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Abstract: (1) Background: Iron is an essential metal for the proper growth and neurodevelopment of
infants. To prevent and treat iron deficiency, iron supplementation or fortification is often required.
It has been shown, though, that it affects the synthesis of gut microbiota. (2) Methods: This paper
is a systematic review and meta-analysis of the effect of oral iron supplementation/fortification on
the gut microbiota in infancy. Studies in healthy neonates and infants who received per os iron with
existing data on gut microbiota were included. Three databases were searched: PUBMED, Scopus,
and Google Scholar. Randomized controlled trials (RCTs) were included. Quality appraisal was
assessed using the ROB2Tool. (3) Results: A total of six RCTs met inclusion criteria for a systematic
review, and four of them were included in the meta-analysis using both the fixed and random effects
methods. Our results showed that there is very good heterogeneity in the iron group (I2 = 62%), and
excellent heterogeneity in the non-iron group (I2 = 98%). According to the meta-analysis outcomes,
there is a 10.3% (95% CI: −15.0–−5.55%) reduction in the bifidobacteria population in the iron group
and a −2.96% reduction for the non-iron group. There is a confirmed difference (p = 0.02) in the
aggregated outcomes between iron and non-iron supplement, indicative that the bifidobacteria popu-
lation is reduced when iron supplementation is given (total reduction 6.37%, 95%CI: 10.16–25.8%).
(4) Conclusions: The abundance of bifidobacteria decreases when iron supplementation or fortifica-
tion is given to infants.

Keywords: iron; microbiome; gut microbiota; systematic review; meta-analysis; neonates

1. Introduction

Iron is essential for the growth and development of the human body [1–4]. It is
involved in various biological processes due to its ability to act as an electron receptor or
electron donor [1–3,5–7].

During life, the human body has different requirements for iron relative to the develop-
mental phase at that given period [1,3,8]. The increase in iron demands cannot always be met
by dietary iron; thus, oral iron supplementation and fortification are often required [5,9–12].
Ensuring iron adequacy is critical, as studies showed that iron deficiency anemia in infancy

Children 2024, 11, 231. https://doi.org/10.3390/children11020231 https://www.mdpi.com/journal/children

https://doi.org/10.3390/children11020231
https://doi.org/10.3390/children11020231
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/children
https://www.mdpi.com
https://orcid.org/0000-0002-0074-3619
https://orcid.org/0000-0003-3670-9305
https://orcid.org/0000-0002-9972-8901
https://doi.org/10.3390/children11020231
https://www.mdpi.com/journal/children
https://www.mdpi.com/article/10.3390/children11020231?type=check_update&version=2


Children 2024, 11, 231 2 of 18

is associated with neurodevelopmental and cognitive delay [1,3,13–18], which persists
despite restoring optimal iron levels [17–19].

The World Health Organization (WHO) recommends the administration of supplemen-
tary iron in both infants and toddlers (aged 6–23 months) to prevent/treat iron deficiency
and iron deficiency anemia, especially if they live in areas where the incidence of anemia
is greater than 40% [20]. A daily dose of 10–12.5 mg for 3 months of elemental iron is the
recommended regimen and approach [20].

However, supplementary iron is poorly absorbed by the intestinal cells, and thus, the
greatest portion of it ends up in the lumen of the colon, where it becomes available to the
pathogenic gut bacteria [9,11,13,18,21,22]. Iron is an integral part of their survival, and they
have developed mechanisms to bind it to ensure adequacy, whereas beneficial bacteria have
limited or no need for iron [5,23,24]. Consequently, this may lead to oxidative stress, gut
inflammation, and bacterial dysbiosis [3,10,18,25]. This has adverse effects, especially for
infants, since their iron requirements are higher during this developmental period and their
immune system is still immature, making them vulnerable to infections from iron-stealing
pathogens [1,26].

Therefore, the aim of this systematic review and meta-analysis is to determine the
effect of per os iron supplementation and fortification on the gut microbiota in infancy.

2. Materials and Methods
2.1. Search Strategy

This study is compliant with the Preferred Reporting Items for Systematic Reviews
and Meta-analyses (PRISMA) guideline [27]. It is a systematic review and meta-analysis
that investigates the relevant randomized clinical trials (RCTs) that determine the effect
of oral iron supplementation on infantile gut microbiota and presents the cumulative re-
sults. The search for eligible studies was based on the PICO (Participants, Interventions,
Comparators, Outcomes) paradigm [27]. A systematic literature search was conducted
in the following databases: PUBMED, Google Scholar, and Scopus. There was no limit
considering the date of publication of the studies. The Medical Subject Headings (MeSH)
database was used to identify synonyms. The full search strategy used for PubMed was as
follows: ((infant*[Title/Abstract] or infant*[MeSH Terms]) OR (neonat*[Title/Abstract] or
neonat*[MeSH Terms]) OR (newborn[Title/Abstract] or newborn[MeSH Terms]) OR (peri-
nat*[Title/Abstract] or perinat*[MeSH Terms])) AND ((iron[Title/Abstract] or iron[MeSH
Terms]) OR (ferrum[Title/Abstract] or ferrum[MeSH Terms]) OR (Fe[Title/Abstract] or
Fe[MeSH Terms]) OR (supplement*[Title/Abstract] or supplement*[MeSH Terms])) AND
((microb*[Title/Abstract] or microb*[MeSH Terms]) OR (gut[Title/Abstract] or gut[MeSH
Terms])). The search strategy was adjusted accordingly for Google Scholar and Scopus.
In addition, articles that were not written in English were excluded. Screening of the
reference lists of selected studies was carried out in order to find RCTs that were not re-
trieved using the methods mentioned above (snowball search method). Then, all retrieved
studies were merged into one list, duplicates were excluded, and each article was eligible
for evaluation.

