signifi-
cant volume reduction in the medial temporal lobe, including the hippocampus, precuneus,
posterior cingulate, amygdala, parahippocampal gyrus and entorhinal cortex, is a sig-
nature for AD patients [4–8]. Through detailed hippocampal volume assessment [9,10],
sub-regional corpus callosum atrophy [11,12] and connectivity-based segmentation of
amygdala nuclei [13], AD can be effectively diagnosed from a cognitive normal (CN) state.
Recent developments in automatic brain regional volume segmentation have improved
the segmentation accuracy and can handle large amounts of data effectively. This allows
for the comprehensive analysis of yearly MRI MPRAGE images for disease monitoring.
Previous studies suggested that AD progression can be predicted based on the rate of
volume reduction by monitoring the hippocampal volume change [14,15]. However, for
the prodromal stage of AD, which is MCI, the brain regional volume change is subtle and
cannot be easily detected by the naked eye. The diagnosis of MCI from AD requires either
supplements with an up-stream imaging modality or extensive experience and knowledge
from clinical experts. Neither of them is commonly available in memory clinics.

In recent years, the radiomics analysis of MRI MPRAGE has been widely applied in
medical imaging. It is a novel technique that incorporates gray-level invariant features
(GLIFs) into a data classification algorithm. It has the potential to reveal disease hetero-
geneity characteristics, which are related to the gray-level matrixes. This method has
been adopted for cancer prognosis and recurrence prediction [16–18], the prediction of
distant metastasis [19] and treatment response [20]. In view of dementia classification, an
exploratory study was conducted by Li et al. 2020 using pure radiomics, and 55.9–56%
accuracy was achieved in diagnosing preclinical AD. However, the accuracy improved to
76.1% when combined with other high-frequency features [21].

Biological differences and aging are other perspectives on dementia development.
Previous studies suggested that women in many cohorts have a higher risk of developing
AD [22,23]. Also, a higher incidence of dementia in elderly individuals is observed around
the world, and the prevalence ranges from 5 to 7%, even after age standardization [24].
Including age and sex as parameters in the prediction model may have a positive impact
on discriminating AD, MCI and CN in different perspectives.

During the past two decades, many studies have applied artificial intelligence to
dementia classification using traditional classifiers, including logistic regression [25,26],
decision tree (DT) [27], random forest [28–30], naïve Bayes [31], K-nearest neighbor [32],
support vector machines (SVMs) [33–38] and ensemble classifier (EC) [39]. With the im-
provements in computer processing power, more studies have focused on using discrimi-
native approaches, such as neural networks, in recent years. It is a branch that simulates
the human brain, both in terms of structural and learning patterns. Compared to the
traditional classifier, it allows for the processing of complicated high-level information by
connecting a large number of inputs [40]. In addition, a multiple-layer neural network can
capture complex non-linear relationships in data, as well as learning the relevant features
automatically. The feed-forward neural network (FFNN) is one of the most popular neural
networks being employed. It processes information from the input layer, through hidden
layers to the output layer in one direction, without any feedback connections. It has only
a few hidden layers, which requires less computation power to process, and is able to
provide a good classification with a smaller dataset when compared to deep learning
models. Previous studies showed good accuracies in identifying AD from CN (>85%) and
MCI from CN (>80%) [41–44]. However, most studies relied on a single dataset to train
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and test the model. The models were not tested against unseen data, which may affect
the generalizability of the built model and limit its application in clinical settings. Also,
a binary classifier, i.e., to classify AD from CN or MCI from CN, was employed in most
studies. In real-world scenarios, patients’ images were retrieved from multiple stages.
The classification may be required to fit patients’ images into several binary classifiers to
confirm the diagnosis. Instead of training and managing the multiple binary classifiers of
each class, a multi-class classifier is designed to handle multiple classes simultaneously.
Although it is more challenging to train and yields lower accuracy [45], the deployment of
the multi-class model provides only one output for various stages of diseases. It is simple
and efficient to precisely identify these diseases.

In this study, we aimed to develop a reliable artificial intelligence multi-class model to
classify AD, MCI and CN using patient demographics and MRI imaging features. The first
objective was to use various combinations of demographics and image features to build
the models using FFNN and various traditional artificial intelligence algorithms, including
DT, EC and SVM, as a comparison. The second objective was to compare the classification
performances of the FFNN with those of the above-developed models to identify the
algorithm that could provide a more accurate classification of AD, MCI and CN.

2. Materials and Methods

In this study, two cohorts of patients were used to build and validate the artificial
intelligence models. For each patient, the demographics were recorded. In addition, the
brain regional volumes, as well as radiomics from the whole brain, were retrieved from
the MRI images as image features. The patients’ demographics, brain regional volumes
and radiomics were integrated as inputs for model building using FFNN, DT, EC and SVM
algorithms. The model classification performances were analyzed.

2.1. Patient Dataset

The datasets used in this study are the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database (adni.loni.usc.edu) [46] and the Open Access Series of Imaging Studies
(OASIS) database (oasis-brains.org) [47]. The use of the above datasets was approved by
the institutional review board at each site, and all participants provided written consent.
All eligible participants underwent brain MRI MPRAGE scanning and clinical diagnosis
with demographics collected.

2.1.1. ADNI Dataset

There were 25 memory centers from the USA which joined the ADNI project. A total
of 582 images were collected from 25 centers. Further, 406 images (70% of all images) from
21 memory centers were partitioned as the training dataset, and 176 images (30% of all
images) from the remaining 4 centers were used as validation datasets. The distribution of
images is listed in Table 1.

Table 1. Images collected from ADNI and OASIS databases.

ADNI Dataset
21 Centers

for Training

ADNI Dataset
4 Centers

for Testing

OASIS Dataset
for Testing

Alzheimer’s Disease 69 28 28
Mild Cognitive Decline 202 91 91

Health Control 135 57 57
Total 406 176 176

2.1.2. OASIS Dataset

An independent cohort dataset (OASIS dataset) was collected from the Washington
University Knight Alzheimer Disease Research Center. The entire OASIS dataset consists
of 1552 patients. Thus, 176 patients, 28 AD, 91 MCI and 57 CN, were picked randomly. The

adni.loni.usc.edu
oasis-brains.org
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total number of patients and the distribution of subclasses were the same as the testing
dataset from ADNI 4 centers. This was to ensure the result of testing using dataset from
ADNI 4 centers and that using the OASIS dataset would not be influenced by the number
of patients and its subclass distribution.

2.2. Brain Segmentation and Regional Volume Analysis

FreeSurfer v7.1.0 image analysis suite was employed to perform brain segmentation
and volumetric analysis. The procedures and algorithms employed were documented in
previous publications [48–54] and are freely available from the website (http://surfer.nmr.
mgh.harvard.edu/ (accessed on 22 January 2023)). Forty-five brain regional volumes were
obtained. Details of the brain regions are listed in Table 2 and illustrated in Figure 1.

