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Abstract: General linear modeling (GLM) has been widely employed to estimate the hemodynamic
changes observed by functional near infrared spectroscopy (fNIRS) technology, which are found to
be nonlinear rather than linear, however. Therefore, GLM might not be appropriate for modeling
the hemodynamic changes evoked by cognitive processing in developmental neurocognitive studies.
There is an urgent need to identify a better statistical model to fit into the nonlinear fNIRS data.
This study addressed this need by developing a quadratic equation model to reanalyze the existing
fNIRS data (N = 38, Mage = 5.0 years, SD = 0.69 years, 17 girls) collected from the mixed-order design
Dimensional Change Card Sort (DCCS) task and verified the model with a new set of data with the
Habit-DisHabit design. First, comparing the quadratic and cubic modeling results of the mixed-order
design data indicated that the proposed quadratic equation was better than GLM and cubic regression
to model the oxygenated hemoglobin (HbO) changes in this task. Second, applying this quadratic
model with the Habit-DisHabit design data verified its suitability and indicated that the new design
was more effective in identifying the neural correlates of cognitive shifting than the mixed-order design.
These findings jointly indicate that Habit-DisHabit Design with a quadratic equation might better
model the hemodynamic changes in preschoolers during the DCCS task.

Keywords: cognitive shifting; fNIRS evidence; modeling hemodynamic changes; dimensional change
card sort (DCCS) task; preschoolers

1. Introduction

Near-infrared spectroscopy (NIRS) technology is a portable and comfortable way to
measure the hemodynamic changes in targeted brain areas [1–3]. It can generate time-
sensitive data that can be analyzed using general linear modeling (GLM) to estimate the
changes in oxygenated hemoglobin (HbO) and deoxyhemoglobin (HbR) between the task
and baseline. For instance, Li et al. examined the effect of heavy tablet use on preschoolers’
executive function during the Dimensional Change Card Sort (DCCS) task using functional
NIRS (fNIRS) [4]. They conducted t-tests and GLM to compare the hemodynamic changes
in the non-user and the heavy user groups. They found a significant between-group
difference in activating the prefrontal cortex (Brodmann Area 9, BA 9). The ‘Non-user’
activation pattern was ‘normal and healthy’, whereas the ‘Heavy-user’ pattern was ‘not
normal and thus needs further exploration’ [4]. However, they presented no further statistical
evidence to demonstrate how ‘abnormal’ the ‘Heavy-user’ pattern was, as the GLM results
provided no details about the local maximum of HbO changes and their estimated time,
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making exact comparisons of the two ways impossible. In addition, the hemodynamic
changes over time in brain areas are a nonlinear rather than linear relationship; thus, the
GLM analysis conducted by Li et al. [4] might be inappropriate or even inaccurate. To solve
this problem, Li et al. [5] proposed a quadratic function to better model the hemodynamic
changes of the DCCS task, demonstrating a nonlinear U-shape paradigm. Still, they did
not compare the quadratic results against the GLM and the cubic equation analyses. Thus,
they could not conclude whether the quadratic equation would be better than GLM and
cubic equation results. To fill this gap, this study aimed to re-analyze the same data with a
quadratic and cubic equation to identify a better way to model the hemodynamic responses
in the DCCS task. Furthermore, the proposed quadratic equation was also applied to
analyze a set of DCCS data with a new design to verify its suitability and appropriateness.

1.1. Modeling Hemodynamic Changes with GLM

fNIRS technology allows us to monitor brain activation by measuring hemodynamic
changes, such as the concentration of HbO and HbR in targeted brain areas. The HbO
and HbR data are dynamic and changing over time; thus, advanced statistical analyses
are needed to examine this type of time-sensitive data [1–3]. However, no systematic and
standardized approaches were established in the first decade of this millennium; thus, NIRS
scientists had the liberty to choose the statistical methods they believed to be appropriate
and adequate. Schroeter et al. [6] initially proposed employing general linear modeling (GLM)
as the standard statistical approach to analyzing fNIRS data. Accordingly, Pouliot et al. [7]
concluded that GLM could be used as a legal analysis to examine fNIRS data for spikes and
seizures. In 2014, Tak and Ye [8] systematically reviewed the commonly used statistics such
as principal component analysis, independent component analysis, false discovery rate,
and inference statistics such as the standard t-test, F-test, analysis of variance, and statistical
parameter mapping framework. Eventually, they proposed adopting the GLM mixed-effect
model with restricted maximum likelihood variance estimation to model hemodynamic
changes [8].

Since then, employing GLM to estimate hemodynamic changes has become the stan-
dard inference statistic for fNIRS data. GLM empowers scientists to assess the subject,
channel, and task-specific evoked hemodynamic responses and to robustly separate the
evoked brain activity from systemic physiological interference using independent measures
of nuisance regressors [1–3]. In addition, GLM can significantly enhance the contrast-to-
noise ratio of the brain signal, improve feature separability, and ultimately lead to better
classification accuracy. In 2015, for example, Bonomini et al. [9] proposed and confirmed a
GLM-based new algorithm to statistically estimate the hemodynamic activations, with a
K-means method to cluster channels as activated or not activated. Later, Pinti et al. [10]
presented a novel analysis method based on the GLM least-squares fit analysis and verified
its accuracy and feasibility in modeling fNIRS data in naturalistic environments. Recently,
von Lühmann et al. [11] found that GLM could provide better single-trial estimates of brain
activity and a new feature type, such as the weight of the individual and channel-specific
hemodynamic response function regressor. However, the hemodynamic changes recorded
by fNIRS are nonlinear rather than linear; thus, GLM might not be an appropriate statistical
method. This study endeavored to identify a better statistical way by comparing quadratic
and cubic modeling results of the same DCCS fNIRS data.

