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Abstract: Preventing stunting is particularly important for healthy development across the life course.
In Papua New Guinea (PNG), the prevalence of stunting in children under five years old has consis-
tently not improved. Therefore, the primary objective of this study was to employ multiple machine
learning algorithms to identify the most effective model and key predictors for stunting prediction
in children in PNG. The study used data from the 2016–2018 Papua New Guinea Demographic
Health Survey, including from 3380 children with complete height-for-age data. The least absolute
shrinkage and selection operator (LASSO) and random-forest-recursive feature elimination were
used for feature selection. Logistic regression, a conditional decision tree, a support vector machine
with a radial basis function kernel, and an extreme gradient boosting machine (XGBoost) were
employed to construct the prediction model. The performance of the final model was evaluated
using accuracy, precision, recall, F1 score, and area under the curve (AUC). The results of the study
showed that LASSO-XGBoost has the best performance for predicting stunting in PNG (AUC: 0.765;
95% CI: 0.714–0.819) with accuracy, precision, recall, and F1 scores of 0.728, 0.715, 0.628, and 0.669,
respectively. Combined with the SHAP value method, the optimal prediction model identified living
in the Highlands Region, the age of the child, being in the richest family, and having a larger or
smaller birth size as the top five important characteristics for predicting stunting. Based on the model,
the findings support the necessity of preventing stunting early in life. Emphasizing the nutritional
status of vulnerable maternal and child populations in PNG is recommended to promote maternal
and child health and overall well-being.

Keywords: stunting; children; machine learning; Papua New Guinea

1. Introduction

Stunting has been defined as the lack of height relative to age in children [1] and
is the most prevalent form of child malnutrition [2]. Stunting occurs mainly during the
critical window of 0–24 months [3], which is the most sensitive period of child growth
and development. Stunting was found to be especially vulnerable to environmentally
modifiable factors [4]. This growth deficit continues to accumulate and worsens during
early childhood (0–5 years) due to continued exposure to adverse environmental factors
such as feeding, infections, and psychosocial factors [5].

The consequences of stunting observed within the first five years of life are far-reaching,
encompassing increased morbidity and mortality, impaired cognitive development, poorer
academic performance, physical developmental deficits, and diminished economic produc-
tivity [6]. Despite some studies suggesting the possibility of catch-up growth in stunted
children, there is no conclusive evidence to support the full reversal of the early-life effects
of stunting [7,8].

As of 2020, approximately 149 million children under the age of five remain affected
by stunting worldwide with the overwhelming majority of cases (96.7%) occurring in low-
and middle-income countries [9]. It is evident that stunting in children poses a significant
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global health challenge [1]. In response, Target 2.2 of the Sustainable Development Goals
(SDGs) states that all forms of malnutrition should be eliminated by 2030, which includes
stunting in children under five years of age [10].

Despite impressive achievements in reducing stunting in the Western Pacific Region,
progress remains slow in some countries [11]. Papua New Guinea (PNG) is among the
countries where stunting rates among children under five years old have persistently failed
to improve, rising from 47.2% in 2000 to 48.4% in 2020. Surprisingly, this trend contradicts
that of PNG’s rapid economic growth [12]. The increase in resources and wealth has not
improved the nutritional status of children [13]. Consequently, there is a need to address
stunting in children under five years of age in PNG as a serious public health issue.

Previous studies from PNG have explored factors associated with stunting, such as
regional disparities, wealth indices, maternal education level, and childhood vaccina-
tions [14–17]. However, these studies often relied on limited data and lacked national
representativeness, limiting the generalizability of their results to the wider PNG popu-
lation. A few studies have applied nationally representative data from the 2009–2010
Papua New Guinea Household Income and Expenditure Survey (PNG HIES) [18,19] to
examine stunting prevalence variations across different regions in PNG. However, the
timeliness of the data restricted their scope, and they only adjusted for a limited number
of confounding variables.

Machine learning (ML) has emerged as a powerful data-mining technique that is
particularly adept at handling high-dimensional and nonlinear relationships [20,21], sur-
passing classical statistical models in many aspects. As a result, ML algorithms have found
widespread application in the exploration of the social determinants of health (SDHs) [21].
The application of algorithms such as decision trees (DTrees), random forests (RFs), support
vector machines (SVMs), gradient boosting machines (GBMs), extreme gradient boosting
machines (XGBoosts), and neural networks (ANNs) is commonly used in studies exploring
the factors associated with stunting in children [22–28]. Evidence from Ethiopia, Tanzania,
and Bangladesh [23,26–28] showed that traditional logistic regression (LR) often fails to
achieve optimal performance in predicting stunting in children compared to other ML
algorithms. Consequently, the application of multiple ML algorithms becomes imperative
to identify the best predictive model.