Table 2. Details for the 45 brain regional volumes.

45 Brain Regional Volumes Segmented by FreeSurfer

Left-Lateral-Ventricle Right-Lateral-Ventricle CSF
Left-Inf-Lat-Vent Right-Inf-Lat-Vent Third-Ventricle

Left-Cerebellum-White-Matter Right-Cerebellum-White-Matter Forth-Ventricle
Left-Cerebellum-Cortex Right-Cerebellum-Cortex Fifth-Ventricle

Left-Thalamus Right-Thalamus Brain-Stem
Left-Caudate Right-Caudate WM-hypointensities
Left-Putamen Right-Putamen non-WM-hypointensities
Left-Pallidum Right-Pallidum Optic-Chiasm

Left-Hippocampus Right-Hippocampus CC_Posterior
Left-Amygdala Right-Amygdala CC_Mid_Posterior

Left-Accumbens-area Right-Accumbens-area CC_Central
Left-Ventral DC Right-Ventral DC CC_Mid_Anterior

Left-vessel Right-vessel CC_Anterior
Left-choroid-plexus Right-choroid-plexus

Left-WM-hypointensities Right-WM-hypointensities
Left-non-WM-hypointensities Right-non-WM-hypointensities

Inf: inferior; Lat: lateral; Mid: middle; DC: diencephalon; WM: white matter; CC: corpus callosum.

2.3. Radiomics Features

Reorientation of images was performed for each of the MPRAGE MRI images by SPM12
software [55]. The individualized whole-brain mask template was fused onto the MPRAGE
image for brain regional configuration, which is shown in Figure 2. Further, 3D slicer software
(The Slicer Community; V.4.11.20210226) with the PyRadiomics extension (Computational
Imaging and Bioinformatics Lab, Harvard Medical School) was employed for the radiomics
feature extraction [56]. One hundred and seven radiomics features were extracted within the
whole brain from the MRI MPRAGE image for every patient. The definition of radiomics
features was subdivided into eight classes [57], which are listed in Table 3.

Table 3. Eight classes of radiomics features.

Radiomics Features No. of Features

First-order statistics 14
2D-shaped based features 9
3D-shaped based features 13

Gray-level co-occurrence matrix (GLCM) 22
Gray-level run length matrix (GLRLM) 16
Gray-level size zone matrix (GLSZM) 16

Gray-level dependence matrix (GLDM) 12
Neighboring gray tone difference matrix (NGTDM) 5

Total 107

http://surfer.nmr.mgh.harvard.edu/
http://surfer.nmr.mgh.harvard.edu/
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Figure 2. Individualized whole-brain mask (the green region) was used to quantify the whole brain
for the retrieval of 107 radiomics features.

2.4. Demographics

The MRI MPRAGE dataset and patients’ demographics were retrieved from the ADNI
and OASIS website. The demographics of age and sex were recorded.

2.5. Integration of Patients’ Demographics and Image Features

The patients’ demographics, brain regional volumes and radiomics were integrated in
the following 5 groups, which were used as inputs for building the artificial intelligence
models: radiomics only with 107 features (R only), radiomics and patents’ demographics
with 109 features (RD), volumes only with 45 features (V only), volumes and patients’
demographics with 47 features (VD) and volumes, radiomics and patients’ demographics
with 154 features (VRD). Details are listed in Table 4.

Table 4. Integration of patients’ demographics and image features.

Radiomics
107 Features

Volumes
45 Features

Patients’ Demographics
2 Features

Total Number of
Features

R only ✔ 107
RD ✔ ✔ 109

V only ✔ 45
VD ✔ ✔ 47

VRD ✔ ✔ ✔ 154

2.6. Model Building

Patients from the ADNI dataset of 21 centers were used to build the models. The
5 groups of features obtained in Section 2.5 were used as input to build the models.

The proposed FFNN was built using Matlab® (R2021a) Neural Network toolbox. The
neural network training employed Levenberg–Marquardt as a training algorithm with the
random data division method. It had 5 layers, including 1 input layer, 3 hidden layers and
1 output layer. The input layers were the 5 groups of features in Section 2.5. The 3 hidden
layers included 50 nodes in the first layer, 30 nodes in the second layer and 20 nodes in
the last hidden layer for processing. In each hidden layer, the weight (w) and bias (b) are
valued as a single vector, as shown in Figure 3. The FFNN is trained to fit input data; then,
its weight and bias values are formed (+) into a vector (curve in the diagram) and fitted
to the next layer. The output layer gave the result of classification. In this model, three
subclasses, either AD, MCI or CN, were classified.
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During model building, the hyper-parameter optimization algorithm was employed
to control the learning process so as to optimally solve the problem. The maximum epoch
was set to 50, and no training time limit was applied. The three-layered FFNN was trained
using mean squared error performance function and a regularization value of 0.01. This
was the early stopping-based optimization, which was used to stop training when the
performance function and a regularization value of 0.01 were achieved. Details of the
FFNN model building are listed in Figure 3.

In addition, the Matlab Classification Learner toolbox was employed to build the
models using traditional artificial intelligence algorithms, including DT, EC and SVM, as
a comparison. Hyper-parameter tuning was employed, with Bayesian optimization as
optimizer, expected improvement per second plus as the acquisition function, the maximum
iterations set as 30 and no training time limit applied, in DT, EC and SVM model building,
so as to reduce the instability and provide simple models [58].

To improve the generalizability of the built models and avoid overfitting, 10-fold
cross-validation was employed during each of the model-building processes. The dataset
was divided into ten groups with an equal number of samples. The first neural network
training process used the initial nine groups as training data and the remaining group as
testing data. The second training process continued with another nine groups as training
data and the rest as testing data. This process was undertaken 10 times. The performance
of each model was the average result computed in these 10 rounds of training [59].

The performance of each model was assessed in terms of the overall accuracy, the
classification ability of each subclass, i.e., MCI, AD and CN by class accuracy, sensitivity
and specificity.

2.7. Model Testing and Data Analysis

Each model was tested using two independent cohorts of patients, including patients
from the 4 centers of the ADNI dataset and those from the OASIS dataset. The performance
of each model was assessed considering the overall accuracy, the classification ability of
each subclass, i.e., MCI, AD and CN by class accuracy, sensitivity and specificity.

3. Results

We used five groups of features (R only, V only, RD, VD and VRD) to build models
using four algorithms (FFNN, DT, EC and SVM); as a result, 20 models were built. Firstly,
the value of the integration of multiple features was assessed through a performance
evaluation using the same algorithm, with various features included in building the models.
Secondly, the performance of the proposed FFNN was evaluated for various stages of
dementia classification.

