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Abstract: Heart failure with preserved ejection fraction (HFpEF) results from a complex interplay
of age, genetic, cardiac remodeling, and concomitant comorbidities including hypertension, obesity,
diabetes, and chronic kidney disease (CKD). Renal failure is an important comorbidity of HFpEF,
as well as a major pathophysiological mechanism for those patients at risk of developing HFpEF.
Heart failure (HF) and CKD are intertwined conditions sharing common disease pathways; the
so-called “kidney tamponade”, explained by an increase in intracapsular pressure caused by fluid
retention, is only the latest model to explain renal injury in HF. Recognizing the different phenotypes
of HFpEF remains a real challenge; the pathophysiological mechanisms of renal dysfunction may
differ across the HF spectrum, as well as the prognostic role. A better understanding of the role of
cardiorenal interactions in patients with HF in terms of symptom status, disease progression, and
prognosis remains essential in HF management. Historically, patients with HF and CKD have been
scarcely represented in clinical trial populations. Current concerns affect the practical approach to HF
treatment, and, in this context, physicians are frequently hesitant to prescribe and titrate both new
and old treatments. Therefore, the extensive application of HF drugs in diverse HF subtypes with
numerous comorbidities and different renal dysfunction etiologies remains a controversial matter
of discussion. Numerous recently introduced drugs, such as sodium–glucose-linked transporter 2
inhibitors (SGLT2i), constitute a new therapeutic option for patients with HF and CKD. Because
of their protective vascular and hormonal actions, the use of these agents may be safely extended
to patients with renal dysfunction in the long term. The present review delves into the phenotype
of patients with HFpEF and CKD from a pathophysiological perspective, proposing a treatment
approach that suggests a practical stepwise algorithm for the proper application of life-saving
therapies in clinical practice.
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glucose-linked transporters 2 inhibitors; treatment; angiotensin receptor blocker; neprilysin inhibitors

Biomedicines 2024, 12, 981. https://doi.org/10.3390/biomedicines12050981 https://www.mdpi.com/journal/biomedicines

https://doi.org/10.3390/biomedicines12050981
https://doi.org/10.3390/biomedicines12050981
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com
https://orcid.org/0000-0001-8305-5274
https://orcid.org/0000-0001-9235-6597
https://orcid.org/0009-0007-6011-0710
https://orcid.org/0000-0002-7106-5595
https://orcid.org/0000-0002-6163-8468
https://orcid.org/0000-0001-7161-3224
https://doi.org/10.3390/biomedicines12050981
https://www.mdpi.com/journal/biomedicines
https://www.mdpi.com/article/10.3390/biomedicines12050981?type=check_update&version=1


Biomedicines 2024, 12, 981 2 of 22

1. Introduction

Heart failure with preserved ejection fraction (HFpEF) identifies a syndrome charac-
terized by specific signs and symptoms due to myocardial dysfunction, which results in an
increase in left-sided filling pressures despite a preserved left ventricular ejection fraction
(LVEF) higher than 50% [1]. The traditional classification based on LVEF has clear therapeu-
tic implications, considering the wide spectrum of drugs that have been proven effective
for heart failure with reduced ejection fraction (HFrEF). On the other hand, there are few
therapeutic options for HFpEF, and the inefficacy of many drug classes in HFpEF can be
ascribed to its related variety of clinical scenarios and etiologies [2]. This is especially true
for the so-called secondary HFpEF, or HFpEF mimics, namely, because of an identifiable
condition (e.g., infiltrative cardiac disease, hypertrophic cardiomyopathy), that benefits
from specific treatments [3]. However, it is equally important to characterize patients who
develop HFpEF related to a combination of different causal, comorbidity-driven factors
leading to a primary impairment in myocardial relaxation or compliance [4]. Guidelines
stress the importance of identifying risk factors, specific etiologies, and comorbidities,
suggesting that the treatment of the underlying phenotypes leads to improved outcomes in
HFpEF [1]. In this context, chronic kidney disease (CKD) and heart failure (HF) are frequent
conditions, both bearing a shared burden of conventional cardiovascular risk factors, such
as hypertension and diabetes [5]. Common HF treatments such as renin–angiotensin system
(RAAS) inhibitors, mineralcorticoid receptor antagonists (MRAs), angiotensin receptor
blocker neprilysin inhibitors (ARNI), and SGLT2i significantly impact renal physiology. In-
deed, these drugs modify the renal function curve, affecting the intraglomerular hydrostatic
pressure–natriuresis relationship through the tubule–glomerular feedback mechanism as
well as by inhibiting RAAS effects on the afferent and efferent glomerular arteriola. As
a consequence, the physiological filtration fraction is directly influenced, determining a
repercussion in baroceptorial and chemotactic control directed by the macula densa and
affecting tubular function. The use of SGLT2i, diuretics, and concomitant administration
of RAAS inhibitors and MRAs in specific phenotypes of HFpEF exacerbates the transient
renal impairment observed after their initial administration. This phenomenon contributes
to the reluctance to initiate and titrate these medications.

In this review, we discuss the pathophysiological link between HFpEF and CKD and
the effects of HF drugs on the kidney, suggesting a practical stepwise algorithm for the
correct application of these lifesaving therapies in clinical practice.

2. The Importance of Patient Profiling in HFpEF

The recent Heart Failure Association–European Heart Rhythm Association of the
European Society of Cardiology–European Society of Hypertension joint scientific statement
identifies the most common primary HFpEF phenotypes and proposes an algorithm to
profile patients and tailor evidence-based treatments [3]. Several factors are intertwined
and contribute to the development of HFpEF: from age and gender to disorders of blood
pressure, heart rate (HR), and rhythm or weight to specific comorbidities like diabetes
mellitus, chronic obstructive pulmonary disease (COPD), coronary artery disease (CAD),
and CKD. Among these, age is one of the most significant factors, and defines two “true”
HFpEF phenotypes [6] as follows: one is typically represented by younger patients with
obesity and diabetes, more frequently males, with a predominance of Black and Asian races
and a lower comorbidity burden but a worse lifestyle with respect to cardiovascular risk
factors, and, thus, more likely to die from cardiovascular causes. The other age-related
HFpEF phenotype is usually characterized by older patients, mainly white women, with a
higher comorbidity burden, mostly represented by arterial hypertension, atrial fibrillation
(AF), CKD, and frailty, who are more likely to die from non-cardiovascular death. Sex–
gender is also an important element, considering that, women usually present with specific
anatomic features (e.g., small ventricular chambers) [7]. Furthermore, women with HFpEF
usually develop more severe symptoms and a poorer quality of life as compared with
men [8].
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Arterial hypertension is the most frequent cardiovascular risk factor associated with
HFpEF. Similar pathophysiological mechanisms underlie both HFpEF and CKD, such as
over-activation of the renin–angiotensin–aldosterone and sympathetic nervous systems
and increased oxidative stress, which favor the onset of arterial stiffness and can induce
left ventricular (LV) hypertrophy, myocardial fibrosis, and diastolic dysfunction [9,10].
The presence of AF is highly predictive for HFpEF and must be considered in the pretest
assessment of the HFA-PEFF algorithm [11]. AF likely reflects the atrial myopathy that
accompanies the increase in LV filling pressures. HFpEF patients with AF may also present
with functional atrial mitral or tricuspid regurgitation, associated with markedly enlarged
atria and high mortality. Obesity contributes to HFpEF through many partially understood
pathophysiological mechanisms in which epicardial adipose tissue could play a role [12].
Typical findings in patients with obesity include an increase in pulmonary vascular re-
sistance that may provoke right ventricular dysfunction. These patients usually present
with worse signs of peripheral and pulmonary congestion, worse functional class, and
poorer quality of life [13]. Approximately 14% of patients with HFpEF also have COPD.
However, the similarity in symptoms between these two conditions can lead to misdiagno-
sis. Patients with HFpEF and COPD are usually males and smokers and often have been
prescribed diuretic therapy. They commonly exhibit significant LV concentric hypertrophy
and experience a higher rate of hospitalizations and mortality [14].

