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Abstract: Synthetic nucleic acid ligands (aptamers) have emerged as effective delivery tools
for many therapeutic oligonucleotide-based drugs, including small interfering RNAs (siRNAs).
In this review, we summarize recent progress in the aptamer selection technology that has made
possible the identification of cell-specific, cell-internalizing aptamers for the cell-targeted delivery of
therapeutic oligonucleotides. In addition, we review the original, proof-of-concept aptamer-siRNA
delivery studies and discuss recent advances in aptamer-siRNA conjugate designs for applications
ranging from cancer therapy to the development of targeted antivirals. Challenges and prospects of
aptamer-targeted siRNA drugs for clinical development are further highlighted.
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1. Introduction

More than 100 years ago, Paul Ehrlich (Nobel Prize Laureate in 1908) published the concept of
a “magic bullet”, a tailored drug that, based on Ehrlich’s concept of cell-surface receptors, could home
into the diseased cell without affecting the surrounding healthy cells [1]. Starting from specific histology
dyes capable of staining certain cell types, the 20th century yielded achievements that led to sophisticated
tools for chemotherapeutic treatment. Today’s strategies to achieve Ehrlich’s vision include the use of
bioconjugates of drugs tethered to targeting agents. Therapeutic oligonucleotides (ONTs) are a class of
drugs that are appealing for such applications as they allow alteration and control of abnormal gene
expression patterns in cells affected by diseases [2]. Additionally, given that they successfully enter
target cells, they are not as limited as proteins whose activities can be inhibited by antibodies or small
molecules (e.g., hormone receptors, enzymes, or ion channels). However, systemic administration of
ONT therapeutics such as siRNAs, microRNAs (miRNAs), and antisense ONTs bears several biological
hurdles that need to be overcome. One of these obstacles is that due to their polyanionic characteristics,
nucleic acids cannot penetrate cells because of poor transit across lipid bilayers. Various adjuvants
such as lipids or liposomes [3], peptides [4], cationic polymers, or nanoparticle assemblies [5] have
been tested that shield the anionic charges to improve uptake into target cells.

Alternatively, cell-specificity can be enhanced by conjugation of a ligand that enables active
binding to a cell-surface protein on the target cell. Naturally occurring or artificial ligands have been
explored, as such active carrier molecules that direct a siRNA to the active site within the patient body.
Examples of natural targeting moieties include hydrocarbon structures being recognized by lectins on
target cells (e.g., GalNac binding to asialoglycoprotein receptors (ASGPR) present on the surface of
hepatocytes) [6]. Bioconjugates with transferrin (Tf), for transcytosis through the blood-brain barrier
(BBB), have been used to deliver siRNAs to the brain [7,8]. Triblock polymer nano-assemblies carrying
siRNAs exhibit increased targeting properties to various cancer cells when decorated with folate units
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(or other vitamins actively endocytosed by target cells), thereby facilitating binding to folate receptor
overexpressed on cancer cells [9]. The advantages and disadvantages of the different delivery strategies
are debated in the field. Major concerns are (1) extra- and intracellular hurdles for accessibility of the
target cell’s cytosolic compartment (e.g., degradation, elimination from vasculature or renal excretion)
and (2) side effects due to molecular interactions with other cells or serum biomolecules (e.g., immune
response, platelet aggregation upon charge interaction, accumulation in the liver). Two recent review
papers are recommended to the reader, summarizing the pitfalls in active drug targeting and to which
extent the exploited carrier materials can overcome them [10,11].

Aptamers are artificially selected cell-specific ONT ligands that allow targeting to a broad range of
cells. Aptamers are short single-stranded ONTs with recognition properties for certain target molecules
due to their unique three-dimensional structure. High affinity and specificity for target molecules
make them similar to monoclonal antibodies. However, aptamers possess some advantages over
antibodies, including little-to-no immunogenicity and toxicity [12], longer shelf-life, lower production
costs, and low batch-to-batch variation. They have been exploited for targeted delivery into a variety
of cells and in combination with various drugs, including siRNAs [13]. Figure 1 outlines the delivery
of an siRNA carried by an aptamer into a target cell.
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Figure 1. Concept of aptamer siRNA chimera (AsiC) delivery into a target cell. The AsiC molecule
binds through the aptamer part (red) to the target molecule (in green, e.g., a cell-specific receptor) on the
cell-surface (1); Upon endocytosis, AsiC molecules are internalized into the cell (2); where they, at least
temporarily, end up in vesicles of the endosome or lysosome (3); Molecules escaping the endosomal
compartment (4) will be recognized by RNA interference (RNAi) machinery. The ribonuclease Dicer
will bind to the siRNA part of the AsiC (black double strand), cut it off the aptamer and load it into
the RNA-induced silencing complex (RISC), an assembly of proteins further mediating the specific
degradation of messenger RNAs (mRNAs) (5); The Argonaute protein AGO2, one major component of
the RISC, unwinds the siRNA double strand and retains only one of the two strands, the guide strand.
As a result, mRNAs matching this RISC-loaded guide strand can be cleaved, and the expression of the
gene corresponding to this mRNA will be decreased (6).
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The following sections will provide an overview of the current knowledge on the general
application of aptamer-siRNA chimeras (AsiCs) and conjugates. We will review the different
conjugation strategies described in the field, the advantages and limitations for therapeutic approaches,
and the most recent attempts using AsiCs and aptamer-siRNA conjugates for the treatment of viral
infections and cancer.

