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Abstract: Graphene (G) is a newcomer material that holds promising properties for many applications.
The production of high quality G with a good yield is a long-standing goal for many researchers. This work
emphasizes synthesis of dispersed graphene nanoplatelets (DGP) through aqueous dispersion technique
in surfactant/water solution with the aid of tip sonication. A chemical method was also used to prepare
graphene oxide (GO) and reduced graphene oxide (RGO) for comparison. Elemental analysis revealed
the C:O ratio to be 12:1 for DGP but much lower for other graphene structures. Optical characterization
of DGP, GO and RGO with UV and Raman spectroscopy confirmed the ideal structure of DGP.
Moreover, X-ray diffraction (XRD) revealed the amorphous structure of DGP. Transmission electron
microscope (TEM) imaging showed that DGP was composed of a few flat layers, unlike the wrinkled
and partially bent multilayered G. Topological study of the DGP surface with scanning electron
microscope (SEM) depicted its rough surface with (ra) value of 35 nm, as revealed using an atomic
force microscope (AFM). Electrochemical measurements confirmed the higher conductivity of DGP over
graphene prepared by chemical method due to lack of structural defects. Its perfect structure facilitates
the mobility of charge carriers that makes it preferable in optoelectronic applications.

Keywords: graphene; chemical method; liquid dispersion approach; electrical conductivity

1. Introduction

Graphene (G) is a two-dimensional allotrope of carbon of great research interest since its discovery
in 2004 [1]. The nanosheet is formed from one atom thick hexagonally arranged carbon atoms.
This structure gives G its unusual thermal and electronic properties [2,3] along with extreme mechanical
stiffness and large surface area that is theoretically predicted to be >2500 m2 g−1 [4–6]. Due to
these remarkable properties, G has found applications in different areas such as sensors [7], gas and
energy storage [8–11], optoelectronics [12], polymer composites and catalysis [13,14]. Other explored
technological applications such as solar cells, light emitting devices, photodetectors and touch screens
have been reported [15–19]. Synthesis of high quality G but in limited quantities can be performed
using chemical vapor deposition (CVD) [20] or building the nanosheets from its molecular building
units [21]. However, production of defect-free G by ball milling or micromechanical cleavage of
ordered graphite [22,23] has been described. Moreover, a chemical method has been reported in which
preparation of high yield G can be carried out via a two-step technique. First, graphite is oxidized with
a suitable oxidizing agent to get graphene oxide (GO). Second, the formed GO is reduced to obtain
G nanosheets [24,25]. Although the advantage of this method is the production of large amounts of
G, the formed nanosheets suffer from the presence of defects in the form of carboxylic and carbonyl
groups, localized atoms defects and non-reduced functional groups. The need for large amounts of
high quality G suitable for advanced technological applications has forced researchers to explore other
preparation techniques such as liquid-phase exfoliation of graphite, a method that has been reviewed [26,27].
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This fabrication technique is based on sonication of graphite flakes in the presence of a suitable surfactant
to prevent re-aggregation of the formed nanosheets [28–30]. Exfoliation of graphite in organic solvents
followed by ultra-sonication in the absence of surfactant was also described [31–35]. Solvents ideal for this
process can minimize the interfacial tension between liquid and G through minimizing the area of the
surfaces in contact [36].

