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Abstract: Background: We aimed to conduct a systematic review and Bayesian model-averaged meta-
analysis (BMA) on the association between platelet counts and severe retinopathy of prematurity
(ROP). Methods: We searched for studies reporting on platelet counts (continuous variable) or
thrombocytopenia (categorical variable) and severe ROP or aggressive posterior ROP (APROP). The
timing of platelet counts was divided into Phase 1 (<2 weeks) and Phase 2 (around ROP treatment).
BMA was used to calculate Bayes factors (BFs). The BF10 is the ratio of the probability of the data
under the alternative hypothesis (H1) over the probability of the data under the null hypothesis
(H0). Results: We included 21 studies. BMA showed an association between low platelet counts and
severe ROP. The evidence was strong (BF10 = 13.5, 7 studies) for phase 1 and very strong (BF10 = 51.0,
9 studies) for phase 2. Thrombocytopenia (<100 × 109/L) in phase 2 was associated with severe ROP
(BF10 = 28.2, 4 studies). Following adjustment for publication bias, only the association of severe ROP
with thrombocytopenia remained with moderate evidence in favor of H1 (BF10 = 4.30). Conclusions:
Thrombocytopenia is associated with severe ROP. However, the evidence for this association was
tempered when results were adjusted for publication bias.

Keywords: thrombocytopenia; platelets; retinopathy of prematurity

1. Introduction

Retinopathy of prematurity (ROP) is a serious complication of preterm birth that can
cause severe vision loss or blindness if untreated [1,2]. Despite improvements in neonatal
care, ROP remains challenging for neonatologists and ophthalmologists because it requires
early detection and intervention to prevent visual impairment. In order to develop effective
screening strategies and treatment plans, a comprehensive understanding of the risk factors
and underlying mechanisms of ROP is essential [1,2].

The etiopathogenesis of ROP is multifactorial and involves both intrinsic and envi-
ronmental factors. The two main risk factors for developing ROP are prematurity degree
and supplemental oxygen exposure [1,2]. In addition, many other factors, such as biolog-
ical sex, genetic predisposition, perinatal infection/inflammation, or pre- and postnatal
malnutrition, have been associated with the risk of developing ROP [1–5].

Data from both pre-clinical and clinical studies suggest that platelets may play a role in
the pathogenesis of ROP [6–10]. The emerging role of platelets as carriers of key angiogenic
regulatory proteins in their α-granules is the main rationale for platelet involvement in
the development of ROP [8]. A growing number of cohort and case-control studies have
examined the potential association between platelet counts and the risk of ROP. Data from
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some of these studies suggest an association between thrombocytopenia and the risk of de-
veloping severe ROP [6,7,9,10]. Seliniotaki et al. conducted a systematic review in 2022 that
included 19 studies on this topic [8]. Although they found evidence for thrombocytopenia
as a risk factor for ROP, the heterogeneity in study design, subject characteristics, case and
control definitions, time points for platelet evaluation, and thrombocytopenia definition led
them to decide not to carry out a meta-analysis [8]. However, some patterns of homogeneity
can be observed in the studies included in the systematic review by Seliniotaki et al., as
well as in studies published subsequently. This would allow a quantitative analysis of the
association between platelet counts and ROP. Our current objective is to perform such a
meta-analysis using a Bayesian approach.

Meta-analysis is usually carried out in the classical or frequentist framework, but
Bayesian meta-analysis provides a number of advantages and has recently gained an
increasing amount of interest in the biomedical sciences [11,12]. Bayesian meta-analysis is
particularly appropriate when there is a small number of studies. Furthermore, Bayesian
analysis allows the quantification of the evidence for two or more hypotheses. The Bayes
factor (BF) is a way of quantifying the relative degree of support for a hypothesis in a
data set and is the primary tool used in Bayesian inference for hypothesis testing [12–16].
Specifically, one may obtain evidence in favor of the null hypothesis (H0), evidence in favor
of the alternative hypothesis (H1), or absence of evidence (when both hypotheses predict the
data about equally well) [12–16]. In contrast, the p-value from classical frequentist methods
cannot discriminate evidence of absence from absence of evidence [12–16]. Therefore,
the Bayesian framework can provide a broader and arguably more informative set of
interpretations compared with classical frequentist analysis.