2. Aptamers as Ligands for the Targeted Delivery of Therapeutic Oligonucleotides

2.1. Aptamer Development and Identification

Systematic Evolution of Ligands by Exponential Enrichment (SELEX) [14–16], the original in vitro
selection method used for selecting aptamer ligands to small molecules and recombinant proteins, can
be modified to yield aptamers capable of binding to a variety of different targets including malignant
or infected cells. This modified SELEX methodology, coined “cell-SELEX”, includes iterative steps
designed to capture aptamer candidates from the complex ONT library against a surface marker
protein which, is selectively expressed on the target cells. Separation of the unbound library fraction
is usually achieved by immobilization of the target to a solid phase (e.g., ferromagnetic beads or
cells on plates) or by capturing it after exposure to the library (e.g., filtration through a nitrocellulose
membrane binding the target protein, or lysis of cells to capture cell-internalized aptamers). The bound
library fraction is then amplified by polymerase chain reaction (PCR) after each selection step to
ensure a sufficient amount of material for the subsequent selection step. Eventually, sequence and
functional (measure of binding to target) analysis with individual sequences from the selected pool
(after ~5–15 selection rounds) will yield aptamers with the desired characteristics. During the selection
process, stringency (or selective pressure) is typically increased to favor the identification of sequences
with the desired characteristics (ex. high affinity binders with high on-rates and slow off-rates). Here,
it is worth noting that in early selection rounds, an excess of target molecules sufficient to provide the
theoretical chance of binding to every library molecule should be used. The ratio of target molecules
to ONT library molecules should be decreased gradually in subsequent selection rounds to favor the
isolation of highly competitive sequences. Also, increasing the number and length of the wash steps
will ensure that high affinity binders with slow off-rates can be selected. (Figure 2).

If the identity of the cell-surface protein is not known, SELEX can also be performed by using
whole cells as targets (Cell-SELEX) [17,18], also ensuring that aptamers capable of binding to the
native conformation of the target protein accessible on the cell-surface are obtained. Thus, whole cell
selection also offers preferable advantages for selection against a known target protein. However,
using whole cells as the carriers of the target protein generally leads to increased background binding.
Moreover, cell viability should be monitored, as dead cells tend to bind nucleic acids non-specifically.
To overcome this problem, divalent metal ion chelators such as ethylenediaminetetraacetic acid (EDTA)
have been used during the recovery step [19]. The rationale behind this is that specific binders being
stabilized in their secondary and tertiary structure will be removed from the target, while non-specific
binding tends to occur by charge interactions of unstructured ONTs. To ensure aptamer binding
specificity, an additional counter-selection step using a non-target cell line (ex. cells which do not
express the cell-surface receptor or non-malignant cells in the case of cancer cell selection) can be
performed at every cycle, either before the target enrichment step or after [18,20,21]. For a known
target protein, negative cells can be produced using different methods. Typically, cells exogenously
overexpressing the target gene are used as the target cells, while the same wild type cells not expressing
the target gene serve as negative cells [22]. Alternatively, negative cells can be engineered by silencing
the expression of the target gene using RNA interference (RNAi) gene knockdown [23] or clustered
regularly interspaced short palindromic repeats (CRISPR)-Cas9 gene editing [24]. Also, completely
unrelated cells or non-malignant cells of the same tissue are commonly used for the counter-selection
step [17]. While in early applications the final step of sequence identification was carried out using
molecular cloning, the development of next generation sequencing (NGS) methods has enabled fast and
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comprehensive analysis of all rounds, thus enabling investigators to closely monitor the progression of
the selection from Round 0 to the final round, for each individual aptamer sequence [25,26]. Reviews
on the implication of this method and further advances made in the aptamer selection process are
recommended to the reader [17,27,28].
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Figure 2. Systematic Evolution of Ligands by Exponential Enrichment (SELEX). Generation of aptamers
is performed by the iterative selection of binders from a starting pool. The starting pool contains RNA
or DNA oligonucleotides comprising constant terminal regions for primer annealing and a randomized
central region (typically 20–50 nt). Upon exposure to the target of interest binders are separated from
the nonbinding fraction (Selection). A counter-selection step using matrix only or a negative cell line in
the case of Cell-SELEX is normally applied in addition, either before or after the selection step using the
target, to eliminate non-specific binders. After elution of the bound fraction from the target molecule,
real time-PCR (RT-PCR) (RNA) or PCR (DNA) is applied (Amplification). Single-strand synthesis leads
to an enriched oligonucleotide pool, which is repeatedly subjected the selection procedure. Potential
aptamer sequences are picked by sequence analysis of the final pool or even after every round of
selection, mostly by means of next generation sequencing (NGS). Predominant candidates will be
examined for their target affinity.

Variations on the selection process, (1) in vitro-SELEX (recombinant proteins); (2) whole
cell-SELEX (cells); (3) ex vivo-SELEX (tissues) or (4) in vivo-SELEX (live animals), can be combined,
taking advantage of the benefits of each method. Depending on the target, it can be beneficial to
use a sequence of recombinant protein selection followed by cell selection [29] or vice versa [30].
Cell-internalization SELEX has been reported by Thiel et al. to generate aptamers suitable as drug
delivery tools [31]. In this protocol, only endocytosed nucleic acids from the library are carried
over to the subsequent selection step. Another method for selecting only internalized aptamers was
reported in 2016 by Mu et al., and was termed “Conjugate-SELEX” [32]. Here, the authors conjugated
the aptamer library to liposomal nanoparticles (LNP) and selected and applied the LNP-conjugated
aptamer library to human head and neck squamous cell carcinoma cells. Those cells that had taken up
the LNPs were separated from the LNP negative cells and processed to enable the identification of the
cell-internalized aptamers.

Ex-vivo-SELEX was performed to favor the isolation of aptamers for targets in the context of
whole tissues/organs or fixed tissues. Li et al. reported on an aptamer binding to heterogeneous
nuclear ribonucleoprotein (hnRNP) A1 [33]. In this study, the DNA-aptamer BC15 was obtained from
a selection set-up using paraffin tissue sections from infiltrating breast cancer carcinoma. Its target,
hnRNP A1, was identified after the selection, using magnetic beads enrichment and mass spectrometry
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for identification. In a more recent paper, Wang et al. presented the concept of Morph-X-Select,
a morphology-based tissue aptamer selection [34]. In this variation, instead of whole tissue sections,
only regions of interest identified by morphological assessment, dissected by means of image directed
laser microdissections (LMDs), were used. The authors applied this method to select a thio-modified
DNA-aptamer using ovarian tumor vasculature. The target of this aptamer (V5) was identified as
tumor marker vimentin.