1.2. Modeling Hemodynamic Changes in the DCCS Task

The DCCS task asks children to sort a set of two-dimensional (i.e., color and shape)
test cards (3.5 × 7.0 cm) according to the two target cards that match the former in one
dimension but not the other. Then, the children are asked to sort the test cards according
to one extent matching the target card (red/blue; shape: boat/rabbit). And the rule for
matching is changed according to the experimenter’s instruction (See Figure 1). Initially,
Morriguchi and his colleagues [12] conducted fNIRS studies on the DCCS task. They
conducted t-tests and correlation analyses to compare HbO changes between the task
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and baseline conditions. Recently, Moriguchi and Lertladaluck [13] and Xie et al. [14]
conducted the exact t-tests and correlation analyses of the HbO changes during the same
DCCS task. However, the results were contradictory: Moriguchi and Lertladaluck [13]
found no significant relationship between prefrontal activations and English proficiency,
whereas Xie et al. [14] found a significant correlation. This inconsistency indicated that
either the data analysis or the DCCS task paradigm employed by the two teams might need
to be revised in identifying the specific neural correlates responsible for cognitive shifting
of the DCCS task.
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Figure 1. The mixed-order design DCCS tasks [4,12,14]. It was a block design with a mixed order of
switching rules. The children performed three consecutive test sessions, each consisting of three rest
phases (20 s) and three testing phases (25 s). This mixed-order design prevented the children from
accurately predicting the switching rules and, thus, could not generate habituation.

Therefore, first, Li et al. [15] developed the “habituation–dishabituation paradigm of DCCS
task” (“Habit-Dishabit Design” hereafter) and proposed a more direct and critical indicator—
the “V shape by GLM” to identify cognitive shifting. As shown in Figure 2, this paradigm
has improved the arrangement of testing items to maximize the chances of habituation and
dishabituation in the participating children. In the pre-switch period (20′), the children
were asked to sort six or more cards using the same rule and thus tended to be habituated.
Then, they were asked to use the other rule to sort another set of cards (6 or more) in the
post-switch period (20′). The three sessions followed the same sorting rule as the second
period of the previous session: Session 1: color (6 cards) → shape (6 cards); Session 2:
shape (6 cards)→ color (6 cards); and Session 3: color (6 cards)→ shape (6 cards). The
children tended to be habituated when they anticipated that the second round of sorting
cards should follow the same rule. In other words, this paradigm helped to trigger the
occurrence of habituation and dishabituation. Second, they [15] proposed a pair of GLMs
to estimate HbO changes (∆HbO) for the pre- and post-switch periods, using the same
regression formula:

Y∆HbO = a pre-switch or post-switch X time + b + ε. (1)
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In this GLM equation, X time refers to the response time and Y predicts each channel’s
hemodynamic changes (∆HbO). A perfect V-shape could be verified if the a pre-switch is
negative (−a), whereas the a post-switch is positive (+a), and both models are significant.
The corresponding channel was identified as the neural correlate of ‘cognitive shifting’ [15].
Using this new paradigm, they found a V-shape in BA 6, BA 8, BA 9, BA 10, BA 40, and BA
44, which should be regarded as the neural correlations of cognitive shifting during the
DCCS task [15].

1.3. The Context of This Study

Recently, Li et al. [4] adopted the mixed-order design DCCS and GLM by Moriguchi
and Lertladaluck [12] and Xie et al. [13] to examine the impact of tablet use on preschoolers’
executive function. Using the V-shape by GLM (Equation (1)), they found that the non-
users outperformed the heavy users with a significantly higher correct rate in the DCCS
task. And the two groups differed significantly in the activation of BA 9 (ch 16), indicating
that the Non-user pattern was ‘normal and healthy’ [4]. In contrast, the heavy user pattern
was ‘not normal and needs further exploration’. However, the hemodynamic changes in each
channel should be a kind of nonlinear relationship [1–3]. In addition, the V-shape by GLM
was analyzed and confirmed using a pair of GLMs (Equation (1)): one for the pre-switch
period and the other for the post-switch period. This might not be appropriate for modeling
the continuous HbO changes evoked by cognitive processing during the DCCS task. The
children’s hemodynamic responses are continuous and indivisible during the two periods.
Therefore, Li et al. [5] proposed a quadratic function (Equation (2)) to better model the
hemodynamic changes of the DCCS task:

Y∆HbO = aX2
time + bXtime + c + ε(error term) (2)

In particular, ∆HbO refers to the HbO changes between the task and baseline, ε is
randomly distributed with a mean of zero, and Xtime refers to the experiment time [14]. Thus,
if a > 0, the curve is a typical U-shape; if a = 0, the quadratic function does not exist, indicating
a linear relationship that GLM could model; and if a < 0, the curve is a reversed U-shape.

