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Abstract: This paper is concerned with an insurance risk model whose claim process is
described by a Lévy subordinator process. Lévy-type risk models have been the object of
much research in recent years. Our purpose is to present, in the case of a subordinator, a
simple and direct method for determining the finite time (and ultimate) ruin probabilities,
the distribution of the ruin severity, the reserves prior to ruin, and the Laplace transform of
the ruin time. Interestingly, the usual net profit condition will be essentially relaxed. Most
results generalize those known for the compound Poisson claim process.
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1. Introduction

Let us consider a continuous-time risk model, whose reserves Rt at time t are of the form:

Rt = u+ ct− St, t ≥ 0 (1)

where u represents the initial reserves, c the (constant) premium rate and St the total claim amount over
the period (0, t]. Ruin of the insurance occurs at the first time, T (u), when the reserves become negative.
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In the classical Cramér–Lundberg model, {St} is modeled by a compound Poisson process. A large
literature is devoted to the derivation of the ruin probabilities and other related ruin quantities, for
this model and various extensions or modifications. Much can be found, e.g., in the comprehensive
books [1–3].

The present paper is concerned with the case where {St} is a Lévy subordinator without the drift,
implying that {Rt} is a spectrally negative Lévy process. This model and more general Lévy risk
processes have been the object of much research work in recent years. The reader is referred, e.g.,
to the books [4,5] and the papers [6–13].

Our purpose is to present a direct approach for determining the finite time (and ultimate) ruin
probabilities (Section 2), the distribution of the ruin severity and the reserves prior to ruin (Section 3)
and the Laplace transform of the ruin time (Section 4). This method relies on simple probabilistic
arguments. In particular, we will operate a time reversal that allows us to argue with a dual risk model
for which ruin problems are more easily studied. The power of duality is well recognized in ruin theory
(see, e.g., [14–16]), as well as for stochastic processes with independent stationary increments (see, e.g.,
the books [17–19]).

In the sequel, it is assumed that µ ≡ E(S1) <∞. Special attention is paid to the standard case where
c > µ, that is when the net profit condition holds, so that ultimate ruin is not a.s. Nevertheless, we also
examine the case where c < µ, which could arise and be temporarily allowed for certain branches in a
large insurance company. The case c = µ, quite different, will not be considered in Sections 3 and 4; its
practical relevance, however, is minor.

Most results obtained when c > µ generalize those known for the compound Poisson claim process
(see, e.g., [16,20]). This is in agreement with an observation of [21]. A main interest of our work comes
from the direct and systematic study of the model made using simple probabilistic methods. Note that a
similar approach could be applied to certain queueing and storage models (as, e.g., in [22]). Of course,
other methods can be followed to analyze ruin problems with a subordinator. For instance, one can
approximate the subordinator by a sequence of compound Poisson processes (a strategy adopted, e.g.,
in [8,11]). A powerful alternative is by using the fluctuation theory for Lévy processes (see, e.g., [5]).

In forthcoming work, we will show, for the classical compound Poisson risk model, that different
results can be obtained by exploiting the analycity in time of the distribution of St. For the ruin
probabilities, the formulas are those obtained by [23–25]; see, also, [26].

Throughout the paper, we denote Pt(A) = P (St ∈ A) for any Borel set, A. In particular,
Pt(dy) = Pt((y, y + dy]) = P (y < St ≤ y + dy) and Pt(a + dy) = Pt((a + y, a + y + dy]), a, y ≥ 0.
For clarity, the main results will be stated at the beginning of each Section, their proofs being presented
afterwards. Some more technical results are also given in an Appendix.

2. Non-Ruin Probabilities

The claim process is a Lévy subordinator, {St}, without the drift and with S0 = 0 (see, e.g., the books
[19,27,28]). By the Lévy–Khintchine formula, the Laplace transform of its probability distribution, Pt,
is given by:

E(e−θSt) = exp

(
t

∫
]0,∞)

(e−θx − 1) Π(dx)

)
, θ > 0 (2)
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where tΠ is a measure on ]0,∞), called the Lévy measure of Pt. The tail of Π is the function
Π̄(x) = Π(]x,∞)). Therefore, Π̄(∞) = 0 and an integration by parts shows that:∫

]0,∞)

(e−θx − 1) Π(dx) = −θ
∫
]0,∞)

e−θx Π̄(x)dx (3)

A basic subordinator is the classical compound Poisson process with parameter λ and positive i.i.d.
claim amounts (distributed as X , say); here, Π(x) = λP (X ≤ x) and Π̄(0) = λ. For the other
subordinators, Π̄(0) = ∞, i.e., the process has infinitely many small jumps. This is the case with
the gamma process, the α-stable subordinator and the (generalized) inverse Gaussian process (see
the Appendix).

