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Abstract: Antimicrobial resistance (AMR), caused by microbial infections, has become a major
contributor to morbid rates of mortality worldwide and a serious threat to public health. The
exponential increase in resistant pathogen strains including Staphylococcus aureus (S. aureus) and
Escherichia coli (E. coli) poses significant hurdles in the health sector due to their greater resistance
to traditional treatments and medicines. Efforts to tackle infectious diseases caused by resistant
microbes have prompted the development of novel antibacterial agents. Herein, we present selenium
and copper oxide monometallic nanoparticles (Se-MMNPs and CuO-MMNPs), characterized using
various techniques and evaluated for their antibacterial potential via disc diffusion, determination
of minimum inhibitory concentration (MIC), antibiofilm, and killing kinetic action. Dynamic light
scattering (DLS), scanning electron microscopy (SEM/EDX), and X-ray diffraction (XRD) techniques
confirmed the size-distribution, spherical-shape, stability, elemental composition, and structural
aspects of the synthesized nanoparticles. The MIC values of Se-MMNPs and CuO-MMNPs against S.
aureus and E. coli were determined to be 125 µg/mL and 100 µg/mL, respectively. Time–kill kinetics
studies revealed that CuO-MMNPs efficiently mitigate the growth of S. aureus and E. coli within 3 and
3.5 h while Se-MMNPs took 4 and 5 h, respectively. Moreover, CuO-MMNPs demonstrated better
inhibition compared to Se-MMNPs. Overall, the proposed materials exhibited promising antibacterial
activity against S. aureus and E. coli pathogens.

Keywords: antimicrobial resistance; bacterial pathogens; E. coli; S. aureus; biofilm; nanoparticles; MIC

1. Introduction

Nanotechnology has established itself as a dynamic and interdisciplinary branch of
research in recent years [1–3]. Nanomaterials have a wide range of physicochemical prop-
erties that make them useful in many cutting-edge fields and have played an immense
influence on the industrial revolution, which has led to the establishment of hundreds
of innovative products [4]. The domains of health, agriculture, and other fields all have
intriguing applications for metal nanoparticles [5]. The emergence of antibiotic-resistant mi-
croorganisms is one of the biggest risks to public health. Antimicrobial resistance has been
identified by the World Health Organization as one of the major global health issues which
has resulted in higher rates of morbidity and mortality among patients [6]. Antimicrobial
resistance (AMR) was a contributing factor in 4.95 million deaths in 2019, of which resistant
infections were the direct cause of 1.3 million deaths [7]. Several factors contribute to the
emergence of AMR, including genetic mutations; incomplete antibiotic treatment, which
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allow pathogens to survive and develop resistance; as well as the overuse and misuse of
antibiotics [8]. Biofilms also create the ideal environment for bacterial colonization and
growth and the emergence of potentially fatal microbial infections [9]. These biofilms
not only significantly contribute to the progression of diseases but also pose a formidable
challenge in treatment efficacy. They create a highly protective environment that shields
bacteria from major external stressors including the host’s immune response and antibi-
otics, thus limiting the effectiveness of available treatments [7]. Antibiotic-resistant and
infectious diseases caused by these pathogens are one of the most significant health-related
concerns of the 21st century [10]. Therefore, the challenge of restoring susceptibility to
antimicrobial resistance and the urgent imperative to curb bacterial infections in healthcare
have placed a heavy responsibility on researchers to innovate and bring forth novel antimi-
crobial treatments capable of combating the threat. Nevertheless, there is a looming concern
that the pace of antibiotic resistance (as these contagions tenaciously continue to develop
adaptable defenses against pre-existing treatments [11]) outpaces the development of novel
treatments. This underscores the necessity for a deeper comprehension of the molecular
and ecological factors dictating the propagation of antibiotic resistance. Consequently,
researchers can be better equipped to fulfill the demand for novel compounds having
antibacterial potential including potent agents that can inhibit biofilm formation.

