
Citation: Dong, M.P.; Dharmaraj, N.;

Kaminagakura, E.; Xue, J.; Leach,

D.G.; Hartgerink, J.D.; Zhang, M.;

Hanks, H.-J.; Ye, Y.; Aouizerat, B.E.;

et al. Stimulator of Interferon Genes

Pathway Activation through the

Controlled Release of STINGel

Mediates Analgesia and Anti-Cancer

Effects in Oral Squamous Cell

Carcinoma. Biomedicines 2024, 12, 920.

https://doi.org/10.3390/

biomedicines12040920

Academic Editor: Naoki Katase

Received: 6 April 2024

Revised: 15 April 2024

Accepted: 18 April 2024

Published: 21 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomedicines

Article

Stimulator of Interferon Genes Pathway Activation through the
Controlled Release of STINGel Mediates Analgesia and
Anti-Cancer Effects in Oral Squamous Cell Carcinoma
Minh Phuong Dong 1, Neeraja Dharmaraj 2, Estela Kaminagakura 3 , Jianfei Xue 2, David G. Leach 4,5,
Jeffrey D. Hartgerink 4,5, Michael Zhang 1, Hana-Joy Hanks 1, Yi Ye 6,7 , Bradley E. Aouizerat 7, Kyle Vining 8,9 ,
Carissa M. Thomas 10 , Sinisa Dovat 11, Simon Young 2 and Chi T. Viet 1,*

1 Department of Oral and Maxillofacial Surgery, School of Dentistry, Loma Linda University,
Loma Linda, CA 92350, USA; mdong@llu.edu (M.P.D.); mzhang@students.llu.edu (M.Z.);
hhanks@students.llu.edu (H.-J.H.)

2 Katz Department of Oral Maxillofacial Surgery, The University of Texas Health Science Center at Houston,
Houston, TX 77054, USA; neeraja.dharmaraj@uth.tmc.edu (N.D.); jianfei.xue@uth.tmc.edu (J.X.);
simon.young@uth.tmc.edu (S.Y.)

3 Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State
University (Unesp), São Paulo 12245-00, Brazil; estela.tango@unesp.br

4 Department of Chemistry, Rice University, Houston, TX 77005, USA; davidleach@alumni.rice.edu (D.G.L.);
jdh@rice.edu (J.D.H.)

5 Department of Bioengineering, Rice University, Houston, TX 77005, USA
6 Translational Research Center, Department of Oral and Maxillofacial Surgery, New York University College

of Dentistry, New York, NY 10010, USA; yy22@nyu.edu
7 NYU Pain Research Center, Department of Molecular Pathobiology, New York University College of Dentistry,

New York, NY 10010, USA; bea4@nyu.edu
8 Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania,

Philadelphia, PA 19104, USA; viningk@upenn.edu
9 Department of Materials Science and Engineering, School of Engineering & Applied Science,

University of Pennsylvania, Philadelphia, PA 19104, USA
10 Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;

carissathomas@uabmc.edu
11 Department of Pediatrics, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA;

sdovat@pennstatehealth.psu.edu
* Correspondence: cviet@llu.edu; Tel.: +1-909-558-4671