The first attempt to carry out in vivo aptamer selection was published in 2010 by Mi et al.,
selecting RNA aptamers for p68, an RNA helicase and a member of the DEAD-box family involved
in RNA processing [35]. p68 is aberrantly expressed in tumor tissues, making it an ideal target
for cancer therapy. RNA aptamers binding to p68 were obtained by using an animal model of
intrahepatic colorectal cancer metastases. The 2′-F-pyrimidine (2′-F-Py) modified RNA-library was
injected intravenously and the bound fraction was retrieved from harvested liver tumors. In a similar
approach of in vivo-SELEX published in 2013, Cheng et al. selected RNA-aptamers with the ability to
surpass the BBB [36]. While, in this case, the actual target was not determined, the authors hypothesized
that the aptamer utilized a transcytosis pathway to bypass the BBB.

2.2. Early Aptamer-siRNA Conjugates

Aptamers and siRNAs are both nucleic acids. Thus, the combination of aptamers with siRNAs, for
cell-specific drug delivery, seems to be reasonable, since conjugation can be achieved in a straightforward
manner by either covalent linkage or complementation (annealing). Combinations of aptamers and
siRNAs have been referred to as AsiCs or aptamer–siRNA conjugates. Aptamer-mediated delivery
of siRNAs was first described in 2006, by two independent research groups. In both studies
prostate-specific membrane antigen (PSMA) targeting RNA aptamers were used. The biotin-streptavidin
construct designed by Ellington and co-workers [37] comprised two biotinylated A9 anti-PSMA
aptamers and two biotinylated dicer substrate siRNAs (DsiRNAs) against lamin A/C or glyceraldehyde
3-phosphate dehydrogenase (GAPDH). RNAi activity was observed in PSMA-positive LNCaP cells
(with PSMA-negative PC-3 cells as a control) upon treatment with this conjugate. Sullenger’s group [38]
harnessed a different PSMA-aptamer, A10. The PSMA A10 aptamer was used to deliver siRNAs
targeting polo-like kinase 1 (plk1) and bcl-2, two genes generally overexpressed in human tumors.
In this study, the authors covalently linked the passenger strand of these siRNAs to A10’s 3’-terminus.
The respective guide strand was subsequently annealed to the aptamer-siRNA oligo. The authors
confirmed internalization, as well as RNAi-mediated silencing of the siRNA target genes resulting
in cancer cell death. Furthermore, in a human xenograft mouse model of prostate cancer, decreased
tumor growth and tumor regression was observed. This study was the first to describe in vivo efficacy
of aptamer-siRNA oligonucleotides.

2.3. Conjugation Strategies

Compromised siRNA activity and lack of economic feasibility in the production of longer RNAs
(>100 nt) led to of the design of various aptamer conjugates. In 2009, the Giangrande group described
optimizations of their original PSMA AsiC (A10-Plk1) to increase targeting specificity and silencing
potency of the RNA drug. This was the first demonstration of efficacy upon systemic administration
of an AsiC [39]. After successful aptamer truncation 3′-overhangs (UU) were applied to increase
dicer enzyme recognition. Next, a wobble base pair at the 3′-terminus of the passenger strand was
tested, to favor loading of the correct strand (guide) into the RNA-induced silencing complex (RISC).
In further constructs, the authors swapped the siRNA strands within the AsiC, or designed the AsiC
as one stem-loop-RNA. These two versions yielded the most pronounced RNAi effect. The in vivo
circulating half-life was increased from <35 min to >30 h by addition of polyethylene glycol at the
5′-end (PEGylation). The PSMA aptamer A10 and its truncations have been further combined with
several other siRNAs by various research groups [40]. One design was a bivalent PSMA aptamer AsiC
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with a small hairpin RNA (shRNA) against eukaryotic elongation factor 2 (EEF2) that exhibited up to
four-fold greater cellular uptake than an analogous monovalent construct [41].

Berezhnoy et al. analyzed how siRNA silencing ability is affected by the conjugation to an aptamer.
The authors used AsiCs published by other groups as examples for their study [42]. This study revealed
that the degree of impairment is dependent on the thermal stability of the siRNA, with siRNAs having
lower melting temperatures being less affected by conjugation to an aptamer. Furthermore, which end
of the aptamer the siRNA was appended to also seemed to affect silencing. Conjugation of the siRNA
to the 3′ end of 2′-F-Py RNA-aptamers, showed the lowest reduction of the RNAi effect. Finally, it
was found that if an aptamer was co-transcribed with the passenger strand on the 3′-terminus and
3′-overhangs were removed on the passenger strand, the AsiC retained full activity (comparable to
unconjugated siRNA duplex).

Chemical conjugation has also been described in the context of an aptamer-siRNA nano-assembly
complexes [43,44]. Conjugation strategies have included the use of acid labile or redox sensitive
linkers [37,45]. These linkers can be cleaved to release the siRNA from the conjugate in the acidic
environment of the endosome (pH 4.5–6.8) [46] or upon the presence of oxidoreductases such as
protein disulfide isomerases (PDI).

Another method for conjugating aptamers to siRNAs involves the use of a “universal” linker.
For this approach, the aptamer and siRNA sequences are extended to contain complementary
sequences that can be annealed to form a “sticky-bridge”. This conjugation method was first described
by Rossi and co-workers and is discussed in more detail below, in the chapter on anti-viral therapy [47].
Kissing loop interactions, as found naturally in the packaging RNA of bacteriophage phi29 were also
used [48,49], as well as complex nucleic acid origami assemblies [50]. Further interactions exploited for
conjugation are electrostatic charges [44], such as in nano-assemblies [43], and pairs of non-covalently
binding molecules, such as the biotin-(strept-)avidin interaction [37].

3. Recent Advances in Aptamer-siRNA Applications

3.1. Cytotoxic Cancer Therapy

As mentioned above, PSMA is one of the first cancer cell-specific marker proteins used for
siRNA delivery through aptamers. Other cancer cell-specific aptamer targets exploited for AsiC
experiments or in combination with other drugs include receptor tyrosine kinases (RTKs) such as
epidermal growth factor receptor (EGFR; detected on glioma, lung, and breast cancer) [51,52], human
epidermal growth factor receptor 2 (Erbb2 or HER2; particularly used for targeting breast cancer
cells) [20], and tyrosine-protein kinase-like 7 (PTK7; overexpressed in many different cancers) [53].
For highly metastatic cancers, an aptamer recognizing alpha V and beta 3 (αVβ3) integrin was selected
and joined to a siRNA against eukaryotic elongation factor 2, inhibiting proliferation and inducing
apoptosis in target cells [54]. Furthermore, also used as targets were an atypically glycosylated form of
mucin (MUC-1) overexpressed on various human adenocarcinomas [55], extracellular matrix protein
Tenascin-C [56], and nucleolin [57], a protein almost universally present on cancer cell-surfaces and
shuttling into the nucleus where it is found solely in benign cells. However, since the present paper
focuses on more recent achievements and trends, we would like to point out other reviews covering
earlier approaches for these aptamers [13,45,58,59].