However, Li et al. [5] did not compare the quadratic results against GLM and the
cubic equation analyses, thus failing to identify the best model. Therefore, in this study, we
hypothesized that this U-shaped curve by the quadratic function might be more statistically
appropriate for modeling hemodynamic changes in the DCCS task than the V-shape by
GLM [14]. In addition, we also hypothesized that the “Habit-DisHabit Design” might be
more appropriate for identifying the neural correlates of cognitive shifting. Accordingly,
this study is dedicated to addressing the following questions:

1. Is a quadratic equation better than GLM and cubic equations to model the hemody-
namic changes caused by cognitive shifting in the DCCS task?

2. Is mixed-order design better than Habit-DisHabit design to identify cognitive shifting in
the DCCS task?

2. Materials and Methods
2.1. Participants

This study first re-analyzed the fNIRS data from Li et al. [4], which recruited 38 children
(ages 4 to 6.3 years, Mage = 5.0 years, SD = 0.69 years, 17 girls, 21 boys). Please refer to Li
et al. [4] for sample details. Then, we applied the quadratic equation to analyze fNIRS data
collected from the same sample with a new experiment design: the Habit-DisHabit Design
DCCS Task. According to Li et al. [4], their parents consented and completed the survey to
help identify the heavy users or non-users of tablets at home. Eight children never used
tablets; thus, they were included in the ‘Non-user’ group (two girls and six boys). About
16 (12 girls and 4 boys) children were classified into the ‘Heavy-user’ group” because
(1) their daily screen time was more than the mean level (M = 17.98 min, SD = 14.29);
(2) their tablet use was neither regulated nor limited; and (3) they carried out multiple
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activities with tablets. In particular, all the participating children were recruited from
one public kindergarten in a middle-class Shenzhen community. Their parents and class
teachers reported no problems in the children’s neurological or general physical and mental
health status. They conducted a post hoc power analysis on G*Power 3.1, using a two-tailed
test, a medium effect size (d = 0.50), and an alpha of 0.05 and found that the results could
achieve a power of 0.32 [4].

2.2. Experimental Paradigm and Instructions
2.2.1. The Mixed-Order Design DCCS Task

This task included 2 target cards and 24 test cards, each different in shape and color.
One pair of target trays was used for the three consecutive test sessions, and each session
consisted of a rest (20 s) phase and a mix (25 s) phase. During the rest phase, the children
were asked to be still, doing nothing. As shown in Figure 1, the children were asked to sort
the cards according to the instructed rule (color or shape) during the mix phase. The children
were given the rule before each trial. Then, in each block, the rule-changing order was
fixed and mixed: shape, shape, color, shape, shape, color, shape, shape (a total of 8 cards
per block). This fixed order was applied to all the participants to overcome habituation,
resulting in more color-to-shape switches in total [4]. For details about this mixed-order
design’s experimental paradigm and instructions, please refer to Li et al. [4].

2.2.2. The Habit-DisHabit Design DCCS Task

This task is different from the mixed-order design. As shown in Figure 2, the children
were asked to sort eight to twelve cards using the same rule within the pre-switch period
(20 s). Then, they were asked to use the other rules to sort another eight to twelve cards
within the post-switch period (20 s). The three sessions followed the same sorting rule as
the second period of the previous session: Session 1: color (20 s)→ shape (20 s); Session
2: shape (20 s)→ color (20 s); and Session 3: color (20 s)→ shape (20 s). This design was
inductive to cognitive habituation and dishabituation by repeating the changing rules in
the pre-switch period [15]. For details about this design’s experimental paradigm and
instructions, please refer to Li et al. (2021) [15].

2.3. System and Acquisition
2.3.1. The fNIRS System

In Li et al.’s studies [4,15] and this study, the same multiple-channel fNIRS system
(Oxymon Mk III, Artinis, The Netherlands) and child caps were used to simultaneously
measure the concentration changes in HbO, HbR, and total hemoglobin (HbT) in the partici-
pants. In particular, both studies employed child caps accompanied by the NIRS instru-
ment, which digitized the optode positions, corresponding to Brodmann areas, as shown in
Figure 3. An experienced NIRS technician conducted cap placement, hair manipulation
and tossing, and optode installation (based on the 10/20 system). This process usually took
10 min, during which the participant was engaged in storybook reading with an experi-
enced preschool teacher. For details, please refer to Li et al. [4].

2.3.2. Data Acquisition

Two wavelengths in the near-infrared range (i.e., 760 nm and 850 nm) were used to
measure the changes in optical density and were then converted into changes in the concen-
tration of HbO and HbR using the modified Beer–Lambert law [4,14]. The 17 channels were
located following the international 10/20 system for EEG, as shown in Figure 1 of Li et al.
(2021) [4], with a 2.5 cm distance between each paired emitter and detector. In particular,
the region of interest (ROI) was located at Brodmann areas (BAs) 6/8/9/10/40/44 [4]. In
particular, as shown in Figure 3, channels 1 and 9 were located in BA 6, channels 13, 15,
and 17 were located in BA 10, channel 10 was located in BA 8, channels 11, 12, 14, and 16
were located in BA 9, channel 4 was located in BA 40, and channels 2, 3, 5, 6, and 7 and 8
were located in the right inferior frontal gyrus (BA 44).
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Figure 3. Localization of regions of interest [4,6,14]. The red and blue solid circles present the light
sources and the probes, respectively. The numbers on the small spheres on the brain map indicate
the 17 channels (ch). Channel localization was based on the upper central probe, anchored at Fz
according to the international 10–20 system and located at the midpoint between channels 11 (ch 11)
and 12 (ch 12). Ch 1 and ch 9 were located in Broadmann area (BA) 6, ch 10 was located in BA 8, ch
11, ch 12, ch 14, and ch 16 were located in BA 9, ch 13, ch 15, and ch 17 were located in BA 10, ch 4
was located in BA 40, and ch 2, ch 3, ch 5, ch 6, ch 7, and ch8 were located in the right IFC (BA 44).