Abstract: Oral squamous cell carcinoma (OSCC) presents significant treatment challenges due to its
poor survival and intense pain at the primary cancer site. Cancer pain is debilitating, contributes to
diminished quality of life, and causes opioid tolerance. The stimulator of interferon genes (STING)
agonism has been investigated as an anti-cancer strategy. We have developed STINGel, an extended-
release formulation that prolongs the availability of STING agonists, which has demonstrated an
enhanced anti-tumor effect in OSCC compared to STING agonist injection. This study investigates
the impact of intra-tumoral STINGel on OSCC-induced pain using two separate OSCC models and
nociceptive behavioral assays. Intra-tumoral STINGel significantly reduced mechanical allodynia
in the orofacial cancer model and alleviated thermal and mechanical hyperalgesia in the hind paw
model. To determine the cellular signaling cascade contributing to the antinociceptive effect, we
performed an in-depth analysis of immune cell populations via single-cell RNA-seq. We demon-
strated an increase in M1-like macrophages and N1-like neutrophils after STINGel treatment. The
identified regulatory pathways controlled immune response activation, myeloid cell differentiation,
and cytoplasmic translation. Functional pathway analysis demonstrated the suppression of transla-
tion at neuron synapses and the negative regulation of neuron projection development in M2-like
macrophages after STINGel treatment. Importantly, STINGel treatment upregulated TGF-β pathway
signaling between various cell populations and peripheral nervous system (PNS) macrophages and
enhanced TGF-β signaling within the PNS itself. Overall, this study sheds light on the mechanisms
underlying STINGel-mediated antinociception and anti-tumorigenic impact.
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1. Introduction

Oral squamous cell carcinoma (OSCC) is on the rise, increasing by two-thirds in
20 years [1,2], with a substantial increase in young patients who do not have traditional risk
factors (i.e., tobacco or alcohol use). OSCC patients suffer from significant morbidity [3] and
a 5-year mortality rate of 40% [4], even those at an early stage at diagnosis. Advanced-stage
OSCC leads to increased morbidity and mortality due to its potential for local invasion,
metastasis, and treatment-related complications. The standard of care for OSCC is surgery
followed by risk-adapted radiation and chemotherapy. Few treatment options are available
for recurrent or metastatic OSCC that has failed conventional treatment [5]. Immunotherapy
with checkpoint inhibitors was approved in 2016 with a modest survival benefit in a subset
of patients, thus fueling further research on additional immunotherapeutic strategies,
including STING agonism [6].

Aside from poor survival due to treatment resistance, OSCC patients suffer from de-
bilitating pain. Cancer patients who have inadequately managed pain are at risk for opioid
tolerance and dependence [7–9], anxiety, depression, and reduced quality of life [10–14].
Uncontrolled pain may even contribute to a lower survival rate [15,16]. Cancer patients
represent a growing group of people who are prescribed opioids for pain management,
of which 21–29% suffer from opioid dependence [17]. Unlike other cancers, OSCC causes
intense pain at the primary site at early stages [18], affecting a patient’s ability to eat and
speak [8,19]. OSCC patients have higher pain prevalence than other cancer patients [8],
require more opioids, and are more likely to suffer from opioid dependence [8,19]. Pain
results from either cancer progression [18] or treatment [20]. Previous publications show
that the same mechanisms control OSCC carcinogenesis and pain and that OSCC pain is an
important early predictor of metastasis and poor survival [21]. Unfortunately, two of the
most common drug therapies for OSCC, cisplatin chemotherapy and checkpoint inhibitor
anti-PD1 (programmed cell death protein 1) immunotherapy, also exacerbate cancer pain
and opioid dependence [22,23]. Cisplatin and opioids have antagonistic actions, with
opioids inhibiting the anti-cancer effects of cisplatin in an OSCC model [24]. Anti-PD1
similarly inhibits the mu opioid system by co-localizing PD-1 and mu opioid receptors
on small-diameter neurons that convey pain [22]. Anti-PD-1 results in opioid-induced
hyperalgesia and opioid tolerance in mice and non-human primates [23]. Pain at the cost of
cancer treatment is detrimental to patients [7]. The optimal therapeutic agent possesses the
capability of targeting both oncogenic pathways and pain-modulating pathways, leading
to both tumor growth inhibition and cancer pain relief.