The synthesis and assembly of new antibiotics are labor-intensive and expensive, as
well as time-consuming. Therefore, it has become highly endorsed to develop unusual,
alternative methods to treat infectious diseases [12]. The pharmaceutical and biomedical
industries are currently addressing the problem of an ongoing rise in infectious agents
that are antibiotic-resistant, as well as the intimidation of emerging and re-emerging
multi-drug-resistant pathogens. Thus, in the current scenario, the amalgamation and fab-
rication of antimicrobial compounds to increase antimicrobial capability constitute the
priority fields of research [13]. To combat microbial resistance using metal nanoparticles
(MNPs) holds considerable potential. A broad spectrum of Gram-positive and Gram-
negative bacteria have been shown to be susceptible to the antibacterial effects of metallic
nanoparticles [14–16]. Furthermore, metal oxide nanoparticles (MONPs) with highly
effective antimicrobial properties against a variety of pathogens such as Pseudomonas aerug-
inosa, Klebsiella pneumonia, and E. coli includes Ag2O, ZnO, Au, TiO2, and ZrO2 nanopar-
ticles [17,18]. Compared to traditional antibiotics, nanoparticles offer numerous benefits
which include improved precision in targeting infected tissues, extended duration of antibi-
otic activity, greater solubility, increased stability, enhanced ability to penetrate epithelial
barriers, and minimized risk of side effects [19]. Furthermore, a significant number of
nanoparticles have natural antibacterial qualities that help fight bacterial infections. These
include preventing the development of biofilms, increasing the production of reactive
oxygen, and damaging bacterial cell membranes, proteins, and DNA [20].

Se and CuO monometallic nanoparticles have drawn a significant amount of attention
from researchers and have been used in a variety of biological applications [21,22], such as
antifungal [23], drug delivery, antioxidant, antibacterial [24], and anticancer activities [23].
The strong biological activity and low toxicity of the Se-MMNPs suggest that they have the
potential to combat infections caused by Gram-negative and Gram-positive microorgan-
isms [25]. According to the literature, selenium nanoparticles interfere with the bacterial
genetic material as well as disrupt the microbial membrane [26]. Various methods are
used for the production of nanoparticles, for example, physical and chemical methods, but
these are costly and harsh to the surrounding environment and living entities. Further-
more, these methods require high expertise for nanoparticle production [27]. Therefore,
an effective and appropriate method is a prerequisite for nanoparticle production. Over
recent years, green nanotechnology has gained considerable attention in many fields of
nanoscience and nanomedicines. Green synthesis suggests a clean, non-hazardous, and
environmentally friendly approach with a varied assortment of properties such as size,
shape, and composition. This eco-friendly approach is more beneficial and valuable and
tends to be faster, cost-effective, and easy [28].
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Many fungi like Trichoderma harzianum [29], Penicillium chrysogenum [23], Aspergillus
niger [30], and Aspergillus fumigatus [31] have been used with outstanding results for the
synthesis of various nanoparticles. The literature demonstrates that fungi are the most
effective biological agents for producing metal nanoparticles among the various biological
agents [13]. The fungus-mediated synthesis of nanoparticles offers numerous benefits, such
as easy and simple scaling up, economic feasibility, processing of biomass, non-hazardous,
and high yield [32,33]. The genus Talaromyces, due to its ability to secrete a variety of intrigu-
ing secondary metabolites, has received a significant amount of attention [34]. Talaromyces
species are normally soil-based and secondary metabolites produced by the Talaromyces
demonstrate auspicious anti-cancer, anti-microbial, and anti-proliferative activities [35].

In this study, Se-MMNPs and CuO-MMNPs were synthesized and well characterized
using UV–Vis, DLS, XRD, and SEM-EDX analyses. The antimicrobial activity of synthe-
sized nanoparticles was examined against Escherichia coli (E. coli) and Staphylococcus aureus
(S. aureus). This work presents an easy, green, and scalable method for the synthesis of
Se-MMNPs and CuO-MMNPs as potential candidates against pathogens and AMR devel-
opment. To the best of our knowledge, this is the first time Talaromyces haitouensis extract
has been used to synthesize Se-MMNPs and CuO-MMNPs.

2. Materials and Methods
2.1. Chemicals and Reagents

All the chemicals of analytical grade including CuSO4·5H2O and Na2SeO3, Muller
Hinton Agar (MHA), Muller Hinton Broth (MHB), Sabouraud Dextrose agar (SDA), and
Sabouraud Dextrose Broth (SDB) were purchased from Sigma-Aldrich. The bacterial strains
E. coli (692642) and S. aureus (668830) used in the study were obtained from the Microbiology
Diagnostic Lab, Islamabad, Pakistan. These strains were resistant to multiple antibiotics;
E. coli was resistant to Minocycline, Gentamicin, Imipenem, and Doxycycline; S. aureus
was resistant to Ciprofloxacin, Levofloxacin, Erythromycin, Azithromycin vancomycin,
etc. The bacterial strains were cultured in Mueller Hinton Broth (MHB) at 37 ◦C for 24 h.
Double-distilled water (DDW) and 70% ethanol were used throughout the experiments.