Unfortunately, the best solvents for successful dispersion of G are N-methyl-2-pyrrolidone (NMP),
N,N-dimethylformamide (DMF), and ortho-dichlorobenzene (o-DCB), all of which have high boiling
points and are irritating or highly toxic [27]. Water is an environmentally friendly solvent with
moderate boiling point that can replace the organic solvents; however, due to the hydrophobic nature
of G, a surfactant must be used during exfoliation to keep G nanosheets suspended in water [37–39].
Different factors affect exfoliation of graphite during G synthesis such as graphite/surfactant concentration
and sonication time. Recent work has been done to obtain high quality G nanosheets in large
quantity utilizing a sonication approach. For example, Noroozi et al. prepared dispersed graphene
by ultra-sonication of graphite in a solution mixture of hand soap and Polyvinylpyrolidone [40].
However, the good dispersion of the obtained G, the prepared films based on G still suffered from
high resistance and lower conductivity. Moreover, the preparation steps are lengthy. Some reports
have been published to utilize sodium dodecylbenzenesulfonate (SDS) for better dispersion of graphene
in an aqueous solution. Takayanagi et al. could resolve graphene and chemically oxidized graphene
using Micellar Electrokinetic Chromatography with sodium dodecylbenzenesulfonate as a micelle matrix.
The results confirmed successful dispersion of graphene nanoplatelets and a consecutive broad signal was
obtained with 20 mmol dm−3 an aqueous SDS solution [41]. Yeari et al. successfully synthesized reduced
graphene oxide with SDS as an exfoliator and stabilizer at the same time via a simple ultrasonication
method [42]. Even though good results were obtained in both water and organic solvents, this process
consumed much time in terms of preparation of graphene oxide followed by reduction with hydrazine
in presence of SDS. It is considered non-environmentally friendly due to the use of harmful reagents.
In addition, the yield is quite poor and non-preferable for large scale synthesis. It could be claimed
that the most common technique, which involves the oxidation and subsequent reduction of graphene
oxide in presence of SDS to obtain highly dispersed graphene nanoplatelets, suffers from significant
disadvantages: first, the long steps of preparation and consuming hazardous chemicals; and, second,
the oxidation followed by reduction process results in the formation of structural defects which virtually
alter the electronic structure of graphene and hence render its electrical conductivity. These defects are
impossible to remove completely even after annealing or chemical treatments. Thus, the most promising
technique to give high quality dispersed graphene at reasonably good yield is the direct exfoliation of
graphite in the liquid phase such as water. an interesting study was performed to exfoliate graphite in
SDS solution with the aid of ultrasound [43]. It is the first attempt for aqueous surfactant based exfoliation
with sodium dodecylbenzenesulfonate. Even though transmission electron microscopy showed mixture
of mono- and multilayer graphene sheets, small graphitic flakes were observed that might be due to
short sonication time. A recent article has described the preparation of liquid phase exfoliated graphene
with SDS under mild conditions [44]. Nevertheless, the yield of the obtained graphene is still a challenge.
A theoretical study by Yoon et al. revealed that the exfoliation energies vary with the size of intercalant and
the interaction with graphite [45]. Moreover, intercalation of electronegative or electropositive intercalant
increases exfoliation energy due to additional binding forces through charge transfer from intercalant and
host graphite.

Several surface stabilizers have been examined for exfoliation of graphite such as polycyclic aromatic
hydrocarbons [46], sodium cholate (SC) [37,47], sodium dodecyl sulfate [48] and even conventional
polymers [49–51].

We examined exfoliation of graphite in water with the aid of sodium dodecyl benzene sulfonate
(SDS) to prepare DGP using a tip sonication technique. A few layers of defect free G (>5) were
successfully prepared, as confirmed with high resolution transmission electron Microscope (HRTEM).
In addition, Raman spectroscopy and elemental analysis confirmed the low concentration of oxide in
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the prepared nanosheets. AFM emphasized the high surface roughness and large topographic height.
Thus, this DGP can be used to prepare conductive thin films on glass substrate to replace Indium tin oxide
(ITO) as conductive oxide for photoelectric applications. an extensive electrochemical study of the DGP
and its analog prepared with the Hummer method revealed the superior electrical properties of the G
synthesized in aqueous solution.

2. Experimental Section

2.1. Materials

Sodium dodecylbenzenesulfonate (SDS) and sulfuric acid (99.9%) were purchased from Sigma
Aldrich (Germany). Graphite (GPH) powder (99.9%) was provided by Fisher Scientific UK.
Potassium permanganate (>99%) and hydrogen peroxide (30%) were bought from Bio Basic Canada
Inc. and Carl Roth GmbH, respectively. Sodium nitrate (99.99%) and hydrazine hydrate (99%) were
supplied by Sd Fine-CHEM limited (India). All chemical substances in this work are commercially
available and were used as received.