2.1. Results

As a preliminary, consider the case where there are no initial reserves (u = 0). Non-ruin probabilities
then have a (known) explicit expression.

Proposition 1.

P (T (0) > t) =

∫
[0,ct[

(
1− y

ct

)
Pt(dy) (4)

Formula (4) was first derived by [29] in a special case. Later, it was obtained by [30] (Theorem 2) for a
process with non-negative interchangeable increments. It was shown to hold, too, for a general spectrally
negative Lévy process (see, e.g., [19] (Corollary 7.3), [31]). For this reason, a proof of Equation (4) will
not be included here.

Let us now consider u ≥ 0. Non-ruin probabilities can then be evaluated by the (known) Formula (5)
for a finite horizon and Equation (6) for an infinite horizon.

Proposition 2.

P (T (u) > t) = Pt([0, u+ ct[)−
∫
]u,u+ct[

P y−u
c

(dy)

∫
[0,u+ct−y[

(1− z

u+ ct− y
)Pu+ct−y

c
(dz) (5)

Let µ = E(S1) be the expected claim amount per time unit, i.e.:

µ =

∫
]0,∞]

xΠ(dx) =

∫
]0,∞]

Π̄(dx)

Ultimate ruin is known to arise almost surely when c ≤ µ. Suppose now c > µ, and denote
ψ(u) = P (T (u) <∞).

Corollary 3. If c > µ:

ψ(u) =
(

1− µ

c

) ∫
]u,∞)

P y−u
c

(dy) (6)

In particular:
ψ(0) = µ/c. (7)
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For the compound Poisson model, these formulas can be found in most books on ruin theory
(e.g., [2]). As shown by [30] (Theorems 3 and 4), Equation (5) holds, too, for a process with
non-negative interchangeable increments and Equation (6) for a Lévy subordinator process. We will
rederive Formulas (5) and (6) by arguing through the dual risk model.

It is worth mentioning that an alternative expression for ψ(u) is provided by a
Pollaczek–Khintchine-type formula. This result is omitted here for brevity reasons. We refer, e.g.,
to [30] (Theorem 5) for the case of a Lévy subordinator and to [6,32] for a perturbed subordinator model.

Let fT (u) be the density function of T (u), if it exists.

Proposition 4.

fT (u)(t) =

∫
[0,u+ct[

Π̄(u+ ct− x)Pt(dx)−
∫
[u,u+ct[

P y−u
c

(dy)∫
[0,u+ct−y[

Π̄(u+ ct− y − z) (1− z

u+ ct− y
)Pu+ct−y

c
(dz). (8)

2.1.1. Special Cases

(i) Consider the Cramér–Lundberg model, i.e., St is a compound Poisson process with parameter λ
and i.i.d. claim amounts Xi. The case where the Xi’s are positive arithmetic random variables was
studied in [23] when the cumulated premium income is a linear function, u + ct, as here, but also for
any non-decreasing deterministic function. Let us rather examine the case where the Xi’s are valued in
]0,∞) with density f(x), x > 0. Therefore, St has an atom at state 0, and otherwise, it is continuous
with density:

ft(x) = e−λt
∞∑
i=1

(λt)i

i!
f ∗i(x), x > 0

where f ∗i is the i-th convolution of f .
Then, Equation (5) yields Seal’s relation:

P (T (u) > t) = e−λt +

∫ u+ct

0

ft(y)dy −
∫ u+ct

u

e−λ(u+ct−y)/c f y−u
c

(y)dy

−
∫ u+ct

u

f y−u
c

(y) [

∫ u+ct−y

0

(
1− z

u+ ct− y

)
fu+ct−y

c
(z)dz] dy

and Equation (6) becomes, when c > λE(X):

ψ(u) =

(
1− λE(X)

c

) ∫ ∞
u

f y−u
c

(dy).

These results are given, e.g., in [33]. For the density, fT (u), an explicit formula is easily written from
Equation (8) using Π̄(x) = λP (X > x).

(ii) Suppose that the Lévy subordinator is a gamma process with parameters a, b > 0 (see the
Appendix). Then, Equation (6) gives, when c > a/b:

ψ(u) =
(

1− a

bc

) ∫ ∞
u

ba(y−u)/c

Γ(a(y − u)/c)
xa(y−u)/c−1e−bydy

=

(
c

a
− 1

b

)
e−bu

∫ ∞
0

(be−bc/a)z(u+ cz/a)z−1

Γ(z)
dz.
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For a study of this model, we refer, e.g., to [34–36].
(iii) If the Lévy subordinator is an inverse Gaussian process with parameter b > 0, then Equation (6)

gives, when c > 1/b:

ψ(u) =

(
1− 1

bc

) ∫ ∞
u

y − u
c
√

2πy3
e−(by−(y−u)/c)

2/2ydy.