The stimulator of interferon genes (STING) plays a crucial role in the innate immune
response and facilitates the activation of immune cells and the production of cytokines,
emerging as a candidate for immunotherapy [25,26]. In addition to its anti-tumor proper-
ties, STING agonism has the ability to reduce bone cancer pain via immune and neuronal
modulation in an in vivo model [27]; however, the cell compositions and functional path-
ways involved are not well characterized. Biomaterials have been engineered to deliver
pain relief in many diseases [28,29]. Multidomain peptides (MDPs) are a class of self-
assembling peptide hydrogels that have been well characterized [30,31]. STINGel is a novel
biomaterial-based drug delivery system that utilizes the MDP hydrogel-based platform
for controlled-release delivery of the STING agonist CDN (Cyclic DiNucleotide dithio-
(RP,RP)-[cyclic[A(2′,5′)pA(3′,5′)p) [6]. Previous studies demonstrate that STINGel has a
robust anti-tumor effect in a syngeneic HPV-associated OSCC mouse model [6]. The role
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of the STINGel in mediating OSCC pain, however, has not been characterized. Clinical
translation of STINGel requires an understanding of how it modulates cancer symptoms.

In this study, we hypothesized that STINGel treatment, owing to its extended-release
formulation, produces a sustained antinociceptive and anti-tumor effect. We tested the
effect of STINGel in two OSCC mouse models. We then used single-cell RNA sequencing
analysis to determine the immune cell panel and signaling pathways that were responsible
for the antinociceptive and anti-tumor activity of STINGel treatment.

2. Materials and Methods
2.1. STINGel Preparation

STINGel was prepared as previously described [6]. Briefly, the peptide portion with
sequence KKSLSLSLSLSLSLKK was synthesized by standard solid-phase peptide synthesis
using an FMOC protection strategy on Rink Amide MBHA resin and characterized by
HPLC and MALDI-TOF MS. A buffered mixture of this peptide and CDN were made
such that the final concentrations were 10 µg/µL peptide, 0.67 µg/µL CDN, 0.5× HBSS
(Hank’s balanced salt solution), and 149 mM sucrose. This mixture rapidly forms the gel
composition used in this study. The 30 µL boluses used in this study thus provide 20 µg
of CDN.

2.2. Cell Culture

MOC1, the murine oral cancer cell line, was obtained from Dr. Ravindra Uppaluri
(Dana-Farber Cancer Institute, Harvard University, Boston, MA, USA). Cells were grown
in IMDM/F12 (2:1) (HyClone, Logan, UT, USA) with 5% fetal bovine serum (HyClone),
penicillin/streptomycin (Lonza, Walkersville, MD, USA), 5 ng/mL EGF, 400 ng/mL hydro-
cortisone (Sigma, St. Louis, MO, USA), and 5 µg/mL insulin [32] at 37 ◦C in 5% CO2. Cells
at 80–95% confluency were used for all experiments.

2.3. Mouse Cancer Model

All animal protocols and experimental procedures were approved by the Loma Linda
University Institutional Animal Care and Use Committee (IACUC), in accordance with the
Guide for the Care and Use of Laboratory Animals. Mice were housed in a temperature-
controlled environment, alternating 12 h light–dark cycle with free access to water and a
standard rodent diet.

Mouse cancer models were performed in female mice (C57BL/6 strain) at 6–8 weeks
of age. Mice were injected with MOC1 tumor cells on day 0 into the right maxillary oral
vestibule [33] or right hind paw (30,000 cells in 30 µL volume), followed by CDN/STINGel
(20 µg CDN in 30 µL injection) or HBSS/control on post-inoculation day (PID) 3 (when the
tumors were 4–5 mm in size) in the same inoculated location. The nociceptive behavioral
assays were performed on day 0 (prior to inoculation), day 4, and then every 3 days after
STINGel or vehicle injection. The mice were sacrificed on day 30 and tissues were harvested.

2.4. Nociceptive Behavioral Assays
2.4.1. Thermal Nociception Assay

Mice were placed in a plastic chamber on a 25 ◦C glass surface. Thermal hyperalgesia
was measured by the paw thermal stimulator (IITC Life Sciences, Woodland Hills, CA,
USA) with a radiant heat source delivering a thermal stimulus to the left hind paw of each
mouse with a cutoff of 20 s [34]. Paw withdrawal latency was measured as a mean of
3 trials taken at 5 min intervals.