2.2. Synthesis of Monometallic Nanoparticles

Monometallic nanoparticles were synthesized via slight modifications of the proce-
dures used by Wang et al. [1]. An aqueous solution of CuSO4·5H2O and Na2SeO3 were
combined with 25 mL of cell-free culture filtrate (CFCF) gradually. The mixture was
then incubated at ambient temperature. To diminish the possibility of photo-oxidation,
flasks were kept covered with aluminum foil and put under magnetic stirring for 24 h at
45 ◦C. The time limits were established in accordance with the standardization and were
subsequently validated using the various methods outlined below. The time limits were
finalized to correlate to the color change. After cooling at room temperature, the reaction
was centrifuged at 14,000 rpm. To obtain the purified nanoparticles, the pellet was then
washed with 70% ethanol and lyophilized (FreeZone 6, Labconco, Kansas City, MO, USA)
for 24 h. The synthesized copper oxide and selenium monometallic nanoparticles were
then kept at ambient temperature and under darkness in polypropylene tubes [36].

2.3. Physiochemical Characterization of Se and CuO Monometallic Nanoparticles

The synthesized Se-MMNPs and CuO-MMNPs were characterized using various spec-
troscopic techniques. The copper oxide and selenium monometallic nanoparticles (MMNPs)
were confirmed by the UV–vis spectrum. Using a UV–vis spectrophotometer (U-2900 UV–vis
Spectrophotometer—HITACHI High-Tech Science, Tokyo, Japan; λ = 200–1100 nm) and dis-
tilled water as the reference solution, the absorbance of synthesized MMNPs was measured
over the wavelength range of 200–800 nm [37]. According to the previously reported
method, dynamic light scattering (DLS; Microtrac Nanotrac Wave II, York, PA, USA) and
zeta potential studies were carried out using a Zeta sizer Nano ZS (Malvern, Malvern
Hills, UK) [38]. X-ray diffraction (XRD) of the dried powder sample of monometallic
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nanoparticles was carried out to analyze the crystallinity and phase purity of the sample
using D8 Advance Bruker to calculate broad-angle X-ray diffractograms at 60 kv and 60 mA
current. Scanning electron microscopy (SEM, Hitachi S-3000N, Tokyo, Japan) was used to
characterize the morphology and size of the purified Se-MMNPs and CuO-MMNPs [39,40].

2.4. Antibacterial Activity

The disc diffusion method was utilized to evaluate the bactericidal activity of Se-
MMNPs and CuO-MMNPs separately against the two bacterial strains on the MHA
medium. As test organisms, S. aureus (Gram-positive) and E. coli (Gram-negative) were
used. The bacterial strains (1.5 × 108 CFU/mL) were initially cultured on MHA medium
and uniformly distributed using a sterile spreader. The discs were prepared with the Se-
MMNPs and CuO-MMNPs and placed on the MHA plates. Discs prepared with dimethyl
sulfoxide (DMSO) (2%, v/v) were used as a control. The diameter of the inhibitory zone was
gauged after the plates were incubated for 24 h at 37 ◦C. There were three measurements
for each experiment [41].

2.5. Determination of Minimum Inhibitory Concentration (MIC)

The micro broth dilution method was performed to ascertain the minimal inhibitory
concentration (MIC) of the synthesized monometallic nanoparticles against antimicrobial-
resistant strains (S. aureus and E. coli). MHB having different NP concentrations
(100–500 µg/mL) was added to each microplate well and placed on an orbital shaker
(Heidolph Instruments, Schwabach, Germany) at 37 ◦C for 24 h. The next step was to fill
each well with 50 µL of bacterial suspension. The pure bacterial suspensions (devoid of
nanoparticles) and MHB (devoid of any bacterial suspension) served as the positive and
negative controls. A microplate reader (Thermo, Multiskan Go, Waltham, MA, USA) was
used to measure the absorbance at 600 nm, and the findings were recorded. Finally, the
MIC was entrenched as the lowest concentration of Se and CuO-MMNPs hindering the
target pathogenic bacteria. All experiments were carried out under necessary protocols and
the tests were carried out in triplicates [42].