The nucleolin aptamer AS1411 has been used as a AsiC with an siRNA that exhibited two
unprecedented features [60]. First, this AsiC displayed an example of a DNA-aptamer conjugated
to an siRNA, linked by non-cleavable maleimide chemistry. Secondly, since AS1411 is composed
of two separate DNA-strands of the same G-rich sequence (each 25 nt) that together fold into
a G-quadruplex structure [61], the AsiC was able to carry two siRNA units, one on each of the
two DNA strands (Figure 3). This AsiC was specifically designed to suppress tumor invasion and
angiogenesis by choosing siRNAs targeting the mRNAs of two genes involved in metastasis-associated
epithelial-mesenchymal transition (EMT), snail family zinc finger 2 (SLUG) and neuropilin 1 (NRP1),
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which promote malignant transformation and activate key signaling pathways during different stages
of metastasis.
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Figure 3. Aptamer-siRNA AsiC designs. Shown are different design strategies pursued. The Dicer-Substrate
design as shown at the top, represents the most promising design for a universally functional combination of
aptamer and siRNAs. The siRNA portion (21 nt) is appended through an extension of a 6 nt double strand,
ensuring correct Dicer cleavage [47,62]. Adding a 2 nt 3′-overhang to the sense strand and choosing this
strand as the one connected to the aptamers 3′-terminus is thought to lead to superior siRNA target
knockdown. Other variations published (box on the right) comprise: A greater number of reported
AsiCs, particularly in earlier studies, used 21 nt siRNAs lacking a Dicer substrate cleavage site [38]. Also
tested were constructs lacking the 3′-overhang, swapping the strands in the siRNA, or appending both
siRNA strands to the aptamer-RNA, creating a stem-loop construct [39]. Wullner et al. reported a AsiC
using a short hair-pin RNA (shRNA) design [41]. AsiCs with miRNAs implemented instead of an siRNA
have also been reported [63–65]. A convenient way of testing multiple siRNA adapters on an aptamer
and preserving the RNAi potential was presented by the sticky bridge design, in which aptamer and
siRNA part are annealed through a reverse complementary pair of strands [66]. Constructs consisting of
two aptamer units (bivalent AsiC) [41] or two siRNAs on the bimolecular nucleolin DNA-aptamer [60]
have been shown to benefit from increased affinity or synergistic knockdown effects, respectively.

Nucleolin is a multifunctional hnRNP present in the nucleus, but also in the cytoplasm and on the
cell-surface, shuttling between these compartments. Additionally, nucleolin is upregulated in highly
proliferating cells, including breast cancer, lymphocytic leukemia, and prostate carcinoma [67,68].
To evaluate the efficiency of the AsiC, an in vivo lung cancer model was established by inoculation of
non-obese-diabetic severe-combined-immunodeficiency (NOD SCID) mice with CL1-5 cells. These
animals were then treated with each of the two AsiCs alone, or a combination of the two (a combination
of 0.5 dose equivalents of the single AsiC treatment) intratumorally three times per week for 42 days.
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The tumor growth rate decreased by three-fold when single AsiCs or a combination of both AsiCs
were administered. Additionally, the combination of the two AsiCs exhibited a synergistic effect,
suppressing tumor invasion.

Recently, Wang et al. used AS1411 as a targeting decoration on cell-derived micelle-like vesicles
(termed as extracellular vesicles) to deliver siRNAs and microRNAs (mRNAs) into MDA-MB-231
breast cancer cells [69]. AS1411 potentially inhibits tumor growth [57,70]. Thus, this aptamer has been
used in three Phase II clinical trials and is one of the most promising candidates for approval by the
U.S. Food and Drug Administration (FDA).

In another study, a co-delivery of two siRNAs in a bivalent PSMA aptamer (A10-3.2) AsiC
was reported (see Figure 3) [71]. To tackle metastatic castration resistant prostate cancer (mCRPC),
the authors chose EGFR and survivin as the targets for siRNA silencing. EGFR overexpression is
associated with mCRPC and bone metastasis frequently occurring in advanced stages [72,73]. Survivin
is known as a member of the inhibitor of apoptosis protein (IAP) family and, thus, plays a pivotal
role in the progression of PCa and other solid tumors [74]. The AsiC was tested in a C4-2 PCa
xenograft model, where it significantly suppressed tumor growth and angiogenesis. As confirmed by
rapid amplification of cDNA ends (5′RACE) PCR, the inhibition of angiogenesis was mediated by an
EGFR-dependent mechanism.