Although the prevalence varies, type 2 diabetes mellitus has been identified as a
contributing factor in the development of HFpEF through numerous pathophysiological
mechanisms that are not yet fully understood. These mechanisms ultimately lead to
concentric LV remodeling and diastolic dysfunction [3]. Patients with diabetes are at a
higher risk of HF hospitalization and worse prognosis. Finally, microvascular dysfunction
and obstructive CAD are highly prevalent in the HFpEF population. Patients with HFpEF
and CAD are typically old women with cardiovascular risk factors (hypertension, diabetes,
smoking, and chronic inflammatory diseases). Microvascular dysfunction and CAD lead to
myocardial fibrosis, eventually leading to a worsening LVEF and a higher morbidity and
mortality burden [15].

3. Clinical Characteristics and Prognosis of Patients with Chronic Kidney Disease
and HFpEF

As previously discussed, patients with HFpEF and CKD have a poor quality of life and
share common cardiovascular risk factors, such as arterial hypertension, diabetes, and obesity.
Their prevalence increases with age [16]. Physiologically, the total glomerular filtration rate
(eGFR) declines over time because of the loss of functioning nephrons. On average, this decline
is estimated to be around 0.6–1 mL/min/1.73 m2 per year. Of note, HF is independently
associated with a more pronounced decline in the eGFR after correction for risk factors
associated with CKD progression, reaching up to >5 mL/min/1.73 m2 per year [17].

Phenotyping patients with renal dysfunction remains a real challenge; the pathophysi-
ological mechanisms and the prognostic role of renal dysfunction may differ across the HF
spectrum. CKD is in general related to more severe HF conditions and stages independently
of LVEF. The relationships between CKD, older age, female sex, diabetes, and HF stage are
similar in HFpEF, mildly reduced ejection fraction (HFmrEF), and HFrEF, but several stud-
ies demonstrated that CKD is more prevalent in HFpEF than in HFmrEF and HFrEF [18,19].
Other studies show a higher prevalence of CKD in patients with HFrEF [20,21]. Renal im-
pairment could be considered a major comorbidity in HFpEF, with a significant prognostic
impact without any relation with a worse HF status; conversely, in patients with HFrEF,
kidney dysfunction may reflect the progression of HF, perhaps because of low cardiac
output, hemodynamic hypoperfusion, and sympathetic and neurohormonal activation [22].

Renal dysfunction confers a clinically significant risk for excess mortality and HF
hospitalization in all HF phenotypes; however, the literature on mortality in HFpEF and
CKD shows conflicting results. In the larger meta-analyses, which included a cohort of
patients with HFpEF, CKD has been found to be a more powerful predictor of death [23].
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Conversely, a meta-analysis of the Global Group in Chronic Heart Failure (MAGGIC) shows
a lower mortality rate and a lower association between CKD and death in patients with
HFpEF than in those with HFrEF [24]. This result has been confirmed in the Swedish Heart
Failure registry, in which the association between CKD and mortality is less evident in
patients with HFpEF [21].

In patients with acute heart failure (AHF), we can discern between two distinct
phenotypes as follows: patients with CKD at baseline and patients developing worsening
renal function (WRF) during hospitalization [25]. WRF may be defined according to the time
frame resolution or to its persistence. The first clinical scenario is represented by patients
with good renal function and the occurrence of a “pseudo” WRF during hospitalization for
AHF, usually considered secondary to decongestion therapy [26]. The increase in in-hospital
creatinine usually does not persist after discharge and has no prognostic implication if the
patient is well-decongested before discharge. The second scenario is represented by patients
with true WRF due to congestion (increased renal venous pressure) and hypoperfusion
(reduced arterial perfusion), in which renal deterioration persists, with an increase in
creatinine also in the post-discharge period and with a higher burden of HF-related re-
hospitalizations [27]. Finally, in the third scenario, WRF occurs in the presence of CKD
related to reduced cortical blood flow and chronic glomerulosclerosis with reduced cortical
wall. This phenotype is common in older patients with several comorbidities, where WRF
reflects the real deterioration of renal function, with worse prognostic implications.

4. Pathophysiology of Chronic Kidney Disease in HFpEF

HFpEF and CKD share common pathophysiological pathways, such as systemic in-
flammation, oxidative stress, elevated neurohormones, venous congestion, and uncontrolled
RAAS activity, all of which promote the development and perpetuation of HFpEF and
renal impairment. Elevated filling pressures and decreased systolic filling are the major
hemodynamic features of inadequate stroke volume, ultimately resulting in decreased car-
diac output and, consequently, in renal blood flow. Water and sodium retention is the first
compensatory mechanism in response to a diminished cardiac output, ultimately causing
subclinical congestion and leading to a further deterioration of kidney function. Patients
with HFpEF and CKD tend to present with different degrees of hypervolemia, and it might
be challenging to distinguish volume overload resulting from HF or caused by progressively
declining kidney function. Indeed, parameters of elevated ventricular filling pressures, such
as natriuretic peptides (NPs) might also be elevated because of reduced kidney excretion
in the course of CKD [28]. In patients with HF, increased abdominal pressure, or increased
central venous pressure, has been associated with worsening renal function. This clinical
condition is characterized by renal congestion, hypoperfusion, and increased right atrial
pressure as typical manifestations. The increase in central venous pressures results in in-
creased renal interstitial pressures that compress the tubules, intrarenal veins, and glomeruli
in the encapsulated kidney leading to the “Renal Tamponade Hypothesis” [29].