Feature selection (FS), a technique aimed at reducing dimensionality, plays a crucial
role in optimizing an algorithm’s predictive performance by eliminating redundant, irrele-
vant, and noisy features [29]. FS is usually categorized into filtered, embedded, wrapper,
and hybrid methods [30]. Embedded methods employ built-in feature selection methods to
optimize objective functions or classifiers [31], such as decision trees and the least absolute
shrinkage and selection operator (LASSO). Conversely, wrapper methods employ repeti-
tive learning steps and resampling techniques to evaluate feature usefulness and result in
enhanced predictive capabilities but at a higher computational cost [32].

Given that the prevalence of stunting in children under five years of age in PNG
is still not promising, there is a need for targeted programs and effective interventions.
Therefore, the main objective of this study is to apply FS techniques with ML algorithms
to train, evaluate, and select the best model for predicting stunting in children under five
years of age in PNG based on the nationally representative 2016–2018 Papua New Guinea
Demographic Health Survey database (2016–2018 PNG DHS) in addition to obtaining the
most important features for predicting stunting. The study’s findings will provide evidence
for PNG policy makers to plan scientifically sound programs with integrated interventions
to prevent child stunting and protect the health of the most vulnerable subgroups of
children. This will help accelerate PNG’s progress in the SDGs related to children’s health.

2. Materials and Methods
2.1. Data Source

The cross-sectional data used in this study were obtained from the 2016–2018 PNG
DHS, which was conducted by the PNG National Statistics Office (NSO). This comprehen-
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sive national survey covered individuals aged 15–49 years in PNG with the aim to provide
current information on key demographic and health indicators. The survey employed
a two-stage stratified sampling method to select approximately 19,200 households, with
18,175 women aged 15–49 from the surveyed households eligible for individual interviews.
A total of 15,198 women completed the interviews with a response rate of 84%. Child
information was collected from mothers or primary caregivers. Structured questionnaires
were applied for data collection, and details about the survey can be found in the 2016–2018
PNG DHS final report [33]. For households where male participants were selected for
interviews, the 2016–2018 PNG DHS conducted height, length, weight, and mid-upper
arm circumference (MUAC) measurements for eligible children under five years of age
using equipment provided by UNICEF [33]. Ultimately, all children under five years of
age with complete and valid height-for-age data were included in this study with a total of
3380 children meeting the inclusion criteria.

The 2016–2018 Papua New Guinea Demographic and Health Survey (PNG DHS)
received ethical approval from the Institutional Review Board of Inner City Fund Inter-
national. Additionally, informed consent was obtained from respondents for all inter-
views. On 17 August 2023, the DHS program approved the use of this dataset for this
study. All data were desensitized (anonymized by removing all personal identifiers) before
being received by the authors. This study was conducted in accordance with relevant
guidelines and regulations regarding the published use of DHS datasets and did not
require additional ethical review documentation or informed consent due to the use of
open secondary data. Further information about DHS data and ethical standards is avail-
able at https://dhsprogram.com/methodology/Protecting-the-Privacy-of-DHS-Survey-
Respondents.cfm (accessed on 17 July 2023).

2.2. Outcome Variable and Potential Risk Factors

Our outcome variable of interest was stunting, which was coded as a binary variable.
According to criteria developed by the WHO in 2006, children with height-for-age z-scores
(HAZs) that are 2 standard deviations below the WHO growth standards are recognized
as stunted [1] and coded as 1, while all others are coded as 0. The conceptual framework
proposed by the United Nations Children’s Nutrition Foundation (UNICEF) illustrates that
stunting is attributed to complex contextual, underlying, and direct causes [34]. Therefore,
based on the results of previous studies, this study incorporated potential factors and
divided them into four main categories: individual characteristics, maternal characteristics,
family characteristics, and community characteristics.