2.2. Inclusion and Exclusion Criteria

The inclusion criteria were as follows: human studies performed in healthy neonates
and infants (until the age of 12 months), oral iron in the form of supplementation or fortified
food, a control group, data about the gut microbiota, and articles written in English. The
exclusion criteria were as follows: age of participants above 12 months, neonates that
require hospitalization, studies performed in animals, chronic disease (e.g., HIV, chronic
kidney failure), studies that do not provide data on gut microbiota, and articles not written
in English. Screening and review were performed independently by two of the authors
(T.K. and S.P), and in cases of discrepancies, a third author (R.S) was involved.
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2.3. Data Extraction

The data extraction was performed by two independent researchers (N.I and T.K.).
The final data extracted were as follows: general characteristics of the study, study design,
characteristics of the groups, type of intervention (iron or no iron), and data on gut micro-
biota (type of bacteria and classification as beneficial or potentially pathogenic bacteria).
The outcomes that were extracted include changes in gut microbiota composition from
alterations in the relative abundance of the two groups of bacteria after they were classified
as beneficial or potentially harmful.

2.4. Risk of Bias and Study Quality Appraisal

All studies fulfilling the above criteria were evaluated for risk of bias using appropriate
tools (https://www.riskofbias.info/, accessed on 20 July 2023) in accordance with their
type of study. Specifically, the RCTs that were included in our study were evaluated using
the Revised Cochrane risk-of-bias tool (Rob2 Tool). This tool assesses five domains; the
assessor must provide their judgement on each domain and on the overall bias [28]. As a
result of this process, conclusions regarding the quality of each study were reached, and
traffic light plots were created accordingly [28].

2.5. Statistical Analysis

All included studies were analyzed at the level of systematic review, and the studies
that had quantitative data were analyzed at the level of a meta-analysis. For each evaluated
variable, a Forest Plot diagram is presented along with the relative results, and a funnel
plot for the evaluation of the publication bias is also produced. The desired results occur
when studies fall within the area of the triangle (funnel). In situations where some studies
report results that are very different from the rest, the meta-analysis considering the
specific subject has been repeated without them in an effort to improve the heterogeneity
index I2 and τ.

Meta-analysis was based on both the fixed and random effects models. As detailed
information for each individual case was not available, the analysis was based on aggre-
gated data reported in the studies. Data were extracted from the relevant studies after
determining their significance. The meta-analysis software was the R statistical computing
language (edition 4.3.0) [29], under the Microsoft Windows operating system, and with the
specialized meta-analysis package meta [30,31]. In studies where mean value and standard
deviation (SD) were not available, the median and 1st and 3rd quartiles were used in order
to estimate the mean value and the relevant SD using the method of Hozo et al. [32]. In the
manuscript, maximum and minimum values were also reported, and an improved method
for mean and SD proposed by Bland [33] was used. The Deep Meta Tool, Version 1, was
used for these estimations [34]. In cases that only minimum and maximum values were
reported, the range rule was used to estimate the SD, whereas the mean value was used as
the median. For studies reporting case series with detailed information for each patient, the
mean value and SD were calculated by the authors. Multiple groups treated with different
agents reported in a single study were considered separate during the meta-analysis.

3. Results

Initially, 2053 results were identified, and 1883 were excluded via title and abstract
assessment. A total of 170 papers were retrieved, and 61 duplicates were excluded. The
remaining 109 papers underwent full-text evaluation. Screening of the reference lists
of these studies generated 16 more studies for full-text evaluation. Following this step,
six studies fulfilled the pre-determined inclusion and exclusion criteria. Three studies were
excluded due to incomplete data on gut microbiota per intervention group and two that
were not accessible. The study selection process is presented in the following PRISMA flow
chart (Figure 1).

https://www.riskofbias.info/
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Figure 1. PRISMA flow chart for the study selection process and outcomes [35].