2.2. Techniques

Scanning electron microscopy (SEM) measurements were obtained using a Zeiss SEM Ultra 60
field emission scanning electron microscope (FESEM), Königsallee 9-2137081 Göttingen (Germany).
Elemental analysis was obtained from Vario El-Elementar, IRMS-North (Germany). The spectra of the
prepared samples were collected at laser wavelength 532 nm and laser power 0.10 MW at 25 ◦C using
Raman Spectroscopy, Bruker Optics, Rudolf-Plank-Str. 2776275 Ettlingen (Germany). AFM images were
captured on Dimension 3100 (Veeco Digital Atomic Force Microscope by Bruker Optics). Samples for AFM
imaging were prepared by spin coating ten layers of G colloidal suspension (0.5 wt % in dimethylforamide)
on clean glass slides (2 × 2 cm2) at 2000 rpm for 80 s. The surface morphology of the prepared G
sheets was studied using a transmission electron microscope, (JEM-1230; JEOL Ltd., Tokyo, Japan), under
acceleration voltage 80 kV. X-ray diffraction (XRD) patterns of the produced solids were determined using
a Bruker diffractometer (D 8 advance target). A CuKα radiation source with secondly mono-chromator
(λ = 1.5405 Å) at 40 kV and 40 mA was used. The scanning rate was 0.2 min−1 for phase identification and
line broadening profile analysis, respectively. The optical microscope was manufactured by Olympus CH2
Optical Microscope, (Japan) and mounted with an Olympus SC100 camera. Electrochemical investigations
including cyclic voltammetry and electrochemical impedance were carried out on Biologic Electrochemical
Workstation (4. rue de Vaucanson; Seyssinet-Pariset 38170, France). A conventional glass cell containing the
electrolyte solution with 2 mL of 5 mM [Fe(CN)6]−3/4 solution in 0.1 M KCl over a potential window of 1.0 V
to −1.0 V at a scan rate of 100 mV/s was used for electrochemical experiments in the three-electrode system.
Modified glassy carbon electrode, Pt wire, and Ag/AgCl served as the working, auxiliary, and reference
electrodes, respectively. Typically, 1 mg of solid material was dispersed in 1 mL double distilled water
and then 10 µL of Nafion solution was added. The working electrode was prepared by adding a 10 µL
droplet of the prepared solution on the surface of the glassy carbon electrode and left to dry under vacuum
for 30 min. Then, it was installed in the electrochemical cell. The electrical conductivities of the obtained
graphene platelets were calculated from cyclic voltammetry in terms of µF.s/V units according to the
following steps:

Measure capacitive current of oxidation and reduction process at which the area has no any peaks at
different scan rates.

I (capacitive current) = (I oxi − I Red) × Scan Rate/2 (1)

The electrical conductivity is the average of the capacitive currents. Electrical conductivities at the
bulk solid were recorded with a DC power supply (M30-TP305E), Mainland (China). The sample powder
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was compressed well between two copper plates separated by a round hollow Teflon cylinder, and then
connected to the electrical cell. The values were calculated from Equation (2):

Conductivity = (L/A) ×1/R (2)

where L is thickness of the compressed sample, a is cross-sectional area and R is the resistivity released
by the device.

2.3. Synthesis of Reduced Graphene Oxide (RGO)

The production of reduced graphene nanosheets via Hummer method involved two subsequent
steps, oxidation of graphite followed by reduction of graphene oxide. The typical procedure was to stir
15 g of graphite powder in solution of 7.5 g sodium nitrate dissolved in 230 mL of concentrated sulfuric
acid, and the temperature was decreased to 0 ◦C. Then, 45 g of potassium permanganate was slowly added
to the mixture and the temperature was allowed to rise to the ambient value. The mixture was left under
vigorous stirring for 3 h. Once the reaction was completed, 700 mL of distilled water was added and
the temperature was kept at 98 ◦C. After 20 min of stirring, 2100 mL of hot distilled water was added.
Then, 150 mL of hydrogen peroxide was added slowly to the previous solution to avoid effervescence.
Finally, the graphite oxide suspension was sonicated for 30 min and then filtered out. The produced GO
solid was washed several times with hot distilled water until pH ~7. The resultant brown paste was then
collected and dried overnight at 60 ◦C under vacuum. To prepare reduced graphene oxide, 100 µL of
hydrazine hydrate (NH2NH2) was added to GO solution (1 wt. %) and heated in the domestic microwave
(1000 W for 3 min) to perform the reduction process. Finally, the formed graphene flakes were separated
and washed well then dried at 80 ◦C overnight.