Individual characteristics included the child’s gender, age, birth size, birth order, dura-
tion of breastfeeding, early breastfeeding, and occurrence of diarrhea and fever in the last
two weeks. Maternal characteristics included the mother’s age (years), employment status,
occupation, marital status, education level, age at first birth (years), exposure to mass media,
and their partner’s age (years), employment status, and education level. Following WHO
recommendations [35], early breastfeeding was defined as the initiation of breastfeeding
within one hour of delivery. Breastfeeding duration was categorized as never breastfeeding,
a breastfeeding duration < 6 months, and a breastfeeding duration ≥ 6 months [36]. Expo-
sure to mass media was based on the frequency of women reading newspapers, watching
television, and listening to the radio; access to at least one of these media was considered
exposure to mass media [37].

The household characteristics encompassed the sex of the househead, the number of
children under five years of age, the number of household members, the type of latrine,
the source of drinking water, the type of fuel for the kitchen, and the distance to the health
facility. Community characteristics covered the place of residence as well as the region.
Based on the WHO/UNICEF guidelines [38], the source of drinking water was categorized
as unimproved or improved, and the type of latrine was categorized as unfurnished,
unimproved, or improved. Based on WHO indoor air quality guidelines [39], kitchen fuel
types were categorized as clean or polluting fuels, where clean fuels included electricity

https://dhsprogram.com/methodology/Protecting-the-Privacy-of-DHS-Survey-Respondents.cfm
https://dhsprogram.com/methodology/Protecting-the-Privacy-of-DHS-Survey-Respondents.cfm
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and liquefied petroleum gas. Household wealth was a composite index constructed by
the 2016–2018 PNG DHS, where a principal component analysis was applied based on
the household’s consumer goods and housing characteristics, forming the corresponding
household wealth quintiles: poorest, poorer, middle, richer, and richest [33].

2.3. Analytic Strategy
2.3.1. Preprocessing

Data preprocessing was performed using STATA 17.0 statistical software. We con-
ducted an initial screening of categorical and continuous variables using the χ2 (bivariate)
test with the Wilcoxon rank sum test, and variables with a p > 0.05 were excluded. De-
scriptive analyses were performed in the form of frequencies for categorical variables and
means for continuous variables.

To prepare categorical features for machine learning input, the classical one-hot cod-
ing method was employed. After the initial screening, multicategorical variables were
converted into multiple binary feature vectors using one-hot coding. This approach en-
sured that the algorithm did not make erroneous assumptions about variable relationships.
Furthermore, the missing indicator method (MIM) was utilized to add indicator metrics to
categorical variables containing missing values. The brief analysis steps of this study are
shown in Figure 1.
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2.3.2. Feature Selection

All subsequent analyses were conducted using RStudio 4.2.3 statistical software. The
samples were randomly split into test and training sets at a ratio of 1:9, and feature selection
was performed only in the training sets to prevent leakage of test data. To mitigate the risk
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of overfitting, the AUC value under 10-fold cross-validation (CV) served as the performance
evaluation metric [40].

We selected the embedded LASSO and the wrapped random-forest-recursive feature
elimination (RF-RFE) for feature selection. Among them, the LASSO controlled model
shrinkage via the penalty parameter (λ). By selecting the λ value that produced the highest
AUC value, we identified the features with non-zero regression coefficients, forming the
optimal feature subset. Alternatively, the RF-RFE measured feature importance using the
Gini-coefficient-based Mean Impurity Reduction (MDI) after fitting the RF model. The
process was repeated to recursively eliminate irrelevant features until the combination of
features with the highest model AUC value was derived. For this analysis, the ntree was
set to 500, and the mtry was set to the recommended

√
p [41].

2.3.3. Machine Learning Algorithms and Hyperparameter Tuning

Grid search (GS) is a traversal search for predefined hyperparameter values performed
by a given algorithm. While it is suitable for low-dimensional hyperparameter tuning, it
incurs high computational costs [42]. Bayesian optimization based on Gaussian process
regression (BO-GPR) leverages a priori information from Gaussian process regression
to rapidly converge to the global optimal solution, making it more adept at handling
high-dimensional hyperparameter optimization problems with limited iterations [43].

In this study, AUC values were used as performance evaluation metrics for hyper-
parameter combinations. The GS and BO-GPR strategies under 10-fold cross-validation
were applied for the hyperparameter tuning of the following models. In addition, the
logistic regression (LR) model, fitted with the generalized linear function (GLM) as a
binomial family, required no hyperparameter tuning due to its inherent simplicity and
well-defined structure.

