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Abstract: Monolithic columns are a special type of chromatography column, which can be 

used for the purification of different biomolecules. They have become popular due to their 

high mass transfer properties and short purification times. Several articles have already 

discussed monolith manufacturing, as well as monolith characteristics. In contrast, this 

review focuses on the applied aspect of monoliths and discusses the most relevant 

biomolecules that can be successfully purified by them. We describe success stories for 

viruses, nucleic acids and proteins and compare them to conventional purification methods. 

Furthermore, the advantages of monolithic columns over particle-based resins, as well as 

the limitations of monoliths are discussed. With a compilation of commercially available 

monolithic columns, this review aims at serving as a ‘yellow pages’ for bioprocess 

engineers who face the challenge of purifying a certain biomolecule using monoliths. 
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1. Introduction 

The Centre for Chemical Process Safety (CCPS) defines a bioprocess as a process that makes use of 

microorganisms, cell culture or enzymes to manufacture a product or to complete a chemical 

transformation [1]. In other words, a bioprocess envelops production and purification of a biomolecule 

that can be of therapeutic (e.g., protein-based therapeutic drugs) or economic importance (e.g., food 

industry, waste water treatment). As shown in Figure 1, a typical bioprocess is comprised of upstream 

(strain engineering, production of target biomolecule) and downstream processes (clarification, 

separation, purification). In a typical downstream process, the product undergoes capture, purification 

and/or polishing steps to yield the final, purified preparation. Of course, these steps and their execution 

depend on the purity of the starting material; e.g., the purification of an intracellular biomolecule from 

E. coli might require more purification steps than the purification of a secreted product from yeast. 

During the last decade, production titers in the upstream dramatically increased due to strain 

engineering, media optimization and bioprocess engineering approaches. However, the downstream 

process did not develop at the same pace, which is why product purification actually describes the 

bottleneck of a typical bioprocess. To date, conventional downstream methods, like centrifugation and 

filtration, are not able to handle the high product titers coming from the upstream process [2], which is 

why alternative, fast and efficient separation techniques are needed. Chromatography with  

particle-based resins has become the backbone of downstream processing for biomolecules, such as 

viruses, nucleic acids and proteins. However, mass transfer in particle-based resins occurs through 

diffusion, which is why purification of large biomolecules, such as glyco-proteins and 

immunoglobulins, takes a long time. This can be critical for unstable products, which is why faster 

purification methods are needed. In the past twenty years, monolithic columns have become popular as 

an efficient tool for the purification of large biomolecules due to their high mass transfer properties and 

short purification times [3]. Monoliths are a special type of chromatographic column having a single 

block of a homogenous stationary phase with many interconnected channels [4]. The stationary phase of 

the monolith can be of various chemistries, allowing the purification of different kinds of biomolecules 

with different characteristics. Monoliths are the fourth generation chromatography material [3], 

succeeding beads, porous particle-based columns and membrane adsorbers. In the last two decades, 

numerous articles describing preparation, properties and applications of monolithic columns were 

published [4–18]. In contrast, this review focuses on the applied aspect of monoliths and describes 

recent applications of monoliths for the purification of biomolecules. Thus, this review serves as a 

‘yellow pages’ for bioprocess engineers who want to purify a certain biomolecule by monoliths. 

2. Advantages and Limitations of Monoliths 

The complexity of any purification process is finding the optimal balance between surface area, 

porosity, pore size and distribution and other physical and chemical properties of the chromatographic 

support, such as mass transfer properties and flow distribution. In this respect, monoliths show several 

advantages over particle-based resins. 
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Figure 1. Schematic diagram of a typical bioprocess. (A) different downstream unit 

operations, (B) convective interaction media (CIM®) monolithic column [19]. 

2.1. Advantages of Monolithic Columns 

2.1.1. Convective Flow 

In particle-based resins, separation processes happen by diffusion into pores. The longitudinal 

diffusion of the target analyte declines with increasing flow rate. Furthermore, the diffusion 

coefficient, which is comprised of both diffusive and convective components, is predominantly 

dependent on convection for higher flow velocities, which, in turn, is dependent on the pore size [20]. 

In contrast to particle-based resins, in monoliths, the separation of biomolecules dominantly happens 

by convective flow through channels having a diameter of more than 1,000 nm. This allows high flow 

velocity and, therefore, high throughput purifications [16]. 

2.1.2. Porosity 

Monolithic columns have high porosity due to their large interconnected channels. Optimization of 

pore size and pore distribution can be done over a wide range by changing the porogen composition, 

porogen to monomer ratio and polymerization temperature [21–25]. Owing to their high bed porosity, 

the pressure drop in monoliths is much lower in comparison to particle-based resins. 