3.1. Dataset Demographics

The ADNI dataset comprises patients from 25 centers. Further, 406 patients from
21 centers (ADNI 21 centers) were selected to build the model, and 176 patients from the
remaining 5 centers (ADNI 5 centers) were used to test the model. Another independent
dataset from the OASIS database was used, with 176 patients used for secondary validation
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on the models built in Section 2.6. The demographics of the study cohort are shown in
Table 5.

Table 5. Demographics of the ADNI and OASIS datasets.

ADNI
21 Centers

for Training

ADNI
4 Centers

for Testing

Oasis Dataset
for Testing

Age range 55–90 65–90 74–89
Sex Ratio (M:F) 205:201 99:77 92:84

Alzheimer’s Disease 69 28 28
Mild Cognitive Decline 202 91 91

Health Control 135 57 57
Total 406 176 176

3.2. Performance Comparison in View of the Various Features Employed for Model Building

When comparing models built using the same model-building algorithm, those models
built using volumes performed better, with higher overall accuracy, accuracy in charac-
terizing MCI, AD and CN, sensitivity and specificity when compared to those models
built using radiomics. Including demographics as features for either volumes or radiomics
improved the overall accuracy when compared to the use of volume or radiomics alone.
However, in SVM algorithms, the specificity of AD classification was zero when using
VD or VRD features. Overall, in all models, the integration of volumes, radiomics and
demographics attained the highest overall accuracy, balanced sensitivity and specificity,
as well as the best accuracy in classification in MCI, AD and CN. The results are listed in
Table 6.

3.3. Performance Evaluation of FFNN when Compared to Traditional Classifiers

The results from Section 3.2 suggest that the models using features from volumes,
radiomics and demographics achieved the highest overall accuracy when compared to
those built from either volumes or radiomics alone. Thus, we focused on analyzing models
using all three features. In Table 7 e, it can be seen that the performance of FFNN was the
best when compared to traditional classifiers. FFNN showed 76.57% and 73.14% overall
accuracy in tests for patients from ADNI 4 centers and the OASIS database, respectively. In
particular, the FFNN model attained good sensitivity and specificity.
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Table 6. Various features employed for model building using 4 algorithms. Training was the result when building the model using patients from ADNI 21 centers; Test 1
was the result when testing the model by patients from ADNI 4 centers; Oasis was the result when testing the model by patients from OASIS database. The red fonts
highlight results over 70%. (a) Various features employed for model building using SVM. (b) Various features employed for model building using ensemble classifier (EC).
(c) Various features employed for model building using decision tree (DT). (d) Various features employed for model building using feed-forward neural network (FFNN).

(a) Various features employed for model building using SVM.
SVM MCI AD CN

Overall
Accuracy Accuracy Sensitivity Specificity Precision F1

Score Accuracy Sensitivity Specificity Precision F1 Score Accuracy Sensitivity Specificity Precision F1
Score

R only Train 67.74% 73.45% 70.85% 76.67% 79.00% 74.70% 83.62% 52.63% 88.73% 43.48% 47.62% 78.41% 69.11% 82.50% 63.43% 66.15%
Test1 40.57% 56.00% 56.99% 54.88% 58.89% 57.92% 74.29% 9.52% 83.12% 7.14% 8.16% 50.86% 26.23% 64.04% 28.07% 27.12%
Oasis 35.43% 52.57% 58.54% 50.75% 26.67% 36.64% 66.29% 10.26% 82.35% 14.29% 11.94% 52.00% 35.79% 71.25% 59.65% 44.74%

RD Train 62.03% 68.49% 63.88% 77.14% 84.00% 72.57% 81.14% 33.33% 83.77% 10.14% 15.56% 74.44% 63.03% 79.23% 55.97% 59.29%
Test1 60.00% 66.86% 63.11% 75.47% 85.56% 72.64% 81.71% 0.00% 83.63% 0.00% #DIV/0! 71.43% 57.14% 76.98% 49.12% 52.83%
Oasis 54.29% 61.14% 57.05% 94.74% 98.89% 72.36% 83.43% 0.00% 83.91% 0.00% #DIV/0! 64.00% 33.33% 67.52% 10.53% 16.00%

V only Train 98.26% 98.51% 98.02% 99.00% 99.00% 98.51% 98.76% 97.06% 99.10% 95.65% 96.35% 99.26% 99.25% 99.26% 98.51% 98.88%
Test1 70.29% 75.43% 75.82% 75.00% 76.67% 76.24% 84.57% 60.00% 85.29% 10.71% 18.18% 80.57% 64.56% 93.75% 89.47% 75.00%
Oasis 61.14% 66.29% 68.24% 64.44% 64.44% 66.29% 76.57% 19.05% 84.42% 14.29% 16.33% 79.43% 65.22% 88.68% 78.95% 71.43%

VD Train 94.79% 96.28% 93.02% 100.00% 100.00% 96.39% 96.03% 100.00% 95.43% 76.81% 86.89% 97.27% 95.56% 98.13% 96.27% 95.91%
Test1 71.43% 74.86% 70.18% 83.61% 88.89% 78.43% 84.00% #DIV/0! 84.00% 0.00% #DIV/0! 84.00% 73.77% 89.47% 78.95% 76.27%
Oasis 71.43% 71.43% 67.24% 79.66% 86.67% 75.73% 84.00% #DIV/0! 84.00% 0.00% #DIV/0! 87.43% 79.66% 91.38% 82.46% 81.03%

VRD Train 81.14% 83.62% 78.15% 91.52% 93.00% 84.93% 89.58% 100.00% 88.83% 39.13% 56.25% 89.08% 82.61% 92.45% 85.07% 83.82%
Test1 71.43% 73.14% 66.93% 89.58% 94.44% 78.34% 82.86% 0.00% 83.82% 0.00% #DIV/0! 86.86% 86.96% 86.82% 70.18% 77.67%
Oasis 68.00% 70.29% 67.27% 75.38% 82.22% 74.00% 80.00% 23.08% 84.57% 10.71% 14.63% 85.71% 80.77% 87.80% 73.68% 77.06%

(b) Various features employed for models building using ensemble classifier (EC).
Ensemble MCI AD CN

Overall
Accuracy Accuracy Sensitivity Specificity Precision F1

Score Accuracy Sensitivity Specificity Precision F1 Score Accuracy Sensitivity Specificity Precision F1
Score

R only Train 64.52% 68.98% 64.71% 76.35% 82.50% 72.53% 83.62% 54.84% 86.02% 24.64% 34.00% 76.43% 66.67% 80.42% 58.21% 62.15%
Test1 49.14% 58.86% 57.14% 63.27% 80.00% 66.67% 78.29% 8.33% 83.44% 3.57% 5.00% 61.14% 35.14% 68.12% 22.81% 27.66%
Oasis 58.29% 65.14% 62.39% 70.69% 81.11% 70.53% 81.14% 14.29% 83.93% 3.57% 5.71% 70.29% 54.90% 76.61% 49.12% 51.85%