The conditional inference tree (CTree) is a special kind of decision tree [44] which
embeds a tree regression model into a well-defined conditional inference process. There-
fore, easily interpretable classification results can be produced [45]. The CTree included
two hyperparameters for controlling the size of the tree’s growth, namely the 1-p value
(mincriterion) and the maximum depth of the tree (maxdepth) [46]. In selecting the pre-
defined hyperparameter values, caution was exercised, and insights from the relevant
literature [47–49] were taken into consideration. GS was applied to search for the optimal
values of maxdepth and mincriterion, which were confined to the following range:

maxdepth = [1, 30] (1)

mincriterion = {0.900, 0.950, 0.990} (2)

The support vector machine (SVM) is a versatile algorithm used for addressing clas-
sification and regression problems. It possesses the capability to linearly classify data
while also employing kernel tricks to handle nonlinear data challenges [50]. For instance,
the radial basis function (RBF) kernel transforms the input space into a high-dimensional
feature space, facilitating the modeling of nonlinear data [51]. In this study, an SVM with a
radial basis function kernel with fewer hyperparameters was used to categorize the data.
The hyperparameters requiring tuning were the penalty function (C) and kernel parameters
(σ). Following the recommendations of related studies [52–54], we applied GS to search for
the best C and σ in the following predefined set:

C = 2{−5,−3,−1,1,3,5,7,9,11,13,15} (3)

σ = 2{−15,−13,−11,−9,−7,−5,−3,−1,1,3,5,7,9,11} (4)

The extreme gradient boosting machine (XGBoost) is an extensible and integrated algo-
rithm based on gradient boosting decision trees, which is known for its exceptional ability
to push the computational power of boosting trees to new limits [55]. The performance of
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XGBoost was highly dependent on optimizing a large number of hyperparameters, which
are summarized as follows: the maximum number of boosting iterations (nrounds), the
learning rate (eta), the minimum loss reduction (gamma), the minimum weight sum of
instances (min child weight), the maximum depth (maxdepth), the subsample percentage
(subsample), and the column-sample-by-tree ratio of subsamples (colsample bytree). Fol-
lowing the recommendations of related studies [56–58], we employed BO-GPR to search
for the hyperparameters of XGBoost in the ranges presented in Table 1.

Table 1. Hyperparameter tuning range for XGBoost.

Hyperparameter Range Type

Eta (0.01, 0.3) Real
Gamma (0, 0.2) Real

Subsample (0.1, 1) Real
Colsample bytree (0.1, 1) Real

Nrounds [1, 200] Integer
Maxdepth [1, 20] Integer

Min child weight [1, 20] Integer

2.3.4. Model Performance Evaluation

The final performance of the model in the test set was measured with the AUC,
accuracy, precision, recall, and F1 score. Acknowledged as the main performance metric,
the AUC gave the overall model performance at each possible classification threshold. The
confusion matrix was a square matrix including the True Positive (TP), True Negative (TN),
False Positive (FP), and False Negative (PN), allowing the extraction of the above-mentioned
one-dimensional performance metrics from it [59].

Accuracy, defined as the ratio of the number of correct predictions to the total number
of predictions, was the most common measure of overall prediction performance.

Accuracy =
TP + TN

TP + TN + FP + PN
(5)

Precision was defined as the ratio of the number of correct positive predictions to the
total number of positive predictions, reflecting the consistency of the predictions with the
positive cases in the test set.

Precision =
TP

TP + FP
(6)

Recall, also known as sensitivity, was defined as the ratio of the number of correct
positive predictions to the total number of positives, reflecting the effectiveness of the
model in predicting positive cases.

Recall =
TP

TP + FN
(7)

The F1 score was the reconciled mean of precision and recall, responding to the
association of the predicted outcome with positive cases in the test set [60].

F1 score =
2TP

2TP + FP + FN
(8)

With the default classification threshold, p > 0.50 is categorized as positive. However,
this default threshold is often unsuitable for dealing with unbalanced data. To estimate
the optimal threshold, we used the closest top-left method to select the point close to
the upper-left corner of the ROC curve as the optimal threshold and reported the above
one-dimensional performance metrics at the optimal threshold [61].
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3. Results
3.1. Descriptive Results

Of the 3380 children under five years of age in this study, 1342 (39.70%) had stunted
growth, with the mean age being 29.73 months. Most were boys (53.11%) and received
breastfeeding for a duration of ≥6 months (Table 2). Regarding maternal characteristics,
most (62.59%) mothers were not employed. Approximately half of the mothers (50.41%)
had received a primary education, as had 45.40% of their partners. Household and com-
munity characteristics indicated that around 16.45% of the children came from the poorest
households, almost half (46.19%) did not have access to improved water sources, the major-
ity (76.36%) resided in rural areas, and about one-third (30.86%) hailed from the Southern
Region (Table 2).