2.1.3. Adsorption Area and Dynamic Binding Capacity 

Monolithic columns have a low absolute surface area, but a high adsorption area due to their porous 

structure [3], allowing a high dynamic binding capacity (DBC). Another main advantage of monoliths 

is their flow-independent DBC allowing straight-forward scalability [3,26–28]. A direct comparison 
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between monoliths and particle-based resins for the purification of virus-like particles from yeast 

homogenate has been conducted by Burden et al. The authors concluded that the monoliths are three-fold 

superior in terms of DBC with equivalent recovery in yield (90%) compared to particle-based resins [29]. 

2.1.4. Separation Time 

Due to the high flow velocity and low pressure drop, the overall process time using monoliths is 

much lower compared to particle-based resins [30]. For example, Rupar et al. were able to purify 

potato virus Y with the help of monolithic columns in half the separation time in comparison to 

classical methods. Even though the yield achieved by monolithic columns was slightly lower than by 

classical methods, the possibility for easy scale-up offered valuable compensation for subsequent 

industrial-scale purification [31]. In another study, a direct performance comparison between 

conventional and monolithic C-18 columns was conducted, and it was shown that separation time was 

decreased five-fold by using monolithic columns [32]. 

2.1.5. Stationary Phase 

Monoliths allow a high degree of freedom for the operator, since they can be manufactured from 

various raw materials (such as polymethacrylate, polyacrylamide, polystyrene, silica and cryogels) 

with different morphologies and channel diameters [33]. In general, the monolithic media can be 

classified into two categories, namely organic, polymer-based and inorganic, silica-based media. The 

main advantages of organic, polymer-based media are pH stability and customizability, but the 

columns are mechanically not very stable, which shortens the column life-time. On the other hand, 

inorganic, silica-based monoliths show excellent stability and separation efficiency. However, 

manufacturing is sophisticated and time consuming [34]. Recently, also organic-inorganic hybrid 

monoliths have been prepared combining the advantages of both [34–36]. 

2.1.6. Customizability 

Monoliths can be customized to the needs of the user, since there are various stationary phase 

chemistries, active binding sites and shapes and sizes (disks, tubes) available. Although the shape of 

the monolith per se does not present a significant advantage, a minor advantage to be noted is that 

monolithic disks (0.34 mL) do not have a specific flow direction, enabling back-flush to encounter 

clogging problems. BIA separations, Slovenia, offers small 0.34-mL monolithic disk columns 

comprising a wide variety of stationary phases [19]. Since monolithic columns do not lose resolution 

with scale-up, preliminary, less expensive characterization and screening studies using analytical-scale 

disks are possible. 

2.1.7. Scalability 

Monolithic supports are easy to scale up without the need for column modifications [3,26]. 

Monolithic disks can be stacked up to four disks in the same housing, increasing efficiency and 

capacity without compromising resolution [3]. Monoliths have overcome the mass transfer problems 

posed by particle-based columns, and commercial monolithic columns up to 8 L are available [3]. 
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2.2. Limitations of Monolithic Columns 

Mass transfer in monoliths is based on convection and, hence, cannot be used for size exclusion 

chromatography (SEC), since SEC is based on the difference in diffusivity of individual molecules into 

pores. Recently, it was shown that biomolecules can still be separated by size by using friction in the 

monolithic support, called slalom chromatography [37–39]. However, monolithic columns for slalom 

chromatography have to be further optimized and have not been utilized in industry yet [3]. 

Fouling and clogging is another major limitation in most chromatographic columns, as it results in 

the reduction of DBC and an increase in the pressure drop across the column, which decreases the life 

span of the column significantly. As mentioned before, back-flush is possible only in smaller 

monolithic disks (with axial flow) to reverse fouling and clogging and is not possible in tubular 

monolithic columns (with radial flow). 

Lipids are a major class of biological foulants, as they bind irreversibly and are hard to remove from 

the column. Burden et al. tackled lipid fouling by sample pretreatment, using Amberlite/XAD-4 beads 

for lipid removal, which doubled the dynamic binding capacity of a monolithic disk column [29]. 

3. Applications of Monoliths 

Monolithic supports have been extensively used for the purification of different biomolecules. 

Boehringer Ingelheim (Austria) established the first industrial process for pDNA purification using 

monolithic supports [16]. Here, we want to sum up recent studies describing monolithic purifications 

of the three major biomolecule classes: (1) viruses; (2) nucleic acids; and (3) proteins. We describe one 

success story for each biomolecule in more detail and compare it with conventional downstream 

strategies. We want to present the review as a yellow pages for bioprocess engineers, who face the 

challenge of purifying either of these biomolecules. 