2.6. Killing Kinetics Study

The synthesized nanoparticles were subjected to the killing kinetics method as already
reported [43]. In a nutshell, overnight colonies of each bacterial strain were re-cultured
in MHB and incubated (2 h, 37 ◦C). The MIC concentrations of Se and CuO-MMNPs
were added to MHB media with bacterial inoculum (1 × 106 CFU/mL) and the mixture
was subsequently incubated at 37 ◦C. The bacterial suspension without being subjected
to any nanoparticles was used as a control. Bacterial cell viability was determined at
different intervals.

2.7. Inhibition of Biofilm Formation

The crystal violet 96-well micro titer plate (MTP) assay was used to verify the an-
tibiofilm efficacy of Se and CuO-MMNPs with nominal modifications to prevent or min-
imize the biofilm aggregation of clinical pathogens. In brief, MIC values of Se and CuO-
MMNPs were added to an overnight 50 µL bacterial suspension of S. aureus and E. coli
(robust biofilm-producing strain) in 200 µL of culture medium and incubated at 37 ◦C for
48 h. The cells devoid of any nanoparticles were used as a control. The wells were washed
with phosphate-buffered saline (PBS) (pH 7.4) after the 24 h incubation. The adhered
biofilm for 15 min was subjected to 0.1% crystal violet and then gently cleaned with PBS.
The optical density of the pigmented biofilm was calculated to be 595 nm after it was
dissolved in 200 µL of 95% ethyl alcohol. Eventually, crystal violet confined biofilm was
assessed using a cell imager (Evos®R FL Cell Imaging System; Thermo Fisher Scientific,
Waltham, MA, USA). The Se-MMNPs and CuO-MMNPs were treated and untreated results
were compared [44].
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2.8. Statistical Analysis

The data from the MIC values of the Se-MMNPs and CuO-MMNPs were analyzed with
Graph Pad Prism version 8.4.2. The results are shown as the mean ± standard deviation
(SD) of three independent replicates (p < 0.05).

3. Results and Discussion
3.1. Biogenic Synthesis of Se-MMNPs and CuO-Monometallic Nanoparticles

Talaromyces haitouensis CFCF was employed for the synthesis of Se-MMNPs and CuO-
MMNPs, as shown in Scheme 1.
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Scheme 1. Schematic representation of synthesized Se-MMNPs and CuO-MMNPs.

The method was adopted from the literature [39]. The cell-free culture filtrate was
added to the 1 mM solution of CuSO4·5H2O and Na2SeO3 individually for the synthesis
of monometallic nanoparticles and then the reaction continued in the dark condition at
ambient temperature (Step 3 Scheme 1). The reduction in sodium selenite and copper ions
in cell-free culture filtrate resulted in noticeable Se-MMNPs and CuO-MMNPs synthesis,
which was observable as a change in the color of the solution throughout the incubation
time (Step 5 in Scheme 1). A light blue color was observed in the extract after the addition of
CuSO4·5H2O solution [45]. After 24 h of reaction, the reaction mixture was analyzed by UV–
vis (Step 9 in Scheme 1). Then, the synthesized NPs were collected through centrifugation at
14,000 rpm and stored in a dark condition at room temperature for further characterization
and bioassay [46]. Similarly, a color from white to a brick red was observed in extract
after the addition of Na2SeO3, in which Se+4 was reduced to Se0 after the same conditions
mentioned above [45]. Talaromyces haitouensis extract has the ability to produce two different
kinds of monometallic nanoparticles under the same conditions.

3.2. Characterization of Synthesized Monometallic Nanoparticles

The characteristic of Se-MMNPs and CuO-MMNPs was confirmed by spectroscopic
techniques. The dynamic light scattering analysis of the appropriately distributed Se-
MMNPs in distilled water gauged that the nanoparticles had an average diameter of
150 nm (Figure 1a). The DLS study revealed that the polydispersity index for CuO-MMNPs
was 0.28 and the average particle size was 200 nm (Figure 1b). All the biological activities
of the monometallic nanoparticles are strongly affected by the nanoparticles’ size as the
diameter of the nanoparticles is a highly significant defining property. The Se-MMNPs
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had a zeta potential of 200 mV, which elucidates the strong repulsion between the particles
and thus escalates the stability of the nanoparticles [47]. According to Mali et al. (2020),
Celastrus paniculatus extract-mediated Cu-NPs had an average particle size of 290 nm and a
polydispersity index of 1.00 [48]. It has also been observed that Artabotrys odoratissimus leaf
extract can also synthesize Cu-NPs between 115 and 135 nm [49].