A significant portion of cancer-related genes is regulated by miRNAs, and many reports
demonstrated that miRNA expression is deregulated in human cancers [75,76]. Thus, miRNA delivery
has garnered attention within the past years, and the restoration of miRNA levels by specific delivery
tools represents one strategy for cancer therapy. In 2014, Esposito et al. reported a multifunctional
aptamer–miRNA construct for myeloid leukemia therapy [63]. The AsiC construct (GL21.T–let) was
composed of the RNA-aptamer GL21.T and the tumor-suppressing miRNA let-7g. GL21.T binds to
oncogenic RTK Axl (Kd = 12 nm) and led to abrogation of Axl-dependent signal transduction, such
as extracellular-signal regulated kinase (ERK) and protein kinase B (PKB, Akt) phosphorylation [77].
For Axl-positive cells in cell culture treatment with GL21.T–let, cancer cell survival and migration
was strongly reduced. Also, inhibition of tumor growth was observed in a xenograft mouse model
of human lung cancer. Recently, the GL21.T aptamer was used to deliver miR-212 into human
non-small cell lung cancer (NSCLC) cells [64]. This AsiC can inhibit the anti-apoptotic phosphoprotein
enriched in diabetes/phosphoprotein enriched in astrocytes (PED/PEA-15) implicated in a common
treatment resistance against TNF-related apoptosis-inducing ligand (TRAIL). Using this approach,
NSCLC cells were sensitized to TRAIL therapy and exhibited increased caspase activation. Recently,
RNA-aptamer GL21.T was converted into a more stable DNA-aptamer with 2′-F-Py modifications
and 5′-phosphorothioates at certain positions [78]. This aptamer was examined for its ability to block
Axl-phosphorylation in ovarian cancer using intraperitoneal animal models. Impairment of tumor
growth and reduction of metastatic nodules was observed along with inhibition of migration and
invasion of the cancer cells. Carla Esposito and Vittorio de Franciscis also identified an aptamer to
the insulin receptor (IR), named GL56, using cell-internalization SELEX [79]. Based on its ability to
undergo efficient and rapid cell-uptake, this aptamer is a promising tool for the delivery of small RNAs
into IR-dependent cancer cells.

3.2. Cancer Stem Cell Therapy

Cancer cells can be subdivided into different types based on their occurrence, morphology,
behavior, and potential to evade natural defense or differentiate into another cell type. Cancer cells
which exhibit the two lattermost abilities, are referred to as cancer stem cells (CSC), as they share
capabilities like the ones ascribed to stem cells. They reproduce themselves and sustain the tissue or
tumor. Targeting CSCs has therefore become a central interest in the development of new therapies.
Moreover, new drugs are urgently needed as these cells show intrinsic resistance to conventional
treatments [80]. CSC specific biomarkers are required for targeted delivery using aptamers. Researchers
in the field have been focusing on improving the cell-SELEX protocol to select aptamers predominantly
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for CSCs [81]. Cell-surface markers such as the epithelial cell adhesion molecule (EpCAM), CD44,
and CD133 have been tested for aptamer-mediated cell therapy [82]. Other CSC-specific targets have
been suggested, including CD34, a regulator of cell adhesion [83]. Furthermore, CD38 is normally
expressed on hematopoietic cells. Greater expression levels are found in bone marrow precursor cells
protecting germline cells against apoptosis. While it is lost in mature B-cells, it is found in cells of
chronic lymphocytic leukemia (CLL), where its expression signifies poor prognosis [84]. Besides, CD38
was also shown to be expressed in skeletal and heart muscle, proximal convoluted tubules of kidney,
and normal adult prostate [83,85]. Whether cells of these tissue types would also be influenced by
utilization of an aptamer targeting CD38 remains unclear. However, recent findings have shown,
that deficiency or inhibition of CD38, which can degrade different nicotinamide dinucleotides, led
to positive prognostic effects in cardiac tissues, such as protection against ischemia and reperfusion
injury [86] and endothelial dysfunction [87]. Additionally, CD44 and CD24, normally expressed
on B-cells, have been discussed as CSC markers for many carcinomas, with an emphasis on breast
cancer [88,89]. CD90 has been suggested as a marker of CSCs from the brain [90], liver [91], gastric [92],
and lung tumors [93].

Shigdar et al. presented RNA-aptamers selected for CD133, out of which one (CD133-A15) was
truncated to a 15mer [94]. Endocytosis of the CD133-aptamers by HT29 colon cancer cells was confirmed
by confocal microscopy, while for five different negative cell lines, no binding or internalization was
observed, confirming the specificity of CD133-A15. Shortly after, Jiang et al. used this aptamer to
deliver salinomycin-loaded nanoparticles into CD133+ hepatocellular carcinoma (HCC) cells, inducing
apoptosis [95]. Meanwhile, Chen et al. targeted dysfunctional epithelial progenitor cells (EPCs) instead
of CSCs using CD133-A15 in a AsiC with a siRNA targeting adenosine kinase (ADK), showing the
potential of this very small aptamer for AsiC delivery [96].

EpCAM is overexpressed on tumor initiating CSCs, and thus aptamers binding to this molecule
have been exploited for the delivery of siRNA AsiCs. In 2015, three groups reported on different
approaches using EpCAM aptamers for delivery of siRNAs. Under the leadership of Wei Dun
and Sarah Shigdar, a chemo-sensitizing approach using a Dicer substrate siRNA against survivin
appended to an 18mer anti-EpCAM RNA-aptamer [97] in a breast cancer xenograft mouse model was
presented [98]. Doxorubicin resistant MCF-7/ADR cells, in which survivin expression is 21-fold that
of progenitor cells, were generated and subsequently used in the xenograft model. Administration
of the AsiC to mice reversed tumor cell chemo-resistance, and a low dose of doxorubicin inhibited
cell stemness as documented by the expression of different markers, eliminated cancer stem cells
via apoptosis, and suppressed tumor growth, leading to prolonged survival of mice bearing
chemo-resistant tumors.

The second paper published in 2015 described the use of an EpCAM aptamer linked to a PlK-1
siRNA for the treatment of breast cancer [99]. In this study, tumor initiating triple-negative breast
cancer (TNBC) cells (cells negative for estrogen receptors, progesterone receptors, and HER2) were
targeted. The growth of Basal-A TNBCs (resembling basal-A TNBC primary tumors) was reduced
upon subcutaneous treatment with the AsiC in a mouse model as well as in human breast cancer tissues
in vitro. Growth of normal epithelial cells, basal-B TNBC cell lines (which resemble mesenchymal
TNBC primary tumors), or normal human breast tissues was not inhibited by the AsiC. The knockdown
was proportional to EpCAM expression. Moreover, the AsiC-induced knockdown of the mitosis
regulator PlK1, suppressed tumor-initiating cells (TICs) of epithelial breast cancer cells as shown in
in vitro functional assays (colony and mammosphere formation).