Such a model was investigated, e.g., in [11,37].

2.2. Proofs

Non-ruin until time t means, of course, that over the period [0, t], the process, {Sτ}, remains below
the upper boundary, F , of equation y = u + cτ . It is easily seen that non-crossing through a lower
boundary is an easier problem, because crossing here means necessarily meeting. Therefore, we choose
to tackle the non-ruin problem by first studying the case of a lower boundary.

2.2.1. Step 1: First-Meeting in a Lower Boundary.

Consider a point, (t, x), with x < u + ct and a trajectory τ → Sτ joining the origin (0, 0) to (t, x).
To construct the dual model, we make a rotation of 180◦ with center (t, x) and then reverse the two
axes. In these new axes, the corresponding trajectory, τ → S̃τ , joins (0, 0) to (t, x), and the straight line
becomes a lower boundary, F̃ , for this trajectory. Clearly, S̃τ = −(St−τ − St), 0 ≤ τ ≤ t, and F̃ is
of equation y = x − u − ct + cτ . Moreover, the process, {S̃τ}, over [0, t] is defined exactly as {Sτ}
(e.g., [19], p. 43).

Let us now pass to the whole positive quadrant in which {S̃τ , τ ≥ 0} is again a Lévy subordinator.
Two lower boundaries are considered: F̃t defined by F̃ for τ ≤ t followed by a vertical line of abscissa
t and F̃ defined as before, but on [0,∞). The first-meeting times of {S̃τ} with these boundaries are
denoted T̃t and T̃ , respectively.

We want to determine νt(dx), the probability that {S̃τ} meets F̃t for the first time at the point (t, x),
i.e., νt(dx) = P (x < S̃T̃t ≤ x+ dx). For that, we will have to compute ν(dz), the probability that {S̃τ}
meets F̃ for the first time at the level, z, i.e., ν(dz) = P (z < S̃T̃ ≤ z + dz).

The lemma below shows that the probability, ν, can be easily calculated.

Lemma 5. For z ≥ 0,
ν(dz) = (1− z

z − x+ u+ ct
)P z−x+u+ct

c
(dz) (9)

Proof. Consider a first-meeting of {S̃τ} with F̃ at some point M of height z and, thus, at time
τz = (z − x+ u+ ct)/c; so, M = (τz, z). Returning to the original axes, but with origin M , we observe
that ν(dz) corresponds to the probability P (T (0) > τz, Sτz = z). Formula (9) then follows directly
from Equation (4). �

Thanks to ν, the probability νt can be determined from the result (10) below. Subsequently, a product
measure between two measures ν̃ and ν will be denoted by ν̃ ⊗ ν (this should not be confused with a
convolution product, which has already been used and denoted by ∗).
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Lemma 6. For x ≥ 0,

νt(dx) = Pt(dx)−
∫
[0,x−u[

Px−u−z
c

(dx− z)⊗ ν(dz) (10)

the integral vanishing, of course, for x ≤ u.

Proof. The argument is standard (see e.g., [1]). Any trajectory of τ → S̃τ can reach the point (t, x)

either without meeting the boundary F̃ , or after a first meeting with F̃ at some point of height z, thus at
time (z − x + u + ct)/c, followed by an increment of x − z during the period ((z − x + u + ct)/c, t).
Therefore,

Pt(dx) = νt(dx) +

∫
[0,x−u[

Px−u−z
c

(dx− z)⊗ ν(dz)

hence the Formula (10). �
Note that Equation (10) can be extended to any increasing lower boundary, F̃ (i.e., linearity has no

simplifying role at this step). The next lemma is straightforward.

Lemma 7. For x ≥ 0,

P (T̃t = t|S̃t = x) =
νt(dx)

Pt(dx)
(11)

Proof. Evidently, νt(A) ≤ Pt(A) for allA ⊂]u,∞), which implies that νt << Pt. Given any probability
measure ρ satisfying νt << Pt << ρ (for instance, ρ = Pt), the l.h.s. of Equation (11) corresponds
to the quotient ν ′t(x)/P ′t(x) of the Radon–Nikodym derivatives with respect to ρ, which is equivalent to
ν ′t(x)ρ(dx)/P ′t(x)ρ(dx) = νt(dx)/Pt(dx). �

2.2.2. Step 2: Back to the Ruin Problem

We are now ready to derive the announced formulas for the ruin time distribution.