In a chronic situation, the triggers and factors are involved in a complex interplay
among inflammation, endothelial dysfunction, and fibrosis, eventually leading to my-
ocardial remodeling and progressive dysfunction [30]. Recently, the key roles of systemic
inflammation and the activation of profibrotic pathways have been increasingly recognized
as a crucial pathological mechanism primarily leading to CKD, as well, so that CKD itself
might lead to the development of HFpEF [31]. Inflammation promotes the endothelial
production of reactive oxygen species. This reduces nitric oxygen (NO) availability and
increases peroxynitrite, resulting in diminished cyclic guanosine monophosphate (cGMP)
production by soluble guanylate cyclase and lower protein kinase G (PKG) activity [30].
Besides the above-mentioned mechanisms, fibrosis is also enhanced by the overproduction
of additional peptides, such as Ang 1-7, as well as by direct proinflammatory-induced path-
ways involving higher circulating levels of interleukin-6 and tumor necrosis factor [32,33].
Fibroblast Growth Factor-23 (FGF-23) is increased in patients with CKD, and it has been
shown to alter renal flow-mediated vascular regulation and arterial stiffness. An in vitro
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study on human atrial myocardiocytes demonstrated a cardiac profibrotic role and induc-
tion of myocardial hypertrophy [34]. Deficiency of Klotho protein-positive myocardial
regions, the co-receptor of FGFR1, demonstrated in myocardial autoptic samples of dialysis
patients with high FGF-23 serum levels, has been associated with higher cardiac fibro-
sis and ventricular hypertrophy with an inversely proportional relation [35]. Reduced
NO levels promote impaired endothelial function which, at a coronary level, translates
into increased coronary stiffness and impaired coronary blood flow. This represents the
pathophysiological determinant of microcirculatory dysfunction, which is one of the most
important mechanisms underlying HFpEF and CKD [30,36].

5. Assessment of Renal Function: Laboratory Biomarkers of Glomerular and Tubular
Renal Function

The ability of serum creatinine to estimate the glomerular filtration rate is often not
accurate, as it is known to be influenced by many factors as muscle mass, dietary intake,
physical activity, age, and sex, independently of renal function [37,38]. Furthermore,
there is a curvilinear relationship between serum creatinine and eGFR, so an increase in
serum creatinine is detected only when approximately 40% to 50% of renal parenchyma is
reversibly impaired or irreversibly damaged [39]. This condition could lead to a delay in
the diagnosis of the early stages of acute or CKD.

Because of this tubular secreted component, the eGFR measured by 24 h creatinine
clearance can exceed the eGFR derived by the reference inulin clearance by 10–40% [40]. The
current criteria for the definition of CKD are based on signs of kidney damage determined
by an elevated albumin or protein-to-creatinine ratio or kidney dysfunction determined by
an eGFR < 60 mL/min per 1.73 m2 [41]. Several types of data have demonstrated that an
eGFR < 60 mL/min per 1.73 m2 is independently associated with adverse outcomes and
cardiovascular events [42]. However, this threshold does not differentiate between kidney
disease related to the aging kidney, in which the GFR decreases physiologically without
kidney damage, and implementation of compensation mechanisms such as an increase in
the single-nephron eGFR [43]. Indeed, a subgroup analysis based on age and mortality risk
in patients older than 65 years old was futile until the eGFR dropped down to 45 mL/min
per 1.73 m2 [44]. For this reason, many experts suggest a new definition of CKD based on
age-adapted eGFR.

Cystatin C, in comparison with creatinine, is freely filtered by the kidney and almost
completely reabsorbed in the proximal tube; therefore, it is less influenced by patient factors
such as age, gender, and skeletal muscle composition [45]. Cystatin C quantification is
indicated in patients with a creatinine eGFR between 45 and 50 mL/kg per 1.73 m2 without
other markers of kidney dysfunction and damage to confirm the diagnosis of chronic
kidney disease [41]. Clinical data have shown that the determination of the eGFR using
cystatin C is more accurate, particularly in patients over 70 years of age [46].

Albuminuria plays a relevant role in predicting the risk of CKD progression [42]. Nor-
mally, the glomerular capillary membrane restricts the passage of large serum proteins. The
mean value of the albumin excretion rate, which begins to indicate pathological changes,
is typically above 30 mg/day. This level serves as a threshold for detecting early signs of
kidney damage or dysfunction, such as in the context of diabetic nephropathy or other renal
diseases [47]. These alterations are exacerbated in patients with HF because of the presence of
further pathological mechanisms such as endothelial dysfunction, inflammation, podocyte
damage, and higher intraglomerular pressure [48]. Currently, measuring the albumin-to-
creatinine ratio is preferred for estimating albuminuria because of the variability in total
urinary protein components, making standardization difficult. This ratio is favored over crea-
tinine concentration alone to avoid errors related to urine dilution or concentration, providing
a more accurate assessment of renal function and early signs of kidney damage [49].

Numerous molecules present evidence as markers of renal function, although they are
not yet used in clinical practice. Growth differentiating factor-15 (GDF-15) upregulates anti-
inflammatory factors, such as the Klotho protein, and downregulates pro-inflammatory
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factors. A similar correlation between the urinary GDF-15-to-creatinine ratio to that of
the urinary albumin-to-creatinine ratio and the severity of diabetic CKD was observed,
together with a prognostic role in these patients (mortality and need to replace renal ther-
apy) [50,51]. The Klotho protein mechanism of action is also associated with FGF-23, which,
in a small HFpEF cohort, was shown to correlate independently with 6 MWT (p = 0.012) and
cardiovascular events (HR 1.665; 95% CI, 1.284–2.160; p < 0.0001) [52]. Soluble suppression
of tumorigenicity 2 (sST2) was added in the 2017 update of the ACC/AHA/HFSA 2013
HF guidelines as a biomarker of myocardial injury and fibrosis for risk stratification [53].
The diagnostic value of sST2 is less affected by decreased renal function. The combined
model of sST2 and NT-proBNP for the diagnostic accuracy of HF was superior to the
model of sST2 or NT-proBNP alone also in patients with CKD [54]. Furthermore, sST2 was
independently associated with creatin and the urinary protein-to-creatinine ratio in a large
cohort of CKD patients, as well as with renal dysfunction progression and outcome [55].

Tubular atrophy and interstitial fibrosis are the major processes associated with tubular
damage. Tubular damage is a strong predictor of CKD progression, and it is associated with
an increased risk of cardiovascular disease [56]. However, creatinine and the eGFR are not
indicative of the healthy status of the renal tubule. Human neutrophil gelatinase-associated
lipocalin (NGAL) is a glycoprotein mainly secreted by neutrophils but also released by
kidney tubular cells during damage and inflammation [57,58]. Both urinary and systemic
forms seem to have similar specificity and sensitivity to assess kidney damage. In particular,
some studies have shown that urinary NGAL, as a marker of renal damage, anticipates
detectable changes in the eGFR [59]. The systemic form of NGAL has also been shown
to play a prognostic role in chronic kidney disease. Particularly in older women, NGAL
values above the normal range are associated with an increased risk of renal dysfunction at
10 years [60]. In HF patients, baseline elevated values of systemic NGAL are associated
with an increased risk of mortality at two years of follow-up [61]. The major limitation of
the use of NGAL as an accurate marker of renal damage is linked to its overexpression in
many pathologies such as cancer, neurodegenerative disease, and atherosclerosis.