2.3.3. Data Analysis

In Li et al. [4,15] and this study, the mean of the z-scores (HbO and HbR) was calculated
for each DCCS task block separately for each participant. Then, the mean of the z-scores
(HbO and HbR) was calculated by averaging across the three task blocks for each participant.
Finally, the means of the z-scores (HbO and HbR) across all channels were compared using t-
tests between the ‘Non-user’ and the ‘Heavy-user’ groups using SPSS. Li et al. [4] conducted
GLM analysis predicting z-scores (HbO and HbR) in channel 16 in R (Y∆HbO = aXtime + b+ ε)
[Equation (1)]. This study explored two sets of polynomial regression to better fit the
nonlinear relationship between the hemodynamic changes and the experiment time. The
first set was a quadratic equation using R [Y∆HbO = aX2

time + bXtime + c + ε(error term)]
[Equation (2)]. If a > 0, the curve is a typical U-shape; if a = 0, the quadratic function does
not exist, indicating a GLM linear relationship; and if a < 0, the curve is a reversed U-shape.
The second set was a cubic equation analysis using the following equation:

Y∆HbO = aX3
time + bX2

time + cXtime + d + ε(error term) (3)

If a = 0, the cubic function does not exist, indicating that a quadratic equation or GLM
(if b = 0) should be considered. This study would compare the statistical results of the three
equations (Equations (1)–(3)) and identify the best-fit model.

3. Results
3.1. Comparison of the Quadratic and Cubic Modeling Results

First, as shown in Table 1 and Figure 4, the quadratic analysis results for the non-user
group indicated that: (1) a U-shaped curve (a > 0) was observed in nine channels (ch 1, 2, 5,
6, 7, 8, 9, 11, and 14), and the quadratic model could significantly explain 7.5% to 94.3% of
the variance in HbO, R2s > 0.075, Fs > 5.94, ps < 0.001; (2) the quadratic model did not exist
in channels 3 and 4 (a = 0), R2s > 0.66, Fs = 145.65, ps < 0.001, whereas GLM applied; and
(3) a reversed U-shaped curve (a < 0) was observed in channels 10, 12, 13, 15, 16, and 17,
R2s > 0.27, Fs > 27.27, ps < 0.001. The significant R2s, F-values and p-values jointly indicated
that the U-shaped curve was found for BA 6 (ch 1 and 9), BA 9 (ch 11 and 14), and BA 44 (ch
2, 5, 6, 7, and 8), which were involved in cognitive shifting. Only two channels (ch 3 and 4)
could not be estimated by this quadratic equation modeling. Next, a set of cubic equation
analyses was conducted for the non-user group, with X3 as the cubic term in addition to X2

as the quadratic term and X as the linear term. However, as shown in Table 2, the results for
the non-user group indicated that only two channels (ch 11 and 13) could apply to the cubic
regression (a 6= 0). All other channels should be modeled with a quadratic equation (a = 0).
These results indicated that the proposed quadratic equation might be more appropriate
than the cubic equation to analyze the DCCS data collected in this study.



Children 2023, 10, 1574 7 of 17

Table 1. The quadratic modeling results for the non-user group.

Model Summary Regression Estimates Quadratic
R2 F Sig. c b a

Ch 1 0.566 96.041 0 −0.107 −0.108 0.004
√

Ch 2 0.943 1217.46 0 0.219 −0.271 0.011
√

Ch 3 0.846 405.072 0 −0.465 −0.033 0 GLM
Ch 4 0.665 145.654 0 −1.149 0.065 0 GLM
Ch 5 0.358 41.019 0 −0.574 0 0.001

√

Ch 6 0.353 40.048 0 −0.185 −0.049 0.002
√

Ch 7 0.729 198.044 0 −0.492 −0.076 0.004
√

Ch 8 0.832 363.664 0 −0.652 −0.121 0.005
√

Ch 9 0.075 5.941 0.003 −0.158 −0.037 0.001
√

Ch 10 0.636 128.357 0 −0.05 0.08 −0.003
√

Ch 11 0.358 40.957 0 −0.211 0.008 0.001
√

Ch 12 0.352 39.98 0 0.32 0.028 −0.001
√

Ch 13 0.271 27.279 0 0.027 0.114 −0.004
√

Ch 14 0.807 307.87 0 0.357 −0.097 0.001
√

Ch 15 0.624 121.91 0 0.424 0.027 −0.001
√

Ch 16 0.919 830.919 0 0.506 0.057 −0.001
√

Ch 17 0.562 94.382 0 −0.23 0.057 −0.001
√

Note: YHbO change = ax2 + bx + c.

Table 2. The cubic modeling results for the non-user group.