Lemma 8.
P (T (u) > t) =

∫
[0,u+ct[

νt(dx) (12)

Proof. Operating the rotation of axes described above, we get:

P (T (u) > t) =

∫
[0,u+ct[

P (τ → Sτ does not cross F |St = x)Pt(dx)

=

∫
[0,u+ct[

P (τ → S̃τ does not cross F̃ |S̃t = x)Pt(dx)

=

∫
[0,u+ct[

P (T̃t = t|S̃t = x)Pt(dx)

=

∫
[0,u+ct[

νt(dx)

Pt(dx)
Pt(dx)

using Equation (11), which gives the desired result. �
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Proof of Proposition 3. Inserting in Equation (12) Formulas (10) and (9) yields:

P (T (u) > t) = Pt([0, u+ ct[)−
∫
x∈[0,u+ct[

∫
z∈[0,x−u[

Px−u−z
c

(dx− z)⊗ ν(dz)

= Pt([0, u+ ct[)−
∫
x∈]u,u+ct[

∫
z∈[0,x−u[

(
1− z

z − x+ u+ ct

)
Px−u−z

c
(dx− z)⊗ P z−x+u+ct

c
(dz) (13)

In Equation (13), let us substitute for x a new variable y = x−z. The integration is now over the domain
{u < y < u+ ct, 0 ≤ z < u+ ct− y}, and applying Fubini’s theorem leads to Equation (5). �

Proof of Corollary 4. Formula (5) can be rewritten as:

P (T (u) > t) = Pt([0, u+ ct[)−
∫
]u,u+ct[

E

[(
1−

S(u+ct−y)/c

u+ ct− y

)
1{0≤S(u+ct−y)/c<u+ct−y}

]
P y−u

c
(dy).

(14)
When c > µ, we have by the strong law of large numbers (SLLN) theorem:

lim
t→∞

Pt([0, u+ ct[) = lim
t→∞

E[1{0≤St/t<(u+ct)/t}] = 1.

Thus, we can write that:

ψ(u) = 1− P (T (u) =∞) = lim
t→∞

[Pt([0, u+ ct[)− P (T (u) > t)] (15)

Moreover, it is proved in Property 18 of the Appendix that, as c > µ:∫
]u,∞)

P y−u
c

(dy) <∞ a.e.

From Equations (14) and (15), we then obtain, using the dominated convergence theorem:

ψ(u) = lim
t→∞

∫
]u,u+ct[

E

[(
1−

S(u+ct−y)/c

u+ ct− y

)
1{0≤S(u+ct−y)/c<u+ct−y}

]
P y−u

c
(dy)

=

∫
]u,∞)

E
[(

1− µ

c

)
1{0≤µ<c}

]
P y−u

c
(dy)

which is Formula (6).
When u = 0, Equation (6) gives:

ψ(0) =
(

1− µ

c

) ∫
]0,∞)

P y
c
(dy) =

(
1− µ

c

) [∫
[0,∞)

P y
c
(dy)− 1

]
.

From Equation (A9) below, where θ0 = 0 by Equation (20) and, thus, l0 = µ by Equation (45), we get:∫
[0,∞)

P y
c
(dy) = 1/

(
1− µ

c

)
hence, Formula (7). �

Lemma 9.
fT (u)(t) =

∫
]u,u+ct[

Π̄(u+ ct− x) νt(dx) (16)
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Proof. By the independence and stationarity of the increments in St, we have:

P (x < St < x+ dx, t < T (u) < t+ dt)

= P (x < St < x+ dx, T (u) > t, St+dt − St > u+ ct− x)

= P (St ∈ (x, x+ dx), T (u) > t)P (Sdt > u+ ct− x)

= νt(dx)P (Sdt > u+ ct− x) (17)

as seen in proving Lemma 8. Now, by Property 17 of the Appendix:

P (Sdt > u+ ct− x) = Π̄(u+ ct− x)dt (18)

so that inserting Equation (18) in Equation (17) yields Equation (16). �

Proof of Proposition 4. It suffices to adapt the proof of Proposition 2, starting from Equation (16). �

3. Reserves at and Prior to Ruin

In this Section, we focus on the joint distribution of the reserves at and just prior to ruin (when it
occurs) and some of its implications.

Before this, we introduce a useful parameter inside the subordinator model. For any s > 0, consider
the equation in θ:

E(e−θSt) = e(s−θc)t.

Note that with such a θ, the process {exp(θRt − st)} is a martingale. By Equation (2), the previous
equation becomes: ∫

]0,∞)

(e−θx − 1) Π(dx) = s− cθ (19)

which is referred to as Lundberg’s equation (see, e.g., [16]). It is easily checked that Equation (19)
admits a unique non-negative root, s → θ(s), say. In this section, we will only need the limiting value
θ0 = lims→0 θ(s) (but θ(s) for s > 0 will be used in Section 4). From (19), we observe that:

θ0 = 0 if c ≥ µ, and θ0 > 0 if c < µ (20)

3.1. Results

Let RT−0 be the reserves just prior to ruin and |RT | the severity of ruin. Note that Z = RT−0 + |RT |
is the claim amount that causes the ruin. Our main goal is to determine the probability:

G(u;x, y) = P (T (u) <∞, RT−0 < x, |RT | < y), x, y > 0.