N-acetyl-β-glycosaminidase (NAG) is a lysosomal enzyme that is expressed in prox-
imal tubular cells and increasingly excreted as a potential indicator of renal tubular dys-
function. However, the results of studies focused on the role of NAG as a marker of renal
dysfunction are conflicting. A case-control study showed that urinary NAG concentrations
at baseline are successful in predicting micro- and macroalbuminuria in patients with type I
diabetes mellitus [62]. On the other hand, NAG and other markers of tubular damage have
not been shown to enhance the predictive accuracy of the baseline clinical prediction model
for CKD progression based on the eGFR and urine albumin-to-creatinine ratio to assess the
risk of CKD progression [63].

6. Therapeutic Evidence and Limitations in Patients with HFpEF and Chronic
Kidney Disease
6.1. SGLT-2 Inhibitors

SGLT2 inhibitors (SGLT2i) have reduced cardiovascular mortality and hospitalizations
due to HF in patients with HFpEF, independently from the presence of diabetes. As such,
they have been recommended as a class IA drug in the treatment of HFpEF in the latest
European Society of Cardiology (ESC) guidelines [64–66]. SGLT2i demonstrates a favorable
neurohormonal, electrolyte, and safety profile in patients with both HFpEF and CKD [67–69].
Retrospective data suggest a nephroprotective effect even in HFpEF, with a significant
decrease in the risk of end-stage renal disease [70–73]. Sotagliflozin showed a significant
reduction in total HF hospitalization and CV in patients with HFpEF. However, these
results should be viewed with caution because the study was underpowered for patients
with HFpEF and included only patients with diabetes [74]. In the EMPEROR-Preserved
trial, almost 50% of patients had a baseline eGFR <60 mL/min/1.73 m2 in both the
empagliflozin and placebo groups. The rate of decline in the eGFR was slower in the
empagliflozin group than in the placebo group (–1.25 vs. –2.62 mL/min/1.73 m2 per
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year; p < 0.001). Despite that, there was no significative difference in the composite renal
outcome showing, a significative discordance between the effect of empagliflozin on
HF outcomes and major renal events. Furthermore, the neutral effect of empagliflozin
on kidney outcomes was similar across the prespecified ejection fraction subgroups of
41–49%, 50–59%, and ≥60% [75,76]. The EMPA-KIDNEY Trial investigated the effect of
empagliflozin in a broad range of patients with CKD. Progression of kidney disease or
death from cardiovascular causes occurred more frequently in the placebo group vs. the
empagliflozin group (16.9% vs. 13.1%, HR 0.72; 0.64 to 0.82; p < 0.001) independently
from diabetes and across subgroups of eGFR ranges. The rate of total hospitalization was
significantly lower in the empagliflozin group than in the placebo group (hazard ratio,
0.86; 0.78 to 0.95; p = 0.003); however, there were no significant differences in terms of the
composite outcome of hospitalization for HF or death from cardiovascular causes or death
from any cause (in 4.5% and 5.1%, respectively) [77].

Upon the reanalysis of data using the definitions of major renal outcomes from the
DAPA-HF and EMPEROR-reduced trials (defined as a ≥50% sustained decline in the eGFR
and renal death), the impact of empagliflozin on major renal outcomes in the overall pop-
ulation was found to be neutral (HR 0.78; [+0.54, +1.13]) [70,78–80]. Packer et al. highlight
limitations in using the eGFR slope as a surrogate for kidney disease progression in predicting
drug effects on renal outcomes, particularly in HF patients, yet overall, the analysis under-
scores the drug’s notable safety profile for renal events [81]. The DELIVER trial confirmed
these safety results for renal outcomes, with an incidence of discontinuation due to acute
kidney injury (AKI) or any serious renal adverse events of 1.5% and 0.3% in the dapagliflozin
group and 1.6% and 0.2% in the placebo group [65]. In a post hoc analysis, an initial and
modest decline in the eGFR with dapagliflozin was observed from baseline to 1 month of
follow-up, both in patients with and without recent HF hospitalization (−1.0 mL/min/
1.73 mq; [−2.4, +0.4] and −4.0 mL/min/1.73 mq; [−4.3, −3.6]). Nevertheless, this decline in
the eGFR did not correlate with an elevated risk of acute kidney injury (AKI) in the SGLT2i
group (6.8% in the dapagliflozin group vs. 7.2% in the placebo group, p = 0.54). Treatment
with dapagliflozin resulted in a similar attenuation of the eGFR decline from month 1 to
24 months of follow-up, independent of any previous HF hospitalization (p for interaction
= 0.57) [82]. Post hoc analysis of the DELIVER trial showed a lower decrease in the eGFR
decline rate in patients treated with dapagliflozin, despite a modest reduction following
the first month of treatment (eGFR decline of 0 mL/min/1.73 m2 per year [−0.2, +0.3] in
dapagliflozin group vs. −1.4 mL/min/1.73 m2 per year [−1.7, −1.1] in the placebo group,
p < 0.001). This renal protective effect was present independently of the eGFR at baseline.
Furthermore, in patients with an LVEF range of 50–59%, the efficacy in reducing the eGFR
reduction rate was similar to that in the range with LVEF greater than 60% [83].

These findings indicate that SGLT2 inhibitors decelerate the long-term decline in
kidney function without elevating the risk of serious renal adverse events, thereby offering
sustained cardiovascular and renal protective effects over time [84] (Table 1).

Table 1. Renal results from RCTs and post-hoc analysis on SGLT2-i.

Renal Analysis and Endpoints

Study (Year)
Patients and

Design of the
Study

Primary
Endopoint Baseline eGFR Safety Outcome

Progression of kidney
Disfunction

(Based on eGFR Trend)
Efficacy Outcome

SGLT2-i

EMPEROR-
preserved
(2021) [75]

Randomized with
empagliflozin

A total of 5988
adults (≥18 years
of age), LVEF of
more than 40%,

and NYHA classes
II, III, or IV
symptoms.

Median follow up
of 26 months.

Composite of
death from

cardiovascular
causes or

hospitalization for
HF (first or
recurrent).

60.6 ± 19.8
mL/min/1.73 m2 in

the empagliflozin
group and 60.6 ± 19.9
mL/min/1.73 m2 in
the placebo group

NA

The rate of decline in the eGFR
was slower in the

empagliflozin group than in
the placebo group (–1.25 vs.