Model Summary Regression Estimates
R2 F Sig. d C b a Quadratic

Ch 1 0.840 256.361 0.000 0.447 −0.324 0.022 0.000
√

Ch 2 0.985 1096.976 0.000 0.382 −0.271 0.011 0.000
√

Ch 3 0.858 293.571 0.000 −0.384 −0.075 0.003 0.000
√

Ch 4 0.789 181.806 0.000 −0.570 −0.161 0.018 0.000
√

Ch 5 0.835 246.190 0.000 −0.105 −0.183 0.016 0.000
√

Ch 6 0.355 26.737 0.000 −0.157 −0.060 0.003 0.000
√

Ch 7 0.885 372.941 0.000 0.050 −0.288 0.021 0.000
√

Ch 8 0.863 307.565 0.000 −0.439 −0.204 0.012 0.000
√

Ch 9 0.199 12.095 0.000 −0.466 0.083 −0.009 0.000
√

Ch 10 0.789 182.221 0.000 0.266 −0.043 0.007 0.000
√

Ch 11 0.772 165.231 0.000 0.514 −0.276 0.024 −0.001 Cubic
Ch 12 0.440 38.205 0.000 0.481 −0.035 0.004 0.000

√

Ch 13 0.726 129.252 0.000 0.919 −0.235 0.025 −0.001 Cubic
Ch 14 0.858 294.045 0.000 0.720 −0.239 0.013 0.000

√

Ch 15 0.642 87.397 0.000 0.505 −0.004 0.001 0.000
√

Ch 16 0.953 976.936 0.000 0.663 −0.005 0.004 0.000
√

Ch 17 0.890 394.158 0.000 0.356 −0.172 0.018 0.000
√

Note: YHbO change = ax3 + bx2 + cx + d.

Second, as shown in Table 3 and Figure 5, the quadratic analysis results for the heavy
user group indicated that: (1) a U-shaped curve (a > 0) was observed in channels 2–5, 8,
12, 16, and 17; the quadratic model could significantly explain 37.1% to 92.3% of the HbO
changes, R2s > 0.037, Fs > 43.25, ps < 0.001; (2) the quadratic model did not exist in channels 1,
6, 7, and 13 (a = 0), R2s > 0.059, Fs > 4.68, ps < 0.011, whereas the cubic model applied; and
(3) a reversed U-shaped curve (a < 0) was observed in channels 9–11 and 14–5, R2s > 0.117,
Fs > 9.87, ps < 0.001. The significant R2s, F-values, and p-values jointly indicated that the
U-shaped curve was found in BA 9 (12 and 16), BA 10 (17), BA 40 (ch 4), and BA 44 (ch 2, 3, 5,
and 8). Four channels (ch 1, 6, 7, and 13) could not be estimated by this quadratic equation
(see Table 3). In contrast, a set of cubic equation analyses was conducted for the heavy user
group, with X3 as the cubic term in addition to X2 as the quadratic term and X as the linear
term. As shown in Table 4, the results for the heavy user group indicated that no channels
could be estimated by the cubic regression as a = 0. Therefore, all these results jointly indicated
that the proposed quadratic equation might be more appropriate than the cubic equation to
analyze the DCCS data collected in this study.
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Table 3. The quadratic modeling results for the heavy user group.

Model Summary Regression Estimates
R2 F Sig. c B a Quadratic

Ch 1 0.06 4.687 0.011 −0.397 0.014 0 GLM
Ch 2 0.727 196.141 0 0.769 −0.133 0.004

√

Ch 3 0.887 576.348 0 0.332 −0.148 0.003
√

Ch 4 0.595 107.839 0 0.356 −0.043 0.001
√

Ch 5 0.371 43.26 0 0.446 −0.082 0.002
√

Ch 6 0.432 56.012 0 −0.142 −0.002 0 GLM
Ch 7 0.092 7.469 0.001 0.232 −0.007 0 GLM
Ch 8 0.923 880.189 0 0.534 −0.129 0.003

√

Ch 9 0.118 9.88 0 −0.142 0.022 −0.001
√

Ch 10 0.816 325.979 0 0.025 0.075 −0.003
√

Ch 11 0.568 96.717 0 0.399 0.071 −0.003
√

Ch 12 0.669 148.69 0 0.547 −0.114 0.004
√

Ch 13 0.521 79.901 0 0.078 0.025 0 GLM
Ch 14 0.475 66.407 0 0.097 −0.003 −0.001

√

Ch 15 0.477 67.002 0 −0.439 0.062 −0.002
√

Ch 16 0.668 147.668 0 0.719 −0.18 0.005
√

Ch 17 0.683 158.11 0 0.633 −0.104 0.003
√

Note: YHbO change = ax2 + bx + c.

Table 4. The cubic modeling results for the heavy user group.