The following function will have a key role. For any real v:

χ(v) =

∫
[0,∞)∩]v,∞)

P y−v
c

(dy). (21)

Note that the domain of integration in Equation (21) is ]v,∞) if v ≥ 0, while it is [0,∞) if v < 0.
In Property 18, we will show that if c 6= µ, the function, χ(v), is finite a.e. On the contrary, when c = µ,
χ(v) may be infinite (see the remark in the Appendix).
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Proposition 10. If c 6= µ:

G(u;x, y) =
1

c

∫ x

0

[Π̄(τ)− Π̄(τ + y)] [χ(u− τ)− e−θ0τχ(u)]dτ. (22)

In particular:

G(0;x, y) =
1

c

∫ x

0

[Π̄(τ)− Π̄(τ + y)] e−θ0τdτ (23)

Corollary 11. If c > µ:

G(u;x, y) =
1

c− µ

∫ x

0

[Π̄(τ)− Π̄(τ + y)] [ψ(u− τ)− ψ(u)]dτ. (24)

In particular:

G(0;x,∞) = G(0;∞, x) =
1

c

∫ x

0

Π̄(τ)dτ (25)

Corollary 12. If c 6= µ, for z > 0:

P (Z < z|T (u) <∞) =
1

c ψ(u)

∫ z

0

[Π̄(τ)− Π̄(z)] [χ(u− τ)− e−θ0τχ(u)]dτ (26)

and if c > µ:

P (Z < z|T (u) <∞) =
1

(c− µ)ψ(u)

∫ z

0

[Π̄(τ)− Π̄(z)] [ψ(u− τ)− ψ(u)]dτ (27)

Corollary 13. If c 6= µ, for α ≥ 0 and β > 0, and provided these moments exist:

E(Rα
T−01{T (u)<∞}) =

1

c

∫ ∞
0

xαΠ̄(x) [χ(u− x)− e−θ0xχ(u)]dx (28)

E(Rα
T−0|RT |β1{T (u)<∞}) =

β

c

∫ ∞
0

∫ ∞
0

xαyβ−1Π̄(x+ y) [χ(u− x)− e−θ0xχ(u)]dxdy (29)

E(Z1{T (u)<∞}) =
1

c

∫ ∞
0

[

∫ ∞
x

τΠ(dτ)] [χ(u− x)− e−θ0xχ(u)]dx (30)

Formula (22) and its corollaries (especially Equation (25)) cover several results obtained in the
compound Poisson model, mainly for the case where c > µ (see, e.g., [38–40]).

3.2. Proofs

The result below is proved by following the same argument as for Lemma 9.

Lemma 14.

G(u;x, y) =

∫ ∫
L(x)

[Π̄(u+ ct− ξ)− Π̄(u+ ct− ξ + y)] νt(dξ)⊗ dt (31)

where:
L(x) = {(t, ξ) : t > 0, ξ ≥ 0, u+ ct− x < ξ < u+ ct}
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Proof. We have, for y > 0:

P (ξ < St < ξ + dξ, t < T (u) < t+ dt, |RT | < y)

= P (ξ < St < ξ + dξ, T (u) > t)P (u+ ct− ξ < St+dt − St < u+ ct− ξ + y)

= νt(dξ)⊗ dt[Π̄(u+ ct− ξ)− Π̄(u+ ct− ξ + y)]

by virtue of Equation (A1). Formula (31) then follows. Since RT−0 < x, x > 0, requires u+ cT − x <
ξ < u+ cT , the domain of integration is (t, ξ) ∈ L(x), as stated. �

Proof of Proposition 10. Inserting Equations (9) and (10) inside Equation (31), we can write that:

G(u;x, y) = I1(u;x, y)− I2(u;x, y) (32)

where:

I1(u;x, y) =

∫ ∫
L(x)

[Π̄(u+ ct− ξ)− Π̄(u+ ct− ξ + y)]Pt(dξ)⊗ dt (33)

I2(u;x, y) =

∫ ∫ ∫
L′(x)

[Π̄(u+ ct− ξ)− Π̄(u+ ct− ξ + y)]P ξ−u−z
c

(dξ − z)

⊗(1− z

z − ξ + u+ ct
)P z−ξ+u+ct

c
(dz)⊗ dt (34)

with:
L′(x) = {(t, ξ, z) : t > 0, ξ ≥ 0, 0 ≤ z < ξ − u, u+ ct− x < ξ < u+ ct}.