RD Train 67.49% 70.97% 66.27% 79.05% 84.50% 74.29% 83.62% 54.05% 86.61% 28.99% 37.74% 80.40% 74.77% 82.53% 61.94% 67.76%
Test1 53.14% 61.71% 58.91% 69.57% 84.44% 69.41% 81.14% 22.22% 84.34% 7.14% 10.81% 63.43% 40.54% 69.57% 26.32% 31.91%
Oasis 52.00% 60.57% 63.64% 58.16% 54.44% 58.68% 74.29% 20.69% 84.93% 21.43% 21.05% 69.14% 52.17% 80.19% 63.16% 57.14%

V only Train 96.28% 96.28% 94.26% 98.45% 98.50% 96.33% 97.52% 96.83% 97.65% 88.41% 92.42% 98.76% 99.24% 98.53% 97.01% 98.11%
Test1 73.14% 73.14% 69.03% 80.65% 86.67% 76.85% 82.86% 0.00% 83.82% 0.00% #DIV/0! 90.29% 83.33% 93.91% 87.72% 85.47%
Oasis 68.00% 69.71% 68.32% 71.62% 76.67% 72.25% 82.29% 36.36% 85.37% 14.29% 20.51% 84.00% 73.02% 90.18% 80.70% 76.67%

VD Train 95.29% 96.28% 93.84% 98.96% 99.00% 96.35% 96.28% 100.00% 95.70% 78.26% 87.80% 98.01% 95.65% 99.25% 98.51% 97.06%
Test1 77.91% 77.91% 73.21% 86.67% 91.11% 81.19% 83.72% #DIV/0! 83.72% 0.00% #DIV/0! 94.19% 86.67% 98.21% 96.30% 91.23%
Oasis 70.86% 70.86% 67.57% 76.56% 83.33% 74.63% 84.57% 57.14% 85.71% 14.29% 22.86% 86.29% 78.95% 89.83% 78.95% 78.95%

VRD Train 93.55% 94.29% 91.94% 96.88% 97.00% 94.40% 96.53% 100.00% 95.98% 79.71% 88.71% 96.28% 93.43% 97.74% 95.52% 94.46%
Test1 74.86% 76.00% 70.00% 89.09% 93.33% 80.00% 84.00% 50.00% 84.39% 3.57% 6.67% 89.71% 86.79% 90.98% 80.70% 83.64%
Oasis 69.71% 72.00% 74.12% 70.00% 70.00% 72.00% 80.57% 40.00% 88.97% 42.86% 41.38% 86.86% 78.33% 91.30% 82.46% 80.34%
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Table 6. Cont.

(c) Various features employed for model building using decision tree (DT).
Decision Tree MCI AD CN

Overall
Accuracy Accuracy Sensitivity Specificity Precision F1

Score Accuracy Sensitivity Specificity Precision F1 Score Accuracy Sensitivity Specificity Precision F1
Score

R only Train 58.31% 65.51% 62.87% 69.28% 74.50% 68.19% 80.15% 36.59% 85.08% 21.74% 27.27% 70.97% 56.80% 77.34% 52.99% 54.83%
Test1 47.43% 54.86% 54.55% 55.56% 73.33% 62.56% 76.00% 20.83% 84.77% 17.86% 19.23% 64.00% 40.00% 68.97% 21.05% 27.59%
Oasis 54.86% 56.00% 53.99% 83.33% 97.78% 69.57% 85.14% 100.00% 84.97% 7.14% 13.33% 68.57% 60.00% 69.09% 10.53% 17.91%

RD Train 62.78% 70.22% 65.50% 78.62% 84.50% 73.80% 82.63% 46.15% 83.85% 8.70% 14.63% 72.70% 59.09% 79.34% 58.21% 58.65%
Test1 57.71% 64.00% 62.86% 65.71% 73.33% 67.69% 81.14% 22.22% 84.34% 7.14% 10.81% 70.29% 54.10% 78.95% 57.89% 55.93%
Oasis 57.14% 61.14% 58.09% 71.79% 87.78% 69.91% 82.29% 36.36% 85.37% 14.29% 20.51% 70.86% 60.71% 72.79% 29.82% 40.00%

V only Train 82.63% 87.34% 87.44% 87.25% 87.00% 87.22% 88.83% 65.00% 94.74% 75.36% 69.80% 89.08% 86.29% 90.32% 79.85% 82.95%
Test1 62.86% 70.86% 68.93% 73.61% 78.89% 73.58% 78.29% 25.00% 85.16% 17.86% 20.83% 76.57% 65.38% 81.30% 59.65% 62.39%
Oasis 64.57% 70.86% 70.10% 71.79% 75.56% 72.73% 78.29% 22.22% 84.71% 14.29% 17.39% 80.00% 68.33% 86.09% 71.93% 70.09%

VD Train 84.12% 86.85% 86.57% 87.13% 87.00% 86.78% 88.34% 68.33% 91.84% 59.42% 63.57% 93.05% 87.32% 96.17% 92.54% 89.86%
Test1 70.86% 74.86% 71.70% 79.71% 84.44% 77.55% 84.00% 50.00% 86.96% 25.00% 33.33% 82.86% 74.55% 86.67% 71.93% 73.21%
Oasis 70.29% 74.29% 70.64% 80.30% 85.56% 77.39% 82.29% 41.18% 86.71% 25.00% 31.11% 84.00% 79.59% 85.71% 68.42% 73.58%

VRD Train 71.22% 73.70% 68.65% 82.12% 86.50% 76.55% 84.86% 66.67% 86.02% 23.19% 34.41% 83.87% 77.17% 86.96% 73.13% 75.10%
Test1 75.43% 75.43% 69.11% 90.38% 94.44% 79.81% 86.29% 83.33% 86.39% 17.86% 29.41% 89.14% 91.30% 88.37% 73.68% 81.55%
Oasis 72.00% 75.43% 73.27% 78.38% 82.22% 77.49% 85.14% 55.00% 89.03% 39.29% 45.83% 83.43% 75.93% 86.78% 71.93% 73.87%

(d) Various features employed for model building using feed-forward neural network (FFNN).
Feed Forward

Neural Network MCI AD CN

Overall
Accuracy Accuracy Sensitivity Specificity Precision F1

Score Accuracy Sensitivity Specificity Precision F1 Score Accuracy Sensitivity Specificity Precision F1
Score

R only Train 73.55% 75.76% 70.00% 85.71% 89.44% 78.54% 85.95% 78.95% 86.34% 24.19% 37.04% 85.40% 79.82% 87.95% 75.21% 77.45%
Test1 51.43% 58.29% 57.26% 60.34% 74.44% 64.73% 82.86% 0.00% 83.82% 0.00% #DIV/0! 61.71% 41.07% 71.43% 40.35% 40.71%
Oasis 45.71% 54.86% 57.14% 53.06% 48.89% 52.69% 82.29% 28.57% 84.52% 7.14% 11.43% 54.29% 37.36% 72.62% 59.65% 45.95%