Model Summary Regression Estimates
R2 F Sig. d c B a Quadratic

Ch 1 0.506 49.781 0 0.203 −0.220 0.019 0.000
√

Ch 2 0.732 132.969 0 0.833 −0.158 0.006 0.000
√

Ch 3 0.887 383.652 0 0.362 −0.160 0.004 0.000
√

Ch 4 0.740 138.207 0 0.658 −0.161 0.010 0.000
√

Ch 5 0.603 73.794 0 0.845 −0.238 0.015 0.000
√

Ch 6 0.461 41.568 0 −0.073 −0.029 0.003 0.000
√

Ch 7 0.469 43.028 0 0.555 −0.134 0.010 0.000
√

Ch 8 0.924 593.347 0 0.497 −0.114 0.002 0.000
√

Ch 9 0.123 6.849 0 −0.171 0.033 −0.002 0.000
√

Ch 10 0.829 236.693 0 0.090 0.049 −0.001 0.000
√

Ch 11 0.764 157.399 0 0.743 −0.063 0.008 0.000
√

Ch 12 0.731 132.299 0 0.823 −0.222 0.013 0.000
√

Ch 13 0.821 223.106 0 0.330 −0.073 0.008 0.000
√

Ch 14 0.563 62.819 0 0.361 −0.107 0.008 0.000
√

Ch 15 0.631 83.108 0 −0.219 −0.024 0.005 0.000
√

Ch 16 0.793 186.167 0 1.186 −0.362 0.020 0.000
√

Ch 17 0.739 138.152 0 0.814 −0.175 0.009 0.000
√

Note: YHbO change = ax3 + bx2 + cx + d.

3.2. Verification of Quadratic Modeling with New DCCS Data

We applied quadratic modeling with the Habit-DisHabit design DCCS data to verify
its suitability. As shown in Table 5 and Figure 6, the quadratic regression results for the
non-user group indicated that: (1) a U-shaped curve (a > 0) was observed in 14 channels
(ch 1, 2, 4, 5,7, 8, 9, and 11–17), and the quadratic predictor (experiment time) could explain
48.1% to 96.3% of the variance (HbO), R2s > 0.48, Fs > 91.16, ps < 0.001; (2) the quadratic
function does not exist in channels 3 and 6 (a = 0), R2s > 0.050, Fs = 5.39, ps < 0.005; and
(3) a reversed U-shaped curve (a < 0) was observed in channels 10, R2 = 0.570, F = 130.73,
p < 0.001. The significant R2s, F-values, and p-values jointly indicated that the U-shaped
curve was found for BA 6 (ch 1 and 9), BA 9 (ch 11, 12, 14, and 16), BA 40 (ch 4), and BA 44
(ch 5, 7, and 8), which were involved in cognitive shifting. Only two channels (ch 3 and 6)
could not be estimated by this quadratic equation.
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Figure 5. Quadratic equation modeling the HbO changes in the heavy user group during the mixed-
order design DCCS tasks [15]. The dotted lines present the observed HbO changes and the solid
lines demonstrate the quadratic curves. The X-axis represents the time (t) and the Y-axis presents the
z-scores of HbO changes.
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Table 5. Quadratic regression predicting HbO changes for the non-user group in the DCCS Habit-
DisHabit design task.

Model Summary Parameter Estimates U-Shape
R2 F Sig. c b a

Ch 1 0.762 315.838 0.000 0.068 −0.128 0.003
√

Ch 2 0.963 2586.161 0.000 0.960 −0.232 0.004
√

Ch 3 0.076 8.130 0.000 0.390 0.000 0.000 GLM
Ch 4 0.590 141.630 0.000 −0.559 −0.108 0.002

√

Ch 5 0.862 616.488 0.000 0.232 −0.178 0.005
√

Ch 6 0.052 5.391 0.005 −0.007 0.017 0.000 GLM
Ch 7 0.798 388.446 0.000 0.256 −0.104 0.002

√

Ch 8 0.895 841.443 0.000 −0.477 −0.207 0.006
√

Ch 9 0.608 152.895 0.000 −0.383 −0.006 0.001
√

Ch 10 0.570 130.726 0.000 0.669 0.116 −0.003 reversed
Ch 11 0.685 213.853 0.000 0.532 −0.157 0.003

√

Ch 12 0.844 5321.266 0.000 0.318 −0.218 0.005
√

Ch 13 0.541 115.909 0.000 0.489 −0.092 0.002
√

Ch 14 0.497 97.300 0.000 1.501 −0.163 0.004
√

Ch 15 0.827 469.602 0.000 1.201 −0.123 0.002
√

Ch 16 0.784 356.732 0.000 0.374 −0.155 0.002
√

Ch 17 0.481 91.169 0.000 −0.384 −0.019 0.001
√

Note: YHbO change = ax2 + bx + c.

Next, as shown in Table 6 and Figure 7, the quadratic modeling results for the heavy
user group indicated that: (1) a U-shaped curve (a > 0) was observed in channels 1, 2, 4,
8, 9, 11, 12, 14, and 16, and the quadratic predictor (experiment time) could significantly
explain 23.3% to 80.3% of HbO changes, R2s > 0.233, Fs > 29.95, ps < 0.001; (2) the quadratic
function does not exist in channels 3, 5–7, 10, 13, 15, and 17 (a = 0), R2s > 0.028, Fs > 2.92,
ps < 0.05; and (3) no reversed U-shaped curve (a < 0) was observed. The significant R2s,
F-values, and p-values jointly indicated that the U-shaped curve was found in BA 6 (ch 1
and 9), BA 9 (11, 12, 14 and 16), BA 40 (ch 4), and BA 44 (ch 2 and 8). Eight channels (ch 3,
5, 6, 7, 10, 13, 15, and 17) could not be estimated by this quadratic equation.

Table 6. Quadratic regression predicting HbO changes for the heavy user group in the DCCS
Habit-DisHabit design task.