–2.62 mL per minute per
1.73 m2 per year; p < 0.001).

No significative
difference in the
composite renal

outcome: 3.6%, with
2.1 events per 100
patient-year in the

empagliflozin group
versus 3.7% and

2.2 events per 100
patient-year in the

placebo group
(HR 0.95, 95% CI).
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Table 1. Cont.

Renal Analysis and Endpoints

Study (Year)
Patients and

Design of the
Study

Primary
Endopoint Baseline eGFR Safety Outcome

Progression of kidney
Disfunction

(Based on eGFR Trend)
Efficacy Outcome

DELIVER
(2022) [65]

Randomized with
dapagliflozin

A total of 10,584
adults (≥18 years
of age), LVEF of
more than 40%,

and NYHA classes
II–IV, including

patients with
improved LVEF.

Composite of
worsening HF

(hospitalization or
an urgent visit

resulting in
intravenous

therapy for HF) or
death from

cardiovascular
causes.

61 ± 19
mL/min/1.73 m2 in

both groups

Incidence of AKI
and any serious

renal adverse
event that led to

treatment
discontinuation

were, respectively,
1.5% and 0.3% in
the dapagliflozin

group vs. 1.6%
and 0.2% in the
placebo group.

NA NA

S. Chatur
et al. (2023)

[82]

Pre-specified analysis
Same population

as the
DELIVER-trial.

61 ± 19
mL/min/1.73 m2 in

both groups

Already analyzed
in the RCT.

Initial decline in the eGFR with
dapagliflozin from baseline to
1 month of follow-up of −1.0
(−2.4, +0.4) mL/min/1.73 m2

in patients with recent HF
hospitalization, and of −4.0

(−4.3, −3.6) mL/min/1.73 m2

in patients without recent HF
hospitalization.

Similar attenuation of eGFR
decline from month 1 to

24 months in patients with
(+0.03 [−0.1, +0.2]

mL/min/1.73 m2) and without
(+0.08 [+0.04, +0.12]

mL/min/1.73 m2) recent HF
hospitalization

(p-interaction = 0.57).
Similar effect of dapagliflozin
treatment on total slope from

baseline to end of follow-up in
patients with (+0.02 [−0.12,

+0.16] mL/min/1.73 m2) and
without (+0.04 [+0.01, +0.07]
mL/min/1.73 m2) recent HF

hospitalization
(p-interaction = 0.66).

NA

F.R. Mc
Causlan et al.

[83]

Post hoc analysis
Same population

as the
DELIVER-trial.

61 ± 19
mL/min/1.73 m2 in

both groups

Already analyzed
in the RCT.

Initial acute decline in the
eGFR in the dapagliflozin

group between baseline and
month 1 (−3.7; 95% CI, −4.0 to

−3.3 mL/min/1.73 m2),
compared with those assigned
to the placebo (−0.4; 95% CI,
−0.8 to 0 mL/min/1.73 m2).

Between month 1 and the end
of the trial, the mean decline in

the eGFR was 0 mL/min/
1.73 m2 per year (95% CI, −0.2

to 0.3) for those assigned to
dapagliflozin, compared with
−1.4 mL/min/1.73 m2 per

year (95% CI −1.7 to −1.1) for
those assigned to the placebo,
with a mean difference of 1.4
(95% CI, 1.0–1.8) mL/min/

1.73 m2 per year (p < 0.001).
In the LVEF 50–59% and LVEF

≥ 60% groups, the
dapagliflozin arm showed a

chronic eGFR slope of 0.3
(−0.1, 0.8) vs. −1.7 (−2.2, −1.2)

in the placebo group
(p-interaction < 0.001) and of

0.1 (−0.6, 0.4) in the
dapagliflozin group vs. −1.6
(−2.0, −1.1) in the placebo

group, (p-interaction < 0.001),
respectively.

In patients with LVEF ≤49%
the difference between the two
arms was less pronounced: the
eGFR slope in the dapagliflozin
group was −0.1 (−0.7, 0.4) vs.

−0.8 (−1.3, −0.3) in the
placebo group

(p-interaction < 0.001).

The overall
incidence rate of the

post hoc kidney
composite outcome
was similar between

the two groups
(2.5% in the

dapagliflozin group
and 2.3% in the

placebo group (HR,
1.08; 95% CI,
0.79–1.49)).
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Table 1. Cont.

Renal Analysis and Endpoints

Study (Year)
Patients and

Design of the
Study

Primary
Endopoint Baseline eGFR Safety Outcome

Progression of kidney
Disfunction

(Based on eGFR Trend)
Efficacy Outcome

S. Chatur
et al. (2023)

[69]

Pre-specified analysis
Same population

as the
DELIVER-trial.

61 ± 19
mL/min/1.73 m2 in

both groups

Already analyzed
in the RCT. NA

Dapagliflozin
reduced new

initiation of loop
diuretics by 32%

[hazard ratio (HR)
0.68; 95% confidence

interval (CI):
0.55–0.84, p < 0.001].
First sustained loop

diuretic dose
increases were less

frequent, and
sustained dose

decreases were more
frequent in patients

treated with
dapagliflozin: net

difference of −6.5%
(95% CI: −9.4 to
−3.6; p < 0.001).

AKI (acute kidney injury), eGFR (estimated glomerular filtration rate), HF (heart failure), LVEF (left ventricular
ejection fraction), NYHA (New York Heart Association), RCT (randomized controlled trial), SGLT2-I (sodium–
glucose-linked transporter 2 inhibitors). Light orange underlines the results of studies, while white and light blue
shows the study design.

6.2. Mineral Receptor Antagonist

TOPCAT was a double-blind phase III clinical trial on spironolactone in patients with
HF and LVEF ≥ 45%. The composite endpoint did not occur with statistically significant
differences between the treatment and placebo arms [85]. However, a successive sub-
analysis found inconsistency due to marked heterogeneity in the Eastern Europe cohort
and the American cohort. Further analysis considering only the American cohort showed
greater efficacy of spironolactone in preventing the endpoint outcomes (i.e., cardiovascular
death, hospitalization, and resuscitated arrest) in patients with an eGFR > 60 mL/min/
1.73 mq (HR 0.91 [+0.73, +1.14] vs. HR 0.74; [+0.57, +0.97]). Even considering the median
eGFR, the drug was more effective in patients with values higher than the median, sug-
gesting a greater efficacy of MRAs in preventing cardiovascular death, hospitalization, and
resuscitated arrest in patients without CKD [86].

Additionally, in another sub-analysis of the TOPCAT trial, visit-to-visit variability
in kidney function, as measured by blood urea nitrogen (BUN) and serum creatinine
levels, was found to be associated with poorer clinical cardiovascular outcomes in both the
spironolactone and placebo arms [87]. These data suggest that MRAs are more effective
in preventing cardiovascular adverse events in patients with HFpEF with preserved renal
function compared with patients with a reduced eGFR < 60 mL/min/1.73 mq.