2.4.2. Mechanical Nociception Assay

Mice were acclimated in a plastic cage with a wire mesh floor for 1 h. Paw withdrawal
thresholds [35] were determined in response to pressure from von Frey filaments (IITC Life
Sciences). The paw withdrawal threshold for each mouse was determined as the mean of
3 trials.
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2.4.3. Facial Mechanical Nociception Assay

Over a period of two weeks, mice were acclimated every other day in a transparent box
with a mesh floor for 1 h. To assess their withdrawal responses to mechanical stimulation,
von Frey filaments ranging from 0.0008 to 4 g-force (totaling 11 filaments) were applied
in ascending order to the cheek area [36]. Each von Frey filament was applied once; in
case of a moving mouse or unclear response, the same filament was reapplied to the same
area after the initial stimulus g. Different intensities were set at 5 min intervals. The facial
nociception score was reported as a numerical average of the 11 responses ranging from
0 (no response) to 4 (multiple facial grooming, responding to the filament simulation with
more than three facial wipes continuously) [34].

2.5. Single-Cell Suppression and Droplet-Based Single-Cell RNAseq

A MOC1 orthotopic tumor model was established, and treatments were performed
as described earlier [33]. Cells were isolated from mouse oral tumors, one normal HBSS
control and one treated with STINGel biomaterial. The tumors were harvested and then
processed into a single-cell suspension, and red blood cells were lysed, followed by a
bead-based enrichment for CD45+ leukocytes. Cells were resuspended to a concentration
of approximately 1000 cells/µL and loaded onto a 10× Genomics Chromium platform for
droplet-enabled scRNA-Seq. To perform single-cell analysis, cell capture, lysis, reverse
transcription, and cDNA amplification were performed at the Single Cell Genomics Core
(SCGC) at the Baylor College of Medicine (BCM). Library generation was performed at the
Genomic and RNA Profiling Core (GARP) at the BCM. A total of 2689 cells were profiled
for the control and 4336 cells were profiled for the treatment mouse.

2.6. Single-Cell RNA Sequence Data Analysis

The CellRanger (v.3.0.2; 10× Genomics Inc., Pleasanton, CA, USA) pipeline was used
to process the data. Initially, samples in each pool were demultiplexed using the sample
index, and then a count matrix was generated for each sample by mapping to the mm10
reference genome. The filtered expression matrices were loaded into R v4.3.1 using the
‘Read10X’ function from the Seurat v4.3.0.1 package [37] with pooled data count from
2 batches (7234 cells).

Cells with less than 200 non-zero genes or more than 6% of mitochondrial genes
were filtered out; cells with unique UMI counts under 500 or greater than 10,000 were
also filtered out. Genes expressed in less than 10 cells were omitted. The doublets were
detected by DoubletFinder v2.0.3 [38]. After filtering, the data contained 6796 cells and
17,297 genes. Data were then log normalized and scaled to regress out cell cycle, percentage
mitochondria, and number of features (genes). Variable genes were identified using the
FindVariableFeatures function. The Uniform Manifold Approximation and Projection
(UMAP) dimensional reduction and graph-based clustering method (resolution = 1.25)
were computed using the top 24 principal components. The FindAllMarkers function
was used to calculate the marker genes (thresh.use > 0.25, min.pct > 0.25, Wilcoxon rank-
sum test). Finally, we annotated each cell type by SingleR v2.0.0 using the ImmuGen
database [39], with an extensive literature search for the specific gene expression patterns.

Cell communication analysis was performed using the R package Cellchat v1.6.1 [40]
with the mouse CellChatDB.

Enrichment analysis was performed using clusterProfiler package v4.8.2 [41].

