Next Issue
Volume 1, September
Previous Issue
Volume 1, March
 
 

Chromatography, Volume 1, Issue 2 (June 2014) – 4 articles , Pages 55-95

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
382 KiB  
Article
A Sensitive and Robust Ultra HPLC Assay with Tandem Mass Spectrometric Detection for the Quantitation of the PARP Inhibitor Olaparib (AZD2281) in Human Plasma for Pharmacokinetic Application
by Jeffrey Roth, Cody J. Peer, Baskar Mannargudi, Helen Swaisland, Jung-Min Lee, Elise C. Kohn and William D. Figg
Chromatography 2014, 1(2), 82-95; https://doi.org/10.3390/chromatography1020082 - 19 Jun 2014
Cited by 17 | Viewed by 7422
Abstract
Olaparib (AZD2281) is an orally active PARP-1 inhibitor, primarily effective against cancers with BRCA1/2 mutations. It is currently in Phase III development and has previously been investigated in numerous clinical trials, both as a single agent and in combination with chemotherapy. Despite this [...] Read more.
Olaparib (AZD2281) is an orally active PARP-1 inhibitor, primarily effective against cancers with BRCA1/2 mutations. It is currently in Phase III development and has previously been investigated in numerous clinical trials, both as a single agent and in combination with chemotherapy. Despite this widespread testing, there is only one published method that provides assay details and stability studies for olaparib alone. A more sensitive uHPLC-MS/MS method for the quantification of olaparib in human plasma was developed, increasing the range of quantification at both ends (0.5–50,000 ng/mL) compared to previously published methods (10–5,000 ng/mL). The wider range encompasses CMAX levels produced by typical olaparib doses and permits better pharmacokinetic modeling of olaparib elimination. This assay also utilizes a shorter analytical runtime, allowing for more rapid quantification and reduced use of reagents. A liquid-liquid extraction was followed by chromatographic separation on a Waters UPLC® BEH C18 column (2.1 × 50 mm, 1.7 µm) and mass spectrometric detection. The mass transitions m/z 435.4→281.1 and m/z 443.2→281.1 were used for olaparib and the internal standard [2H8]-olaparib, respectively. The assay proved to be accurate (<9% deviation) and precise (CV < 11%). Stability studies showed that olaparib is stable at room temperature for 24 h. in whole blood, at 4 °C for 24 h post-extraction, at −80 °C in plasma for at least 19 months, and through three freeze-thaw cycles. This method proved to be robust for measuring olaparib levels in clinical samples from a Phase I trial. Full article
Show Figures

Figure 1

275 KiB  
Article
An Isocratic Toxic Chemical-Free Mobile Phase HPLC-PDA Analysis of Malachite Green and Leuco-Malachite Green
by Naoto Furusawa
Chromatography 2014, 1(2), 75-81; https://doi.org/10.3390/chromatography1020075 - 27 May 2014
Cited by 5 | Viewed by 6583
Abstract
This paper describes a reserved-phase high-performance liquid chromatographic (HPLC) method for detecting malachite green (MG) and leuco-malachite green (LMG) using an isocratic toxic organic solvent/reagent-free mobile phase. Chromatographic separations were performed an Inertsil® WP300 C4 with 0.02 mol/L octane sulfonic acid–ethanol mobile [...] Read more.
This paper describes a reserved-phase high-performance liquid chromatographic (HPLC) method for detecting malachite green (MG) and leuco-malachite green (LMG) using an isocratic toxic organic solvent/reagent-free mobile phase. Chromatographic separations were performed an Inertsil® WP300 C4 with 0.02 mol/L octane sulfonic acid–ethanol mobile phase and a photodiode-array detector. The total run time was <5 min. The system suitability was well within the international acceptance criteria. A harmless method for simultaneously detecting MG and LMG was developed and may be further applied to the quantification in foods. Full article
Show Figures

Figure 1

669 KiB  
Article
Influence of the Azulene Ring on the Enantioseparation of 1,5-Diols
by Dana A. Horgen and Charles M. Garner
Chromatography 2014, 1(2), 65-74; https://doi.org/10.3390/chromatography1020065 - 16 May 2014
Cited by 1 | Viewed by 5777
Abstract
The enantioseparation of a series of six azulene-centered 1,5-diol enantiomers was studied employing two cellulose-based chiral stationary phases under normal phase conditions (isopropanol/hexanes). The separations were generally quite good on Chiralcel-OD-H, with α values ranging from 1.2 to 8.4 (average 4.0) and resolution [...] Read more.
The enantioseparation of a series of six azulene-centered 1,5-diol enantiomers was studied employing two cellulose-based chiral stationary phases under normal phase conditions (isopropanol/hexanes). The separations were generally quite good on Chiralcel-OD-H, with α values ranging from 1.2 to 8.4 (average 4.0) and resolution values of 0.4–8.3 (average 4.7). Only one of the six enantiomer pairs was not well resolved, but was well separated on Lux cellulose 2 (α 1.4, Rs 8.7). It was observed that the enantioseparations of the RS/SR diastereomers (ave α = 7.8, Rs = 8.2) were dramatically better than that of the corresponding RR/SS diastereomers (ave α = 2.1, Rs = 3.0) on Chiralcel-OD-H. The better-resolved diastereomer pairs correspond to the more strongly retained diastereomers on silica gel. The enantiomers of two benzene 1,5-diols were much more poorly separated on both stationary phases, suggesting that the unusual polarity of the azulene ring enhances critical interactions with these phases. Full article
Show Figures

Graphical abstract

255 KiB  
Article
Adaptation of a High-Pressure Liquid Chromatography System for the Measurement of Viscosity
by Sonia Gregory and Henryk Mach
Chromatography 2014, 1(2), 55-64; https://doi.org/10.3390/chromatography1020055 - 26 Mar 2014
Viewed by 6982
Abstract
The state-of-the-art instruments for the determination of viscosity of liquids typically require a significant amount of sample, and have relatively low throughput due to manual and sequential measurements. In this study, it was demonstrated that the pressure generated by the flow of viscous [...] Read more.
The state-of-the-art instruments for the determination of viscosity of liquids typically require a significant amount of sample, and have relatively low throughput due to manual and sequential measurements. In this study, it was demonstrated that the pressure generated by the flow of viscous fluids through a capillary could be precisely measured employing high-pressure liquid chromatography systems (HPLC) using glycerol solutions of moderate viscosity as a mobile phase, and correlated to the dynamic (absolute) viscosity. The parameters allowing calculation of the viscosity of glycerol calibration standards as a function of temperature were established. The measurements were made with volumes as small as 10 μL, and the use of an autosampler permitted unattended analysis of a large number samples. The method appears to be particularly well suited for the development of viscous formulations of therapeutic, protein-based macromolecules, where the amount sample is typically limited and relatively wide ranges of conditions are considered in the optimization process. The utility of the methods was illustrated by application to the development of concentrated inactivated virus vaccines. Full article
Show Figures

Graphical abstract

Previous Issue
Next Issue
Back to TopTop