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Abstract: Oxidative modification of lipoproteins is implicated in the occurrence and development of
atherosclerotic lesions. Earlier studies have elucidated on the mechanisms of foam cell formation and
lipid accumulation in these lesions, which is mediated by scavenger receptor-mediated endocytosis of
oxidized low-density lipoprotein (oxLDL). Mounting clinical evidence has supported the involvement
of oxLDL in cardiovascular diseases. High-density lipoprotein (HDL) is known as anti-atherogenic;
however, recent studies have shown circulating oxidized HDL (oxHDL) is related to cardiovascular
diseases. A modified structure of oxLDL, which was increased in the plasma of patients with
acute myocardial infarction, was characterized. It had two unique features: (1) a fraction of oxLDL
accompanied oxHDL, and (2) apoA1 was heavily modified, while modification of apoB, and the
accumulation of oxidized phosphatidylcholine (oxPC) and lysophosphatidylcholine (lysoPC) was
less pronounced. When LDL and HDL were present at the same time, oxidized lipoproteins actively
interacted with each other, and oxPC and lysoPC were transferred to another lipoprotein particle
and enzymatically metabolized rapidly. This brief review provides a novel view on the dynamics of
oxLDL and oxHDL in circulation.
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1. Introduction
1.1. Atherosclerotic Lesion

Atherosclerosis is a pathological condition in coronary arteries, aorta, and other vascu-
lature, which leads to vascular events such as acute myocardial infarction (AMI). Atheroscle-
rosis is characterized by enlargement of the intima and narrowing of the arterial lumen.

There are two types of atheromatous lesions that relate to these vascular events
(Figure 1) [1]. Vulnerable plaques are atherosclerotic lesions containing large amounts of
lipids and a number of lipid-accumulating foam cells that are covered with thin fibrous
caps. Accumulation of macrophages and other types of leukocytes induce inflammatory
responses and, eventually, the secretion of metalloproteinases, which could make the
fibrous cap physically fragile; thus, such plaques have a high risk of being ruptured. Plaque
ruptures induce acute thromboembolic responses containing blood components, which
subsequently form red thrombi.

The other type of lesion is plaque erosion, also called superficial erosion, and it is
characterized by thickened intima enriched with glycosaminoglycans, a small amount of
lipid accumulation, and few macrophages [2]. Endothelial cells in this type of lesion may
be delineated from the surface by yet unproven mechanisms. One possibility that has
emerged recently is the involvement of neutrophil extracellular traps (NETs). A thrombus
formed at the site of the eroded plaque contains leukocytes enriched with myeloperoxidase
(MPO); neutrophils release proteolytic enzymes, MPO, together with DNA strings upon
the formation of NETs [3]. However, there is little information on the contribution of
lipoproteins to plaque erosion; and human arterial tissue is slightly different from that of
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athero-protective small animals [4], hence, this review focuses on the vulnerable plaques in
human atherosclerosis.
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Figure 1. Two types of culprit lesions responsible for vascular events. Vulnerable plaque is characterized by a necrotic core,
which accumulates a large amount of lipids covered with a thin “fibrous cap”. Inflammatory responses render the fibrous
cap fragile and lead to plaque rupture. Once the fibrous cap is broken, a rapid formation of thrombus and fibrin occurs, and
a red thrombus is formed. Plaque erosion, also called superficial erosion, is characterized by a thickened intima enriched in
glycosaminoglycans, but with less lipid accumulation. Inflammatory responses make the endothelial cells unstable and lead
to detachment of the cells. After the endothelial cells are lost, thrombus formation occurs, and a white thrombus is formed.