2.7. Statistical Analysis

Statistical analysis was performed using GraphPad Prism v9.5.0. The thermal and me-
chanical nociception scores of the following days were converted into percentage changes
compared to day 0. The differences between the thermal and mechanical scores of the
STINGel and vehicle groups were analyzed using two-way ANOVA and Tukey’s post hoc
test. Results were presented as mean ± standard error of the mean (SEM). A p-value of
lower than 0.05 was considered to be statistically significant.
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3. Results
3.1. STINGel Treatment Reduced Facial Mechanical Allodynia in an Orofacial OSCC Mouse Model

The maxillary vestibule OSCC model was used to assess the antinociceptive and
anti-tumor effect of STINGel in the orofacial region, an anatomically synonymous model of
orofacial pain in oral cancer patients. Mechanical allodynia was quantified using the facial
mechanical withdrawal assay. The percentage change in facial mechanical withdrawal
score was calculated based on the values of day 0 prior to cancer inoculation with MOC1
cells, with increasing percentage changes signifying increased pain. The results showed
that by PID 4 when there were visible tumors, the mice in both groups had increased
facial nociception, which gradually increased throughout the experimental time course.
However, the STINGel treatment group had significantly reduced facial allodynia with the
nociceptive effect at only 50% compared with the vehicle hydrogel (MDP) group (p < 0.0001)
(Figure 1A). Moreover, the treatment group displayed a statistically significant reduction in
tumor volume compared to the vehicle group on day 40 (Figure S1). This anti-tumor effect
of STINGel in OSCC preclinical models has been previously reported [33].
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Figure 1. STINGel treatment mitigated the pain in mouse oral squamous cell cancer models. Effects
of STINGel (blue line) in comparison to vehicle (black line) on (A) facial mechanical nociception
(maxillary vestibule model), (B) thermal nociception (paw hind model), and (C) paw withdrawal
(paw hind model). The arrow indicates the time of STINGel or MDP (vehicle) injection. The dots
show the mean values; the error bars indicate the standard error of the mean. n = 7–8 per group.
Two-way ANOVA and Tukey’s multiple comparisons were used, **** p < 0.0001.

3.2. STINGel Treatment Reduced Thermal Hyperalgesia and Mechanical Allodynia in an
Orthotopic OSCC Mouse Model

We determined the antinociceptive effect of STINGel in an orthotopic paw cancer
model. Thermal hyperalgesia and mechanical allodynia were quantified by the thermal
and paw withdrawal assay, respectively, in mice inoculated with MOC1 cells into the hind
paw. On post-inoculation day (PID) 4, mice had remarkably increased nociception, with
reduced thermal latency and mechanical thresholds at approximately 50% and 80% from
the baseline, respectively. At this point, the mice were injected with STINGel or vehicle
hydrogel (MDP) (Figure 1B,C). On PID 7 (day 3 of STINGel treatment), the STINGel group
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showed significantly less thermal hyperalgesia and mechanical allodynia in comparison to
the vehicle group. Notably, the thermal latency in the STINGel group increased back to the
pre-inoculation baseline, while the thermal thresholds of the vehicle group were still at 40%
below day 0. In the following days, the thermal and mechanical withdrawal thresholds
of the STINGel group remained stable with a sustained antinociceptive effect. Overall,
the thermal and mechanical withdrawal thresholds of the vehicle group were significantly
lower than that of the STINGel group, indicating worse nociception.

3.3. STINGel Treatment Changed the Ratio of M1/M2 Macrophages and the Population of N1-like
Neutrophils in the Mouse OSCC Model