2.4. Synthesis of Dispersed Graphene Nanoplatelets (DGP)

Consuming the same precursor, dispersed graphene nanoplatelets was obtained in water via
solvent dispersion method, Scheme 1. Graphite layers were exfoliated with sonication using Tip
Ultra-sonicator (100 W). SDS (0.25 g) was dissolved in 150 mL deionized water and then 0.5 g of graphite
was added. The graphite solution was sonicated for 12 h in an ice bath and then the suspension solution
was centrifuged at 686× g for 30 min to remove the large particles. The precipitate was discarded and the
supernatant was re-centrifuged for 90 min at 12,600× g. The obtained DGP was washed well several times
to get rid of the surfactant. Finally, the product was dried at 60 ◦C under vacuum for further investigations.
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graphene nanoplatelets; (C) reduced graphene oxide; and (D) graphene oxide.
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3. Results and Discussion

Synthesis of DGP was carried out using SDS as dispersing agent because SDS as an ionic surfactant
can decrease the surface energy of formed nanosheets. The concentration of graphite: surfactant was 2:1;
more precisely, 3.3 mg/mL of graphite was used. Because the concentration of SDS is above its critical
micelle concentration, which is 0.7 [52], a longer sonication time was used. A study for the optimum
dispersion conditions revealed 0.5 mg/mL of SDS could also yield a stable aqueous dispersion [43].
However, successful exfoliation depends on other factors such as solvent and sonication time [27].
For comparison, RGO and GO prepared with chemical method were obtained as shown in Scheme 1.

Generally, G is a hydrophobic material that cannot be dispersed in water without the aid
of surfactant. On the other hand, GO has hydrophilic character due to presence of carboxylic, hydroxyl,
epoxy and carbonyl groups on its surface [53]. These topological functional groups are responsible for
its poor electrical properties. Reduction of GO using a suitable reducing agent yields RGO [54–57].
These multistep preparation processes make production of graphene exhausting and environmentally
unfriendly due to extensive use of chemicals in the oxidation and reduction steps.

3.1. Elemental Analysis

Elemental analysis was performed to determine the amount of carbon and other elements on
the produced graphene structures. Table 1 lists the measured values for RGO and DGP. It is noted
that G obtained from dispersion method contained a higher ratio of C and a small amount of other
elements such as S and O. Despite several washings, a small amount of SDS is attached to the DGP
surface, which explains the presence of sulfur in the DGP sample. It could be a physical bonding was
established due to π–π electrostatic interaction between the planer π-conjugated surfaces. Nevertheless,
the small amount of S (0.335%) recorded for DGP compared to the amount found for RGO (2.2%)
confirms the superiority of this method. Moreover, the RGO sample showed not only high sulfur
content, in the form of sulfate groups due to using of sulfuric acid in the preparation step, but also
high amounts of N and O. It is believed that the GO surface contains different carbonyl compounds
such as anhydrides and quinones. On reduction of GO with hydrazine, hydrazides and hydrazones
are formed, and only hydrazone formation can lead to removal of oxygen [58]. Moreover, ring opening
reactions of epoxide groups on the GO surface and hydrazine are also possible, yielding hydrazine
alcohols, but oxygen will not be removed [59]. This would explain the presence of a high ratio of
oxygen in the RGO sample compared to DGP [60,61]. Calculating the C/O ratio for the RGO and DGP
samples gave 2.6:1 and 12:1, respectively, which confirm the lack of oxygen-containing compounds on
the surface of DGP. In addition, the small amount of N present in the DGP sample might be due to the
use of dimethylforamide as a solvent to prepare thin films required for the analysis.