1.2. Background on the oxLDL Hypothesis

Multiple factors contribute to the development of atherosclerotic lesions, such as
low-density lipoprotein (LDL)-cholesterol levels, diabetes mellitus, hypertension, oxidative
stress, and infectious diseases. In addition to these conditions, oxidative modification of
lipoproteins has been recognized as a risk factor for atherosclerosis [5,6]. The possible im-
portance of oxidized LDL (oxLDL) on atherogenesis has received attention since the 1980s,
when a series of scavenger receptors for phagocytic uptake of oxLDL by macrophages
were identified, such as scavenger receptor type A (SR-A), CD36, or lectin-like oxidized
LDL receptor-1 (LOX-1) (refer to reviews [7,8]). Subsequently, localization of oxLDL in
atherosclerotic lesions, especially in foam cells, were verified by immunohistochemical
analysis [9–11]. The oxLDL hypothesis was an attractive possibility that explains the on-
set of atherosclerotic lesion formation for three reasons. First, it explains the correlation
between plasma cholesterol levels and risk of cardiovascular disease, as suggested by
epidemiological studies. Second, LDL receptor-dependent uptake of cholesterol cannot
explain the enhanced development of atherosclerosis in patients with familial hyperc-
holesterolemia (FH) who suffer from juvenile atherosclerosis despite a lack of functional
LDL receptors. However, massive accumulation of cholesterol in macrophage-derived
foam cells in patients with FH could be rationalized by scavenger receptors [12]. Finally,
oxidative modification of LDL produces a large variety of oxidized lipids and modified
peptides that are likely to promote endothelial injury and inflammatory responses [13–15].

A variety of oxidized products, including oxidized polyunsaturated fatty acids
(PUFA), short-chain aldehydes, and oxidized phosphatidylcholine (oxPC), are formed
in oxLDL prepared in vitro, many of which are found in plasma or in atherosclerotic
lesions [16,17]. Molecular structures of oxPC formed in oxLDL were analyzed and some
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of them were identified [18–21]. In addition to oxidized phospholipids, some of the ox-
idatively modified apolipoprotein B-100 (apoB) peptides in atherosclerotic lesions were
analyzed and identified using the liquid chromatography-tandem mass spectrometry
(LC-MS/MS) technique [22–25].

Many studies were conducted on the pathological significance of in vivo oxLDL
present in human circulation. In the mid-1990s, several groups developed sandwich
ELISA procedures for the measurement of plasma oxLDL levels; studies using these
immunological methods have shown the presence of oxLDL in human circulation (refer
to reviews [26–29]). Large-scale clinical studies have proved the potential benefit of the
measurement of circulating oxLDL levels as a marker for the risk of atherosclerosis [30,31].
Since the plasma concentration of LDL affects oxLDL levels directly, the ratio of oxLDL
and apoB or oxLDL and LDL-cholesterol showed better clinical significance than simply
estimating oxLDL concentration in plasma [28].

An LDL particle consists of one molecule of a large protein, apoB, and a variety of
lipid molecules including phosphatidylcholine (PC), free cholesterol, cholesterol ester, and
triacylglycerol (TG). Oxidative modification of such a multi-molecular particle produces
complex and heterogenous modified forms of LDL. Consequently, it is a challenging
issue to elucidate on the structural and metabolic characteristics of in vivo oxLDL present
in circulation.

2. Oxidative Modification of In Vitro oxLDL

Among the constituents of LDL, hydrophobic lipids, cholesteryl ester, and TG are
packed inside of the particle, and the hydrophobic core is surrounded by phospholipids,
free cholesterol, and apoB. When LDL is oxidized in vitro, lipidomic analysis of oxLDL
showed that PUFA-containing PC species are major targets of oxidation reaction [32–34].
PC species containing PUFA chains generate their hydroperoxide derivatives (PCOOH),
which are subsequently converted into truncated PC products and small aldehyde frag-
ments. Finally, the truncated PC is hydrolyzed to form lysoPC by either enzymatic or
nonenzymatic pathways [32–35] (Figure 2). Cholesterol and TG are also oxidized to form
various derivatives, such as oxidized fatty acids and 7-keto-cholesterol [36,37]. Reagents
used for oxidation of LDL include copper sulfate, ferrous sulfate, and radical initiators
such as 2,2′-azobis (2-amidinopropane) dihydro-chloride, lipoxygenase, or MPO. Oxidized
products formed in LDL and modified by these oxidants partly overlap, but some products
are selectively formed depending on the oxidants. For example, treatment of LDL with
lipoxygenase produces mainly PCOOH, while incubation of LDL with a low concentration
(e.g., mmol/L order) of copper sulfate produces several truncated oxPC and lysoPC [32].
During oxidative modification of lipoproteins, reactive aldehydes such as acrolein, mal-
ondialdehyde, and 4-hydroxynonenal bind to apolipoproteins to form various adducts at
certain amino acid residues, mostly at lysine and histidine [23,24]. In addition, various
amino acid residues, such as methionine and tryptophan, are oxygenated. MPO-dependent
oxidation yields chlorinated or nitrated tyrosine residues in apoB protein together with
oxidized lipids [38].