The maxillary vestibule OSCC model was used to further assess the mechanism
of STINGel-induced anti-tumor and antinociceptive effects. CDNs have been known to
activate immune cells in preclinical models through STING. While the mechanism of STING
agonist-mediated anti-tumor effect is well characterized, the effect of controlled release
formulation STINGel on immune cell infiltrate is not yet defined. Furthermore, the cellular
mechanism of STING agonist-mediated antinociception in cancer is not well defined. Using
the Seurat package, the single-cell RNA-seq data were normalized, pooled, and clustered
(Figure S2A). In order to broadly annotate these populations, canonical markers were
employed, resulting in the annotation of T cells (Cd3d, Cd3e), NK cells (Gzma, Nkg7),
dendritic cells (Wdfy4, Flt3), macrophages/monocytes (Lyz2, Csf1r), neutrophils (Csf1,
Cfs3r), and a cluster expressing Siglech and Tgfbr, which are considered PNS macrophages
(Figures 2A and S2B,C). We applied SingleR using the ImmGen database as the reference to
confirm the annotation of cell clusters (Figure 2B) and generated assignment scores across
all cell label combinations (Figure 2C).
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Figure 2. Single-cell RNA sequencing analysis of STINGel treatment and vehicle in a mouse oral
squamous cell cancer model. (A) Uniform manifold approximation and projection (UMAP) plot with
clusters denoted by colors and labeled according to canonical markers. (B) UMAP plot with SingleR
annotations indicated for individual cells. (C) Heatmap of SingleR scores for the top correlates cell
types; each cell is a column, while each row is a label in the reference of the ImmuGen dataset, and
the final label for each cell is shown in the top bar.
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Macrophages/monocytes were categorized into distinct subtypes, including M1-like
(Cd68, Ctsl, Pf4), M2-like (Arg1, Ccl24), Retnla+ macrophages (Retnla), and monocytes
(Ly6c2) (Figures 3A,B and S3). An observation emerged from the comparison between
STINGel-treated and untreated samples (Figure 3C), revealing a significant increase in total
monocyte population and an elevated M1-like/M2-like macrophage ratio in the STINGel-
treated mouse (vehicle: 0.16, STINGel: 3.35). Additionally, STINGel treatment tissues were
enriched by 5.5 folds in proportions of N1-like neutrophils (Tnf, Ccl3) compared to vehicle
tissues, while N2-like neutrophils proportions remained unchanged (Cxcr4, Mmp9) [42,43].
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Figure 3. STINGel treatment changed the population of monocytes, macrophages, and neutrophils
in the mouse oral squamous cell cancer model. (A) Dot plot of average expression of the canonical
markers of each cell type. The relative gene expression in percent is represented by the size of
dots. The average expression level is indicated by the color. (B) Uniform manifold approximation
and projection (UMAP) plot with 11 cell types denoted by color and labeled according to canonical
markers. (C) The bar plot represents the number of each cell type in the condition of STNGel treatment
(blue) or vehicle (red).

3.4. Regulatory Pathways Involved in STINGel Treatment

To further investigate the biological functions of differential gene expression after
STINGel treatment (adjusted p < 0.05, log foldchange > 0.1 as the cut-off criterion), we
performed over-representation analysis (ORA) and Gene Set Enrichment Analysis (GSEA)
using Gene Ontology (GO) in macrophages, monocytes, and neutrophils, which have
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roles in modulating pain by producing pro- or anti-inflammatory mediators to promote or
resolve pain [44].

The differentially expressed genes in M1-like macrophages and monocytes after STIN-
Gel treatment were responsible for the activation of the immune response, myeloid cell
differentiation, and cytoplasmic translation (Figures 4 and S4). Additionally, based on over-
representation analysis, STINGel treatment induced significant modifications in leukocyte
migration, the cytokine-mediated signaling pathway, and leukocyte-mediated immunity
pathway activities in N1 neutrophils (Figure S5). STINGel treatment also led to discernible
changes in the translation regulation of the pre-synapse/synapse/post-synapse pathway
within M1 macrophages, monocytes, and N2 neutrophils (Figures 4, S4 and S5).
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Figure 4. Enrichment analysis of Gene Ontology (GO) in M1-like macrophages and monocytes.
Differentially expressed genes based on the treatment of (A) M1-like macrophages and (B) monocytes
underwent the gene concept network of over-representation analysis of GO biological process pathways.