3.1. Study Characteristics and Participants

Two (from the six) studies were conducted in Africa, two in Europe, one in the USA,
and one in Canada. One of them was published in 1985, and the rest were published
between 2013 and 2019 (Table 1). All studies were RCTs as per their study design. Infants
were exclusively or predominately breastfed at enrollment in four of the studies. In
one study, the intervention started at birth, and one study does not provide information
concerning whether the infants were breastfed at enrollment. Apart from the fact that
breastmilk is the best source of nutrition, prebiotics, and probiotics for neonates and
infants [36–40], breastfeeding also minimizes the possibility of other external interventions
prior to the beginning of the studies.

Regarding the method employed to determine the relative abundance of bacteria and
the various taxonomic levels (such as phylum, class, order, family, and genus), the studies
had different approaches, specifically (a) Mevissen-Verhage et al. [41]: incubation and
identification of viable counts of bacteria; (b) Krebs et al. [42]: 16S rRNA gene amplicon
sequencing of the V1V3 region, relative abundance of the microbiome data at the phyla and
genera; (c) Cheung et al. [43]: 16S rRNA gene amplicon sequencing of the V4 region, nor-
malized log-scale counts of bacterial genera; (d) Tang et al. [10]: 16S rRNA gene amplicon
sequencing of the V4 region, relative abundance of the microbiome data at the phyla and
the genus levels; (e) Qasem et al. [44]: 16S rRNA gene amplicon sequencing of the V3–V4
region, median relative abundance of dominant phyla and families; and (f) Simonyte Sjodin
et al. [45]: 16S rRNA gene amplicon sequencing of the V3–V4 region».

3.2. Age

We only considered studies that provided data on the gut microbiome. Six studies
were available for further analysis. The reported age of the participants in these studies
was as follows: in three studies, 6 months; in one study, 5 months; in one study, neonates
at birth; and in one study, 0–6 months. Thus, there is compatibility regarding the age of
the participants. The forest plot of age is presented in Figure 2 and depicts the sample size
of the studies and the age of the neonates and infants. Due to the fact that the standard
deviation was not available and could be estimated in only one study, it was not possible to
evaluate the age of the total population. As a result, we cannot extract homogeneity conclu-
sions. However, there are more data available for the participants’ age for the individual
study groups.
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Table 1. Details of studies included in the analysis.

First
Author Year Country Study

Type Intervention Age of Par-
ticipants

Duration of
Intervention N1 Changes in Beneficial

Bacteria
Changes in Pathogenic

Bacteria N2
Changes in
Beneficial
Bacteria

Changes in
Pathogenic Bacteria

Mevissen-
Verhage

[41]
1985

The
Nether-
lands

RCT
Iron-

fortified
milk.

At birth 3 months 6

Mean concentration of
counts of lactobacilli:

~107 CFU/g feces.
The majority of the

anaerobes were
bifidobacteria, with mean

counts of
>109.5 CFU/g feces.

Mean number of
Escherichia coli in

bottle-fed infants with iron:
109 CFU/g feces.

Mean concentration of
counts of enterococci in

fecal samples of both
bottle-fed groups:
108 CFU/g feces.

Counts of bacteroides:
more or less constant over
time; mean concentration:

109 CFU/g feces.

Counts of clostridia in both
bottle-fed groups:

107 CFU/g feces (most
frequently isolated

microorganisms among the
anaerobes in bottle-fed
infants supplemented

with iron).

10

Mean
concentration of

counts of
lactobacilli:

~107 CFU/g feces.

The majority of
the anaerobes

were
bifidobacteria,

with mean counts
of >109.5 CFU/g

feces.

Mean number of
Escherichia coli in
breastfed infants:
108.1 CFU/g feces.

Counts of enterococci
in fecal samples of

breastfed infants (mean
concentration about

106 CFU/g feces).

Counts of bacteroides:
more or less constant

over time; mean
concentration:

109 CFU/g feces.

Counts of clostridia in
breastfed infants: about

106.4 CFU/g feces.

Overall isolation
frequency of clostridia

in breastfed infants:
25%, (significantly
lower than in both
bottle-fed groups).

Krebs [42] 2013 Denver RCT
Iron-

fortified
cereal.

5 months Approximately
3 months 10

Bifidobacterium ∆%
abudance in Fe + Zn: stable
(−10%, 10%), in Fe group:

decreased by >10%.
Lactobacillales in Fe + Zn:
stable (−10%, 10%), in Fe

group: decreased by >10%.

Bacteroidetes ∆% abudance
in Fe + Zn: decreased by

>10%, in Fe group:
increased by >25%.

Enterobacteriaceae: in Fe +
Zn: stable (−10%, 10%), in

Fe group: decreased by
>10%.

Clostridia ∆% abudance in
Fe + Zn: increased by >25%,

in Fe group: stable
(−10%, 10%).

4

Bifidobacterium
∆% abudance in

meat group:
stable

(−10%, 10%).

Lactobacillales:
stable

(−10%, 10%).

Bacteroidetes ∆%
abudance in meat

group: stable
(−10%, 10%).

Enterobacteriaceae:
decreased by >10%.

Clostridia ∆%
abudance: increased by

>25%.
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Table 1. Cont.