The formation of OxPC-protein adduct was demonstrated earlier [39,40]; however,
structural analysis of OxPC-modified peptides was technically difficult to perform in earlier
studies. Chemical modification procedures using methylamine and the advancement of
LC-MS/MS instruments have helped to solve this problem [41,42]. As a result, precise
structures of apolipoproteins, modified with oxPCs, have been reported recently [43,44].

A minimally modified LDL (MM-LDL), a type of oxidatively modified LDL with
unique characteristics compared to copper-induced oxLDL, was prepared by soaking LDL
in a dialysis bag in a buffer containing a low concentration of iron sulfate at 4 ◦C for
2–3 days [45]. Modification of the apoB protein was minimal, but contained significant
amounts of oxPC production [46,47]. MM-LDL is reported to stimulate endothelial cells
effectively [48], however, it is not a good ligand of macrophage scavenger receptors.
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Figure 2. Cascade of oxidation products formed during oxidation of phosphatidylcholine (PC).
PUFA moiety of PC is a target of the oxidation reaction. With the addition of oxygen to PUFA, PC
hydroperoxides are formed. Often PC hydroperoxides are cleaved to form truncated oxPC and
fragmented soluble aldehydes. The truncated oxPCs are subsequently hydrolyzed either by enzymes
or by nonenzymatic reactions.

3. Clinical Evidence of oxLDL in CVD

As mentioned above, the measurement of plasma oxLDL has been performed for more
than a quarter of a century, and mounting evidence has shown the clinical significance
of increased plasma oxLDL levels in patients with acute coronary syndrome, cardiovas-
cular diseases (CVD), diabetes mellites, and patients receiving hemodialysis (refer to
reviews [26–29]). Many studies have reported oxLDL levels and oxLDL/LDL-cholesterol
ratios in patient groups were significantly higher than those in control groups.

It has been noted that the plasma oxLDL level increased transiently in the acute
phase after myocardial infarction or immediately after vascular injury by percutaneous
transluminal coronary angioplasty (PTCA) treatment [49–52]. The source of oxLDL in
the rapid increase in plasma is the oxLDL accumulated in the ruptured atherosclerotic
lesions. Since clearance of oxLDL from circulation is very rapid [53], and the increase
in the plasma oxLDL level is transient, oxLDL can be released rapidly from the lesions
when vulnerable plaques rupture. In addition, in a controlled diet study using cynomolgus
monkeys, even in the absence of plaque rupture, the plasma levels of oxLDL increased
or decreased in correspondence to the progression or regression of the atherosclerotic
lesions, respectively [54]. A transient increase in plasma oxLDL levels was also observed in
apoE-knockout mice a few weeks before atherosclerotic lesion enlargement [55]. Treatment
of rabbits with pre-established atherosclerotic lesions with probucol and atorvastatin
decreased not only aortic lesion sizes, but also the contents of oxLDL deposited in the
lesions [56]. These observations suggest that oxLDL can be transferred between circulation
and the atherosclerotic lesions.

4. The Presence of oxHDL and Its Possible Function

It is well recognized that high-density lipoprotein (HDL) is an anti-atherogenic lipopro-
tein. There are several unique functions of HDL that make it athero-protective [57–59].
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First, HDL acts as a carrier of reverse cholesterol transport that facilitates regression of
atherosclerotic lesions. Second, HDL carries a few enzymes that hydrolyze oxidized lipids
to inhibit propagation of lipid peroxidation; namely, paraoxonase-1 (PON1), lipoprotein
associated-phospholipase A2 (Lp-PLA2), and lecithin-cholesterol acyl transferase (LCAT).
Thirdly, the major protein of HDL, apoA1, acts as an antioxidant to protect LDL from
oxidative modification. Since apoA1 is susceptible to oxidation, it reacts with oxidized
centers formed in apoB or scavenges reactive oxygen species (ROS) before attacking apoB.
It was reported that Met112 is highly reactive to oxidants and modification of this me-
thionine residue reduced cholesterol efflux capacity [60]. After biotin-labeled oxPC was
incubated with human plasma, the proteins conjugated with oxPC were collected and
analyzed by LC-MS/MS. The most frequently detected target protein of oxPC was found
to be apoA1 [42]. Finally, recent studies suggested that HDL acts as a carrier of sphingosine
1-phosphate (S1P), where S1P binds to one of the HDL proteins, apolipoprotein M (apoM).
Subsequently, the apoM-bound S1P attenuates inflammation and apoptosis in vasculature
and maintains the endothelial barrier function [61,62].