The prevalence of stunting was highest in the Highlands Region (58.97%) compared
to other regions, and stunting prevalence among children from the poorest households
(53.60%) was almost twice as high as that of children from the richest households (25.39%).
Furthermore, the results of the χ2 test and Wilcoxon rank sum test showed that variables
such as children’s birth order, early breastfeeding, occurrence of diarrhea and fever in
the last two weeks, and the age and marital status of the mother and her partner were
not significantly associated with child stunting, and thus, they were excluded from the
follow-up study (Table 2).

The prevalence of stunting among children in PNG varied across provincial division,
with the Southern Highlands showing the highest rates, while Manus and the National
Capital District were less affected by stunting. The Highlands Region provinces, includ-
ing Southern Highlands, Enga, Hela, Western Highlands, Jiwaka, Chimbu, and Eastern
Highlands, also exhibited higher stunting rates compared to other provinces (Figure 2).
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Table 2. Prevalence of stunting in children under 5 in Papua New Guinea by characteristics; PNG
DHS 2016–2018.

Stunted

Variables N Frequency
(%)/Mean (SD) No (%) Yes (%) p-Values

Individual characteristics
Child’s age (months) 3380 29.73 <0.001
Child’s gender <0.01

Male 1795 53.11 57.83 42.17
Female 1585 46.89 63.09 36.91

Birth size <0.001
Average 1215 38.36 65.93 34.07

Large 1337 42.22 60.13 39.87
Small 615 19.42 51.22 48.78

Birth order 3380 3.15 0.069
Duration of breastfeeding <0.001

Never breastfed 168 7.19 60.71 39.29
<6 months 367 15.71 76.02 23.98
≥6 months 1801 77.10 59.74 40.26

Early breastfeeding 0.280
No 919 41.81 63.87 36.13
Yes 1279 58.19 61.61 38.39

Had diarrhea in the past 2 weeks 0.925
No 2683 84.74 60.27 39.73
Yes 483 15.26 60.04 39.96

Had fever in the past 2 weeks 0.867
No 2489 78.72 60.39 39.61
Yes 673 21.28 60.03 39.97

Maternal characteristics
Maternal age (years) 3380 30.16 0.848
Partner’s age (years) 2961 35.03 0.547
Maternal employment status <0.001

Not employed 2101 62.59 57.45 42.55
Employed 1256 37.41 64.81 35.19

Partner’s employment status <0.001
Not employed 1328 43.60 55.72 44.28

Employed 1718 56.40 63.50 36.50
Maternal occupation <0.001

No occupation 2124 63.46 57.63 42.37
Professional/technical/managerial 161 4.81 78.88 21.12

Clerical 66 1.97 69.70 30.30
Sales 161 4.81 72.67 27.33

Agricultural 560 16.73 56.43 43.57
Services 257 7.68 68.87 31.13

Skilled manual 7 0.21 85.71 14.29
Unskilled manual 11 0.33 54.55 45.45

Maternal marital status 0.456
Never Married/divorced/separated 274 8.11 62.41 37.59

Married/living together 3106 91.89 60.11 39.89
Maternal religion 0.843

Non-Christian/no religion 29 0.86 58.62 41.38
Christian 3343 99.14 60.42 39.58

Maternal education level <0.001
No education 647 19.14 48.53 51.47

Primary education 1704 50.41 59.10 40.90
Secondary education 918 27.16 69.17 30.83

Higher education 111 3.28 73.87 26.13
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Table 2. Cont.