Model Summary Parameter Estimates U-Shape
R2 F Sig. c b a

Ch 1 0.803 400.535 0.000 −0.358 −0.124 0.004
√

Ch 2 0.755 304.194 0.000 0.493 −0.108 0.002
√

Ch 3 0.029 2.924 0.056 −0.815 −0.001 0.000 GLM
Ch 4 0.414 69.509 0.000 −0.555 −0.096 0.003

√

Ch 5 0.484 92.488 0.000 0.447 −0.043 0.000 GLM
Ch 6 0.123 13.867 0.000 −0.276 0.012 0.000 GLM
Ch 7 0.040 4.107 0.018 −0.196 −0.012 0.000 GLM
Ch 8 0.473 88.232 0.000 −0.412 −0.066 0.002

√

Ch 9 0.233 29.960 0.000 0.151 −0.021 0.001
√

Ch 10 0.740 280.658 0.000 0.231 0.050 0.000 GLM
Ch 11 0.747 290.877 0.000 0.512 −0.097 0.002

√

Ch 12 0.631 168.348 0.000 −0.284 −0.124 0.003
√

Ch 13 0.381 60.718 0.000 −0.036 −0.005 0.000 GLM
Ch 14 0.274 37.205 0.000 −0.273 −0.048 0.001

√

Ch 15 0.160 18.810 0.000 −0.287 0.000 0.000 GLM
Ch 16 0.523 108.047 0.000 −0.119 −0.103 0.003

√

Ch 17 0.540 115.509 0.000 0.160 −0.045 0.000 GLM

Note: YHbO change = ax2 + bx + c.
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Figure 6. Quadratic equation modeling the HbO changes in the non-user group during the Habit-
DisHabit DCCS Task. The dotted lines present the observed HbO changes, and the solid lines 

Figure 6. Quadratic equation modeling the HbO changes in the non-user group during the Habit-
DisHabit DCCS Task. The dotted lines present the observed HbO changes, and the solid lines
demonstrate the quadratic curves. The X-axis represents the time (t) and the Y-axis presents the
z-scores of HbO changes.

In summary, the above modeling results for the mixed-order and Habit-DisHabit design
tasks jointly indicated that Equation (2) might be the most suitable model for estimating the
hemodynamic changes caused by cognitive shifting. As shown in the summary of Table 7,
this model can help identify the most pronounced U-shape in all of the channels observed
in the DCCS studies.
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Table 7. Observed U-shape by quadratic modeling in the HbO changes for the non-user and heavy
user groups.

DCCS Design Channel

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Non-user in
mixed-order

√ √
L L

√ √ √ √ √ √ √ √ √ √ √ √ √

Non-user in
Habit-DisHabit

√ √
L

√ √
L

√ √ √ √ √ √ √ √ √ √ √

Heavy user
mixed-order L

√ √ √ √
L L

√ √ √ √ √
L

√ √ √ √

Heavy user in
Habit-DisHabit

√ √
L

√
L L L

√ √
L

√ √
L

√
L

√
L

Brodmann area
(BA) 6 44 44 40 44 44 44 44 6 8 9 9 10 9 10 9 10

Note:
√

= U-shape by quadratic; L = linear relationship.Children 2023, 10, 1574 14 of 18 
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Figure 7. Quadratic equation modeling the HbO changes in the heavy user group during the
Habit-DisHabit DCCS task. The dotted lines present the observed HbO changes, and the solid lines
demonstrate the quadratic curves. The X-axis represents the time (t), and the Y-axis presents the
z-scores of HbO changes.
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4. Discussion
4.1. Quadratic: More Appropriate Modeling

Previous studies that investigated the HbO changes during the DCCS task [12–14]
employed t-tests and correlation analyses, which are descriptive and correlational methods
that depend on the sample size and may produce inconsistent results. For example,
Moriguchi and Lertladaluck [13] found no significant effects, while Xie et al. [14] reported a
significant correlation. Moreover, these methods could not establish the causal relationship
between behavioral and hemodynamic changes in the DCCS task. Thus, Li et al. [15]
introduced the “V shape by GLM” (Equation (1)) to model the hemodynamic changes
of cognitive shifting, which is an improvement over the previous analytical approaches.
However, this linear model does not adequately capture the hemodynamic changes in each
channel, as the HbO changes are continuous and wave-like rather than discrete and linear.
Therefore, it is not suitable to use GLM to simulate the hemodynamic changes, and a more
appropriate statistical model is needed.

Accordingly, this study first reanalyzed the data in Li et al. [4], using both quadratic
and cubic equations to model the continuous HbO changes in the DCCS tasks with the
mixed-order design. In particular, as shown in Table 2 (the non-user group), only two
channels (ch 11 and 13) could be modeled by Equation (3); the other 15 channels were
quadratic models. Furthermore, for the heavy user group (Table 4), all channels could not
be modeled by Equation (3) (cubic modeling); instead, only quadratic modeling could fit
the HbO changes in the 17 channels. As shown in Figures 4 and 5, a comparison of the
modeling results indicated that quadratic modeling (Equation (2)) was more effective and
appropriate than cubic modeling (Equation (3)).