Modified structures of oxHDL have been studied, as in the case of oxLDL. Lipid
peroxidation products, such as small aldehydes, can form adducts with apolipoprotein A1;
in addition, oxygenated amino acid residues, nitrated or chlorinated tyrosine, and carbamy-
lated lysine residues are also formed [60,63,64]. Furthermore, oxPC adducts of apoA1 were
detected and analyzed [42–44]. Oxidation of HDL alters the functions of HDL. Modified
HDL, either by copper-induced oxidation or treatment with acrolein, reduced cholesterol
transport activity of HDL [65,66]. Oxidation of Met112 or chlorination of Tyr192 of apoA1 by
MPO-dependent modifications reduced its cholesterol efflux capacity [60,63]. In addition,
oxHDL increased LOX-1 expression in endothelial cells [67] and decreased migration of
macrophages [68], which are thought to be regulated through NF-kB dependent pathways.

The presence of natural antibodies against oxidized apoA1 was reported earlier, sug-
gesting the presence of oxHDL under physiological conditions [69]. To date, several groups
have developed sandwich enzyme-linked immunosorbent assay (ELISA) procedures for
the measurement of oxHDL in human circulation [70–72]. Using these assay systems, the
increase in plasma oxHDL levels was shown to correlate with CVD [73], coronary artery
calcification in patients with hemodialysis [74], metabolic mal-condition in obesity [75],
and hyperlipidemic patients [76]. These observations suggest, in addition to oxLDL, that
oxHDL is present in circulation and that oxHDL may correlate with those conditions. In
some studies, mAbs recognizing, site-specific modifications of apoA1 were introduced. An
ELISA system using a mAb recognizing sulfoxide derivative of Met112 was reported [77].
Another mAb that recognized 2-hydroxy-Trp72 in apoA1 was utilized to detect modified
apoA1 in human plasma and in arterial plaques [25].

These observations suggest that oxHDL could be another biomarker for CVD, how-
ever, they seem to be confusing since HDL plays a role as anti-atherogenic lipoprotein
and oxHDL may be produced due to the scavenging of harmful oxLDL. To answer this
question, further understanding of the physiological function, clearance from circulation,
and behavior in the plaques of oxidatively modified lipoproteins is critically needed.

5. Candidates for In Vivo oxLDL

During research on atherosclerosis, various types of in vitro oxLDL have been exten-
sively utilized [78–80]. At the same time, efforts to separate and characterize the oxidized
lipoproteins present in vivo have been continued [81,82]. Since the amount of oxLDL
present in circulation is very small and may have a heterogeneous nature, it is difficult to
isolate oxLDL from circulation. However, characterization of a variety of subfractions of
LDL was carried out and provided useful information for understanding the heterogeneity
of lipoproteins.

Hirano et al. found a subfraction of LDL enriched in patients with CVD or diabetes,
which is called small dense LDL (sdLDL) [83,84]. When human plasma is mixed with
heparin and either magnesium or manganese ions, most of the apoB-containing lipopro-
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teins, i.e., normal LDL, VLDL, and chylomicron, form aggregates. After the aggregates are
removed by centrifugation, HDL and a subclass of apoB-containing lipoproteins, with a
higher density (1.044 < d < 1.063) and a smaller diameter (<25.5 nm) than average LDL
particles, are recovered in the supernatant. The plasma concentration of sdLDL showed a
good correlation with atherosclerotic burden [85]. Small dense LDL is thought to be more
susceptible to oxidative modification partly because it interacts with proteoglycans in the
vessel wall tissues [86]. Oxidative modification of the sdLDL fraction in patients adminis-
tered atorvastatin was significantly reduced, judging by TBARS and LOOH assays [87].
However, extensive structural analysis of sdLDL particles has yet to be reported.