Finally, in 2015, Krishnakumar and colleagues described a two-pronged approached to EpCAM
inhibition in cancer cells. This group constructed an AsiC composed of an EpCAM binding aptamer
and a siRNA targeting EpCAM mRNA [100], thereby creating a feedback loop in which the inhibition
in the cancer cells was directly proportional to EpCAM expression. The anti-tumor activity was tested
by using MCF7 cells in a mouse xenograft model. The AsiC induced EpCAM downregulation and
inhibited cell proliferation. Different markers of pluripotency were downregulated upon this treatment:
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The transcription factors sex determining region Y box 2 (SOX2), octamer-binding transcription factor
4 (OCT4), and NANOG (not being an abbreviation but named after an old Celtic myth), as well as
CD133. The same laboratory constructed polyethyleneimine (PEI)-based nanocomplexes (198 nm in
diameter) bearing the same siRNA and aptamer against EpCAM [101]. Specific binding and uptake
were demonstrated in cultured MCF7 cells and a retinoblastoma cell line (WERI-Rb1), but the in vivo
efficacy of this construct still needs to be examined.

Recently, de Franciscis and colleagues reported an aptamer-mediated combinatorial miRNA delivery
approach, targeting glioblastoma stem-like cells (GSCs) [65]. The authors constructed two RNA-aptamers
with affinity to RTKs, one binding to Axl (GL21.T), which the authors had previously used to delivery
microRNAs to cells, and another aptamer (Gint4.T) binding to Platelet-derived growth factor receptor
beta (PDGFRβ). Both aptamers inherently act as inhibitors of their target RTKs, therefore augmenting
the anti-tumorigenic effect. The combination of the tumor-suppressor, miR-137, and the antagonist
of oncomiR, miR-10b, appended to the aptamers was tested and showed enhanced impact on tumor
cell viability and migration. Furthermore, a reasonable amount of the aptamers and their respective
AsiCs could cross the BBB. The authors speculated that this was a consequence of the transcytosis of
the target RTKs. Interestingly, the Gint4.T aptamer has recently been conjugated to a mimetic peptide
for targeted delivery to cardiac cells demonstrating the broad applicability of these aptamer ligands
(personal communication).

3.3. Cancer-Immunotherapy

Immunotherapy is a rapidly expanding field in targeted cancer treatment. Instead of targeting the
cancer cell itself, the agents used target immune cells. Historically, the idea of boosting the immune
system to fight tumor growth goes back more than hundred years ago when, in the late 19th century,
a New York surgeon, William Coley, attempted to stimulate immune responses by injecting bacteria
into tumor sites of his patients.

Checkpoint blockade is one strategy of cancer immunotherapy. In 2003, the Gilboa group
published the first aptamer acting as a checkpoint blocker by binding to cytotoxic T-lymphocyte
associated protein 4 (CTLA-4), also known as CD152 [102]. CTLA-4 expressed on the surface
of T-cells downregulates responses to stimuli such as the ones mediated by CD28 activation to
prevent immunological overreaction [103]. The antagonistic RNA aptamer to CTLA-4 was arranged as
a tetrameric construct which, due to multivalence-related effects, had enhanced potency in inhibiting
CTLA-4 in vitro and tumor immunity in mice. Recently, a siRNA-AsiC using a CTLA-4 aptamer has
been reported for the delivery of anti-STAT3 siRNAs to malignant T lymphocytes. STAT3 supports
tumor survival, proliferation, and invasion and can lead to immunosuppression. An earlier study by
Kortylewski et al. using CpG ONTs bound to Toll-like receptor-9 (TLR9) to deliver siRNAs indicated
that STAT3 inhibition leads to antitumor immune response [104]. In addition, Herrmann et al.,
using the CTLA-4 aptamer-STAT3-siRNA AsiC in CD4+ T regulatory cells, showed that knocking
down STAT3 along with the blockade of CTLA-4 caused an increase of CD8+ T effector cell response
(and therefore increasing the impact of T lymphocytes against tumor cells) in an in vivo model [105].

Most cancer immunotherapies work by modulation of lymphocyte co-receptors, which can be
inhibitory or stimulatory. 4-1BB (CD137/TNFSF9) is a stimulatory receptor found on various types of
immune cells [106]. One of 4-1BB’s functions is the activation of CD8+ T-cells. An aptamer binding
to 4-1BB acts as an artificial ligand inducing oligomerization of the receptor and, hence, initiates
stimulatory signals, leading to increased T-cell survival [107].

The same 4-1BB aptamer was used by Berezhnoy et al. to deliver a siRNA against mTOR complex
1 (mTORC1) into CD8+ T-cells [108]. The dual function of this AsiC ensured that activation of the
T-cells and suppression of mTORC1 proceeded in parallel. Consequently, differentiation of the targeted
T-cells into memory T-cells was more efficient and immunosuppressive side effects from mTORC1
inhibition in other cell types were avoided, as they occur by non-selective treatment with rapamycin.
The enhanced antitumor immunity was shown in a mouse model, in which animals were immunized
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with irradiated B16 melanoma cells, treated with the AsiC (i.v.) or rapamycin (i.p.) the next day, and
finally were subjected to an additional xenotransplant of the melanoma tumor cells 50 days later.

Recently, Rajagopalan et al. reported a monovalent 4-1BB aptamer, which is not activated by
itself, for siRNA delivery into already activated CD8+ T-cells [109] to modulate the differentiation of
these cells towards memory precursor effector cells (MPECs) rather than towards short-lived effector
cells (SLECs), which would undergo apoptotic death after a short life span. This strengthening of the
immunological memory was induced by using an anti-CD25 siRNA. Downregulation of CD25, which
is expressed on the target cells, prevented interleukin-2 (IL-2) binding to CD25 and the subsequent
differentiation into SLECs.

3.4. Anti-Viral Therapy

Besides cancer treatment, AsiCs have been designed and tested for the treatment of viral infections,
mainly against infections by the human immunodeficiency virus (HIV). RNA-aptamers binding to the
virion protein HIV-1 gp120 [47,110,111] as well as cluster of differentiation 4 (CD4) on the surface of
HIV-infected T-cells [112,113] have been selected to hinder the interaction of these two proteins during
the entry of HIV-1 into its target cells. Moreover, these aptamers have successfully been combined with
siRNAs targeting viral genes. The region in the 9.2 kB RNA genome of HIV preferentially targeted
with siRNAs is an exon that encodes two essential regulatory elements of HIV, the HIV trans-activator
(tat) and the regulator of expression of virion proteins (rev).