3.1. Virus Purification 

Viruses can be used for the production of recombinant proteins and for gene therapy  

applications [40,41] and describe a major class of biomolecules in industry. Today, conventional virus 

purification includes centrifugation, filtration and chromatography, which either returns low yields 

(e.g., only 1% for ultracentrifugation [42]) or is time consuming and tedious. For several years, ion 

exchange monolithic supports have been extensively used for the purification of viruses. In 2013, 

Rupar et al. purified the potato virus Y (PVY) by conventional methods and by monoliths and 

compared both strategies (Figure 2; [31]). The authors used a CIM® QA (quaternary amine) monolith 

column and achieved product recovery and purity comparable to conventional purification methods 

involving ultracentrifugation. However, they could reduce the overall process time by more than half. 

In another study, baculovirus from cell culture supernatant was successfully purified using the anion 

exchange monolithic column CIM® QA [30]. The authors were able to reduce the volume 82-fold, 

increase activity 51-fold and remove 99% of the contaminants. More successful applications of 

monolithic columns for the purification of viruses are summarized in Table 1. 
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Figure 2. Schematic comparison of potato virus Y (PVY) purification between classical 

methods (A, B, D, E) and monolithic columns (A, B, C) [31]. 

Table 1. Applications of monolithic columns for purification and concentration of viruses. 

Virus Host Monolith Ref. 
Bacteriophage T4 E. coli 

CIM® QA 
[43] 

Flavivirus particles 
Vero and baby hamster 
kidney (BHK) helper cells 

[44] 

Adenovirus type 3 dodecahedric 
virus-like particles (VLP) 

High-Five cells 
CIM® analytical column 
(CIMac®) QA 

[45] 

Bacteriophage T7 E. coli Custom made CIM® QA [46] 
Mycobacteriophage D29 M. smegmatis 

CIM® DEAE (diethylamine) 
[47] 

Enterovirus 71 Rhabdomyosarcoma cells [48] 
Lentiviral vectors HEK 293T cells [49] 

 293T/17 cells 
CIM®-IDA(iminodiacetic acid ) 
-Ni2+ 

[50] 

Bacteriophage VDX-10 S. aureus 
CIM® QA and CIM® DEAE 

[51] 
Bacteriophage PRD 1 E.coli and S. enterica [52] 
Burkholderia phage Phi208 B. thailandensis [53] 

Rubella virus 
Human fetal lung fibroblast 
(MRC-5) cells 

CIM® QA and CIM® SO3 [54] 

Influenza virus A and B Vero cells 
CIM® QA, CIM® DEAE and 
CIM® SO3 

[55] 

VLPs (HBsAg) S. cerevisiae CIM® C4 and CIM® OH [29] 
Bacteriophage Phi6 P. syringae CIM® QA [56] 

Potato virus Y 
Plant tissue; N. tabacum 
and S. tuberosum 

CIM® QA [31] 
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3.2. Nucleic Acid Purification 

Since the introduction of plasmid-based DNA (pDNA) therapeutics in the 1990s [57], they have  

been extensively used in medical diagnostics. In 2003, the first DNA vaccine for human therapy was 

approved [58]. These therapeutic applications require high amounts of highly pure pDNA. There is a 

variety of purification strategies available for the purification of pDNA using conventional methods, 

including tangential flow filtration (TFF) [59–61], membrane adsorption [62–64] and  

chromatography [65,66]. Monolithic columns with different functionalities have also been tested for 

the purification of pDNA. In the past few years, several studies described the successful grafting of a 

weak anion exchange monolithic column (CIM® DEAE) with different functionalities, such as 

hydrophobic and ion exchange moieties, to allow pDNA purification in only a single step [67–69]. 

This concept, called conjoint liquid chromatography (CLC), allows the formation of mixed mode 

monoliths. This provides a much faster, but still a very efficient alternative to the conventional  

multi-step procedure (Figure 3). The one-step strategy proved efficient for removal of over 99% of 

gDNA, RNA and host cell proteins and was able to achieve highly pure pDNA from cell culture. 

Theoretically, this strategy can easily be scaled up, giving a total amount of 15 g of pDNA, which can 

be purified with an 8-L column in only one single loading step [67]. However, monolithic columns 

have not only been employed for the purification of pDNA, but also for other nucleic acids (Table 2). 