2. Materials and Methods

The methodology of this study is based on previous meta-analyses conducted by our
group on thrombocytopenia as a risk factor for patent ductus arteriosus [17] and risk fac-
tors for ROP [3–5]. The study was conducted and reported according to the PRISMA
(Preferred Reporting Items for Systematic Reviews and Meta-Analyses) and MOOSE
(Meta-Analyses of Observational Studies in Epidemiology) guidelines. The protocol of
the review was registered in the PROSPERO International Register of Systematic Reviews
(ID = CRD42021248183). The research question was “Are lower platelet counts associated
with an increased risk of developing severe ROP in very and extremely preterm infants?”

2.1. Sources and Search Strategy

We searched PubMed, Embase, and Web of Science databases. The details of the search
strategy are depicted in Table S1. The literature search was updated up to June 2023.

2.2. Study Selection and Definitions

We included studies if they had a prospective or retrospective cohort or case-control
design, examined very preterm (GA ≤ 32 weeks) or very low birth weight (<1500 g) infants,
and included data on the association between platelet counts or other platelet parameters
and rate of severe ROP. Severe ROP was defined as prethreshold disease type 1 according
to the ETROP criteria, or as any ROP requiring treatment [18]. Aggressive posterior ROP
(APROP) was analyzed as a separate category [19].

With regard to the timing of platelet determinations, and because ROP is a two-phase
disease, two time periods were established to categorize the information. Phase 1 included
platelet counts performed in the first 2 weeks of life or before 30 weeks postmenstrual age
(PMA). Phase 2 included platelet counts performed after 4 weeks of age, 30 weeks PMA, or
in the days surrounding the diagnosis and/or treatment of ROP.

2.3. Extraction od Data and Study Quality Assessment

Three investigators (MA, TH, EV) extracted data on characteristics of the studies,
platelet counts, and rates of ROP and thrombocytopenia. A second group of investigators
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(SG, GC) checked the data extraction for completeness and accuracy. The methodological
quality of the included studies was assessed using the Newcastle–Ottawa Scale (NOS) for
cohort or case-control studies [20].