There is a possibility that lipoprotein small a (Lp(a)) is the expected oxLDL. Lp(a) is a
unique subfraction of LDL-related lipoproteins. A soluble protein, apo(a), secreted from
the liver, binds to the apoB protein with a disulfide bond to form an Lp(a) particle. The
soluble protein apo(a) consists of multiple repeats of the kringle domain that is also present
in the plasminogen activator inhibitor-1 (PAI-1) [88]. Tsimikas et al. clearly demonstrated
that Lp(a) acted as a carrier of oxPC, since the kringle KIV10 domain in the apo(a) protein
selectively interacted with oxPC molecules [89]. Patients with CVD showed increased
plasma Lp(a) levels concomitant with the oxPC and apoB ratio when compared to control
subjects [90]. In a number of epidemiologic studies, Lp(a) levels were suggested as a
potential predictive marker for the risk of future CVD [91]. An unsolved issue is the
genetic variance of apo(a) and its correlation with the risk of coronary heart disease (CHD).
The kringle domain KIV2 is repeated many times in an apo(a) protein and the repeat
numbers range from 1 to more than 40, since the number of exons corresponding to the
KIV2 domain in the APO(A) gene varies individually [88]. The number of kringle domains
inversely associated with plasma Lp(a) concentrations and the frequencies of short apo(a)
proteins differ among ethnic groups. A meta-analysis of 40 studies demonstrated that
individuals with smaller apo(a) isoforms have an approximately two-fold higher risk for
CHD or ischemic stroke than those with larger apo(a) [92]. However, it was noted that the
correlation between apo(a) and CHD risks is often documented in European populations,
but not in Asian populations, suggesting there might be other factors to be considered [93].

LDL was divided into several subfractions using anion-exchange chromatography,
due to its electronegative property, and the most electronegative fraction, LDL(−), was
shown to be enriched with oxysterols [94]. Subsequently, the electronegative fraction (also
called LDL5) was reported to have stimulatory properties against various cells, including
endothelial cells and platelets [94–98]. An LDL(−) fraction recovered from normolipidemic
subjects induced monocyte chemoattractant protein-1(MCP-1) secretion from human um-
bilical endothelial cells [95]. By contrast, an LDL(−) fraction recovered from ST-elevation
myocardial infarction (STEMI) patients activated platelets and induced aggregation [96].
Moreover, LDL(−) stimulated human monocyte-derived macrophages to induce IL-1β
release via inflammasome activation [98]. In addition, LDL(−) was reported to be enriched
with free fatty acids, which may explain its electronegative feature [99]. Epidemiolog-
ical observations showed that the LDL(−) subfraction was increased in patients with
CVD, diabetes, renal disease, or non-alcoholic steatohepatitis (NASH), and, in many cases,
medication of such patients decreased LDL(−) levels [100].

6. Involvement of oxHDL in In Vivo oxLDL Formation

An anti-oxPC monoclonal antibody (mAb) was used to capture oxLDL in human
plasma in our sandwich ELISA system [10]. We could not successfully isolate oxLDL from
human plasma using immunoprecipitation strategies; however, we found that the LDL(−)
fraction, separated on anion-exchange chromatography, was enriched in oxLDL. The apoB
in the LDL(−) fraction was covalently modified with oxPC, as demonstrated by western
blotting with the anti-oxPC mAb [101]. Surprisingly, the LDL(−) fraction contained a
large number of HDL particles, which were detected using an agarose-gel electrophoresis
and verified by electron micrographs. LC-MS/MS analysis revealed that the apoA1 in
the LDL(−) fraction was highly modified by reactive aldehydes such as acrolein. More
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importantly, the oxLDL in the LDL(−) fraction was three times higher in the plasma of
patients with AMI when compared to that of healthy controls. From these results, it can be
predicted that a portion of oxLDL interacts with oxHDL in atherosclerotic lesions, which is
then released into circulation when the lesions rupture (Figure 3). It is not yet clear how
the oxHDL is associated with oxLDL; however, it is likely an electrostatic interaction, since
they were recovered in the same fraction by ultracentrifugation, but were separated by
agarose gel electrophoresis.
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Figure 3. A proposed behavior of oxidized lipoproteins in atherosclerotic lesions and circulation. When LDL is oxidatively
modified, HDL can interact with oxLDL to attenuate oxidative modification of LDL; in turn, HDL is modified to form
oxHDL. A part of oxHDL may be associated with oxLDL. These oxidatively modified lipoproteins accumulate in vulnerable
plaque and are released into the circulation when the plaque ruptures.