RD Train 92.01% 92.29% 93.33% 91.26% 91.30% 92.31% 96.14% 87.10% 98.01% 90.00% 88.52% 95.59% 92.56% 97.11% 94.12% 93.33%
Test1 55.43% 64.57% 62.96% 67.16% 75.56% 68.69% 76.57% 21.74% 84.87% 17.86% 19.61% 69.71% 54.55% 74.81% 42.11% 47.52%
Oasis 55.43% 68.57% 73.97% 64.71% 60.00% 66.26% 74.86% 16.67% 84.11% 14.29% 15.38% 67.43% 50.00% 81.44% 68.42% 57.78%

V only Train 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
Test1 61.14% 64.57% 65.56% 63.53% 65.56% 65.56% 79.43% 16.67% 84.05% 7.14% 10.00% 78.29% 63.01% 89.22% 80.70% 70.77%
Oasis 48.57% 49.71% 51.19% 48.35% 47.78% 49.43% 79.43% 27.78% 85.35% 17.86% 21.74% 68.00% 50.68% 80.39% 64.91% 56.92%

VD Train 99.72% 99.72% 99.44% 100.00% 100.00% 99.72% 99.72% 100.00% 99.67% 98.41% 99.20% 100.00% 100.00% 100.00% 100.00% 100.00%
Test1 65.71% 67.43% 67.74% 67.07% 70.00% 68.85% 77.14% 22.73% 84.97% 17.86% 20.00% 86.86% 78.33% 91.30% 82.46% 80.34%
Oasis 54.29% 54.86% 55.24% 54.29% 64.44% 59.49% 77.71% 13.33% 83.75% 7.14% 9.30% 76.00% 63.64% 81.67% 61.40% 62.50%

VRD Train 99.72% 99.72% 99.44% 100.00% 100.00% 99.72% 100.00% 100.00% 100.00% 100.00% 100.00% 99.72% 100.00% 99.57% 99.18% 99.59%
Test1 76.57% 78.29% 76.53% 80.52% 83.33% 79.79% 89.71% 72.73% 92.16% 57.14% 64.00% 85.14% 78.18% 88.33% 75.44% 76.79%
Oasis 73.14% 74.86% 78.75% 71.58% 70.00% 74.12% 88.00% 62.07% 93.15% 64.29% 63.16% 83.43% 71.21% 90.83% 82.46% 76.42%
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Table 7. Five groups of features employed for model building using 4 algorithms. Training was the result when building the model using patients from ADNI
21 centers; Test 1 was the result when testing the model by patients from ADNI 4 centers; Oasis was the result when testing the model by patients from OASIS
database. The red fonts highlighted the result over 70%. (a) Model performance using radiomics only in various model-building algorithms. (b) Model performance
using RD in various model-building algorithms. (c) Model performance using volumes only in various model-building algorithms. (d) Model performance using
VD in various model-building algorithms. (e) Model performance using VRD in various model-building algorithms.

(a) Model performance using radiomics only in various model-building algorithms
R Only MCI AD CN

Overall
Accuracy Accuracy Sensitivity Specificity Precision F1 Score Accuracy Sensitivity Specificity Precision F1 Score Accuracy Sensitivity Specificity Precision F1 Score

SVM Train 67.74% 73.45% 70.85% 76.67% 79.00% 74.70% 83.62% 52.63% 88.73% 43.48% 47.62% 78.41% 69.11% 82.50% 63.43% 66.15%
Test1 40.57% 56.00% 56.99% 54.88% 58.89% 57.92% 74.29% 9.52% 83.12% 7.14% 8.16% 50.86% 26.23% 64.04% 28.07% 27.12%
Oasis 35.43% 52.57% 58.54% 50.75% 26.67% 36.64% 66.29% 10.26% 82.35% 14.29% 11.94% 52.00% 35.79% 71.25% 59.65% 44.74%

EC Train 64.52% 68.98% 64.71% 76.35% 82.50% 72.53% 83.62% 54.84% 86.02% 24.64% 34.00% 76.43% 66.67% 80.42% 58.21% 62.15%
Test1 49.14% 58.86% 57.14% 63.27% 80.00% 66.67% 78.29% 8.33% 83.44% 3.57% 5.00% 61.14% 35.14% 68.12% 22.81% 27.66%
Oasis 58.29% 65.14% 62.39% 70.69% 81.11% 70.53% 81.14% 14.29% 83.93% 3.57% 5.71% 70.29% 54.90% 76.61% 49.12% 51.85%

DT Train 58.31% 65.51% 62.87% 69.28% 74.50% 68.19% 80.15% 36.59% 85.08% 21.74% 27.27% 70.97% 56.80% 77.34% 52.99% 54.83%
Test1 47.43% 54.86% 54.55% 55.56% 73.33% 62.56% 76.00% 20.83% 84.77% 17.86% 19.23% 64.00% 40.00% 68.97% 21.05% 27.59%
Oasis 54.86% 56.00% 53.99% 83.33% 97.78% 69.57% 85.14% 100.00% 84.97% 7.14% 13.33% 68.57% 60.00% 69.09% 10.53% 17.91%

FFNN Train 73.55% 75.76% 70.00% 85.71% 89.44% 78.54% 85.95% 78.95% 86.34% 24.19% 37.04% 85.40% 79.82% 87.95% 75.21% 77.45%
Test1 51.43% 58.29% 57.26% 60.34% 74.44% 64.73% 82.86% 0.00% 83.82% 0.00% #DIV/0! 61.71% 41.07% 71.43% 40.35% 40.71%
Oasis 45.71% 54.86% 57.14% 53.06% 48.89% 52.69% 82.29% 28.57% 84.52% 7.14% 11.43% 54.29% 37.36% 72.62% 59.65% 45.95%

(b) Model performance using RD in various model-building algorithms
RD MCI AD CN

Overall
Accuracy Accuracy Sensitivity Specificity Precision F1 Score Accuracy Sensitivity Specificity Precision F1 Score Accuracy Sensitivity Specificity Precision F1 Score

SVM Train 62.03% 68.49% 63.88% 77.14% 84.00% 72.57% 81.14% 33.33% 83.77% 10.14% 15.56% 74.44% 63.03% 79.23% 55.97% 59.29%
Test1 60.00% 66.86% 63.11% 75.47% 85.56% 72.64% 81.71% 0.00% 83.63% 0.00% #DIV/0! 71.43% 57.14% 76.98% 49.12% 52.83%
Oasis 54.29% 61.14% 57.05% 94.74% 98.89% 72.36% 83.43% 0.00% 83.91% 0.00% #DIV/0! 64.00% 33.33% 67.52% 10.53% 16.00%