2.4. Statistical Analysis

The effect size of dichotomous variables (e.g., thrombocytopenia) was expressed as log
odds ratio (logOR), while the effect size of continuous variables (e.g., platelet counts) was
expressed using Hedges’ g. The values of logOR or Hedges’ g and the corresponding stan-
dard errors of each individual study were calculated using comprehensive meta-analysis
V4.0 software (Biostat Inc., Englewood, NJ, USA). The results were further pooled and
analyzed using a Bayesian model-averaged (BMA) meta-analysis [15,16]. The BMA was
performed in JASP, which utilizes the metaBMA R package [21,22]. BMA employs BFs
and Bayesian model-averaging to evaluate the likelihood of the data under the combi-
nation of models assuming the presence vs. the absence of the meta-analytic effect and
heterogeneity [15,16]. The BF10 is the ratio of the probability of the data under H1 over the
probability of the data under H0. For the interpretation of the BF10, we used the evidence
categorization described by Lee & Wagenmakers [23] (Figure 1). The BFrf is the ratio of
the probability of the data under the random effects model over the probability of the data
under the fixed effects model. The categorization of the evidence in favor of the random
effects (BFrf > 1) or the fixed effects (BFrf < 1) was similar to the one used for BF10. We used
the empirical prior distributions based on neonatal studies from the Cochrane Database of
Systematic Reviews [16,19,20]; i.e., prior distributions for continuous outcomes (Hedges’ g)
corresponded to mu ~ Student’s t (µ = 0, σ = 0.42, ν = 3), tau ~ Inverse-Gamma (k = 1.68,
θ = 0.38), while prior distributions for dichotomous outcomes (logOR) corresponded to mu
~ Student’s t (µ = 0, σ = 0.29, ν = 3), tau ~ Inverse-Gamma (k = 1.80, θ = 0.42) [12,15,16].
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We used robust Bayesian meta-analysis (RoBMA) to assess the robustness of the results
to the potential presence of publication bias [24]. RoBMA extends the Bayesian model-
averaged meta-analysis by the two major publication bias adjustment techniques: selection
models (adjusting for the publication bias operating on p-values) [25] and precision-effect
test and precision-effect estimate with standard errors (PET-PEESE, adjusting for the rela-
tionship between effect sizes and standard errors) [26]. The resulting RoBMA ensemble
contains 36 models composed of the following assumptions about the presence vs. absence
of the effect (2×), presence vs. absence of between-study heterogeneity (2×), and presence
vs. absence of publication bias adjustment models (6 selection models, PET, PEESE, and no
bias). We used RoBMA with the same prior distributions for the effect and heterogeneity
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as in BMA and the default prior distributions for the publication bias adjustment part.
Publication bias was expressed as BFbias using the same categories for evidence previously
described for BF10 and BFrf.

3. Results
3.1. Characteristics of the Studies and Risk of Bias Assessment

The search process PRISMA flow diagram is depicted in Figure S1. Of 2645 studies
with potential relevance, 21 were included [6,7,9,10,27–43]. These studies reported on
3625 infants. The characteristics of the included studies are shown in Table S2. The risk of
bias assessment is depicted in Table S2. Twenty studies received scores above seven points,
indicating a low risk of bias. One study [39] was only published as an abstract, and risk of
bias could not be fully assessed.

3.2. Bayesian Meta-Analysis

Table 1 summarizes the results of the BMA. Regarding platelet counts as the con-
tinuous variable, BMA showed that the evidence in favor of H1 (presence of association
between a lower platelet count and severe ROP) was strong in phase 1 (BF10 = 13.5, 7 studies,
Figure 2A) and very strong in phase 2 (BF10 = 51.0, 9 studies, Figure 2B). Regarding throm-
bocytopenia (<100 × 109/L), BMA showed moderate evidence in favor of H1 (association
with severe ROP) in phase 1 (BF10 = 6.01, 3 studies, Figure 3A) and strong evidence in
phase 2 (BF10 = 28.2, 4 studies, Figure 3B). In addition, the BMA showed strong evidence
in favor of an association between severe ROP and platelet transfusions (BF10 = 12.0,
5 studies, Figure 3C). The BMA showed inconclusive evidence in favor of H0 for the as-
sociation between severe ROP and both mean platelet volume (MPV) and Platelet Mass
Index (PMI) in both phases (Figure 4). Regarding APROP, the BMA showed inconclu-
sive evidence for the association with platelet counts, thrombocytopenia, and platelet
transfusions (Table 1, Figure 5).

The RoBMA results are shown in Table 2. The RoBMA showed moderate evidence
in favor of publication bias for the associations between severe ROP and platelet counts
in phase 1 (BFbias = 3.28) and between APROP and thrombocytopenia (BFbias = 8.98). In
addition, RoBMA showed strong evidence in favor of publication bias for the associations
of severe ROP with platelet counts in phase 2 (BFbias = 12.40) and platelet transfusions
(BFbias = 11.65). Following adjustment for publication bias, the RoBMA showed moderate
evidence in favor of H1 for the association between severe ROP and thrombocytopenia
(BF10 = 4.30, 4 studies, Table 2). In all other meta-analyses, the adjustment for publication
bias tempered the evidence to inconclusive (Table 2).
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Table 1. Bayesian model-averaged meta-analysis (BMA) of the association between platelet counts and ROP.