Next, we investigated the GSEA GO in M2-like macrophages, a subset of immune cells
with immunosuppressive properties, releasing anti-inflammatory cytokines and growth
factors to facilitate tissue repair and alleviate pain [44]. We identified the top 20 en-
riched pathways, revealing that STINGel treatment led to the suppression of translation
at synapses while activating the pathway involved in the negative regulation of neuron
projection development (Figure 5). A similar suppression pattern of translation at synapses
was also observed in PNS macrophages and Retnla+ macrophages (Figure S6). These results
indicate that STINGel-mediated antinociception was associated with the suppression of
translation at synapses and regulation of neuron projection development.
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3.5. Cell–Cell Communication

We applied CellChat to investigate the cell–cell communication in STINGel treatment
compared to vehicle treatment. The analysis revealed that the number and strength of
interactions increased in STINGel treatment (Figure S7A). Under the influence of STIN-
Gel, M1-like macrophages and N1-like neutrophils, two cell populations that are believed
to be increased in the setting of tumor killing, exhibit heightened interaction potency,
leading to a significant increase in the strength of both incoming and outgoing signals
(Figure 6A). The incoming and outgoing signals included CCL, Secreted Phosphopro-
tein 1 (SPP1), Macrophage Migration Inhibitory Factor (MIF), and TNF pathway signals
(Figures 6B and S7B). Remarkably, STINGel treatment induced a significant upregulation
of TGF-β pathway signaling from M1-like cells, M2-like cells, and monocytes to PNS
macrophages, accompanied by a concomitant enhancement of TGF-β signaling within the
PNS macrophages themselves. These enhanced signals were absent in the vehicle treatment
group (Figure 6C).
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4. Discussion

STING plays a crucial role in the detection of cytosolic DNA and the activation of the
innate immune response [45]; preclinical studies [6,33,46] have demonstrated that DMXAA
or ADU-S100 (STING agonists) have a significant anti-tumor effect [26,27,47]. Our study
also showed a significant reduction in tumor volume in mice treated with STINGel, which
recapitulates findings from our previous studies in multiple preclinical models of oral
SCC. STING recruits neutrophils, followed by monocytes, CD8 T cells [47], and M1-like
cells to the tumor in preclinical models [48,49]. M1 macrophages and N1 neutrophils are
subsets of immune cells that produce robust pro-inflammatory responses and enhance
immune responses against pathogens, contributing to the anti-tumor effect [50]. On the
other hand, M2 macrophages can create an immunosuppressive environment within the
tumor, limiting the effectiveness of an anti-tumor immune response [50]. The utilization of
STING agonists in murine cancer models requires repetitive administration through multi-
ple injections, resulting in limited effects on tumor shrinkage and survival [6]. STINGel,
a multidomain peptide hydrogel loaded with cyclic dinucleotides (CDNs), facilitates the
controlled release of CDN delivery and has exhibited a six-fold enhanced overall survival
rate in a murine oral cancer model when compared to CDN monotherapy [33]. In this
study, the M1 macrophages and N1 neutrophil populations were increased after STINGel
treatment (Figure 3C). Additionally, GO pathway analysis revealed that gene changes in
M1 macrophages and N1 neutrophils after STINGel treatment were related to activation of
immune response, myeloid cell differentiation, and leukocyte migration (Figures 4 and S5).
Cell–cell communication analysis showed that M1-like phenotypes and N1-like phenotypes
upregulated SPP1, MIP, and TNF signaling pathways (Figures 6B and S7B). Although
characterized as pro-nociceptive pain inducers due to their ability to secrete cytokines, M1
and N1 cells in the tumor microenvironment have the potential to enhance anti-tumor
immunity and minimize tumor burden. These non-neuronal, immunomodulatory effects
may inhibit pain by reducing the production of cancer cell-derived pain mediators. Alto-
gether, STINGel demonstrates its indirect antinociceptive impact by reducing the tumor
burden through enhancing the presence of M1-like macrophages and N1-like neutrophils
and concurrently activating immune response pathways through the upregulation of TNF
and MIF signaling pathways.