  

Figure 3. Schematic comparison of pDNA purification between conventional methods  

(A, B, D, E) [65] and monolithic columns (A, B, C) [67]. AEX, anion exchange 

chromatography; HIC, hydrophobic interaction chromatography. 
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Table 2. Applications of monolithic columns for the purification of nucleic acids. 

Nucleic acid Host Monolith Ref. 
Plasmids E. coli CIM® DEAE [70] 
pDNA E. coli CIM® DEAE bearing HIC and AEX groups [67] 

pDNA E. coli 
CIM® DEAE, CIM® QA and CIM® C4 HLD (high 
ligand density) 

[69] 

pDNA HPV-16 E6/E7 E. coli 
CIMac®pDNA and  
Custom made CIM®-CDI (carboxydiimidazole) -
arginine 

[71,72] 

scpDNA E. coli 
Custom made  
CIM®-CDI-histamine amino acid derivative 

[73] 

ocpDNA E. coli CIMac®pDNA [74] 
pDNA DH5-α mutants CIM®-CDI-Cu2+ [75] 

pCCIFOS-25 
(ds circular DNA) 

E.coli 
Laboratory made 
poly (glycidyl methacrylate - ethylene glycol 
dimethacrylate) column 

[76] 

pre-miR-29 R. sulfidophilum 
Custom made 
CIM®-CDI-agmatine 

[77] 

3.3. Protein Purification 

In conventional particle-based chromatography, different protein properties, like the isoelectric 

point and hydrophobicity, can be used to purify the product. Typical purification strategies comprise 

ion-exchange (IEX) and hydrophobic interaction (HIC) approaches, as well as the use of affinity tags. 

Since different raw materials and, thus, chemistries can be used for monoliths, the same purification 

principles can be applied there (Table 3). To mention only a few examples, ion-exchange monoliths 

have been successfully used for the purification of coagulation factors and recombinant  

proteins [78,79]; myoglobin, lysozyme [80] and bovine serum albumin [81] were purified by HIC 

monoliths; and affinity chromatography was employed for the purification of immunoglobulin G using 

a CIM® r-Protein A monolithic column [82,83]. More applications of monoliths for the purification of 

proteins are shown in Table 3. 

Table 3. Applications of monolithic columns for the purification of proteins. 

Protein Host Monolith Ref. 
TNF-α E. coli CIM® DEAE and CIM®-IDA-Cu2+ [84] 
Horseradish 
peroxidase 

P. pastoris 
CIM® DEAE [79] 

β-glucosidases P. etchellsii CIM® DEAE and CIM® EDA (ethylendiamino) [85] 
Host cell proteins CHO cells CIM® Protein-A HLD [86] 
IgM IgM clone 84 CIM® SO3, CIM® DEAE and CIM® CDI [87] 
proteins extracted 
from blood group 
antigens 

anti-V5 hybridoma 
cell line 

Custom made CIM® epoxy 
[88] 

IgG1 Hybridoma cells 
CIM®-IDA with four different metal ions, namely 
Cu2+, Ni2+, Zn2+, Co2+ 

[89] 

Factor IX CHO cells CIM® QA [78] 
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A prominent example for the use of a monolith for protein purification is the downstream process 

for Factor IX (FIX), which plays an important role in blood coagulation. Ribeiro et al. tested different 

particle-based and monolithic anion exchange resins for the purification of recombinant FIX (rFIX) 

from cell culture supernatant (Figure 4; [78]). Four different supports, namely monolith CIM® QA, 

Sartobind® Q, Q Sepharose® and Fractogel® TMAE (trimethylamino ethyl), were used for screening, 

and a pseudo-affinity elution with calcium chloride was developed. CIM® QA rendered the highest 

dynamic binding capacity in comparison to the other resins, namely 4.6 mg/mL of monolithic support. 

The authors conducted a design of experiments to optimize elution conditions and finally obtained a 

recovery yield of 83%, a purification factor of 304, 99.99% removal of DNA and 1,256-fold removal 

of host cell proteins in only one purification step. Upon up-scaling from a 1-mL to an 8-mL CIM® QA 

monolithic tube column, similar results were obtained [78]. 

 

Figure 4. Schematic comparison of Factor IX (FIX) purification between conventional 

methods (A, B, D, E) [90] and monolithic columns (A, B, C) [78]. 