A gp120 aptamer AsiC designed by Zhou et al. combined blocking of viral adhesion through
gp120 to CD4, and knockdown of the viral regulatory proteins [47,110]. It specifically suppressed
the replication of HIV-1 in a humanized mouse model. The AsiC construct used in this study can be
described as the original 2′-F-RNA-aptamer 3′-terminally extended by the sense strand of the siRNA.
A 2–4 nt linker between these two sequences was applied for flexibility and enhanced Dicer processing.
The siRNAs’ antisense strand was simply annealed to this construct. Zhou et al. also investigated
the efficiency of AsiCs with different length of the siRNA. When a 27 nt Dicer substrate siRNA was
implemented instead of a classical 21 nt siRNA, the silencing effect was improved by 20%. The authors
speculated that Dicer-generated 21–23 nt siRNAs might be incorporated more efficiently into RISC. In
a following study, the efficacy of the chimer was further evaluated [111]. In HIV-infected humanized
mice, the intravenously administered gp120-aptamer-siRNA AsiC led to a reduction in viral loads by
several orders of magnitude. The aptamer itself was already capable of inhibiting HIV-1 infection,
but, when used as an aptamer-siRNA AsiC, the duration of the inhibition was enhanced, due to target
mRNA degradation that was validated by 5′RACE PCR. In these experiments, AsiCs of non-binding
aptamer variants and siRNAs lacking the aptamer served as negative controls.

The other prominent target for aptamer-mediated HIV treatment is human CD4 on T-helper cells.
In 2011, Wheeler et al. published an aptamer-siRNA AsiC with an aptamer selected earlier for staining
CD4 positive cells [112,113]. In this AsiC study, a 21 nt siRNA that targeted the mRNA of C-C-motive
Chemokine Receptor type 5 (CCR5), which is used by HIV-1 as a co-receptor for its entry into the
host cell, was chosen. In addition, HIV-1 gag and vif genes were used as siRNA targets. Specific
gene knockdown was not only observed in CD4+ T cells and macrophages, but the AsiCs were also
tested on human cervico-vaginal tissue explants. The authors also administered gels containing the
aptamer siRNA AsiC intravaginally to humanized mice. In this model of topical application, vaginal
transmission of HIV to both the mice and the cervico-vaginal explants was significantly prevented.
Moreover, this study showed that locally and topically applied AsiCs were less subjected to degradation
than those systemically delivered as in the gp120-aptamer AsiCs, resulting in enhanced efficacy.

A year later, Kai and colleagues successfully converted this CD4 targeting 39mer RNA-aptamer
into a DNA-aptamer and used it for a siRNA-AsiC to downregulate HIV-1 protease [114]. This is
noteworthy because the secondary structure of RNA- and DNA-analogs are likely to differ significantly,
due to their different ribose puckering. Furthermore, molecular interactions might further be impacted
in the case of a DNA-analog because of missing hydroxyl- and fluoro-substituents (compared to 2′-F-Py
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modified RNA that is usually employed). In this study, binding and uptake of the DNA-aptamer-AsiC
into CD4+ T cells was confirmed by microscopy using the fluorescently labeled AsiC. The inhibitory
effect on the HIV-1 protease was examined by using quantitative RT-PCR (qRT-PCR) on T cells that
had been transfected with the mammalian expression vector plasmid pcDNA-HIR-PR. Interestingly,
the DNA-aptamer AsiC was even more potent than the RNA-aptamer counterpart. While the reason
for this finding was not elucidated, investigations with other RNA-aptamers should be pursued, as it
might lead to a better understanding of AsiC applications in general.

Rossi and colleagues, who are responsible for the biggest innovations in the field of
anti-viral aptamer-siRNA-AsiCs, also added bioconjugation strategies to the AsiC field [13,47,66,110].
One objective when designing AsiCs is to simplify conjugation, while preserving siRNA efficacy [42].
The sticky bridge approach, mentioned above, is a convenient method of combining the two RNAs
in a non-covalent manner, providing opportunities for testing various combinations of each RNA at
a reasonable cost [47]. A general example of these sticky bridge AsiCs is given in Figure 3. The sticky
bridge comprises a GC-rich complementary annealing sequence that is appended to both RNAs
enabling the annealing of the strands to each other. Additionally, a three-carbon linker provides the
flexibility to the bridged RNAs, ensuring Dicer processing of the siRNA.

4. Aptamer-siRNA Development: Major Considerations

4.1. Selection of siRNA

Several aspects should be considered for the successful delivery of siRNAs by means of cell
targeting aptamers. First, choosing a suitable target gene to be knocked down and an appropriate
target site on the mRNA for the siRNA are key requirements. Access to online tools and rich
empirical data amount have simplified the identification of sequences capable of inducing sufficient
mRNA degradation. One should take advantage of these sources for deciding on the optimal siRNA
sequence (e.g., reviewing original publications, patents, and clinical trials; or make use of sophisticated
algorithms that underlie siRNA finder on siRNA vendors’ webpages). Otherwise, knockdown of
a target mRNA could be impaired because of poor accessibility due to secondary mRNA structure
or RNA-binding proteins, poor Dicer processing, or inefficient loading of the guide strand into the
RISC. For further advice on experimental design, we refer the reader to recommendations made in this
field [42,62,115].