Stunted

Variables N Frequency
(%)/Mean (SD) No (%) Yes (%) p-Values

Partner’s education level
No education 458 15.17 46.72 53.28

Primary education 1371 45.40 58.35 41.65
Secondary education 953 31.56 64.85 35.15

Higher education 238 7.88 76.05 23.95
Exposure to mass media <0.001

No 1646 49.03 53.95 46.05
Yes 1711 50.97 66.69 33.31

Maternal age of first birth (years) 3380 21.17 <0.01
Household characteristics
Sex of househead 0.061

Male 2892 85.56 59.65 40.35
Female 488 14.44 64.14 35.86

Household wealth <0.001
Poorest 556 16.45 46.40 53.60
Poorer 531 15.71 49.91 50.09
Middle 653 19.32 60.49 39.51
Richer 809 23.93 61.80 38.20
Richest 831 24.59 74.61 25.39

Number of under-5 children 3380 3.35 <0.05
Number of household members 3380 6.93 <0.05
Type of toilet facility <0.001

No facility 683 20.47 61.35 38.65
Unimproved 1579 47.33 54.40 45.60

Improved 1074 32.19 68.53 31.47
Source of drinking water <0.001

Unimproved 1558 46.18 54.36 45.64
Improved 1816 53.82 65.42 34.58

Type of cooking fuels <0.001
Polluting fuels 3058 91.64 58.70 41.30

Clean fuels 279 8.36 78.85 21.15
Distance to health facility <0.001

Not a big problem 1509 45.14 64.88 35.12
Big problem 1834 54.86 56.32 43.68

Community characteristics
Region <0.001

Southern Region 663 19.62 65.68 34.32
Highland Region 1043 30.86 41.03 58.97
Momase Region 799 23.64 59.32 40.68
Islands Region 875 25.89 69.37 30.63

Area <0.001
Rural 2581 76.36 56.95 43.05
Urban 799 23.64 71.09 28.91

3.2. Feature Selection Results

Figure 3 presents the process of feature selection using the LASSO and RF-RFE meth-
ods. For LASSO, the model achieved the best AUC value (AUC: 0.669) at λ = 0.0051,
resulting in the shrinkage of regression coefficients for 34 features to 0 and representing ap-
proximately 59.6% of all features. On the other hand, using RF-RFE, the model attained the
best AUC value (AUC: 0.672) after removing the first 27 least important features, accounting
for about 47.4% of all features.
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3.3. Hyperparameter Tuning Results

Table 3 summarizes the best hyperparameters of CTree, SVM-RBF, and XGBoost
models under 10-fold cross-validation using the GS or BO-GPR strategy. With the LASSO
optimal feature subset, SVM-RBF demonstrated the best prediction performance in the
training set (AUC: 0.671). Furthermore, the performance of CTree, SVM-RBF, and XGBoost
in the training set improved after FS.

Table 3. Optimal value of each hyperparameter searched by the optimization strategy.

Trainset (Cross-Validation)

Models Optimal Hyperparameters AUC

None
CTree maxdepth = 5, mincriterion = 0.950 0.639

XGBoost nrounds = 12, eta = 0.153, gamma = 0.091, subsample = 0.807,
colsample bytree = 0.995, maxdepth = 6, min child weight = 5 0.644

SVM-RBF C = 2−5, σ = 2−15 0.658
LASSO
CTree maxdepth = 7, mincriterion = 0.900 0.642

XGBoost nrounds = 12, eta = 0.012, gamma = 0.199, subsample = 0.694,
colsample bytree = 0.811, maxdepth = 7, min child weight = 13 0.653

SVM-RBF C = 215, σ = 2−15 0.671
RF-RFE
CTree maxdepth = 4, mincriterion = 0.990 0.646

XGBoost nrounds = 19, eta = 0.149, gamma = 0.058, subsample = 0.909,
colsample bytree = 1, maxdepth = 20, min child weight = 18 0.666

SVM-RBF C = 2−1, σ = 2−5 0.666

3.4. Evaluation of the Prediction Models

Table 4 and Figure 4 summarize the final performance of LR, CTree, SVM-RBF, and
XGBoost using the test set. The results indicate that XGBoost, under the LASSO FS method,
provided the best prediction performance (AUC: 0.765; 95% CI: 0.714–0.819), and the
model’s accuracy, precision, recall, and F1 scores at the optimized threshold (0.487) were
0.728, 0.715, 0.628, and 0.669. Moreover, CTree exhibited the worst performance without
using the FS method (AUC: 0.695; 95% CI: 0.639–0.750) (Table 4 and Figure 4).
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Table 4. Performance summary of the prediction models.