Next, comparing the quadratic modeling results with the GLM results in Li et al. [4]
indicated that nonlinear modeling might be a more sensitive and better fit than linear
modeling. In particular, the GLM results in Li et al. [4] demonstrated that BA 9 was
significantly activated only in the non-user group during the DCCS task. In contrast, a
significant decrease was found for the heavy user group, demonstrating a substantial
increase after the twelfth second [4]. Thus, they concluded that BA 9 was significantly
activated only in the non-user group during the DCCS task. However, this study reanalyzed
the same data using the quadratic equation and found a significant U-shape in this channel
(BA 9) for both non-user and heavy user groups, indicating that BA 9 was an essential
neural correlate of cognitive shifting. Why could the GLM results not identify the nuance
changes in the heavy user group? This is because GLM could only generate a line to
demonstrate the general trend. Thus, it could not model the second half of the quadratic
curves of the mixed-order DCCS task, especially when there was a U-shape. Therefore, this
comparison indicated that the U-shape by a quadratic equation might be more powerful
and efficient in identifying the neural correlates of cognitive shifting.

Last, this study also applied Equation (2) with the new Habit-DisHabit design data
and found a U shape in 14 channels; only one channel (ch 10) had a reversed U shape.
This finding indicated that quadratic equations rather than GLM could help identify the
neural correlations of cognitive shifting in the DCCS task. Therefore, the quadratic equation
(Equation (2)) might be a better model of the hemodynamics of cognitive shifting and
should be widely promoted to analyze the DCCS fNIRS data.

4.2. Habit-DisHabit Design: More Effective for Identifying Cognitive Shifting

This study first re-analyzed Li et al. [4] data with a quadratic equation and iden-
tified the U-shape in 9 channels for the non-user group. Then, an analysis of the new
Hab-it-DisHabit design data found a U-shape in 14 channels. Similarly, the re-analysis
identified a U-shape in 8 channels within the heavy user group, whereas the new design
data demonstrated it in 9 channels. The within-group increases in U shape indicated that
the Habit-DisHabit design could help identify more correlated channels of cognitive shifting
in the DCCS task. In addition, within the non-user group, the mixed-order design data
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indicated that six channels had a reversed U-shape, indicating that the corresponding
channels’ HbO changes increased over time.

In contrast, the Habit-DisHabit design data indicated only one channel (ch 10) had a
reversed U-shape. Therefore, this accumulative increase cannot reflect the rise and fall of
HbO over time corresponding to cognitive shifting. For the heavy user group, the mixed-
order design data indicated that five channels had a reversed U-shape, indicating that the
HbO changes increased over time. In contrast, the Habit-DisHabit design data indicated
no channel had a reversed U-shape, indicating a tendency of decreasing HbO in all the
channels. This tendency might reflect the unique brain activation pattern of the Heavy user,
which will be further explored in future studies.

Most of the fNIRS studies on the DCCS task analyzed the changes in HbO between
the task and baseline conditions and, accordingly, could not identify the specific neural
correlates responsible for cognitive shifting (CS). There is an urgent need to identify the
direct and critical indicator of CS, and the key to this search is ‘habituation’, the fundamental
mechanisms underlying human being’s cognition and behavior [15]. When the same
stimulus (switching rule) is repeated repeatedly, there will be a reduced response from
the exact neural correlates and a decrease in HbO in the blood [16]. Unfortunately, the
widely used mixed-order DCCS design [12–14] kept changing the switching rules, thus
preventing children from habituating their responses. Therefore, this design could not
generate the habituation–dehabituation process, which could be an observable marker of
the CS. Instead, the Habit-DisHabit design prompted habituation and dishabituation in the
children’s responses; the ‘U-shape’ with quadratic modeling could exactly demonstrate
the occurring moment of cognitive shifting for each channel, which is more powerful in
identifying the neural correlates of CS. In summary, this comparison indicated that the Habit-
DisHabit design might be more effective in identifying the neural correlates of and should be
widely promoted in the DCCS tasks and should be widely promoted. Nevertheless, further
studies with more samples could help verify and improve this new design.

5. Conclusions, Limitations, and Implications

First, this study found that quadratic equations [Equation (2)] might be more appro-
priate for modeling the HbO changes in the DCCS tasks by re-analyzing Li et al. [4] and
analyzing the new data. Second, this study proved that the Habit-DisHabit design DCCS, in
conjunction with the quadratic equation, could effectively identify the neural correlates of
cognitive shifting.

However, these results must be interpreted cautiously, as the sample size was tiny. The
previous studies by Li et al. [4,15] were stopped by the unexpected COVID-19 lockdown in
China in late January 2020. Thus, only 38 complete cases were included in this study. In
the future, more samples with more age ranges should be involved to further verify this
quadratic modeling method and the Habit-DisHabit design.

Nevertheless, the findings have some implications for future study and practical im-
provement. First, the quadratic equation should be considered a standard nonlinear model
to estimate hemodynamic changes in the DCCS tasks. Second, the Habit-DisHabit design
DCCS could be widely used and further developed to identify the neural correlates of
cognitive shifting better. Third, the finding that non-users and heavy users had different
brain activation patterns implies that further studies should be conducted to examine the
impact of pad use on executive function, and we should consider limiting and regulat-
ing children’s digital use in the early years. Recently, Eng et al. [17], Kerr-German and
Buss [18], Li et al. [19], and the pioneer Moriguchi and his colleagues [20,21] have conducted
fNIRS studies on executive function development in young children using traditional
GLMs. Even though these studies have advanced our understanding of the neural corre-
lates of executive function, reanalyzing their data using the quadratic modeling method
(Equation (2)) will generate some unexpected results that could go deeper into the underly-
ing neuropsychological mechanisms.
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