First
Author Year Country Study

Type Intervention Age of Par-
ticipants

Duration of
Intervention N1 Changes in Beneficial

Bacteria
Changes in Pathogenic

Bacteria N2
Changes in
Beneficial
Bacteria

Changes in
Pathogenic Bacteria

Cheung
[43] 2016 Malawi

Substudy of
a four-arm

RCT

Iron fortifi-
cation. 6 months 12 months 167

Soya LNS seemed to have
higher counts of some
lactobacillus species.

Bifidobacteria: decreased
over time (each p < 0.001).

Lactobacilli: relatively
constant.

Bifidobacterium
log-transformed normalised
read counts CBS: baseline
(median: 5.2; IQR: 4.9, 5.3)

18 months (median: 4.5;
IQR: 3.9, 5.0). Milk LNS

baseline (median: 5.2; IQR:
5.0, 5.4) 18 months (median:
4.7; IQR: 4.3, 4.8). Soya LNS
baseline (median: 5.2; IQR:
5.0, 5.4) 18 months (median:

4.7; IQR: 4.2, 5.0).
Lactobacillus

log-transformed normalised
read counts CBS: baseline
(median: 3.8; IQR: 2.4, 4.1)

18 months (median: 3.5;
IQR: 2.6, 4.1). Milk LNS

baseline (median: 3.7; IQR:
2.7, 4.4) 18 months (median:
3.7; IQR: 3.3, 4.0). Soya LNS
baseline (median: 3.6; IQR:
2.8, 4.1) 18 months (median:

3.9; IQR: 3.2, 4.3).

A small fraction of samples
were found.

Salmonella-positive: CSB:
8.1% at baseline, and 3.2%
at 18 months. Milk LNS:

positive 0% at baseline, and
8.0% at 18 months. Soya
LNS: positive: 3.6% at
baseline, and 3.6% at

18 months.
Shigella log-transformed
normalised read counts

CBS: baseline (median: 2.0;
IQR: 1.5, 2.5) 18 months

(median: 0.7; IQR: 0.0, 1.4).
Milk LNS baseline (median:
2.1; IQR: 1.6, 2.6) 18 months
(median: 1.0; IQR: 0.0, 1.7).

Soya LNS baseline (median:
2.0; IQR: 1.4, 2.7) 18 months
(median: 0.5; IQR: 0.0, 1.1).

Escherichia
log-transformed normalised
read counts CBS: baseline
(median: 1.2; IQR: 0.0, 1.7)

18 months (median: 0.0;
IQR: 0.0, 0.8). Milk LNS

baseline (median: 1.2; IQR:
0.0, 1.8) 18 months (median:
0.0; IQR: 0.0, 0.8). Soya LNS
baseline (median: 1.4; IQR:
0.0, 1.9) 18 months (median:

0.0; IQR: 0.0, 0.0).

46

Bifidobacteria
decreased over

time (each
p < 0.001).

Lactobacilli:
relatively
constant.

Bifidobacterium
log-transformed
normalised read
counts. Control:

baseline (median:
5.1; IQR: 5.0, 5.4)

18 months
(median: 4.7; IQR:

4.3, 5.0).
Lactobacillus

log-transformed
normalised read
counts. Control:

baseline (median:
3.6; IQR: 2.6, 4.4)

18 months
(median: 3.7; IQR:

3.3, 4.0).

A small fraction of
samples were found.
Salmonella-positive:

6.5% controls at
baseline, and 10.9%

control at 18 months.

Shigella
log-transformed

normalised read counts.
Control: baseline

(median: 2.5; IQR: 1.9,
3.0) 18 months (median:

0.8; IQR: 0.0, 1.6).

Escherichia
log-transformed

normalised read counts.
Control: baseline

(median: 1.5; IQR: 1.0,
2.1) 18 months (median:

0.0; IQR: 0.0, 0.8).
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Table 1. Cont.

First
Author Year Country Study

Type Intervention Age of Par-
ticipants

Duration of
Intervention N1 Changes in Beneficial

Bacteria
Changes in Pathogenic

Bacteria N2
Changes in
Beneficial
Bacteria

Changes in
Pathogenic Bacteria

Tang [10] 2017 Kenya
Double-

blind
RCT

Iron fortifi-
cation with

MNPs.
6 months 3 months 13

Decrease in the relative
abundance of

bifidobacterium in MNP +
Fe group (−6.38 +/− 2.5%,

p = 0.02).

No significant decrease in
the relative abundance of

Escherichia/Shigella in the
MNP + Fe group

(−6.0 +/− 9%, p = 0.41).

20

No decrease in
the relative

abundance of
bifidobacterium
in the MNP-Fe

group
(−4.3 +/− 5%,

p = 0.44).
Decrease in the

relative
abundance of

bifidobacterium
in control group

(−8.05 +/− 1.46%,
p = 0.01).

Significant decrease in
the relative abundance
of Escherichia/Shigella

in the MNP-Fe group
(−16.05 +/− 6.9%,

p = 0.05).
Clostridium increased
abundance in MNP-Fe

only (1.94 +/− 2%,
p = 0.007).