EC Train 67.49% 70.97% 66.27% 79.05% 84.50% 74.29% 83.62% 54.05% 86.61% 28.99% 37.74% 80.40% 74.77% 82.53% 61.94% 67.76%
Test1 53.14% 61.71% 58.91% 69.57% 84.44% 69.41% 81.14% 22.22% 84.34% 7.14% 10.81% 63.43% 40.54% 69.57% 26.32% 31.91%
Oasis 52.00% 60.57% 63.64% 58.16% 54.44% 58.68% 74.29% 20.69% 84.93% 21.43% 21.05% 69.14% 52.17% 80.19% 63.16% 57.14%

DT Train 62.78% 70.22% 65.50% 78.62% 84.50% 73.80% 82.63% 46.15% 83.85% 8.70% 14.63% 72.70% 59.09% 79.34% 58.21% 58.65%
Test1 57.71% 64.00% 62.86% 65.71% 73.33% 67.69% 81.14% 22.22% 84.34% 7.14% 10.81% 70.29% 54.10% 78.95% 57.89% 55.93%
Oasis 57.14% 61.14% 58.09% 71.79% 87.78% 69.91% 82.29% 36.36% 85.37% 14.29% 20.51% 70.86% 60.71% 72.79% 29.82% 40.00%

FFNN Train 92.01% 92.29% 93.33% 91.26% 91.30% 92.31% 96.14% 87.10% 98.01% 90.00% 88.52% 95.59% 92.56% 97.11% 94.12% 93.33%
Test1 55.43% 64.57% 62.96% 67.16% 75.56% 68.69% 76.57% 21.74% 84.87% 17.86% 19.61% 69.71% 54.55% 74.81% 42.11% 47.52%
Oasis 55.43% 68.57% 73.97% 64.71% 60.00% 66.26% 74.86% 16.67% 84.11% 14.29% 15.38% 67.43% 50.00% 81.44% 68.42% 57.78%
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Table 7. Cont.

(c) Model performance using volumes only in various model-building algorithms
V only MCI AD CN

Overall
Accuracy Accuracy Sensitivity Specificity Precision F1 Score Accuracy Sensitivity Specificity Precision F1 Score Accuracy Sensitivity Specificity Precision F1 Score

SVM Train 98.26% 98.51% 98.02% 99.00% 99.00% 98.51% 98.76% 97.06% 99.10% 95.65% 96.35% 99.26% 99.25% 99.26% 98.51% 98.88%
Test1 70.29% 75.43% 75.82% 75.00% 76.67% 76.24% 84.57% 60.00% 85.29% 10.71% 18.18% 80.57% 64.56% 93.75% 89.47% 75.00%
Oasis 61.14% 66.29% 68.24% 64.44% 64.44% 66.29% 76.57% 19.05% 84.42% 14.29% 16.33% 79.43% 65.22% 88.68% 78.95% 71.43%

EC Train 96.28% 96.28% 94.26% 98.45% 98.50% 96.33% 97.52% 96.83% 97.65% 88.41% 92.42% 98.76% 99.24% 98.53% 97.01% 98.11%
Test1 73.14% 73.14% 69.03% 80.65% 86.67% 76.85% 82.86% 0.00% 83.82% 0.00% #DIV/0! 90.29% 83.33% 93.91% 87.72% 85.47%
Oasis 68.00% 69.71% 68.32% 71.62% 76.67% 72.25% 82.29% 36.36% 85.37% 14.29% 20.51% 84.00% 73.02% 90.18% 80.70% 76.67%

DT Train 82.63% 87.34% 87.44% 87.25% 87.00% 87.22% 88.83% 65.00% 94.74% 75.36% 69.80% 89.08% 86.29% 90.32% 79.85% 82.95%
Test1 62.86% 70.86% 68.93% 73.61% 78.89% 73.58% 78.29% 25.00% 85.16% 17.86% 20.83% 76.57% 65.38% 81.30% 59.65% 62.39%
Oasis 64.57% 70.86% 70.10% 71.79% 75.56% 72.73% 78.29% 22.22% 84.71% 14.29% 17.39% 80.00% 68.33% 86.09% 71.93% 70.09%

FFNN Train 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
Test1 61.14% 64.57% 65.56% 63.53% 65.56% 65.56% 79.43% 16.67% 84.05% 7.14% 10.00% 78.29% 63.01% 89.22% 80.70% 70.77%
Oasis 48.57% 49.71% 51.19% 48.35% 47.78% 49.43% 79.43% 27.78% 85.35% 17.86% 21.74% 68.00% 50.68% 80.39% 64.91% 56.92%

(d) Model performance using VD in various model-building algorithms
VD MCI AD CN

Overall
Accuracy Accuracy Sensitivity Specificity Precision F1 Score Accuracy Sensitivity Specificity Precision F1 Score Accuracy Sensitivity Specificity Precision F1 Score

SVM Train 94.79% 96.28% 93.02% 100.00% 100.00% 96.39% 96.03% 100.00% 95.43% 76.81% 86.89% 97.27% 95.56% 98.13% 96.27% 95.91%
Test1 71.43% 74.86% 70.18% 83.61% 88.89% 78.43% 84.00% #DIV/0! 84.00% 0.00% #DIV/0! 84.00% 73.77% 89.47% 78.95% 76.27%
Oasis 71.43% 71.43% 67.24% 79.66% 86.67% 75.73% 84.00% #DIV/0! 84.00% 0.00% #DIV/0! 87.43% 79.66% 91.38% 82.46% 81.03%

EC Train 95.29% 96.28% 93.84% 98.96% 99.00% 96.35% 96.28% 100.00% 95.70% 78.26% 87.80% 98.01% 95.65% 99.25% 98.51% 97.06%
Test1 77.91% 77.91% 73.21% 86.67% 91.11% 81.19% 83.72% #DIV/0! 83.72% 0.00% #DIV/0! 94.19% 86.67% 98.21% 96.30% 91.23%
Oasis 70.86% 70.86% 67.57% 76.56% 83.33% 74.63% 84.57% 57.14% 85.71% 14.29% 22.86% 86.29% 78.95% 89.83% 78.95% 78.95%

DT Train 84.12% 86.85% 86.57% 87.13% 87.00% 86.78% 88.34% 68.33% 91.84% 59.42% 63.57% 93.05% 87.32% 96.17% 92.54% 89.86%
Test1 70.86% 74.86% 71.70% 79.71% 84.44% 77.55% 84.00% 50.00% 86.96% 25.00% 33.33% 82.86% 74.55% 86.67% 71.93% 73.21%
Oasis 70.29% 74.29% 70.64% 80.30% 85.56% 77.39% 82.29% 41.18% 86.71% 25.00% 31.11% 84.00% 79.59% 85.71% 68.42% 73.58%

FFNN Train 99.72% 99.72% 99.44% 100.00% 100.00% 99.72% 99.72% 100.00% 99.67% 98.41% 99.20% 100.00% 100.00% 100.00% 100.00% 100.00%
Test1 65.71% 67.43% 67.74% 67.07% 70.00% 68.85% 77.14% 22.73% 84.97% 17.86% 20.00% 86.86% 78.33% 91.30% 82.46% 80.34%
Oasis 54.29% 54.86% 55.24% 54.29% 64.44% 59.49% 77.71% 13.33% 83.75% 7.14% 9.30% 76.00% 63.64% 81.67% 61.40% 62.50%
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Table 7. Cont.