Biomedicines 2024, 12, 994 6 of 14 
 

3.2. Characterization of Synthesized Monometallic Nanoparticles 
The characteristic of Se-MMNPs and CuO-MMNPs was confirmed by spectroscopic 

techniques. The dynamic light scattering analysis of the appropriately distributed Se-
MMNPs in distilled water gauged that the nanoparticles had an average diameter of 150 
nm (Figure 1a). The DLS study revealed that the polydispersity index for CuO-MMNPs 
was 0.28 and the average particle size was 200 nm (Figure 1b). All the biological activities 
of the monometallic nanoparticles are strongly affected by the nanoparticles’ size as the 
diameter of the nanoparticles is a highly significant defining property. The Se-MMNPs 
had a zeta potential of 200 mV, which elucidates the strong repulsion between the parti-
cles and thus escalates the stability of the nanoparticles [47]. According to Mali et al. 
(2020), Celastrus paniculatus extract-mediated Cu-NPs had an average particle size of 290 
nm and a polydispersity index of 1.00 [48]. It has also been observed that Artabotrys odo-
ratissimus leaf extract can also synthesize Cu-NPs between 115 and 135 nm [49]. 

 
Figure 1. (a,b) Dynamic light scattering (DLS) of Se-MMNPs and CuO-MMNPs, (c) UV−vis absorp-
tion spectra of monometallic NPs, and (d,e) XRD patterns for Se-MMNPs and CuO-MMNPs. 

UV–vis spectroscopy at a wavelength ranging from 300 to 700 nm was ascertained 
for the surface Plasmon response (SPR) of the selenium colloidal solution. During the syn-
thesis of Se-MMNPs, the characteristic SPR was observed and a peak was found between 
200 and 400 nm [26]. The synthesis of CuO-MMNPs was first monitored by the color 
changes followed by UV–vis spectroscopy. A peak at 330 nm was observed (Figure 1c) 
due to the surface plasmon resonance (SPR). The SPR at 330 nm shows the synthesis of 
CuO-MMNPs, and similar spectra have been reported in the literature showing the Cu-
NPs’ absorption band at 326 nm using leaf extract of Ageratum houstonianum [49]. 

The XRD-diffraction peaks were observed at 2θ values of 23.78, 28.6, 32.3, 43.5, 45.4, 
and 56.1°, which correspond to the Bragg’s reflections at (100), (101), (110), (200), (201), 
and (210), showing the crystalline nature of Se-MMNPs, which were in line with JCPDS 
(Figure 1d) [50]. XRD analysis was used to confirm the crystalline structure of CuO-
MMNPs (Figure 1e). CuO diffraction peaks were observed at 2θ with 32.1, 35.1, 38.2, 48.6, 
and 52.3°, and these patterns corresponded to (110), (002), (111), (202), and (020), 

Figure 1. (a,b) Dynamic light scattering (DLS) of Se-MMNPs and CuO-MMNPs, (c) UV−vis absorp-
tion spectra of monometallic NPs, and (d,e) XRD patterns for Se-MMNPs and CuO-MMNPs.

UV–vis spectroscopy at a wavelength ranging from 300 to 700 nm was ascertained for
the surface Plasmon response (SPR) of the selenium colloidal solution. During the synthesis
of Se-MMNPs, the characteristic SPR was observed and a peak was found between 200
and 400 nm [26]. The synthesis of CuO-MMNPs was first monitored by the color changes
followed by UV–vis spectroscopy. A peak at 330 nm was observed (Figure 1c) due to the
surface plasmon resonance (SPR). The SPR at 330 nm shows the synthesis of CuO-MMNPs,
and similar spectra have been reported in the literature showing the Cu-NPs’ absorption
band at 326 nm using leaf extract of Ageratum houstonianum [49].