Models Test Set

Metric AUC (95% CI) Accuracy Precision Recall F1 Score Threshold

None
LR 0.728 (0.672–0.785) 0.675 0.731 0.559 0.633 0.370

CTree 0.695 (0.639–0.750) 0.630 0.669 0.515 0.582 0.426
XGBoost 0.744 (0.690–0.798) 0.707 0.762 0.593 0.667 0.400
SVM-RBF 0.704 (0.646–0.761) 0.672 0.692 0.559 0.619 0.363
LASSO

LR 0.730 (0.674–0.787) 0.692 0.708 0.582 0.639 0.391
CTree 0.736 (0.682–0.789) 0.683 0.700 0.572 0.630 0.459

XGBoost 0.767 (0.714–0.819) 0.728 0.715 0.628 0.669 0.487
SVM-RBF 0.722 (0.666–0.778) 0.672 0.677 0.561 0.613 0.346
RF-RFE

LR 0.731 (0.676–0.785) 0.695 0.685 0.589 0.633 0.394
CTree 0.726 (0.672–0.781) 0.681 0.723 0.566 0.635 0.343

XGBoost 0.752 (0.698–0.806) 0.710 0.723 0.603 0.657 0.388
SVM-RBF 0.729 (0.674–0.785) 0.692 0.615 0.597 0.606 0.367
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The final performance of all models improved after using feature selection, indicating
that the FS method effectively eliminated noise or redundant information while preserving
crucial features of the original model (59.6% dimensionality reduction for LASSO and 47.4%
dimensionality reduction for RF-RFE). The impact of feature selection varied depending
on the optimized model: for CTree and XGBoost, the performance was best with LASSO,
while for LR and SVM-RBF, the performance was optimized using RF-RFE (see Table 4 and
Figure 4).

3.5. Model Interpretation

SHapley Additive exPlanations (SHAP) is a feature attribution method based on a
game-theoretic framework that helps reveal the decision-making process of complex “black-
box models” such as XGBoost. As mentioned above, we used the SHAP value method to
explain the XGBoost prediction model under the LASSO optimal feature subset.

3.5.1. SHAP Summary Plots

The SHAP summary chart sorted the characteristics vertically from highest to lowest
based on the mean absolute SHAP values. We selected the top 15 characteristics to illustrate
their relative importance in predicting stunting in children (refer to Figure 5). Notably,
living in the Highlands Region, the child’s age, belonging to the wealthiest family, and
having a larger or smaller birth size were identified as the top five most significant factors.
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Additionally, the SHAP summary chart represents each child’s features as points,
which are colored according to their feature values, ranging from low (blue) to high (red).
For binary feature vectors, red dots indicated the presence of the corresponding feature
in the individual child. The SHAP value on the horizontal axis reflects the contribution
of the feature to the model output. Higher SHAP values indicate a greater likelihood of
stunting. Specifically, children from the Highlands Region, those with smaller birth sizes, or
those in the poorest households had SHAP values > 0 for the corresponding characteristics,
indicating a higher probability of stunting. In contrast, children from the wealthiest families
who were female or of larger birth size had SHAP values < 0 for the corresponding trait,
indicating a lower probability of stunting (see Figure 5).

3.5.2. SHAP Dependence Plot of Child’s Age

To provide a more intuitive view of the relationship between feature values and the
model’s expected output, we constructed a dependency plot for child age (a continuous
variable) versus SHAP values. The plot included points representing different individual
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children. The smoothed line of partial regression demonstrated a positive association
between child age and SHAP values when children were ≤24 months old. After 24 months
of age, SHAP values stabilized and remained positive for the vast majority of children
(Figure 6).
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4. Discussion

Based on the nationally representative PNG DHS 2016–2018 dataset, our study sug-
gests that the LASSO-XGBoost combination had the best performance in predicting stunting
among children under five years old in PNG (AUC: 0.767, 95% CI: 0.714–0.819). The optimal
model identified living in the Highlands Region, the age of the child, being in the wealth-
iest household, and having a larger or smaller birth size as the top five most important
characteristics for predicting stunting in children, reflecting the complexity of the causes of
stunting. Critical findings of the study include the following.

Firstly, the study found that children residing in the Highlands Region were at a
very high risk of stunting, and stunting was also most prevalent in the region (58.97%),
which is similar to the findings of an earlier study using the 2009–2010 PNG HIES [19].
Food insecurity is one of the key underlying causes of child malnutrition [34]. In the
Highlands Region, children are extremely vulnerable to food insecurity caused by events
such as extreme weather and social conflict [62,63]. Long-term food deprivation [64] is
associated closely with chronic malnutrition. Diets in the Highlands excessively rely on
mono-foods (such as starchy foods like sweet potatoes and sago, among others) [63,65], and
nutritionally unbalanced feeding practices could also contribute to linear growth deficits in
children [14,64].