Condition Variable Phase k Effect Size SD

95% Credible
Interval

BF10

Evidence for p-Value
Frequentist

nalysis a
BFrf

Evidence for

Lower
Limit

Upper
Limit H1 H0

Random
Effects

Fixed
Effects

Severe
ROP

Platelet counts
1 7 Hedges’ g −0.26 0.09 −0.42 −0.10 13.5 strong <0.001 0.79 weak

2 9 Hedges’ g −0.34 0.10 −0.55 −0.15 51.0 very
strong <0.001 2.75 weak

Thrombocytopenia
(<100 × 109/L)

1 3 Log OR 0.59 0.31 −0.03 1.19 6.01 mod. <0.001 1.33 weak

2 4 Log OR 1.17 0.36 0.29 1.79 28.2 strong <0.001 1.00 weak

PMI
1 4 Hedges’ g −0.12 0.12 −0.35 0.15 0.49 weak 0.14 1.10 weak

2 2 Hedges’ g 0.01 0.24 −0.54 0.45 0.48 weak 0.50 3.47 mod.

MPV
1 4 Hedges’ g −0.05 0.16 −0.36 0.29 0.36 weak 0.32 4.95 mod.

2 4 Hedges’ g −0.04 0.21 −0.48 0.37 0.42 weak 0.88 257.0 extr.

Platelet
transfusion both 5 Log OR 0.78 0.30 0.06 1.30 12.0 strong <0.001 2.72 weak

APROP

Platelet counts 2 3 Hedges’ g −0.30 0.31 −0.93 0.33 1.20 weak 0.55 6.54 mod.

Thrombocytopenia
(<100 × 109/L) 2 2 Log OR 0.86 0.88 −0.27 3.03 2.34 weak <0.001 1.32 weak

Platelet
transfusion both 2 Log OR 0.10 0.32 −0.50 079 0.90 weak 0.51 0.74 weak

a Random effects frequentist meta-analysis.
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Figure 4. Bayesian model-averaged meta-analysis (BMA) of the association of severe ROP with mean
platelet volume (MPV) in phase 1 (A) and phase 2 (B), and with Platelet Mass Index (PMI) in phase 1
(C) and phase 2 (D). Hedges’ g < 0 indicates lower value in the ROP group [29,31,35,39,41–43].
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Figure 5. Bayesian model-averaged meta-analysis (BMA) of the association of aggressive posterior
ROP (APROP) with platelet counts in phase 2 (A), thrombocytopenia in phase 2 (B), and platelet
transfusions (C). Hedges’ g < 0 indicates lower value in the APROP group. Log OR > 0 indicates
higher risk in the APROP group [9,34,37].

Table 2. Robust Bayesian meta-analysis (RoBMA) of the association between platelet counts and ROP.

Condition Variable Phase k Effect Size

95% Credible
Interval

BF10 BFrf BFbias
Lower
Limit

Upper
Limit

Severe
ROP

Platelet counts
1 7 Hedges’ g −0.18 −0.41 0.18 1.17 0.74 3.27

2 9 Hedges g −0.14 −0.46 0.32 0.64 0.95 12.4

Thrombocytopenia
(<100 × 109/L)

1 3 Log OR 0.45 −0.20 1.10 2.75 1.43 1.86

2 4 Log OR 0.83 −0.14 1.67 4.30 1.24 2.00

PMI
1 4 Hedges’ g −0.09 −0.34 0.20 0.43 0.95 0.77

2 2 Hedges’ g 0.10 −0.42 0.71 0.52 2.23 1.34

MPV
1 4 Hedges’ g −0.02 −0.33 0.35 0.34 3.71 0.70

2 4 Hedges’ g 0.07 −0.44 0.63 0.55 118.1 1.22

Platelet transfusion both 5 Log OR 0.28 −0.38 1.07 1.21 1.99 11.65

APROP

Platelet counts 2 3 Hedges’ g −0.21 −0.81 0.49 1.01 4.91 1.18

Thrombocytopenia
(<100 × 109/L) 3 2 Log OR 0.30 −0.54 1.86 1.20 1.10 8.98

Platelet transfusion both 2 Log OR 0.04 −0.63 0.76 0.90 0.85 0.70
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4. Discussion