Significant decrease in
the relative abundance
of Escherichia/Shigella

in the control group
(−19.75 +/− 4.5%,

p = 0.01).

Qasem [44] 2017 Canada RCT
Iron-

fortified
cereal.

4–6 months 2–4 weeks 37

Median relative abundance
of bifidobacteriaceae:
before CF: in Fe-cereal

50.016, in Fe + fruit: 58.638;
after CF: in Fe-cereal 37.257,

in Fe + fruit: 50.446.

Median relative abundance
of lactobacillales:

before CF: in Fe-cereal 0.008,
in Fe + fruit: 0.013; after CF:

in Fe-cereal 0.014, in Fe +
fruit: 0.033.

Median relative abundance
of bacteroidetes: before CF:

in Fe-cereal 4.789, in Fe +
fruit: 0.112; after CF: in
Fe-cereal 13.511, in Fe +

fruit: 5.993.
Median relative abundance

of enterobacteriaceae:
before CF: in Fe-cereal 6.544,
in Fe + Fruit: 3.697; after CF:

in Fe-cereal 4.894, in Fe +
fruit: 6.617.

Median relative abundance
of enterococcaceae: before
CF: in Fe-cereal 0.400, in Fe
+ fruit: 2.079; after CF: in

Fe-cereal 1.152, in Fe + fruit:
1.326.

Median relative abundance
of clostridia: before CF: in

Fe-cereal 0.003, in Fe + fruit:
0.006; after CF: in Fe-cereal
0.018, in Fe + fruit: 0.003.

19

Median relative
abundance of bi-
fidobacteriaceae:

before CF: in
meat group

41.377; after CF:
in meat group

41.725.
Median relative
abundance of

lactobacillales in
meat group:

before CF: 0.026;
after CF: 0.026

Median relative
abundance of

bacteroidetes in meat
group: before CF: 0.031;

after CF: 2.246.
Median relative
abundance of

enterobacteriaceae in
meat group: before CF:
7.836; after CF: 10.330.

Median relative
abundance of

enterococcaceae in
meat group: before CF:
1.041; after CF: 2.084.

Median relative
abundance of clostridia:

before CF: in meat
group 0.003;

after CF: 0.026
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Table 1. Cont.

First
Author Year Country Study

Type Intervention Age of Par-
ticipants

Duration of
Intervention N1 Changes in Beneficial

Bacteria
Changes in Pathogenic

Bacteria N2
Changes in
Beneficial
Bacteria

Changes in
Pathogenic Bacteria

Simonyte
Sjodin

[45]
2019 Sweden RCT

Iron-
fortified
milk and

iron
supple-

mentation.

6 months 45 days 35

High iron formula:
decreased relative

abundance of
bifidobacterium (p < 0.001,

60% vs. 78%) after only
45 days of intervention.

High iron formula: relative
abundance of

lactobacillus sp (42%).
Iron drops group: relative

abundance of
lactobacillus sp (8%).

High iron formula: no
enhanced growth of
pathogenic bacteria.
High iron formula:

abundance of streptococcus
(0.9%), clostridium (9%),
and bacteroides (0.9%).

Iron drops group:
abundance of streptococcus
(0.2%), clostridium, (25%)

and bacteroides (1.2%).

18

Relative
abundance of

lactobacillus sp
(32%);

*In this study, all
groups received

formula with
added galacto-

oligosaccharides
(GOS) at 3.3 g/L.

No data

N1: number of cases fed with iron supplement; N2: number of cases not taking iron supplement.
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Figure 2. Forest plot of the number of participants and their age. First column shows the first author,
the year of publication, and the country. The second column shows the number of participants.
The third column refers to the mean value of their age, and the fourth column shows the standard
deviation. The following three columns show the forest plot, the mean value, and the 95% confi-
dence interval. The remaining two columns show the weights for the common and random effect
models [10,41–45].

3.3. Groups

We searched for studies that involved at least two groups of neonates or infants: a
group that received per os iron (in any form or in combination with any other nutrient)
and a group that did not receive iron supplements (nutrition with meat is included in this
group). In some studies, there was more than one group that received iron supplements;
thus, such groups were combined into one.