Secondly, the study highlights the strong association between household wealth, child
age, and stunting. Children from wealthier households face a lower risk of stunting, which
is potentially due to their better resilience against food insecurity [66], improved access
to healthcare facilities [67], and ability to access high-protein foods [68,69]. Furthermore,
the study observed a rapid increase in the risk of stunting in children aged 0–24 months,
which is in line with previous cross-country studies [3]. This emphasized the urgency of
early intervention to prevent stunting from exacerbating the cycle of deprivation, especially
among the most vulnerable groups of children living in poverty [70].
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Finally, the study underscores the significance of birth size in determining a child’s
growth potential. A smaller birth size is associated with a higher risk of stunting in
children, while a larger birth size is a protective factor. Maternal malnutrition during
pregnancy could be a potential cause of smaller birth sizes, leading to altered fetal and
placental growth patterns and contributing to impaired fetal growth [71,72]. Existing
studies have emphasized the importance of intrauterine health in preventing stunting in
children [73]. Therefore, it is necessary to focus on and improve the nutritional status of
pregnant women and women of childbearing age (15–49 years) in PNG. However, it is
important to emphasize that exploring the relationship between birth size and stunting still
requires caution due to the subjective assessment of the child’s birth size by mothers.

Moreover, being female, mothers’ exposure to mass media, mothers’ secondary edu-
cation level, and their partners’ higher education level were discovered to be protective
factors against stunting. Evidence from the Highlands Margins of PNG suggests that gen-
der heterogeneity in stunting may be attributed to girls’ growth strategies, which prioritize
growth over maintenance to meet future reproductive potential [74]. Meanwhile, mothers
and their partners with high levels of education were likely to have better incomes, leading
to improved nutrition for their children [75]. And mothers exposed to mass media were
more likely to acquire knowledge about proper modern healthcare practices and correct
inappropriate attitudes [76].

In conclusion, our results show that the combination of ML and FS techniques provides
a better classification of stunting. After BO-BPR hyperparameter tuning with 10-fold cross-
validation, the LASSO-XGBoost model achieved the best predictive performance compared
to traditional logistic regression (LR) (AUC: 0.765; 95% CI: 0.714–0.819). Particularly, LASSO
and RF-RFE facilitated efficient ML learning by removing redundant, noisy information,
resulting in a substantial dimensionality reduction of 59.6% and 47.4%, respectively. Thus,
we suggest prioritizing the best combination of LASSO and XGBoost when stunting in
PNG children is a central concern for prediction.

This study had several important strengths. Firstly, the data were derived from the
nationally representative PNG DHS 2016–2018. Secondly, the study used ML algorithms
and FS techniques to make better predictions, which have not been widely used in related
research in PNG and could provide lessons for researchers conducting research on similar
topics in PNG and other Pacific Island countries. Nevertheless, some potential limitations
remain. Firstly, the SHAP value method employed in the study provided correlation
analysis but could not establish causal inferences; therefore, the interpretability of the
results is still limited. Secondly, although we tried to include as comprehensive a set of
variables as possible, we could not exclude residual confounding caused by unmeasured
variables such as the mother’s height and weight. Moreover, some of the children’s
information was derived from their mother’s recollections (for instance, the occurrence of
diarrhea and fever in the child in the last two weeks), and there may be a recollection bias.

5. Conclusions

Based on cross-sectional data from the nationally representative PNG DHS 2016–2018,
this study used the ML algorithm with FS techniques to identify the optimal model and
crucial factors for predicting stunting in children under five years of age in PNG. The results
show that the combination of LASSO and XGBoost had the best predictive performance.
Living in the Highlands Region, the child’s age, being in the richest household, and
having a larger or smaller birth size emerged as the top five important characteristics for
predicting stunting. The findings emphasize the importance of early-life interventions to
prevent stunting, especially for the most vulnerable groups of children in the marginalized
Highlands Region. Therefore, there is an imperative for more robust public health policies
and interventions aimed at enhancing maternal nutrition and disseminating accurate
knowledge of modern healthcare practices to promote maternal and child health and
well-being in PNG.
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