When the oxLDL-oxHDL interaction is considered, roles of HDL in oxidative modifica-
tion of lipoproteins and its implication in CVD and other diseases should be reconsidered.
As mentioned earlier, HDL is thought to be anti-atherogenic; however, the clinical signifi-
cance of oxHDL and the oxLDL-oxHDL complex in several diseases, including CVD, needs
to be further studied. One can speculate that oxHDL is readily generated as a result of
scavenging reactive centers on oxLDL. If this is the case, the total oxidized lipoproteins,
namely oxLDL plus oxHDL, would represent the strength of oxidative stress, and the ratio
of oxHDL and oxLDL would suggest the protective efficacy of HDL from LDL oxidation.

It has been reported that the cholesterol efflux function of HDL decreases when it is
modified by reactive aldehydes [65,68]. In addition, HDL obtained from patients with acute
coronary syndrome had lower PON1 activity, more oxidative modifications on apoA1, and
more MCP-1 gene expression in endothelial cells than HDL from normal subjects [102].
Thus, HDL diminishes the proatherogenic effect of oxLDL by reducing oxidative damages
of oxLDL, while the anti-atherogenic function of HDL is also reduced since HDL itself is
oxidized. In addition, oxidation of HDL may display pro-atherogenic functions through
different mechanisms. Ru et al. reported that long-term infusion of oxHDL, dissolved in
chitosan hydrogel, administered to LDL receptor knockout mice accelerated the progression
of atherosclerotic lesion formation. In the oxHDL-infusion mice, regulatory T cells were
reduced and Th17 cells were activated, which may have caused lesion development [103].

The structures and functions of oxHDL in circulation and those in atherosclerotic
plaques may be different. Hazen et al. demonstrated that lipid-poor cross-linked apoA1
was enriched in plaques [104]. A site-specific modification, 2-hydroxy-Trp72 of apoA1, was
shown to be abundantly present in atherosclerotic lesions, but not in circulation, and the
modified apoA1 failed to accept cholesterol in an ABCA-1 dependent efflux assay [25].

The half-life of oxLDL and oxHDL seem to be different in circulation. The kinetics of
oxLDL and oxHDL in human circulation have not been reported, however, it was shown
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previously that 95% of heavily oxidized LDL was cleared from the circulation within 10 min
after being intravenously injected into rats [53]. By contrast, it took 24 h to reduce 95% of
oxHDL from the circulation of Watanabe heritable hyperlipidemic (WHHL) rabbits [105].
These studies were conducted using copper-induced heavily modified lipoproteins; hence,
further studies on in vivo kinetics using physiological types of modified lipoprotein parti-
cles, such as oxLDL-oxHDL complex, are required. Overall, at this point, it is difficult to
evaluate the pathophysiological significance of oxHDL. Further investigation concerning
systematic simulations, including the metabolic fate of oxHDL and the oxLDL-oxHDL
complex, are critically needed to elucidate the function of HDL.

7. oxPC Metabolism in the Presence of HDL

It was noted that one of the characteristic features of the LDL(−) fraction is that
accumulation of oxPC and lysoPC species is moderate, while its protein components, apoB
and ApoA1, are extensively modified. When oxLDL is prepared in in vitro systems by
incubation of LDL with copper sulfate for several hours, PUFA-containing PC species are
consumed and lysoPC accumulates [32,33]. Compared with copper-induced oxLDL, which
accumulates lysoPC to as much as 30% of total PC species, the change in PC composition
in LDL(−) is very limited (Figure 4).
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Figure 4. Composition of PCs in LDL, oxLDL recovered from LDL(−) fraction, and copper-induced
oxidized LDL. The LDL(−) fraction was treated with anti-oxPC mAb to separate oxLDL from non-
oxidized particles. PC molecular species were comprehensively analyzed by LC-MS/MS. More than
60 molecular species were classified into five groups: PC containing saturated and monounsaturated
fatty acids (A), PUFA-containing PC (B), PC containing long chain oxidized fatty acids (C), oxPC con-
taining truncated fatty acids (D), and lysoPC (E). The data are summarized from references [31,101].