Table 1. Results of elemental analysis of RGO and DGP samples.

Sample N % C % S % H % O %

RGO 2.159 64.59 2.2 6.4 24.6
DGP 0.876 89.99 0.335 1.2 7.6

3.2. Raman Spectra

The quality of exfoliated graphene prepared by either chemical or aqueous dispersion
methods was characterized with Raman spectroscopy along with graphite (GPH) and GO for
comparison (Figure 1). In general, the photon energy shift caused by laser excitation at 532 nm
created significant peaks in the Raman spectrum. All the spectra are dominated by a main band at
around 1580 cm−1. This peak is characteristic for GPH and G and is called the G-band. This band
arises due to the first-order in-plane vibrational mode of Raman. Two other peaks are also observed
due to a higher order process involving more phonons: 2D (2690 cm−1) and D (1350 cm−1) [62].
For DGP, the former band is narrower and of lower intensity than for GO or RGO obtained by the



Biomedicines 2018, 6, 63 6 of 15

Hummer method. This may be attributed to a decrease in the degree of disorder and defects in the
graphitic structure during exfoliation with SDS [43,63]. The aforementioned 2D band is similar to
the graphite band while the intensity is less than the G-band. This may reveal that the produced
graphene flakes are relatively thick and of more than five graphene layers. Unlike DGP and GPH,
the spectra of GO and RGO showed broadening in the Raman characteristic bands. This might be
attributed to the structural defects in the obtained structure. Furthermore, the intensity ratio of the
D-band to the G-band indicates the quality of the produced graphitic structures because it approaches
zero for highly ordered pyrolitic graphite [64,65]. The relative intensity of D- and G-bands (ID and IG)
is an estimation of graphene disorder, and the Raman spectrum of the DGP exhibits a weak disorder
induced by lower D-band intensity with the ID/IG ratio of ~0.39, as compared with 1.17 and 1.08
for GO and RG, respectively. In addition, this value mostly resembles graphite, which is the highly
ordered structure of the carbon materials. D-to-G intensity ratio of graphite is ~0.2. In addition,
ID/IG ratio for our graphene is a reasonable value as compared with the state of the art. Nawaz et al.
could produce graphene with sodium cholate in water [66]. The ID/IG ratio was 0.317 after 96 h
sonication time. The results confirmed that there is an increase in ID/IG value by increasing sonication
time suggesting a decrease in flake size. Several defects in graphene flakes were created by cutting the
graphite and forming new edges. Khan et al. demonstrated preparation of graphene dispersions in
N-methyl-pyrrolidone for long sonication times [67]. Raman results showed ID/IG value increases
gradually up to ~0.5 after 200 h sonication time. Lotya et al. presented production of graphene
stabilized in water [37]. The ID/IG ratio was around 0.57. This value shows that significant quantities
of the graphite flakes have not been cut dramatically by prolonged sonication. Sahoo et al. synthesized
graphene through exfoliation of graphite in ortho-dichloro benzene by sonication [29]. ID/IG value of
the obtained graphene was 0.015 after 4 h sonication. Obviously, a significant reduction in the degree
of disorder and defect positions was observed upon exfoliation of graphite with SDS. This emphasizes
the high quality of our exfoliated graphene.
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3.3. Infrared and Ultra-violet Spectroscopy

Figure 2A shows the FTIR spectra of the different exfoliated graphene structures compared
with the surfactant. The SDS spectrum shows two strong bands at 2980 cm−1 from the starching
vibration of the CH alkyl chain, and the bands at 1220 cm−1 and 1090 cm−1 can be assigned to the
symmetric and asymmetric vibrations of the sulfate groups [68]. These characteristic bands of SDS
were almost absent in the spectrum of DGP. This confirms that most of the SDS molecules were
eliminated by washing several times. From this result, it is clear that the interaction between DGP
and SDS is a physical interaction in the form of an van der Waals forces because there is no shift in
the peaks. On the other hand, the GO spectrum shows significant bands at 3360, 1730, 1610, 1340, 1040
and 1230 cm−1, corresponding to the stretching vibrations of the -OH, C=O, C=C, C-OH, C-O and
epoxide groups, respectively [55,69]. Some bands were absent from the spectrum of the RG due to
reduction by hydrazine hydrate. The others (e.g., C=O) have quite lower intensities, which confirm
their presence in small amounts. As a net result, these findings are harmonious with the elemental
analysis measurements.