The XRD-diffraction peaks were observed at 2θ values of 23.78, 28.6, 32.3, 43.5, 45.4,
and 56.1◦, which correspond to the Bragg’s reflections at (100), (101), (110), (200), (201),
and (210), showing the crystalline nature of Se-MMNPs, which were in line with JCPDS
(Figure 1d) [50]. XRD analysis was used to confirm the crystalline structure of CuO-MMNPs
(Figure 1e). CuO diffraction peaks were observed at 2θ with 32.1, 35.1, 38.2, 48.6, and 52.3◦,
and these patterns corresponded to (110), (002), (111), (202), and (020), respectively. The
peaks of all the CuO-MMNPs with a standard card were similar to those of the Joint
Committee on Powder Diffraction Standards, as shown in Figure 1e. Hence, the findings
explicitly validate the synthesis of CuO-MMNPs [43]. Debye Scherrer’s equation was
used to determine the average crystallite size of Se-MMNPs and CuO-MMNPs, which
were ~150 nm.

EDX analysis of synthesized nanoparticles demonstrated the intensity, phase purifica-
tions, and crystallinity of Se-MMNPs and CuO-MMNPs. The crystal structure and phase
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of the synthesized Se-MMNPs and CuO-MMNPs were examined using SEM and EDX
analysis in Figure 2.
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SEM coupled with the EDX was recorded to visualize the texture and diameter of
Se-MMNPs and CuO-MMNPs. The crystalline spherical-shaped metallic nanoparticles are
shown in the SEM images (Figure 2). Se-MMNPs with spherical agglomerated morphology
and a size range of 120–200 nm were observed in accordance with the already reported
results [51]. EDX analysis revealed the presence of selenium and carbon components, as
shown in Figure 2a. Similarly, CuO-MMNPs demonstrated a spherical smooth shape with
a size ranging from 100 to 150 nm, as shown in Figure 2b. These trends in SEM are in
agreement with the XRD analysis and previously reported literature [52].

3.3. Qualitative Antimicrobial Assays

The nanoparticles synthesized from the Talaromyces haitouensis secondary metabo-
lites exhibited good in vitro antimicrobial activities, as demonstrated in Figure 3. Both
Se-MMNPs and CuO-MMNPs caused a significant reduction in the growth of S. aureus
and E. coli. Under Se-MMNPs treatment, the zone of inhibition against S. aureus was
19 ± 0.5 mm (Figure 3). On the other hand, the zone of inhibition against E. coli was
21 ± 0.3 mm. Moreover, under CuO-MMNPs treatment, a strong inhibitory effect was
observed. The inhibition zone was 33 ± 0.3 mm and 30 ± 0.5 mm against S. aureus and E.
coli, respectively. The disc diffusion test [53] revealed that the CuO-MMNPs had strong
inhibition zones against S. aureus (33 ± 0.3 mm) and E. coli (30 ± 0.5 mm) surrounding
them, indicating that they show a potential antibacterial activity. The experiment was
carried out in triplicates.
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Figure 3. Zone of inhibition of Se-MMNPs and CuO-MMNPs against multidrug-resistant E. coli and
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The MIC of Se-MMNPs and CuO-MMNPs for the aforementioned microorganism
was also established, as depicted in Figure 4. These trends in the MIC data are consistent
with findings from earlier research [52,54]. Smaller nanoparticles frequently have a large
surface area, which makes it easier for them to contact the bacterial cell membrane and
may eventually alter fundamental processes like penetrability and cell respiration, which
can result in cell death [55]. The MIC value of Se-MMNPs and CuO-MMNPs from different
concentrations (500, 320, 250, 125, and 100 µg/mL) were confirmed after the bacterial
suspension was inoculated and incubated with antibacterial agents for 24 hrs. As a result,
the MIC of Se-MMNPs was observed to be 125 µg/mL for S. aureus and E. coli and then
the MIC concentration of CuO-MMNPs was observed to be 100 µg/mL for S. aureus and E.
coli, showing that it has potent bacteriostatic action. These findings are consistent with the
earlier research (Shende et al.) and demonstrate that metal nanoparticles exhibit promising
antibacterial activities to combat microbial infections [56]. Srivastava et al. also reported
that the Ralstonia eutropha biomass-mediated Se-NPs exhibited strong antibacterial activity
against P. aeruginosa, S. pyogenes, and A. clavatus [57]. Furthermore, the MIC value of Cu-
NPs used in this study is lower than that reported by Zain et al. against Bacillus subtilis and
E. coli [58]. Nieto-Maldonado et al. reported that Gram-negative (E. coli) bacteria need a
higher concentration of Cu-NPs than Gram-positive (S. aureus) bacteria. In comparison, our
results show that CuO-MMNPs are more effective against E. coli (Gram-negative) regarding
the MIC value [59]. The antibacterial results show that S. aureus and E. coli need a higher
concentration of Se-MMNPs compared to CuO-MMNPs. Overall, our results show that the
Se-MMNPs and CuO-MMNPs prevented the growth of selected bacterial strains. However,
CuO-MMNPs exhibited strong antibacterial action as compared to Se-MMNPs.
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3.4. Time–Kill Kinetics Assay