A previous publication has shown that mice deficient in STING signaling had increased
sensitivity to nociceptive stimuli and heightened excitability to nociceptors; conversely,
the intrathecal activation of STING led to significant an antinociceptive effect in both
mice and non-human primates [51]. In a preclinical bone cancer model, STING agonists
attenuate acute pain by directly affecting neuronal modulation and provide long-term
cancer pain relief through influencing the immune cell function [27]. To extend these initial
findings of the antinociceptive properties of STING agonists, our study used STINGel to
test the effect of controlled-release STING agonists focused on a soft tissue cancer pain
model. STINGel potently reduced mechanical and thermal hyperalgesia in our oral can-
cer models after 3 days of treatment, and this antinociceptive effect was stable until day
30 (Figure 1). Additionally, GO analysis demonstrated that STINGel affected translation at
pre-synapse, synapse, and post-synapse in macrophages, monocytes, and N2 neutrophils.
GSEA in M2-like macrophages demonstrated that STINGel regulated neuron projection
development and regeneration (Figure 5). A significant proportion of immune cells, such
as macrophages and neutrophils, are determined to express receptors for neurotransmitters
and neuropeptides on their cell surface [52]. Recent investigations indicated that neuro-
transmitters, miRNAs, and neuropeptides from nociceptors have the capacity to modulate
immune responses [53]. Further, another publication demonstrated that they contribute
to the facilitation of cancer progression via the suppression of immune functions [54–56].
STINGel treatment shows its function in regulating the neuro-immune axis.

TGF-β is known as an anti-inflammatory cytokine that reduces the synthesis of pro-
inflammatory cytokines [57]. Significant evidence substantiates TGF-β1’s relevance as a
mediator of nociceptive processes and its potential as a deterrent against the development
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of chronic neuropathic pain. Its mechanisms include the attenuation of neuroimmune
responses in both neurons and glia, coupled with the facilitation of endogenous opioid
expression within the spinal cord [58–60]. The secretion of TGF-β from bone marrow stro-
mal cells exerts neuromodulatory effects, leading to the inhibition of dorsal root ganglion
hyperexcitability through noncanonical signaling mediated by TGF-β receptor 1 and the
attenuation of neuropathic pain [61]. In this study, TGF-β was upregulated after STINGel
treatment; monocytes and M1-like and M2-like macrophages signaled to PNS macrophages
through TGF-β (Figure 6C) [62]. We demonstrated that the upregulation of the TGF-β
signaling pathway in PNS macrophages contributes to the antinociceptive effect of STINGel.
The current study concentrated on a solitary time point following STINGel treatment. There
is a need for future comprehensive studies to delve into STINGel effects during the entire
course of cancer treatment.

This study investigated the impact of STINGel on cancer pain in a maxillary vestibule
OSCC model. By examining the changes in immune cell populations and regulatory path-
ways, this study identifies significant mechanisms underlying the antinociceptive and
anti-tumor effects of STINGel treatment. These results will pave the way for the devel-
opment of new therapeutic strategies for cancer pain management and cancer treatment
in OSCC patients. However, this study has some limitations. The findings are based on
animal models and primarily focuse on a single time point after STINGel treatment, which
may not fully represent the complexities of the STINGel effect following treatment.

5. Conclusions

In conclusion, this study provides insights into the impact of STINGel treatment
on cancer pain in a soft tissue cancer model. STINGel exhibits anti-tumor properties by
elevating the population of M1-like macrophages and N1-like macrophages and stimulating
the immune response pathway. STINGel-mediated antinociception was likely mediated by
the regulation of neuron development and TGF-β signaling to PNS macrophages.

Supplementary Materials: The following supporting information can be downloaded at https:
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ure S5: Enrichment analysis of Gene Ontology (GO) in N1-like and N2-like neutrophils; Figure S6: En-
richment analysis of Gene Ontology (GO) in Retnla+ macrophages and PNS macrophages; Figure S7:
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