The contents of oxPCs and lysoPCs were not high in oxLDL in the LDL(−) fraction.
This feature does not correspond with that of MM-LDL [45], a model of oxLDL enriched
with oxPC, and with few apoB modifications. Thus, we should consider the environment of
LDL during the oxidation reaction. In the treatment of LDL with some oxidation reagents
in a test tube, which is a closed environment with a limited volume, hydrophilic reactive
aldehydes, such as acrolein, would react with LDL in the same test tube. By contrast,
since MM-LDL is prepared in a dialysis bag soaked in a large volume of buffer at 4 ◦C,
lipids in LDL are oxidized gradually, and the hydrophilic reactive aldehydes produced are
diffused through the dialysis membranes. In in vivo conditions, whether in tissues or in
circulation, LDL is present along with other types of lipoproteins. An interaction between
these particles may contribute to lipid transfer and lipid metabolism.

The behavior of oxPC and lysoPC in an oxLDL model was examined in the pres-
ence of HDL. LDL containing [2H]-labeled 1-palmitoyl-lysoPC was incubated with HDL
for up to 4 h, then [2H]-labeled lipids in the LDL and HDL fractions were monitored
using LC-MS/MS. Under these conditions, lysoPC in LDL was decreased during the
incubation, while newly formed diacyl-PC in both LDL and HDL fractions increased
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concomitantly [106]. The production of diacyl-PC was abolished by an LCAT inhibitor.
Exogenously added [2H]-labeled 1-palmitoyl-2-glutaroyl PC (PGPC), a short chain oxidized
PC product, to LDL was destroyed within an hour unless an Lp-PLA2 inhibitor was added.

LysoPC molecules are not stable in membranes and are able to be spontaneously
transferred to other membranes. Such a transfer of lysoPC between lipoproteins or lipo-
somes was previously reported [107]. Intermembrane lipid transfer is not limited to lysoPC,
and some oxidized lipids, including long-chain oxPC and oxidized cholesterol, can also
move between lipoproteins [33]. From these observations, it is reasonable to consider that
physicochemical transfer of lipids between lipoprotein particles and subsequent enzymatic
actions of Lp-PLA2 and LCAT are important factors to fully understanding the formation
of oxidized lipoproteins in vivo.

8. Conclusions

The roles of HDL in atherosclerosis and lipoprotein metabolism are more complicated
than previously thought. Recent observations concerning the actions of oxHDL in vivo are
accumulating; oxHDL is present in circulation and plaques, plasma oxHDL levels increase
in patients with several diseases, and a part of oxLDL accompanies oxHDL in circulation.
These findings could have a great impact on the classical view of HDL as anti-atherogenic
agent. Although HDL is known to possess an overall anti-atherogenic property, HDL-LDL
interactions and contributions of HDL oxidative modifications need to be further studied.
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Abbreviations

AMI acute myocardial infarction
apoA1 apolipoprotein A1
apoB apolipoprotein B-100
apoM apolipoprotein M
apo(a) apolipoprotein small a
CVD cardiovascular diseases
ELISA enzyme-linked immunosorbent assay
FH familial hypercholesterolemia
HDL high-density lipoprotein
LCAT lecithin-cholesterol acyltransferase
LC-MS/MS liquid chromatography-tandem mass spectrometry
LDL low-density lipoprotein
LDL(−) electronegative low-density lipoprotein
LOX-1 lectin-like oxidized low-density lipoprotein receptor-1
Lp(a) lipoprotein small a
Lp-PLA2 lipoprotein associated phospholipase A2
mAb monoclonal antibody
MCP-1 monocyte chemoattractant protein-1
MM-LDL minimally modified low-density lipoprotein
MPO myeloperoxidase
NETs neutrophils extracellular traps
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NF-kB nuclear factor-kappa binding protein
oxHDL oxidized high-density lipoprotein
oxLDL oxidized low-density lipoprotein
oxPC oxidized phosphatidylcholine
PC phosphatidylcholine
PON1 paraoxonase-1
PTCA percutaneous transluminal coronary angioplasty
PUFA polyunsaturated fatty acid
sdLDL small dense low-density lipoprotein
SR-A scavenger receptor type A
STEMI ST-elevation myocardial infarction
TBARS thiobarbituric acid reactive substances
TG triacylglycerol
WHHL Watanabe heritable hyperlipidemic
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