Finerenone is a third-generation MRA with no significant interaction with the estrogen
receptor, which has a lower incidence rate of hyperkalemia and kidney injury. The sub-
analysis of the FIDELIO-DKD trial, stratifying patients based on a history of heart failure
with a left ventricular ejection fraction (LVEF) ≥40% or not, revealed a trend toward a
reduction in time-to-event cardiovascular outcomes in the finerenone arm, although this
trend did not reach statistical significance [88]. Further ongoing studies on finerenone
include the FINEARTS-HF and the MIRACLE trials. The FINEARTS-HF trial is a phase
II study currently investigating the benefit of finerenone on cardiovascular death and HF
in patients with HFpEF with or without type 2 diabetes, whereas the MIRACLE trial is a
phase II study investigating the MR modulator AZD9977 on top of the SGLT2i dapaglifozin
in patients with HF with LVEF ≥ 40% and CKD. The sub-analysis of the FIDELIO-DKD
trial dividing patients according to history of HF with LVEF ≥ 40% or not, has evidenced a
trend toward a reduction in the time-to-event cardiovascular outcomes without statistical
significance in the finerenone arm [88].
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6.3. Sacubitril/Valsartan

Pooled data derived from the PARADIGM-HF and PARAGON-HF trials showed a
lower rate of renal adverse outcome (defined as a decrease in the eGFR of ≥50 mL/min/
1.73 mq, end-stage renal disease, and renal death) in patients treated with sacubitril/valsartan.
However, sacubitril/valsartan was beneficial only in patients with LVEF <60%. In the
subgroup analysis based on an eGFR below or above 50 mL/min/1.73 mq, the decreased
number of events led to the loss of statistical significance. Nonetheless, a trend indicating a
greater reduction in total worsening HF events and cardiovascular deaths was observed
in the eGFR ≤ 60 mL/min/1.73 m2 subgroup [89]. In the PARAGON-HF trial, there
was no observed benefit in reducing heart failure hospitalizations and cardiovascular
deaths across the entire study population. However, in a subgroup analysis, patients with
an eGFR of less than 60 mL/min/1.73 m2 demonstrated a reduction in the prespecified
primary endpoint (HR 0.79, 95% CI 0.66–0.95). In the sacubitril/valsartan arm, a preventive
effect was observed with a lower incidence of worsening renal function [90]. Combining
sacubitril/valsartan with MRA did not demonstrate a further reduction in renal outcomes
compared to sacubitril/valsartan alone. However, the combination therapy still exhibited a
lower rate of eGFR decline [89].

In the PARAMOUNT study, a phase II trial showcasing a reduction in N-terminal
pro-B-type natriuretic peptide (NT-proBNP) after 3 months in patients with HFpEF treated
with sacubitril/valsartan at maximum dose (200 mg), there was no statistically signifi-
cant difference between patients with eGFR < 60 mL/min/1.73 mq and patients with a
eGFR > 60 mL/min/1.73 mq. Moreover, a relatively short follow-up of 3 months proved
to be adequate to demonstrate a lesser decrease in renal function between the sacubi-
tril/valsartan and valsartan treatment groups (−1.6 vs. −5.2 mL/min/1.73 m2, p = 0.007).
However, this result was partially offset by a greater increase in the sacubitril/valsartan
treatment group in the albumin-to-creatinine ratio (from 1.9 to 2.9 mg/mmol vs. from 2.0
to 2.0 mg/mmol) [91].

7. Angiotensin-Converting Enzyme Inhibitors/Angiotensin II Receptor Blockers

RAAS inhibitors have not been shown to reduce mortality or morbidity in patients
with HFpEF. The CHARM-PRESERVED trial, conducted in patients with LVEF ≥ 40%,
showed a trend in favor of candesartan for a reduction in new hospitalization for HF in
patients with HFpEF [92]. In a retrospective analysis, a greater incidence of worsening
renal failure (WRF) was found in the candesartan group (OR 2.44 [+1.88, +3.19], p < 0.001)
compared with the placebo. Patients with WRF more frequently had an ischemic HFpEF
phenotype; however, the onset of WRF was not associated with an increased risk of HF
hospitalization, although a positive trend was noted [93].

In the PEP-HF trial, including HF patients without systolic dysfunction randomized
to perindopril or placebo, no significant differences in serum creatinine at 1 year were ob-
served [94]. In the I-PRESERVE trial, irbesartan failed to improve cardiovascular outcomes
in patients with HFpEF. Significantly, a doubling of the serum creatinine level was observed
in at least one measurement in 6% of patients in the irbesartan group and in 4% of patients
in the placebo group (p < 0.001), with no difference in the rates of serious adverse events
attributable to renal dysfunction between the two groups (3% vs. 3%; p = 0.29) [95]. A post
hoc analysis showed that WRF occurred more frequently in the irbesartan group, which
was associated with an increased risk for the primary outcome. The mean overall decrease
in the eGFR at 30 months was –3.4 mL/min/1.73 m2 in the placebo group compared with
–7.2 mL/min/1.73 m2 in the irbesartan group. However, the interaction between treatment
and WRF on outcome was not significant in an adjusted analysis, except for all-cause
mortality [93].
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RAAS antagonists affect renal hemodynamics, resulting in increased creatinine levels.
Importantly, this kind of creatinine increase is generally benign and not related to adverse
prognosis [28]. Because of their renal protective effects and positive prognostic effects in
the elderly, angiotensin-converting enzyme (ACE) inhibitors are often administered as one
of the first-line therapies to treat arterial hypertension [96]. Accordingly, the SOLVD trial
(Studies of Left Ventricular Dysfunction) revealed that early WRF following the initiation
of ACE inhibitors did not lead to a higher mortality risk. Indeed, in patients who continued
the therapy despite the formal renal function decrease, a benefit in terms of mortality
persisted despite the creatinine increase [97]. In the SPRINT (Systolic Blood Pressure
Intervention Trial) trial, including up to 28% of hypertensive patients also presenting with
CKD, intensive treatment against arterial hypertension significantly reduced the primary
endpoint (a composite of myocardial infarction, stroke, HF, or cardiovascular death) [98].
Importantly, no evidence of a differential treatment effect on cardiovascular outcomes
between patients with or without CKD was found. In a retrospective analysis of the
DOSE study (Diuretic Optimization Strategies Evaluation) including patients with HF,
deterioration in renal function did not correlate with an increased risk for the combined
endpoint. However, improved renal function was linked to a higher risk of death and
hospitalization. This might be explained by the fact that patients were more severely ill
or inadequately decongested, as only ca. 8% were deemed congestion-free by physicians.
Although more patients (19%) with WRF achieved congestion-free status at 72 h, the
onset of WRF was associated with a significantly shorter duration of diuretic treatment,
potentially impacting readmission because of incomplete decongestion [99].