(e) Model performance using VRD in various model-building algorithms
VRD MCI AD CN

Overall
Accuracy Accuracy Sensitivity Specificity Precision F1 Score Accuracy Sensitivity Specificity Precision F1 Score Accuracy Sensitivity Specificity Precision F1 Score

SVM Train 81.14% 83.62% 78.15% 91.52% 93.00% 84.93% 89.58% 100.00% 88.83% 39.13% 56.25% 89.08% 82.61% 92.45% 85.07% 83.82%
Test1 71.43% 73.14% 66.93% 89.58% 94.44% 78.34% 82.86% 0.00% 83.82% 0.00% #DIV/0! 86.86% 86.96% 86.82% 70.18% 77.67%
Oasis 68.00% 70.29% 67.27% 75.38% 82.22% 74.00% 80.00% 23.08% 84.57% 10.71% 14.63% 85.71% 80.77% 87.80% 73.68% 77.06%

EC Train 93.55% 94.29% 91.94% 96.88% 97.00% 94.40% 96.53% 100.00% 95.98% 79.71% 88.71% 96.28% 93.43% 97.74% 95.52% 94.46%
Test1 74.86% 76.00% 70.00% 89.09% 93.33% 80.00% 84.00% 50.00% 84.39% 3.57% 6.67% 89.71% 86.79% 90.98% 80.70% 83.64%
Oasis 69.71% 72.00% 74.12% 70.00% 70.00% 72.00% 80.57% 40.00% 88.97% 42.86% 41.38% 86.86% 78.33% 91.30% 82.46% 80.34%

DT Train 71.22% 73.70% 68.65% 82.12% 86.50% 76.55% 84.86% 66.67% 86.02% 23.19% 34.41% 83.87% 77.17% 86.96% 73.13% 75.10%
Test1 75.43% 75.43% 69.11% 90.38% 94.44% 79.81% 86.29% 83.33% 86.39% 17.86% 29.41% 89.14% 91.30% 88.37% 73.68% 81.55%
Oasis 72.00% 75.43% 73.27% 78.38% 82.22% 77.49% 85.14% 55.00% 89.03% 39.29% 45.83% 83.43% 75.93% 86.78% 71.93% 73.87%

FFNN Train 99.72% 99.72% 99.44% 100.00% 100.00% 99.72% 100.00% 100.00% 100.00% 100.00% 100.00% 99.72% 100.00% 99.57% 99.18% 99.59%
Test1 76.57% 78.29% 76.53% 80.52% 83.33% 79.79% 89.71% 72.73% 92.16% 57.14% 64.00% 85.14% 78.18% 88.33% 75.44% 76.79%
Oasis 73.14% 74.86% 78.75% 71.58% 70.00% 74.12% 88.00% 62.07% 93.15% 64.29% 63.16% 83.43% 71.21% 90.83% 82.46% 76.42%
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4. Discussion
4.1. The Value of Integrating Image Features and Patient Demographics in AD, MCI and
CN Classification

Our previous study suggested that structural MRI images aided in differentiating AD
and MCI from CN using artificial intelligence [30]. However, that study was limited to
binary classification, i.e., differentiating AD from CN, AD from MCI or MCI from CN. In
clinical situations, CN may progress to MCI and then to AD in a matter of years. Multi-class
classification is more useful considering three stages of disease. For two decades, brain
regional volumes have been employed to diagnose AD from CN. Hippocampal atrophy is a
widely used biomarker for the diagnosis of AD, but the low sensitivity and specificity limit
its application as a confirmation of diagnosis [60]. Sørensen and his team suggested using
other imaging features, including cortical thickness, hippocampal shape and its texture for
the differential diagnosis of MCI from AD, and they achieved a classification accuracy of
62.7% for CN from AD and MCI [61]. Similar results were obtained by Koikkanlainen and
his team, where 74% of AD could be accurately classified from other types of dementia
using structural MRI [62]. Both authors suggested that other features might be required to
attain higher accuracy in classification. Our results demonstrated that, using the volumes
of only 45 brain regions, the overall classification accuracy achieved was 73.14% and 68%
(EC) in validation for patients from ADNI 4 centers and OASIS, respectively. The results
are similar to those obtained in previous studies. In subclass classification, however, the
sensitivity was under 70% in AD and CN for all four algorithms. This suggested that the
models built using brain regional volumes alone were unsatisfactory in identifying AD
from CN.

In recent years, radiomics has been employed in the classification of AD, MCI and CN.
Du and his team used radiomics features of the hippocampus for diagnosing early-onset
and late-onset AD, which achieved 77% and 78%, respectively. However, their sample
size was small, with only 144 patients included in training (36 patients in each group) and
another 60 patients (15 patients in each group) for testing [63]. The limited sample size may
restrict the generalizability of the classification model. Our results demonstrated that, using
radiomics as the only feature for model building, the overall accuracy achieved 40.57%
(SVM) to 51.43% (FFNN) in tests using patients from ADNI 4 centers and 35.43% (SVM) to
58.29 (EC) for patients from OASIS, respectively. The models built using radiomics alone
were well below satisfactory.

To improve the classification accuracy, previous studies suggested building the model
using multiple image features. Li and his team included 30,128 image features, including
24,910 features from structural MRI, 4988 features from functional MRI and 200 features
from MRI Diffusion Tensor Imaging (DTI). They achieved overall accuracy of 90.2% and
sensitivity and specificity of 79.8% and 86%, respectively [21]. The current study included
only structural MRI image features, and, by adding patients’ demographics to the brain
regional volumes and radiomics, the overall accuracy improved to 76.57% and 73.14%
(FFNN) in tests for patients from ADNI 4 centers and OASIS, respectively. Also, the
accuracy of MCI, AD and CN was 78.29%, 89.71% and 85.14% in tests for patients from
ADNI 4 centers, which remained consistently high in tests for OASIS patients (74.86%, 88%
and 83.43%).

In addition to the overall accuracy, the sensitivity and specificity, which refer to a
model’s ability to classify patients with AD as AD, and to classify patients who were not AD
as MCI and CN, respectively, were balanced. This illustrated that the model demonstrated
high capability in classifying the corresponding groups accurately. To address the issue of
an imbalanced subclass dataset, we used the precision and F1 score to evaluate the models.
Precision was used to measure how many predictions for one group made by the model
were correct. Recall was used to measure the number of one-class samples present in the
dataset that were correctly identified by the model. The F1 score combines precision and
recall using their harmonic mean. The high F1 score illustrates maximized precision and
recall simultaneously. In the current study, FFNN demonstrated the highest precision and
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F1 score when compared to other algorithms, which demonstrated that the FFNN model can
concurrently attain high precision and high recall, indicating well-balanced performance.