The time–kill test was performed to observe the bactericidal action of Se-MMNPs and
CuO-MMNPs. The monometallic nanoparticles at MIC were combined with an inoculum
containing S. aureus and E. coli (1.5 × 108 CFU/mL). According to the literature, exposing
selected bacterial strains to nanoparticles for around 6 h maximizes the killing kinetic
action [60]. A spectrophotometer was used to assess the absorbance of bacterial growth
treated with MIC values at various time intervals, whereas the positive control was without
any nanoparticles. In this study, the CuO-MMNPs-treated S. aureus growth was reduced
after 3 h, while the growth of E. coli cells decreased after 3.5 h (Figure 5a,b). Similarly,
Se-MMNPs-treated E. coli started diminishing after 5 h, followed by S. aureus after 4 h of
incubation, as demonstrated in Figure 5a,b.
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3.5. Quantitative Detection of Biofilm Formation

The efficiency of Se-MMNPs and CuO-MMNPs against selected strains in inhibiting
biofilm development at the MIC concentration was evaluated in Figure 6.
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Figure 6 shows that both Se-MMNPs and CuO-MMNPs can limit the formation of
biofilms. According to the literature, bacterial biofilms are associated with antibiotic-
resistant infections and are difficult to treat [61]. Our findings show that S. aureus and
E. coli biofilms are successfully diminished by Se-MMNPs and CuO-MMNPs (p < 0.05).
The suppression of biofilm and nanoparticle concentrations was found to be precisely
proportional, indicating a dose-dependent action. Hence, Se-MMNPs and CuO-MMNPs
were found to be effective biofilm disruptors. The experiment was performed in triplicates,
and the photographs were analyzed using a cell imager.

3.6. Antibacterial Mechanism: Action of Nanomaterials and Unveiling the Battle against
Bacterial Infections

The global quest for novel antimicrobial magic bullets is accelerating and becoming
increasingly important as conventional antibiotics and antibacterial treatments fail to
eradicate resistant bacteria and biofilms. Several studies have shown that nanomaterials
could be useful in combating antimicrobial antibiotic resistance [62]. Direct association with
bacterial cell walls, biofilm mitigation, and the production of reactive oxygen species are
merely a few aspects [63]. Nanomaterials are more effective in treating antibiotic-resistant
bacteria because they are capable of targeting these pathogens in a variety of ways, as
depicted in Scheme 2 [20,64].
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actions of various nanoparticles and in triggering the bacterial cell death.

4. Conclusions

The synthesized monometallic nanoparticles were characterized by using various
techniques and their inhibitory effect was tested against E. coli and S. aureus. DLS and SEM
studies revealed that the particle size of the Se-MMNPs and CuO-MMNPs ranged from
~150 nm to ~100 nm. EDX analysis confirmed the presence of Se and Cu in the nanoparticles.
The Se-MMNPs and CuO-MMNPs exhibited substantial antibacterial activity, with MIC
values ranging from 100 to 500 µg/mL, against multi-drug resistant E. coli and S. aureus
strains. The findings of killing kinetic action and anti-biofilm formation suggest that these
materials could be potential candidates for combating bacteria, particularly against biofilm-
forming strains. The sensitivity of Se-MMNPs and CuO-MMNPs as antimicrobial agents
increases with nanoparticle concentrations while CuO-MMNPs showed better antibacterial
activity than Se-MMNPs against E. coli and S. aureus. The studies on antibacterial, MIC,
antibiofilm, and time–kill assays highlights the importance of CuO-based nanoparticles in
combating E. coli and S. aureus. Overall, materials exhibit promising antibacterial activity,
but further investigations (including biocompatibility efficacy) are necessary against a
variety of other microbes to justify their significance in real-world applications.
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read and agreed to the published version of the manuscript.
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