There are no specific data regarding the treatment in which ACE inhibitors reduce the
slope of the eGFR decline compared with placebos. However, the benefits in patients with
HF and hypertensive heart disease treated with these drugs are sustained despite an initial
drop in the eGFR. Finally, ACE inhibitors showed their reno-protective effects in patients
with CKD and diabetes. Fewer data are available for angiotensin-receptor blockers (ARBs),
but a single study on HFpEF and CKD showed that treatment with ARBs was associated
with a modest reduction in all-cause mortality in older patients including those with more
advanced CKD [100].

8. Beta-Blockers

Beta-blocker therapy has been demonstrated to be generally safe regarding renal
function in patients with CKD, although it is not completely neutral, as shown by the
meta-analysis of the COPERNICUS and CAPRICORN trials [101]. This pharmacological
class is reasonably useful in the hypertensive phenotype of HFpEF, even though in a large
real-world cohort of CKD patients from the Sweden National Registry, beta-blockers did
not show a significant preventive effect with respect to all-cause and cardiac mortality [102].
In particular, beta-blockers have a deleterious effect on patients with HFpEF presenting
with inadequate chronotropism. In a sub-analysis of the SENIORS trial, in which patients
were grouped according to LVEF, the beta-blocker effect regarding the primary endpoint
(cardiovascular death and hospitalization for decompensation) was neutral for patients
with both HFpEF and HFrEF [103]. No interaction was observed between the effects of
nebivolol on primary outcomes and renal function (p = 0.442) [104].

9. Hyperkalemia in HF and CKD

Hyperkalemia, defined as a serum potassium >5 mmol/L, is associated with adverse
outcomes and affects clinical presentation and management [105]. It can be classified as
mild (>5.0 to <5.5 mmol/L), moderate (5.5 to 6.0 mmol/L), or severe (>6.0 mmol/L) [106].
Potassium homeostasis is ensured by the kidneys, which handle 90–95% of its excretion,
while the colon is responsible for the remaining portion [107,108]. Normally, potassium
ingested through the diet is readily excreted by the kidney. However, in the case of renal
insufficiency, its elimination is reduced. In uremic rats, a decrease in mRNA transcription
of the alpha-1 isoform of Na-K-ATPase caused a reduced activity of the Na-K pump with
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impaired intracellular uptake. In addition, metabolic acidosis promotes an extracellular
shift in K+ that is exchanged with protons. Finally, in advanced kidney disease, the onset
of an oliguric state reduces the nephrons’ ability to eliminate potassium [109–111]. In
patients with HF, both comorbidities and medications can increase the risk of hyperkalemia.
Hyperglycemia can lead to the passage of water and K+ from the intracellular to the
extracellular compartment, while a low insulin concentration reduces the activity of the
Na-K pump [112]. Non-cardioselective beta-blockers could lead to an extracellular K+ shift
through direct renin inhibition [113]. Despite the reduction in aldosterone levels, hyper-
kalemia risk is generally low following a single RAAS blockade therapy, but it is higher
in patients with CKD, especially in the case of concurrent HF, diabetes, or MRA use [114]
MRA therapy is often discontinued in patients with an eGFR < 30 mL/min because of a
fear of a relevant potassium increase, but recent data from a Swedish registry revealed that
their safety profile is persistent across the whole eGFR spectrum [115]. ARNIs are a safe
option in CKD patients: indeed, sacubitril/valsartan demonstrated a lower risk of severe
hyperkalemia in patients treated with MRAs compared with enalapril [116]. CKD and hy-
perkalemia risk remain the most important factors for the underuse and discontinuation of
RAASi drugs, thus leading to an increased risk of adverse outcomes [117,118]. As such, in
the case of mild hyperkalemia, the continuation of these medications is recommended [119].
The presence of K+ levels >6 mmol/L and “de novo ECG alterations” represents a life-
threatening situation requiring hospitalization: in this case, calcium gluconate can reduce
the cellular excitability threshold and thus the risk of life-threatening arrhythmias, while
correction of metabolic acidosis and drugs such as insulin or salbutamol can be used
acutely to lower potassium levels. Management of moderate or severe K+ levels, in the
absence of acute emergencies (e.g., arrhythmias or AKI requiring hemodialysis), can rely
on various therapeutic options. In general, K+ >6.5 mmol/L requires discontinuation of
drugs acting on the RAAS [120]. In addition, the use of loop diuretics and thiazides lowers
potassium levels by increasing its urinary excretion, although they must be used with
caution in patients with severe kidney disease [121]. SGLT2i shows a reduction in hyper-
kalemia risk in patients with CKD and diabetes [122]. When K+ persists at >5.5 mmol/L
despite these measures, a 50% reduction in or a short-term suspension of RAASi and
MRAs should be considered, followed by close monitoring of the potassium levels and
possibly a reintroduction of these medications as soon as possible [66]. A novel alternative
approach is the utilization of K+ binders. These drugs are cation exchangers acting in
the gastrointestinal tract. Sodium polystyrene sulfonate, which exchanges sodium for
potassium, has been available for several years, but its prescription is limited by the risk of
severe gastrointestinal events [123]. Recently, patiromer and sodium zirconium cyclosilicate
(SZC) were approved for hyperkalemia management, ameliorating the management of
RAASi therapy and diet in CKD patients. Patiromer exchanges potassium for calcium: in a
phase 2 study, patients affected by diabetes mellitus and hypertension receiving patiromer
increased their adherence to RAASi therapies, with up to 100% maintaining appropriate
potassium levels. These data were confirmed in a post hoc analysis of older patients with
diabetic CKD [124,125]. Furthermore, in a dedicated trial for patients with RAASi-related
hyperkalemia, patiromer was associated with significantly lower serum potassium levels,
fewer hyperkalemia episodes, concurrent use of higher doses of MRAs, and overall higher
RAASi administration [126]. SZC selectively captures potassium in exchange for hydrogen
and sodium ions in the gastrointestinal lumen; it reduces serum potassium to normal levels
within 48 h with prolonged effects over time, even in patients with CKD and RAASi [127].
Furthermore, SZC efficacy has been proven in patients on hemodialysis [128]. Both drugs
are well tolerated: constipation and electrolyte disturbances are the primary reported side
effects for both drugs, whereas SZC may lead to a higher incidence of edema.
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10. Potential Strategy for the Correct Use of Heart Failure Treatments According to
Renal Function

A comprehensive characterization of HFpEF profiles could facilitate the targeted
application of both established and novel HF drugs. Indeed, sub-analyses from previous
trials have indicated advantages in specific populations, such as in patients with specific
cutoffs of LVEF or the role of gender, as demonstrated in TOPCAT or PARAGON-HF
trials [90,129]. At the same time, improved HFpEF profiling could pave the way for new
therapies, as individualized indications have the potential to translate into therapeutic
success. This has been the case for the GLP1 receptor antagonist semaglutide, which showed
symptom and functional improvement in patients with HFpEF and obesity [130]. New
studies are investigating the correlation between distinct comorbidity profiles and candidate
genes, aiming to improve the diagnosis and identify treatment targets for HFpEF [4].