4.2. The Value of the Feed-Forward Neural Network in Classification of AD, MCI and CN

In this study, the FFNN showed the best performance in terms of accuracy, specificity
and sensitivity for dementia classification when compared to other traditional algorithms.
FFNN is a multi-layer artificial neural network, with a connection between the input
layer, hidden layers and output layers. The training process allows information to move
in one direction, from the input layer and hidden layers to the output layer, without
looping (backpropagation) [64]. This simulates the thinking process of a physician in
clinical decision making and diagnosis confirmation, based on information from patients’
demographics and imaging features.

The FFNN networks built in this study were relatively small in view of network
training. There were only five layers (one input layer, three hidden layers and one output
layer). The processing time is within 2 min when running on most computers in the clinical
setting. The Levenberg–Marquardt algorithm used in FFNN offered significant accuracy,
with fewer errors during the training, validation and testing phases [65].

4.3. The Value of Multi-Classes in Classification of AD, MCI and CN

Previous studies achieved good classification accuracies; for example, Zhang et al.
2019 achieved 96% accuracy in discriminating AD from CN, with sensitivity and specificity
of 89% and 98%, respectively [66]. In addition, Mendoza-Leon and his team developed
an auto-encoder model, which achieved accuracy of 90%, with sensitivity and specificity
of 85% and 95%, respectively, in discriminating AD from CN [67]. Ning and his team
demonstrated over 95% accuracy in classifying AD from CN [43]. A previous study from
our team also achieved excellent classification accuracy, with 99.92% in differentiating
MCI from CN, 99.86% to differentiate MCI from AD and 99.94% to differentiate AD from
CN. However, these models were binary classifiers [30]. In real-world scenarios, however,
patients can be taken from either stage. The multi-class model is a one-stop model, which
can differentiate AD, MCI and CN distinctively. Technically, Borchert et al. 2023 highlighted
that building a multi-class classifier model is more challenging than a binary classifier in
view of the machine learning algorithm, and it usually yielded lower accuracy, sensitivity
and specificity [68]. Compared to similar studies—one conducted by Moore and his
team, where their model achieved accuracy of 99%, 59% and 29% in CN, MCI and AD,
respectively [69], and another study conducted by Cárdenas-Pẽna and his team, where
their model achieved 71.4%, 53.4% and 75.1% in CN, MCI and AD, respectively [42]—our
proposed FFNN with VRD features yielded 83.43% 74.86% and 88% accuracies in CN, MCI
and AD, respectively, in the OASIS test dataset. The balanced accuracies in various stages
demonstrated that the model has the capability to classify all three stages of disease with
satisfactory results, leading to a precise stage classification in real-world scenarios.

4.4. The Value of Testing against Independent Cohort of Patients

Another important asset of the current study is the use of an independent dataset for
validation. Compared to those studies using cross-validation or other similar methods,
the use of an independent dataset demonstrated much lower accuracy [70]. For instance,
Cohen et al. 2019 achieved accuracies of 93.1%, 82.3% and 88.6% in CN, MCI and AD,
respectively [44]; however, their algorithm was not tested against unseen data. A review
study concluded that, when compared to studies using cross-validation alone, studies
using an unseen dataset for validation usually reported lower accuracy, especially when
using a local population [68]. Recent studies have addressed the risk of overfitting for
models built using a single dataset [71,72] and suggested conducting model validation
using an independent dataset to report the model accuracy. In the current study, we
reported accuracies for both validations: validation by an independent part of the same
dataset (i.e., test 1) and by an unseen independent dataset (i.e., OASIS dataset). Our
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proposed FFNN with VRD features yielded 85.14%, 85.71% and 78.29% in CN, MCI and
AD, respectively, in the Test 1 dataset, and 83.43%, 74.86% and 88% accuracies in CN, MCI
and AD, respectively, in the OASIS test dataset. Both results were satisfactory and indicate
the model’s capability to generalize to new data.

4.5. Potential Clinical Application and Development of the Proposed Model

In the current study, the brain regional volumes and radiomics were retrieved from
the MRI images manually using the chosen software. With the improved computer power
and database management, script encoding is available. The retrieval of brain regional
volumes and radiomics can be carried out after image acquisition in the image storage
database. Together with the demographics obtained from the patient management system,
the obtained features can be passed to the proposed neural network as the input for
dementia classification. The predicted diagnosis from the neural network may help to
triage AD and MCI patients from the CN and lead to a higher priority for clinicians to
determine the diagnosis.

4.6. Main Findings of Study

In this study, we utilized the brain regional volumes, radiomics retrieved from
MPRAGE MRI images and patients’ demographics to build a classification for demen-
tia patients; further, we evaluated the performance of the networks built in terms of overall
accuracy, subclass accuracy, sensitivity and specificity. The proposed FFNN model using
all three types of features demonstrated the best distinguishing ability and achieved very
good performance in dementia classification.

4.7. Study Limitations and Future Directions

In this study, two cohorts of neurodegenerative patients from a public database were
used for model development and testing. The sample size was relatively small, even though
it consisted of balanced samples in various groups. Small sample sizes provide less reliable
estimates of the underlying data distribution, meaning that the developed model may miss
subtle data patterns present in the data [70]. Further study is recommended using another
independent local cohort of patients with a larger sample size to verify the proposed model.

Radiomics of MPRAGE MRI images and demographic data were used as input to
develop the classification model. In future studies, the model can be improved by in-
corporating image features from various imaging modalities, e.g., PET/CT with 18F-
Flumetemetamol as a radionuclide for an amyloid study [73], T2-weighted MRI imaging
for white matter hyper-intensity [74], arterial spin labeling MRI imaging for cerebral blood
flow study [75] and resting state functional MRI imaging for interhemispheric functional
connectivity [76], so as to develop a more comprehensive model.

Furthermore, other clinical parameters, such as the Montreal Cognitive Assess-
ment (MoCA) result, plasma amyloid-β level [77,78], can be included as input to de-
velop or modify the networks, so as to improve the classification capabilities with more
relevant parameters.

5. Conclusions

This study established a feed-forward neural network model by integrating image
features and demographics for various stages of dementia classification. The FFNN yielded
good overall accuracies for MCI, AD and CN classification, with balanced subclass accuracy,
sensitivity and specificity. The proposed FFNN model is simple and can be operated using
a general-purpose computer in radiology departments. The application can be used as a
reliable classification tool to prioritize patients with AD or MCI from CN. It may support
the triage of patient for further testing, which shortens the diagnosis confirmation pathway.
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