Regarding the age of the infants, we did not expect differences since most of the initial
studies included infants around the age of 6 months old. However, we performed the
meta-analysis for the age between the two groups (one group receiving iron supplement
and the other group without iron supplement) for the rate of means in order to ensure
that there are no differences in the infants’ age between the two groups across the studies.
The results are summarized in the forest plot below (shown in Figure 3a) with very good
heterogeneity (I2 = 0) and an aggregated rate of means equal to one (95% CI: 0.99–1.02).
This is indicative that the studies have excellent agreement for the age of their participants;
therefore, age is not a factor that may affect subsequent analysis. Furthermore, the risk
of bias is also limited, as all the studies fall within the funnel in the relevant funnel plot,
indicative of low publication bias (shown in Figure 3b).
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Figure 3. (a) Forest plot presenting the meta-analysis results for the age of participants per group,
using both common effect and random effects models. The first column refers to the first author of
the study, the year of publication, and the country of origin. The following three columns refer to
the intervention groups, and they show the number of participants, the mean value of their age, and
the standard deviation. Respectively, the next three columns refer to the same data for the control
groups. The eighth and ninth columns show the graph for the ratio of means—ROM. The last three
columns present the 95% confidence interval, the common effect model, and weight for the common
and random effect models. (b) The relevant funnel plot for the risk of publication bias. [10,41–45].
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3.4. Microbiome Analysis

We separated the bacteria into two groups: (i) the beneficial bacteria, such as Bifidobac-
terium and Lactobacillus spp. that induce a positive effect on neonates and (ii) the potential
pathogenic bacteria, whose increased population has a negative effect on neonates and
infants. Following that, we investigated their population for each arm of the available
studies. The results are summarized in Table 1.

Although all six of the studies report quantitative data, they do not use the same
reporting methods. To be more specific, the study by Mevissen-Verhage et al. [46] reports
colony-forming units (CFUs) per feces gram, whereas the study by Cheung et al. [43] reports
log-transformed normalized read counts. The most promising meta-analysis studies were
those by Tang et al. [10], Simonyte Sjodin et al. [45], Krebs et al. [42], and Qasem et al. [44], as
they all report relative abundance. Therefore, we focused on the last four studies for further
investigation of the reporting details since the other two studies had incompatible data.

The results for the iron and non-iron groups are presented in the forest plot below
(shown in Figure 4a). There is very good heterogeneity in the iron group (I2 = 62%) and
excellent heterogeneity in the non-iron group (I2 = 98%). According to the meta-analysis
outcomes, there is a 10.3% (95% CI: −15.0–−5.55%) reduction in the Bifidobacteria population
when iron supplement is provided and a −2.96% reduction for the non-iron group (due to
the results reported by the study of Tang). In total, there is a confirmed difference (p = 0.02)
in the aggregated outcomes between iron and non-iron supplement, indicative that the
population of Bifidobacteria is reduced when iron supplement is given (total reduction:
6.37%, 95% CI: 10.16–25.8%). Some studies may also introduce some publication bias, as
shown in Figure 4b.
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Figure 4. (a) Forest for the population of bifidobacteria per group, using both common and random
effects models. The first column refers to the first author, year of publication, and group of partic-
ipants (intervention or control group, respectively). The next three columns refer to the number
of participants, the mean value of the changes in the bifidobacteria population, and the standard
deviation. The next two columns show the mean value graph and the mean value. The last three
columns present the 95% confidence interval and the common effect model and random effect model
weights. At this point, there are certain things that need to be noted: 1. For the results by Simonyte
Sjodin et al. [45], Krebs et al. [42], and Qasem et al. [44], the standard deviations of differences were
estimated. 2. For the study by Krebs et al. [42], the arm involving Fe + Zn was excluded as the
introduction of Zn could alter the microbiome. 3. For the paper by Simonyte Sjodin et al. [45] and
Qasem et al. [44], the difference based on the bacteria expression before and after the intervention
was calculated. 4. Different arms from the same studies were treated as providing separate results;
for instance, the Fe group and the Fe + fruits group in the study by Qasem et al. [44], and the MNP
only and placebo in the paper by Tang et al. [10]. 5. We applied both fixed and random effects models
since we were not aware of the underlying phenomena. (b) The corresponding funnel plot for the
risk of publication bias.
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Unfortunately, the included studies report different species of potentially pathogenic
bacteria, and as a result, it is not feasible to perform a meta-analysis for their population.
The extracted data from the studies are presented in the Supplementary Table S1.

3.5. Quality of Studies

Outcomes regarding the quality of each study accessed by the RoB 2 tool are presented
in the form of a traffic light plot (shown in Figure 5). Four of the studies scored low risk in
all domains, and two of them were assessed as “some concerns”. In the study by Simonyte
Sjodin et al. [45], there are some concerns, as there is no information on whether the
participants knew if they were in the low iron group or the high iron group. Furthermore,
participants in the iron drop group probably knew the group they belonged to. In the study
by Krebs et al. [42], there is no information on whether there was a pre-specified analysis
plan that was used for the interpretation of the data before unblinded outcome data were
available for analysis.
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4. Discussion

This work focuses on investigating whether supplemental per os iron may affect
gut microbiota in infancy in an unfavorable way by acting as a substrate for pathogenic
gut bacteria.

Iron deficiency is negatively correlated to behavioral, cognitive, and motor devel-
opment, as well as impaired immune responses [1,3,7,13–18]. Ensuring iron adequacy is
critical, as iron deficiency anemia in infancy is associated with neurodevelopmental and
cognitive delay that persists even if optimal iron levels are achieved [7,17,18]. By the age
of 6 months, breastfed infants are dependent on supplementary solid foods as sources
of iron [7,14,26,44,47]. In order to prevent iron deficiency, oral iron supplementation and
fortification are often required [5,9–12].