This is the first meta-analysis of the association between platelets and ROP. The BMA
showed moderate to strong evidence in favor of an association between low platelet counts
and the risk of developing severe ROP. However, association does not imply causation.
Low platelet counts may be merely a proxy for some pathological conditions, such as
infectious-inflammatory events, which have been demonstrated to drive the increased risk
of developing severe ROP. In addition, the RoBMA showed that there was moderate to
strong evidence of small study effects/publication bias in many of the meta-analyses. The
evidence for an association between low platelet counts and ROP was tempered when the
results were adjusted for such bias, but the RoBMA found moderate evidence in favor of
an association of late thrombocytopenia with the risk of severe ROP.

The small study effect is a generic term referring to the phenomenon that smaller
trials may show different, and often larger, effects than larger trials [24,44–46]. This inverse
relationship between study size and effect size may be an indication of non-reporting or
publication bias. This is because studies with “statistically significant” results are often
more likely to be submitted by authors and published by journals than studies with “non-
significant” results [24,44–46]. Unfortunately, because we cannot know the unreported
results or the exact mechanism of omission, a perfect solution to the problem of potential
missing studies is impossible [24]. Funnel plots have long been used to assess the possibility
of missing results in a meta-analysis [46]. However, statistical tests based on funnel plots
require careful interpretation, especially when the number of studies included in the
meta-analysis is small. In fact, in the Cochrane Handbook for Systematic Reviews of
Interventions, the authors state that “as a rule of thumb, tests for funnel plot asymmetry
should be used only when there are at least 10 studies included in the meta-analysis,
because when there are fewer studies the power of the tests is low” [46]. None of the meta-
analyses included in our study would be suitable for publication bias analysis according to
this recommendation.

To adjust for likely publication bias from patterns observed in the reported research
record, several methods are available [24]. An alternative method is to explicitly integrate
the various approaches and to let the data determine the contribution of each model on
the basis of its relative accuracy in predicting the observed data [24,47]. The RoBMA
simultaneously applies a series of meta-analytic models to the data and estimates the effect
size by taking all models into account. Therefore, the RoBMA can quantify evidence for the
presence as well as the absence of publication bias and can correct for publication bias in
cases where the true effect size differs between studies [24,47].

The present results of the RoBMA suggest that the association between platelets and
ROP is overestimated by the included studies. The first call for attention to a possible
association between platelet count and ROP came from the study by Vinekar et al. [9].
Since then, several groups have attempted to reproduce these results. It is plausible to
speculate that those who did not find “statistically significant” results were discouraged
from submitting them or had more difficulty getting them published. However, it should
be noted that after adjusting for publication bias, there was still moderate evidence of an
association between thrombocytopenia and ROP.

As mentioned in the introduction, the biological plausibility for a role of platelets
in the pathogenesis of ROP is based on the capacity of activated platelets to release pro-
and anti-angiogenic mediators [8]. Among these molecules are vascular endothelium
growth factor (VEGF) and insulin-like growth factor-1 (IGF-1). However, one of the major
difficulties in understanding the potential role of platelet-released angiogenic mediators
in the pathogenesis of ROP is the biphasic nature of the disease. Phase 1 ROP is due to
the cessation of vascularization and loss of normal vessels, which begins immediately
after birth and is secondary to an oxygen-induced decrease in VEGF and IGF-1 [1]. Phase
2 extends from 30 to 32 weeks postmenstrual age to term. During this phase, VEGF levels
increase, especially when there is retinal hypoxia with an increase in retinal metabolism
and oxygen demand, leading to abnormal vascular proliferation [1]. Therefore, it is difficult
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to explain how, if activated platelets are VEGF releasers, a low number could favor the
development of ROP in phase 2, which is characterized by a pathological increase of this
mediator. In phase 1, when there are low levels of pro-angiogenic factors, a pathogenic role
of thrombocytopenia in ROP would be more understandable. However, our meta-analysis
suggests that the evidence in favor of the association of severe ROP with thrombocytopenia
is stronger in phase 2.