4.2. Aptamer Considerations

The same caution should be exercised when choosing the aptamer. The aptamer must fulfil the
following criteria: (1) selectivity and specificity for the desired target cell type; (2) sufficient number of
target sites on the target cells and rapid internalization into the target cells with a substantial fraction of
the nucleic acid remaining intact inside of the cell; (3) applicability for the intended administration in
terms of pharmacokinetics (PK; stability, and biodistribution) and pharmacodynamics (PD; e.g., toxicity
and immunogenicity) [116–118]. PK and PD of AsiCs for systemic delivery will be different from
those of AsiCs used for local or even topical application. While a greater number of published
aptamers lack detailed information on PK and PD as more comprehensive in vivo studies are
required for these assessments, criteria (1) and (2) have already been evaluated and/or meet the
requirements in a lot of original publications on aptamers. Furthermore, these aspects as well as
aptamer stability in the presence of nucleases from mammalian sera, can feasibly be examined in ex
vivo experiments. These mammalian nucleases are the main reason why most RNA-aptamers bear
the 2′-F-Py modification on the pyrimidine nucleosides. This provides protection against RNAse
A superfamily, whose members cleave RNA 3′-terminal of pyrimidine nucleosides (uridine and
cytosine) [119]. Within the SELEX process, 2′-F-modified nucleosides can be implemented using
a mutant of the T7-RNA polymerase (T7-RNAP), namely T7-RNAP-Y639F [120]. Other than the
fluoro-substituent, amino- and methoxy-groups have been tested at the 2′-position for protection
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against these ubiquitous RNAses [121]. However, as no enzyme capable of efficiently incorporating
these modified nucleosides within the SELEX process is available, they have not been used as
extensively as the 2′-F-Py for aptamers.

4.3. Intracellular Fate of Aptamer-siRNA Conjugates

When an appropriate aptamer is lacking, a selection can be carried out by using the protocol
established in our lab, termed Internalization SELEX (please refer to the earlier sub-chapter “aptamer
selection”) [31]. Hence, aptamer candidates that not only rapidly bind and internalize into the target
cells, but also assure that a substantial fraction of the internalized aptamer is internalized in the cell
without being degraded, a circumstance pivotal to the actual potential of an endocytosed siRNA, can
be selected.

However, for almost all aptamers successfully applied in siRNA deliveries, the intracellular
fate, particularly the required transition across lipid biolayers such as the escape from endosomal
vesicles, remains elusive. Insights into the kinetics of intracellular trafficking and spatially and
high-resolution real time monitoring as well as methods such as STimulated Emission Depletion
(STED) microscopy [122], Structured Illumination Microscopy (SIM), and Single Molecule Localization
Microscopy (SMLM) [123] have recently garnered attention. Wittrup et al. presented an approach for
the visualization of endosomal release of lipid-formulated siRNAs in HeLa cells [124]. Their findings
suggest that siRNA release occurs invariably from maturing endosomes within 5–15 min of endocytosis.
This agrees with the rationale that the addition of a release agent such as membrane penetration
peptides or lipids that will become active at a certain pH during the endosome maturation [125] is
necessary to facilitate the transition of a bigger part of RNA-molecules from the endosome into the
cytosol. However, whether sufficient endosomal escape is ensured in AsiC applications devoid of such
agents remains unclear.

5. Conclusions and Future Perspective

Nucleic acid aptamers have emerged as promising reagents for enabling the cell-targeted delivery
of RNAi-based bio-drugs. In this review, we have summarized advances in the aptamer selection
technology that favor the identification of aptamers with the ability to efficiently bind to cell-surface
receptors in the context of the cell membrane while simultaneously undergoing receptor-mediated
internalization. These technical advances have enable researchers to explore the use of aptamers for
delivering therapeutic oligonucleotides, such as siRNAs, to target cells in vitro and in vivo. The initial
proof-of-concept studies demonstrating efficacy of aptamer-siRNA AsiCs (AsiCs)/conjugates in cancer
cells in culture and in mouse models of cancer were reviewed. In addition, recent advances in
aptamer-siRNA drug designs and extent of therapeutic applications were presented. Important
considerations for optimal aptamer-siRNA drug design and potential challenges regarding the
subcellular fate of these RNAs are also discussed.

The past two years have witnessed the approval of several oligonucleotide-based drugs for
treating neurodegenerative diseases such as spinal muscular atrophy (SMA) [126] or muscular diseases
such as Duchenne muscular dystrophy (DMD) [127]. These successes are likely to pave the road
for future RNA or DNA bio-drugs for other disease conditions including cancer, cardiovascular
diseases, viral infections and rare diseases. While the future of oligonucleotide-based drugs is bright,
continued efforts in several key areas are needed before aptamer-siRNA drugs are approved for use in
humans. One limiting factor for their translation is cellular uptake efficiency and specificity. While
traditional aptamers were identified using recombinant purified protein targets, recent advances
in the aptamer selection methods technology, which include stringent negative selection steps and
performing selections on live cells in culture, have made it possible to develop better aptamers for
cell-targeted delivery applications. These new aptamers are better equipped to recognize cell-surface
receptors in their native milieu (cell membrane) and undergo cellular uptake. In addition, stringent
negative selection steps have made it possible to develop aptamers with exquisite binding specificity,
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low off-target interactions and overall better safety profiles. For more information regarding the
advances in cell-SELEX technology please refer to the following reviews [17,31].

An additional hurdle to the translation of aptamer-siRNA drugs is efficient delivery of the
therapeutic siRNA cargo to the appropriate subcellular compartment, in this case, the cytoplasm.
Cytoplasmic delivery of aptamer-siRNA AsiCs/conjugates is currently an inefficient process, where
less than 1–5% of aptamer-siRNA molecules that are taken up by the target cells are thought to
escape the endosomal compartment and engage into RISC. Modifications to the cell-internalization
SELEX protocol such as the inclusion of a cell-fractionation step to enrich for cytoplasmic targeted
aptamers, would enrich for aptamer sequences capable of undergoing endosomal escape and delivering
siRNAs to the cytoplasm. Conjugation of existing cell-surface receptor targeting aptamers to cationic
amphipathic peptides or functionalized nanomaterials could serve as an alternative approach to
enhance cytoplasmic delivery [128]. However, a better understanding of the endocytic release
mechanism for aptamer-targeted drugs is warranted before one can afford solutions to this problem.

Finally, a better understanding of “drug” formulation, PK/PD properties, and potential toxicities
of aptamer-siRNA drugs is needed before these novel classes of bio-drugs can be translated into
humans. Recent advancements in aptamer technology and lessons learned from failed attempts
to translate aptamer drugs into humans promise to facilitate the development of aptamer-based
drugs with superior safety and efficacy profiles. Future efforts in rational aptamer drug development
and implementation promise to pave the way for the next-generation of targeted aptamer-based
drugs for the treatment of inherently challenging diseases such as cancer, cardiovascular disease, and
viral infections.
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