Although gut microbiota and microbiome have different definitions, the confusion
between these two terms has led to their indiscriminate use [9]. The development of
the intestinal microbiota goes through three distinct phases of development: the devel-
opmental phase, the transitional phase, and the stable phase [1]. During the first year
of life, bifidobacteria dominate (up to 90% of the total microbiome in healthy breastfed
infants—the developmental phase); after the first year of life and up to age three, a steady
decrease in their population occurs (the transitional phase); and after the age of three, the
gut microbiota resembles that of adults (the stable phase) [21,48–51]. Both bifidobacteria
and lactobacilli enhance the gut barrier by competing against other microorganisms and
preventing them from colonizing the intestine [1,21,24,52–55]. Lactoferrin in breastmilk is a
promoting agent for beneficial bacteria due to its high affinity for iron ions, thus making
iron unavailable for pathogenic microorganisms [2,56]. However, excess iron in the gut
lumen may stimulate growth and proliferation of pathogenic microbes in a possible dose-
dependent manner [2,10,12,57], as the majority of intestinal microbes (with the exception
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of the beneficial symbiotic bacteria of the genus lactobacillus and bifidobacterium) require
iron for survival and growth [2,57]. In order to acquire iron, most pathogenic bacteria
produce siderophores, which are chelating molecules with high affinity for iron [2,5,23,58].
Siderophores can also bind other metals, such as manganese, which has a negative impact
on the population of lactobacilli, as manganese is an essential metal for their growth and
survival [21].

In clinical practice, oral supplementation begins around the age of six months of
life [20]. In one of the selected studies, the intervention started at birth, and in the majority
of them, iron intervention occurred at approximately 6 months of age. In our study, a
meta-analysis was performed using both the fixed and random effects methods. Based
on the reported age of participants in the selected studies, it was shown that there is
compatibility regarding the age of participants, although homogeneity conclusions could
not be extracted due to the lack of data per individual. However, the meta-analysis for the
age of participants between the two groups based on data per study group showed very
good heterogeneity; thus, age did not affect the subsequent analysis.

To our knowledge, the unfavorable effect of iron on gut microbiota in human infants
was described for the first time in 1985 by Mevissen-Verhage et al. [41,46]. The study con-
cluded that gut microbiota composition in infants on fortified formula milk was considered
unfavorable, as it was putrefactive (presence of aerobic and anaerobic microorganisms, low
presence of bifidobacteria, and a high presence of E.coli and clostridia), whereas infants
on unfortified formula milk had a microbiome similar to that of breastfed infants, which
appeared to enhance the organism’s resistance to colonization by potentially pathogenic
microbes as bifidobacteria predominated [41,46].

In agreement with the studies by Mevissen-Verhage [41,46], Tang et al. and Simonyte
Sjodin et al. observed that iron supplementation (whether in the form of iron-fortified
micronutrient powders, MNPs, milk, or iron drops) leads to a decrease in bifidobacteria,
which was statistically significant [10,45]. In another study from Kenya, Jaeggi et al. admin-
istered to infants MNPs containing iron (two groups of infants received a different form of
iron: either 2.5 mg NaFeEDTA or 12.5 mg ferrous fumarate) and MNPs without iron [49].
Their findings showed that the iron groups showed an increase in enterobacteria (specif-
ically Escherichia/Shigella, p = 0.048), an increase in the enterobacteria/bifidobacteria
ratio (p = 0.02), and clostridium (p = 0.03) [49]. It was also observed that there was an
increased incidence of diarrhea and intestinal inflammation in these groups [49]. The study
by Paganini et al. (2017) had similar results (p < 0.01) [59].

Our findings are in agreement with the results of the above studies regarding the
bifidobacteria population. Based on the provided data from the studies that met inclusion
criteria, meta-analysis was feasible only for the changes in the abundance of bifidobac-
teria. Both fixed and random effects models were applied. Our meta-analysis (which
included four studies that met the inclusion criteria) is in agreement with the findings of
the first group of researchers. The population of bifidobacteria showed a 10.3% (95% CI:
−15.0–−5.55%) reduction in the iron group and −2.96% reduction for the non-iron group
(p = 0.02). Overall, their population is reduced when iron supplementation/fortification
is given (overall reduction: 6.37%, 95% CI: 10.16–25.8%). It should be reminded that the
dominance of bifidobacteria results in protecting the host by competing against pathogens
for nutrients, preventing colonization, producing bacteriocins, and altering the host’s im-
mune response [10,12,40,53]. Furthermore, it has been shown that bifidobacteria may affect
the host’s mental health in a positive way through regulation of endocrine and immune
mediators of the gut-brain axis, decrease the risk of developing obesity, increase bone mass
density, and decrease the symptoms of atopic dermatitis and lactose intolerance [38,53]. A
decrease in their population could lead to unfavorable outcomes.