In this context, CKD represents a real “nightmare” when starting and optimizing HF
therapy. Additional studies are recommended to improve our knowledge of medication in
patients with HFpEF and CKD. As such, patients with severe renal impairment should be
included in future trials. Actually, SGLT-2i is recommended as the first-line treatment in all
patients with HFpEF and presents a safe profile in patients with CKD. The use of RAAS
inhibitors in the HFpEF phenotype with hypertensive heart disease is recommended in
all patients with mild to moderate CKD. The prescription of an MRA antagonist may be
considered in patients with HFpEF after a careful evaluation of hyperkalemia.

The combination of multiple drugs may suddenly change renal physiology, thus
leading to an acute decline in the eGFR, even in patients with a previous normal renal
function (Figure 1). Usually, the initial mild dip in the eGFR (20–30% of eGFR reduction
from baseline) is reversible, and renal function returns to baseline levels during the follow-
up. In patients with severe renal dysfunction, the combination of multiple drugs may
become deleterious and should be avoided. A careful monitoring of the renal function and
electrolytes through blood samples should be performed 3 or 4 weeks after the beginning
of HF therapy in order to avoid sudden eGFR deterioration and K+ increase. Overall,
we recommend checking renal function and K+ every 2 or 3 months, during up-titration
of HF therapy up to the maximally tolerated dose, in patients with renal dysfunction.
Whenever serum creatinine increases by >50% or above 3.5 mg/dL, treatment should
be discontinued [131]. The down-titration of HF drugs is recommended in the presence
of K+ levels between 5.5 mmol/L and 6 mmol/L, whereas temporary discontinuation
is advised for potassium levels >6 mmol/L. In patients with normal renal function and
isolated K+ increase, novel K+ binders such as patiromer and sodium zirconium cyclosilicate
substantially allow for reduced reversibly serum K+ levels in the long-term, thus allowing
the up-titration and maintenance of HF treatment.

In AF and HFpEF phenotypes, there is no requirement for dosage adjustments or
supplemental dosing of amiodarone in patients with renal impairment or in dialysis. On the
contrary, a lower eGFR to 30 mL/min/1.73 m2 contraindicates digoxin therapy, while CKD
IIIA or IIIB stages require a lower starting dose and careful titration by monitoring serum
digoxin and electrolyte levels. In these patients, it could be useful to uptritate other rate-
controlling agents (i.e., b-blockers, calcium antagonists) in order to avoid digoxin adverse
effects. Concerning statin therapy in patients with CKD and HF, the use of rosuvastatin is
associated with an increased risk of proteinuria and renal replacement therapy compared
with atorvastatin. A moderate-intensity dose of atorvastatin has fewer side effects on renal
function than that of rosuvastatin [132,133].
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Figure 1. Management of HF drugs in HFpEF and different phenotypes. HFpEF (heart failure with 
preserved ejection fraction), CKD (chronic kidney disease), SGLT2-i (sodium–glucose transport 
protein 2 inhibitors), eGFR (estimated glomerular filtration rate), NDH-Ca2+ antagonists (non-
dihydropyridine calcium channel antagonists), ACEi (angiotensin-converting enzyme inhibitors), 
ARBs (angiotensin II receptor blockers), CCB (calcium channel blockers), T-diuretics (thiazide 
diuretics), TL-diuretics (thiazide-like diuretic), BP (blood pressure), MRA (mineral receptor 
antagonist), GLP-1a (glucagon-like peptide 1 agonists). 

Figure 1. Management of HF drugs in HFpEF and different phenotypes. HFpEF (heart failure
with preserved ejection fraction), CKD (chronic kidney disease), SGLT2-i (sodium–glucose trans-
port protein 2 inhibitors), eGFR (estimated glomerular filtration rate), NDH-Ca2+ antagonists (non-
dihydropyridine calcium channel antagonists), ACEi (angiotensin-converting enzyme inhibitors),
ARBs (angiotensin II receptor blockers), CCB (calcium channel blockers), T-diuretics (thiazide diuret-
ics), TL-diuretics (thiazide-like diuretic), BP (blood pressure), MRA (mineral receptor antagonist),
GLP-1a (glucagon-like peptide 1 agonists).
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11. Future Perspectives

In recent years, many resources have been invested in new treatments for HFpEF.
Novel devices have been tested, the most investigated being atrial shunt devices (ASD),
such as Corvia ASD, which, in the REDUCE-HF LAP HF II trial, was not shown to reduce
cardiovascular events or to improve the quality of life of patients [134]. FROST-HF trial on
Atrial Flow Regulator in patients with HFpEF and HFrEF is still recruiting [NCT05136820].
Drugs from distinct therapeutic areas are currently being tested in different phenotypes of
HFpEF. The SERENADE trial, which aims to study the effect of macitentant (endothelin A
and endothelin B antagonist) in patients with cardiac remodeling and pulmonary vascular
disease, is still ongoing [NCT03153111]. A phase 2a proof of concept study, EMBARK-
HFPEF, aims to assess the preliminary efficacy and safety of mavacamten in patients with
HFpEF and study the effects on NT-proBNP and cTnT serum levels [NCT04766892]. In-
flammation has a key role in the pathophysiology of HFpEF. In the COLpEF study, an
RCT of colchicine versus placebo in patients with HFpEF and HFmrEF, will measure the
anti-inflammatory effect of colchicine as changes in hs-CRP serum levels and of hemody-
namic stress indexes, such as NTproBNP, biomarkers of myocardial injury, LV diastolic
dysfunction, and patients symptom [NCT04857931]. Considered a promising therapeutic
target in the treatment of HFpEF, monoclonal antibody drugs against proinflammatory
factors are currently under development.

12. Conclusions

HF and CKD are risk factors for each other, sharing several comorbidities and patho-
physiologic pathways. When evaluating patients with HF, the unified concept of cardiorenal
syndrome as a single entity should be taken into account to address symptom status, disease
progression, and treatment options. Starting and up-titrating HF treatment is mandatory in
patients with HF and CKD. In most cases, renal impairment after starting HF treatment
is transitory, and kidney function tends to return to its previous levels or remain stable in
the long term. Over the years, the false myth of administering inadequate target doses or
withdrawing HF therapies to avoid end-stage renal disease resulted in lower use of these
lifesaving therapies, with a significant negative impact on HF prognosis. However, the
combination of multiple HF therapies requires caution and frequent monitoring of renal
function and potassium levels, in particular during the initial up-titration phase.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.;
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