4. Commercially Available Monoliths 

As shown above, monoliths are a powerful alternative to particle-based resins for the purification of 

biomolecules, and the first industrial processes employing monoliths have been launched. Thus, 
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several providers offer monoliths of different chemistries, shapes and sizes. Polymethacrylate-based 

monolithic columns are currently produced and distributed by BIA separations (Ljubljana, Slovenia) 

under the trade name CIM® (convective interaction media), CIMac® (CIM analytical columns) and 

CIMmultus®. They also offer custom-made columns with different column chemistry to suit the needs 

of the end user. Dionex (CA, USA) also produces polymethacrylate monolithic columns under the 

trade name ProSwift®. Phenomenex (CA, USA) markets silica-based monolithic columns under the 

trade name Onyx®. Agilent technologies (CA, USA) markets poly-(glycidyl methacrylate-co ethylene 

dimethacrylate) monoliths, made by BIA separations, under the trade name Bio-monolith® [91]. Merck 

Millipore (MA, USA) has the trade name Chromolith® for marketing their silica-based monolithic 

columns. Bio-Rad (CA, USA) produces polymer-based monolithic columns under the trade name 

Uno®. A summary of commercially available monoliths, their underlying purification principle and 

respective distributors is given in Table 4. 

Table 4. Commercially available monolithic columns. Chromatography techniques: CEX, 

cation exchange; IEX, ion exchange; HILIC, hydrophilic interaction. 

Monolith Principle Manufacturer/Supplier Ref. 
CIM®, CIMmultus® and CIMac® QA 

AEX 

BIA separations [19] 

CIM®, CIMmultus® and CIMac® DEAE 
CIMac® pDNA 
CIMac® Adeno 
CIM® and CIMac® EDA  
CIM®, CIMmultus® and CIMac® SO3 CEX 
CIM® and CIMmultus® C4 A HIC 
CIM® and CIMmultus® OH HILIC 
CIM® CDI 

Affinity 

CIM® IDA 
CIM® n-Protein A 
CIM® r-Protein A 
CIM® r-Protein G 
CIM® r-Protein L 
CIM® epoxy 
ProSwift® RP monolith column HIC 

Dionex [92] 
ProSwift® IEX monolith column IEX 
ProSwift® ConA-1S affinity monolith column Affinity 
DNASwift® SAX-1S monolith column 

AEX 
PepSwift® monolith column 
Onyx® monolithic C18 column 

HIC Phenomenex [93] 
Onyx® monolithic C8 column 
Onyx® monolithic HD-C18 
Onyx® monolithic Si 
Chromolith® RP-18e 
Bio-Monolith® QA 

AEX 
Agilent technologies [94] 

Bio-Monolith® DEAE 
Bio-Monolith® SO3 CEX 
Bio-Monolith® Protein A Affinity 
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Table 4. Cont. 

Monolith Principle Manufacturer/Supplier Ref. 

Chromolith® CapRod RP-18 endcapped 300-0.1 capillary 
column 

HIC Merck Millipore [95] 

Chromolith® Phenyl 50-4.6 HPLC column 

Chromolith® FastGradient RP-18 endcapped 50-2 HPLC 
column 

Chromolith® FastGradient RP-18 endcapped 100-3 HPLC 
column 

Chromolith® Flash RP-18 endcapped 25-2 HPLC column 

Chromolith® Flash RP-18 endcapped 25-3 HPLC column 

Chromolith® Prep RP-18 endcapped 100-25 column 

UNO® Monolith Anion Exchange Columns AEX 

Bio-Rad [96] 

UNO® Monolith Cation Exchange Columns CEX 

UNO® S1 Column 

IEX 

UNO® S6 Column 

UNO® S12 Column 

UNO® Q1 Column 

UNO® Q6 Column  

UNO® Q12 Column 

5. Concluding Remarks and Outlook 

In terms of resolution and separation speed, monolithic columns outperform particle-based resins. 

Furthermore, scale-up does not affect the resolution of monolithic purification processes. It was shown 

that the dynamic binding capacity of monoliths, which is comparable to particle-based resins, actually 

increases with increasing product size. Furthermore, the possibility of using different raw materials, 

chemistries, pore sizes and grafting, which allows a high degree of freedom for the operator, causes an 

overwhelming interest in monoliths today. Our research group is currently conducting experiments to 

implement monolith technology as an impurity monitoring process analytical technology (PAT) tool 

across unit operations. In a similar approach, Smrekar et al. already implemented the monolith 

technology as a PAT tool to monitor a virus production process [97]. 

Another highly interesting approach was recently given by Fee et al., who used a 3D printer to 

manufacture monoliths with hexagonal channels from computer-aided design (CAD) models [98]. This 

allows more control in pore formation and distribution and might further boost the performance and 

applicability of monolith technology in the future. 
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