Let us make the change of variable τ = u+ ct− ξ in both integrals.
For Equation (33), we get:

I1(u;x, y) =

∫ ∫
M(x)

[Π̄(τ)− Π̄(τ + y)]P τ−u+ξ
c

(dξ)⊗ dτ

c

where M(x) = {(τ, ξ) : 0 < τ < x, ξ ≥ 0, u− τ < ξ} (since t > 0 means ξ + τ > u). Thus:

I1(u;x, y) =
1

c

∫ x

0

[Π̄(τ)− Π̄(τ + y)]dτ

∫
[0,∞)∩]u−τ,∞)

P ξ−(u−τ)
c

(dξ)

=
1

c

∫ x

0

[Π̄(τ)− Π̄(τ + y)]χ(u− τ)dτ (35)

using the definition (21) of χ(v) (<∞ a.e. by Equation (A4)).
For Equation (34), we have:

I2(u;x, y) =

∫ ∫ ∫
M ′(x)

[Π̄(τ)− Π̄(τ + y)]P ξ−u−z
c

(dξ − z)⊗ τ

τ + z
P τ+z

c
(dz)⊗ dτ

c

where M ′(x) = {(τ, ξ, z) : 0 < τ < x, ξ ≥ 0, 0 ≤ z < ξ − u} (since t > 0 means ξ + τ > u,
which is less restrictive than ξ > u + z). Putting ζ = ξ − z, then M ′(x) becomes M ′′(x) = {(τ, ζ, z) :

0 < τ < x, ζ > u, z ≥ 0}, so that:

I2(u;x, y) =
1

c

∫ x

0

[Π̄(τ)− Π̄(τ + y)]dτ

∫
[0,∞)

τ

τ + z
P τ+z

c
(dz)

∫
]u,∞)

P ζ−u
c

(dζ).
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By Equation (21), the third integral is χ(u). From Equation (A7) below where s = 0, we know that the
second integral is equal to exp(−θ0τ). Thus:

I2(u;x, y) =
1

c
χ(u)

∫ x

0

[Π̄(τ)− Π̄(τ + y)] e−θ0τdτ. (36)

Inserting Equations (35) and (36) in Equation (32) then yields Equation (22).
Finally, suppose that u = 0. In the r.h.s. of Equation (22), the second factor, [. . .], becomes:

χ(−τ)− e−θ0τχ(0+) = χ(−τ) + e−θ0τ [1− χ(0−)]. (37)

It will be proven in Equation (A9) (with Equation (45)) that:

χ(v) = eθ0v/[1− 1

c

∫ ∞
0

xe−θ0xΠ(dx)] when v < 0. (38)

Thus, Equation (37) reduces to exp(−θ0τ), which leads to Equation (23). �

Proof of Corollary 11. Since c > µ, we know by Equation (20) that θ0 = 0. From Equations (6)
and (21), we have, as u ≥ 0:

ψ(u) = (1− µ

c
)χ(u). (39)

Obviously, an analogous identity Equation (39) holds for ψ(u − τ) when u − τ ≥ 0. This is also true
when u − τ < 0, since in that case, ψ(u − τ) = 1 by definition, and from Equation (38) with θ0 = 0,
we see that:

χ(u− τ) = 1/(1− µ

c
)

as well. Formula (24) then follows, with Equation (25) as a direct consequence. �

Proof of Corollary 12. By Equation (22), we can write:

P (RT−0 < x, |RT | < y|T (u) <∞) =
G(u;x, y)

P (T (u) <∞)
≡
∫ x

0

g(τ, y)dτ

=

∫ x

0

g(τ, y)

g(τ,∞)
g(τ,∞)dτ (40)

where a.e.:
g(τ, y) =

1

c ψ(u)
[Π̄(τ)− Π̄(τ + y)] [χ(u− τ)− e−θ0τχ(u)] (41)

In particular:

P (RT−0 < x|T (u) <∞) =

∫ x

0

g(τ,∞)dτ (42)

which shows that the function, τ → g(τ,∞), is a conditional density for RT−0. Thus, we see from
Equation (40) that the function, τ → g(τ, y)/g(τ,∞), is a version of the conditional probability
P (|RT | < y|T (u) <∞, RT−0 = τ). As a consequence:

P (Z < z|T (u) <∞, RT−0 = τ) = P (|RT | < z − τ |T (u) <∞, RT−0 = τ)

=
g(τ, z − τ)

g(τ,∞)
. (43)
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From Equations (42) and (43), we then obtain:

P (Z < z|T (u) <∞) =

∫ z

0

P (Z < z|T (u) <∞, RT−0 = τ)g(τ,∞)dτ

=

∫ z

0

g(τ, z − τ)dτ

where g(τ, z − τ) is given by Equation (41) for y = z − τ . This yields Formulas (26) and (27) (using
Equation (6)). �

Proof of Corollary 13. By Equation (22):

E(Rα
T−0|RT |β1{T (u)<∞}) =

∫ ∞
0

∫ ∞
0

xαyβdx,yG(u;x, y)

=
1

c

∫ ∞
0

xα[χ(u− x)− e−θ0xχ(u)][

∫ ∞
0

yβ(−1)dyΠ̄(x+ y)] dx.

An integration by parts of the inner integral gives:

[−yβΠ̄(x+ y)]∞0 +

∫ ∞
0

Π̄(x+ y)d(yβ)

which becomes:
Π̄(x) if β = 0, and

∫ ∞
0

βyβ−1Π̄(x+ y)dy if β > 0.

This yields the desired Formulas (28) and (29).
For Equation (30), a similar argument leads to:

E(Z1{T (u)<∞}) =
1

c

∫ ∞
0

[xΠ̄(x) +

∫ ∞
0

Π̄(x+ y)dy][χ(u− x)− e−θ0xχ(u)]dx.

Noting that the first factor, [. . .], is equal to:

xΠ̄(x) +

∫ ∞
x

Π̄(τ)dτ =

∫ ∞
x

τΠ(dτ)

we deduce the announced formula. �

4. Ruin Time

In this Section, our main goal is to determine the expectation:

H(u; s, x, y) = E[e−sT (u) 1{RT−0<x,|RT |<y}], s, x, y > 0.

For that, we will use the non-negative root, θ(s), of Equation (19). Note that by Equation (3), θ(s) for
s > 0 satisfies the relation: ∫

]0,∞)

e−θ(s)x Π̄(x)dx = c− s

θ(s)
. (44)

Moreover, differentiating Equation (3) with respect to s gives:

−θ′(s)
∫
]0,∞)

xe−θ(s)x Π(dx) = 1− cθ′(s)
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so that:
θ′(0) =

1

c− l0
and θ′′(0) =

−k0
(c− l0)3

(45)

where:
l0 =

∫ ∞
0

xe−θ0xΠ(dx) and k0 =

∫ ∞
0

x2e−θ0xΠ(dx).

In particular, l0 = µ and k0 = E(S2
1) when θ0 = 0.

4.1. Results

To begin with, we introduce a function that generalizes χ(v) defined in Equation (21): for any s ≥ 0

and real v, let:

χ(s, v) =

∫
[0,∞)∩]v,∞)

e−s
y−v
c P y−v

c
(dy). (46)

Therefore, χ(0, v) = χ(v).

Proposition 15. If c 6= µ:

H(u; s, x, y) =
1

c

∫ x

0

[Π̄(τ)− Π̄(τ + y)] [χ(s, u− τ)− e−θ(s)τχ(s, u)]dτ. (47)

In particular:

H(0; s, x, y) =
1

c

∫ x

0

[Π̄(τ)− Π̄(τ + y)] e−θ(s)τdτ (48)

E(e−sT (u)) =
1

c

∫ ∞
0

Π̄(τ)χ(s, u− τ)dτ + (
s

cθ(s)
− 1)χ(s, u). (49)

Alternatively:

E(e−sT (u)) = 1− s

c

∫ ∞
0

χ(s, u− τ)dτ +
s

cθ(s)
χ(s, u) (50)

Corollary 16. If c 6= µ:

E(T (u)1{T (u)<∞,X<x,Y <y}) = −1

c

∫ x

0

[Π̄(τ)− Π̄(τ + y)]χ′s(s, u− τ)dτ

+
χ′s(0, u)

c

∫ x

0

[Π̄(τ)− Π̄(τ + y)]e−θ0τdτ − χ(u)

c(c− l0)

∫ x

0

τ [Π̄(τ)− Π̄(τ + y)]e−θ0τdτ. (51)

In particular, when c < µ:

E(T (u)) =
1

c

∫ u

0

χ(τ)dτ − 1

cθ0
χ(u) +

1

θ0(c− l0)
(52)

and when c > µ:

E(T (u)1{T (u)<∞}) =
1

c− µ

∫ u

0

ψ(τ)dτ − (1− µ

c
)χ′s(0, u)− k0(1 + ψ(u))

2(c− µ)2
(53)

Formula (47) and its corollaries cover several results known for the compound Poisson case when
c > µ (see, e.g., [16,20]). Clearly, a similar approach would allow us to determine the expected
discounted penalty function introduced in [16]. For a study of this function in a Lévy framework,
see, e.g., [6–8,10].
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4.2. Proofs