In 2013, Krebs et al. studied the effect of different forms of iron on the intestinal
microbiome of 5-month-old breastfed infants [42]. Although they observed a reduction
of bifidobacterium and lactobacillales with a parallel increase of bacteroidales in the iron
group compared to the other two groups, the researchers did not find evidence that iron
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fortification could increase the abundance of potentially pathogenic bacteria, nor did they
observe a significant increase in the population of enterobacteria in any of the groups [42].
Their sample size was small, so their study lacked statistical power [42]. In the study
by Qasem et al., researchers observed certain changes in the mean relative abundance of
microorganisms after introducing three types of complementary foods (iron-fortified cereal,
iron-fortified cereal and fruit, and meat), but none of them were significant when correction
for multiple comparisons was applied [44]. They concluded that fortifying foods with iron
may affect the gut microbiome, and further research is required [44].

In addition, iron fortification in the form of a lipid-based nutrient supplement, LNS,
or a fortified corn-soy mixture does not seem to affect the gut microbiota [43,48]. Cheung
et al. observed no change in the microbiome across all groups at any age (each p > 0.10),
and the gut microbiota at the end of the intervention period was consistent with the
microbiome observed in infants living in the rural areas of Malawi [43]. The study by
de Goffau et al. (2022) had a similar outcome, showing that iron administration did not
significantly affect the gut microbiome of Gambian infants and toddlers [60].

Although it would be of great significance to perform a meta-analysis for more bacte-
rial species, there were major obstacles. Data across studies was inadequate to analyze for
Lactobacillus spp., as only two studies reported data on Lactobacillus spp. The species of po-
tentially pathogenic bacteria identified in the studies differed between the studies, and as a
result, a comparison was not feasible. Another limiting factor was the fact that the included
studies did not use the same reporting and measurement methods for quantitative data.

It is understood that the gut microbiota plays an important role in the health of
the host [4,61–65]. It participates in the production of nutrients and vitamins, competes
with pathogenic microorganisms, stimulates angiogenesis, regulates fat storage in the
host, and interacts with the developing immune system [38,40,61,62,66]. Studies showed
an association between the microbiome and the risk of developing allergies, infections,
and possibly obesity at an older age [61,67,68]. The causal relationship between gut
microbiota and the manifestation of diseases such as gastric cancer, mucosal lymphoid
tissue lymphoma, inflammatory bowel disease, and necrotizing enterocolitis is a subject of
ongoing studies [22,61,62,69–74].

Iron plays an important role for microorganisms [2,57]; thus, it is crucial to deter-
mine which chemical form of iron or combination of nutrients is suitable for iron supple-
mentation and fortification, with the aim of preventing iron deficiency and preserving
a favorable synthesis of the gut microbiota [75]. Animal studies and human studies
have shown that iron supplements are known to have adverse effects, causing oxidative
stress, gut inflammation, and bacterial dysbiosis, which can lead to increased diarrhea
prevalence [25,59,70,76–83]. Some studies have reported that the combination of pre-
biotics (such as galacto-oligosaccharides) and iron supplements could mitigate that ef-
fect [45,59,84,85]. Although the concomitant use of prebiotics or probiotics with iron could
offer a potential alternative regimen, further research is needed in order to ensure their safety
and effectiveness [55,86–88].

There are several limitations to our study. First, a literature search was conducted in
three major electronic databases (PUBMED, Scopus, and Google Scholar). Then, the list of
references for selected articles was scanned for relevant studies; however, there is always a
possibility that relevant studies might have been accidentally missed. Second, the included
articles were only in English, and there could be relevant studies in other languages that
could affect the results. Third, the full text of two possibly relevant articles was not available,
thus they were excluded, and three relevant studies did not provide separate data on gut
microbiota for the intervention and control groups; therefore, they were also excluded.
Fourth, the number of participants was small. Another possible limitation is the fact that
the form and amount of iron being administered were not the same in all studies. Finally,
diet regimens differ between countries, and theoretically, they could have had an impact
on the inter-subject and intra-subject variability of the gut microbiota.
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5. Conclusions

In summary, according to the results of this meta-analysis, there is a confirmed dif-
ference (p = 0.02) in the aggregated outcomes between iron and non-iron supplement,
which is indicative that the bifidobacteria population is reduced when iron supplemen-
tation/fortification is given (total reduction of 6.37%, 95% CI: 10.16–25.8%). Both iron
deficiency and its overabundance are connected to pathological conditions. The research
interest in the effect and safety of orally administered iron—either in a form suitable for
food fortification or in the form of a supplement—on the microbiome remains more rel-
evant than ever. Further studies are required to determine the chemical form and the
consequent dose of iron that can be administered in order to prevent iron deficiency anemia
and simultaneously not affect the beneficial bacteria population (such as bifidobacteria) in
a negative way.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/children11020231/s1. Table S1: Data on the microbiome from
included studies; Table S2: PRISMA_2020_checklist.
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