The optical absorption spectra of GO, RG and DGP samples are shown in Figure 2B. There was
an absorption band at 260 nm due to π–π* transition of the extended conjugate system of graphene
for RGO and DGP [68]. However, the graphene electronic configuration was kept in the graphene
platelets exfoliated with SDS. The characteristic shoulder of graphene oxide at 305 nm, attributed to
n–π* transitions of C=O bonds [70], is absent in the spectra of RGO and DGP, and the GO absorption
peak at 230 nm red shifts to 260 nm in the RGO. It could be claimed that the electronic conjugation
within the graphene sheets is restored because of reduction with hydrazine hydrate.
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3.4. X-ray Diffraction

Investigation of the prepared samples with XRD revealed the amorphous-like structure of the DGP
sample (Figure 3), which confirms complete exfoliation and distortion of the graphite crystal structure.
On the other hand, the XRD pattern of the GO was characterized by a peak at 2θ = 13◦ with a larger
d-spacing resulting from the insertion of epoxy and carbonyl groups between the carbon sheets and
the carboxyl and hydroxyl groups along the edges of the graphene sheet due to chemical oxidation
process [71,72]. Ultimately, after reduction of GO with hydrazine hydrate, the RGO nanosheets showed
plainly the disappearance of the graphene oxide peak without the re-formation of the characteristic
graphite peak at 2θ = 26◦ corresponding to (200) reflections. This emphasizes the deoxygenation of
GO sheets and the restoration of the sp2 carbon sites in the formed RGO.
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3.5. Transmission Electron Microscope (TEM)

TEM micrographs of DGP confirmed successful exfoliation of the graphite using SDS (Figure 4).
A mixture of mono- and multilayer graphene nanosheets was obtained (the blue and red lines indicate
the edges of the monolayer). In addition, there are some black spots observed over the DGP which
might be attributed to the residues of the surfactant, SDS, as it was further evidenced with elemental
analysis. Moreover, the graphene sheet is shown to be relatively large-size and it has lateral dimensions
of over 1 µm. On the other hand, TEM images of the RGO showed wrinkled and partially bent
transparent multilayer sheet-like structure. The lateral dimension of few micrometers in length of the
folded sheets is in accordance with that reported previously [68]. The morphology study depicted the
better sheet quality of DGP over that of RGO.
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3.6. Scanning Electron Microscope (SEM)

SEM images of DGP revealed quite broken graphene sheets of rough surface (Figure 5). This may
be attributed to the strong tip sonication for the long time during the preparation step. On the
other hand, the surface morphology of RGO showed a crimpy, wavy and fluffy tissue-like structure
that confirmed the exfoliation of compact graphite oxide structure in the reduction step with
hydrazine monohydrate.
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3.7. Atomic Force Microscope (AFM)

Once graphene nanosheets were fully characterized, there was a need to study their morphology
as a film on a glass substrate and their electrochemical properties as an electrode. DGP was dispersed
in dimethylforamide and spread on a clean glass substrate with a spin coating technique. The one-layer
image was examined with AFM for deeper topographic view (Figure 6). The images confirmed the
high surface roughness of the thin film. The mean value of surface roughness was 35 nm. It is assumed
that the thickness of graphene was a little bit large and hence the topographic height was ~150 nm.
These results are compatible with the Raman and TEM data. It is believed that this type of rough
surface is advantageous for photoelectric devices such as solar cells.
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3.8. Electrochemical Measurements