Unfortunately, the absence of data has prevented us from conducting a meta-analysis
on the association of severe thrombocytopenia and ROP. Thrombocytopenia in the adult
is classified as mild (<150 to 100 × 109/L), moderate (<100 to 50 × 109/L), or severe
(<50 × 109/L), but the validity and clinical relevance of these values for the very and
extremely preterm infant remains unclear. Mild and moderate thrombocytopenia is very
common in preterm infants. It can be divided into early thrombocytopenia, which oc-
curs within the first 72 h of life, and late thrombocytopenia, which occurs after the first
72 h of life [48,49]. Early thrombocytopenia is associated with intrauterine growth restric-
tion (IUGR), whereas late thrombocytopenia is mainly related to sepsis and necrotizing
enterocolitis (NEC) [48,49]. It is interesting to note that IUGR [50–52], neonatal infec-
tions [37,53,54], and NEC [53,55] are associated with an increased risk of severe ROP. This
again raises the question of whether thrombocytopenia is an epiphenomenon rather than a
true pathogenic factor in developing ROP. Unfortunately, the low number of studies did not
allow us to conduct a subgroup analysis, a meta-regression, or any other type of sensitivity
analysis that could help to answer this question. In addition, adequate assessment of
potential confounders such as gestational age, birth weight, NEC, or sepsis would require
complete data from each individual study to conduct a meta-analysis of individual patient
data, which is beyond our scope.

Although information on the criteria for platelet transfusion was not available in the
included studies, it is common clinical practice to transfuse platelets only in the most
severe forms of thrombocytopenia [56]. Therefore, it could be speculated that platelet
transfusion is a surrogate for severe thrombocytopenia. The BMA showed strong evidence
of an association between platelet transfusion and severe ROP. However, the RoBMA found
evidence of publication bias, and after adjusting for this bias, the evidence in favor of
the association was downgraded to inconclusive. Of note, the clinical benefit of platelet
transfusions in preterm infants is under question [57,58]. A recent randomized controlled
trial compared two thresholds (50 × 109/L vs. 25 × 109/L) for platelet transfusion and
found that infants assigned to receive platelet transfusions at the higher threshold had a
higher rate of mortality or major bleeding than those who received platelet transfusions at
the lower platelet count threshold [57,58]. The rate of severe ROP did not differ between
the two thresholds [57,58].

Several investigators have suggested that other quantitative or qualitative platelet
parameters, such as MPV or PMI, rather than platelet counts, are associated with increased
risk of ROP and other prematurity complications, including sepsis, intraventricular hemor-
rhage, patent ductus arteriosus, or bronchopulmonary dysplasia [17,59–62]. Increased size
of platelets (i.e., high MPV) is recognized as a marker of platelet activation because small
platelets are less reactive than large platelets [63,64]. The PMI is the MPV multiplied by the
platelet count. It therefore takes into account both platelet size and number. Nevertheless,
no evidence of a possible association between severe ROP and both MPV and PMI was
found in our meta-analysis.

5. Conclusions

In conclusion, the present data suggest a possible association between low platelet
counts and severe ROP. However, our results are limited by publication bias and the fact
that thrombocytopenia may be or is merely a surrogate for other conditions, such as IUGR,
neonatal sepsis, or NEC, which increase the risk of developing ROP.
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