3.8.1. Cyclic Voltammetry

Cyclic voltammetry (CV) was used to investigate the electrochemical properties of DGP compared
with other graphene derivatives using drop casting technique onto a glassy carbon electrode.
Figure 7 depicts the cyclic voltammograms using [Fe(CN)6]−3/4 solution as an electrolyte. One can
observe oxidation peak at 0.0 V and reduction peak at 0.13 V of the DGP. Other modified electrodes
showed oxidation peak at 0.01 V and reduction peak at 0.14 V (nearly at the same position as DGP).
However, a significant difference in the current values was noticed exhibiting the highest current
in DGP. This may be attributed to the perfect structure of DGP with absent of defective sites that
hinder the mobility of the charge carriers. As aforementioned, TEM images confirmed the presence
of monolayers and multilayers graphene sheets which could improve the electrical conductivity.
Hence, the mobility of the electrons along the nanosheets is facilitated and led to increasing in
the current. Moreover, the physical interaction between DGP and SDS in the form van der Waal
forces did not change the planer structure of the nanosheet. Otherwise, decay in the current would be
observed as in the case of RGO and GO. Furthermore, oxidation followed by reduction with hydrazine
hydrate usually generates structural defects in the form of carbonyl, ether among others. As discussed
before, the reaction of hydrazine with epoxide groups yields nitrogen containing rings [58] that hinder
the electrons mobility along the sheet and leads to a decline in the current. On the other hand, CV tool
was used to determine the electrical conductivity in terms of µF.s/V. The modified electrode of DGP
showed good electrical conductivity compared with the other electrodes. The electrical conductivities
of DGP and GPH modified electrodes were 144.84 µF.s/V and 84.9 µF.s/V, respectively.
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3.8.2. Concentration/Conductivity Relationship

To select the best electrode, the effect of concentration was studied correlated with electrical
conductivity using 1, 2 and 3 mg wt./wt. of DGP sample within the modified electrode. From the
cyclic voltammetry, the values of electrical conductivity were 61, 144 and 48 µF·s/V for 1, 2 and
3 mg wt./wt., respectively. Thus, the optimum concentration that exhibited the highest electrical
conductivity is 2 mg (Figure 8).
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3.9. Electrical Conductivity Measurements

Table 2 lists the electrical conductivities values in the bulk state for the graphene structures
obtained. As shown, the DGP has the highest electrical conductivity compared with other samples.
These results were synergetic with the electrochemical measurements and confirmed the perfect
structure of DGP over that prepared with Hummer method.

Table 2. Electrical conductivity values for graphite (GPH), graphene oxide (GO), reduced graphene
oxide (RGO) and dispersed graphene nanoplatelets (DGP).

Analysis DGP RG GO GPH

Electrical Conductivity (S/cm) 23.5 0.19 1.9 × 10−6 10

4. Conclusions

As the production of the high quality G in good yield is the goal of many researchers, in this context,
graphene nanosheets were prepared in aqueous medium using SDS as a surfactant. Characterization of
the DGP obtained with elemental analysis and Raman spectroscopy confirmed the high carbon to oxygen
ratio and no defects in the form of hydroxyl or carboxyl groups were detected. Successful removal of the
surfactant via washing several times was confirmed by FTIR and UV spectra. TEM images revealed mono-
and multilayers graphene Nano platelets obtained in aqueous dispersion. Topological investigations
with AFM showed the surface roughness of the films deposited on glass substrate, which equals 35 nm.
This rough surface is ideal for the solar cells’ electrodes because the incident rays would not suffer any
dissipation, which in turn should increase the efficiency of the solar cell. Studying of electrochemical
properties using CV revealed the high electrical conductivity of DGP electrode. The DGP surpasses the
graphene prepared with the Hummer method in the morphological and the electrochemical properties
that makes it preferable in optoelectronic applications. Moreover, the high quality nanosheets obtained
can replace ITO as a highly conductive layer forming a glass electrode for photovoltaic.

Author Contributions: A.F.G. conceived and designed the experiments; A.F.G. performed the experiments;
A.F.G. and M.H.A.R. analyzed the data; M.H.A.R. contributed reagents/materials/analysis tools; and A.F.G. and
M.H.A.R. wrote the paper.
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