Proof of Proposition 15. Starting with Equation (31), we have:

H(u; s, x, y) =

∫ ∫
L(x)

e−st [Π̄(u+ ct− ξ)− Π̄(u+ ct− ξ + y)] νt(dξ)⊗ dt. (54)

We then proceed as with Proposition 10. Therefore, instead of Equation (32), we rewrite
Equation (54) as:

H(u; s, x, y) = J1(u; s, x, y)− J2(u; s, x, y)

where J1 and J2 are defined by Equations (33) and (34) with the additional factor, exp(−st), in the
integrals. After the same changes of variable as before, we get:

J1(u; s, x, y) =
1

c

∫ x

0

[Π̄(τ)− Π̄(τ + y)]dτ

∫
[0,∞)∩]u−τ,∞)

e−s
ξ−(u−τ)

c P ξ−(u−τ)
c

(dξ)

instead of Equation (35) and:

J2(u; s, x, y) =
1

c

∫ x

0

[Π̄(τ)− Π̄(τ + y)]dτ

∫
[0,∞)

e−s
τ+z
c

τ

τ + z
P τ+z

c
(dz)

∫
]u,∞)

e−s
ζ−u
c P ζ−u

c
(dζ)

instead of Equation (36). It is proved in Equation (A7) of the Appendix that the second integral inside
J2 is equal to exp(−θ(s)τ). Using the notation Equation (46), we then deduce Formula (47).

When u = 0 in Equation (47), the second factor, [. . .], reduces to:

χ(s,−τ)− e−θ(s)τχ(s, 0+) = χ(s,−τ) + e−θ(s)τ [1− χ(s, 0−)], (55)

a result that generalizes Equation (37). In Equation (A8) below, we will establish that:

χ(s, v) = cθ′(s)eθ(s)v when v < 0. (56)

Thus, Equation (55) reduces to exp(−θ(s)τ), and Formula (48) follows.
For Equation (49), putting x = y =∞ in Equation (47) gives:

E(e−sT (u)) =
1

c

∫ ∞
0

Π̄(τ)χ(s, u− τ)− 1

c
χ(s, u)

∫ ∞
0

Π̄(τ)e−θ(s)τdτ.

It then remains to apply the identity Equation (44) to the second integral.
Formula (50) is obtained by a different method. Clearly:

E(e−sT (u) 1{T (u)<∞}) = 1− s
∫ ∞
0

e−stP (T (u) > t)dt.

Using (12) to express P (T (u) > t), we then get:

1

s
[1− E(e−sT (u) 1{T (u)<∞})] =

∫ ∞
0

e−st
∫
[0,u+ct[

νt(dx). (57)

By comparison with Equation (54), we note that the r.h.s. of Equation (57) corresponds to the r.h.s. of
Equation (54) in which the factor, [. . .], is deleted and x = y =∞. By arguing as from Equation (54) to
Equation (47), we rewrite the double integral in (57) as:

1

c

∫ ∞
0

χ(s, u− τ)dτ − χ(s, u)

c

∫ ∞
0

e−θ(s)τdτ
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hence, the announced formula. �

Proof of Corollary 16. Let us differentiate Equation (47) with respect to s and put s = 0. Using the
value of θ′(0) given in Equation (45), we then obtain Formula (51).

For Equations (52) and (53), we start with Formula (50). Note that:∫ ∞
0

χ(s, u− τ)dτ =

∫ u

0

χ(s, u− τ)dτ +

∫ 0

−∞
χ(s, τ)dτ

and from Equation (56): ∫ 0

−∞
χ(s, τ)dτ =

cθ′(s)

θ(s)

so that:

E(e−sT (u)) = 1− s

c

∫ u

0

χ(s, u− τ)dτ − sθ′(s)

θ(s)
+

s

cθ(s)
χ(s, u).

By differentiation and L’Hospital’s rule as s → 0, we then deduce Equation (52) when c < µ, i.e.,
θ0 > 0, and Equation (53) when c > µ, i.e., θ0 = 0, using θ′0 and θ′′0 given by Equation (45). �
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Appendix

A. Special Cases

It may be worth recalling a few (standard) examples of a Lévy subordinator that could be used to
represent the claim process, {St} (see, e.g., [19]).

A.1. Compound Poisson Process

For such a process with Poisson parameter λ and claim amounts distributed as X with distribution
function F , then:

Π(dx) = λF (dx), with µ = λE(X)

A.2. Gamma Process

For such a process with parameters a, b > 0, then:

Π(dx) = ax−1e−bxdx

Pt(dx) =
bat

Γ(at)
xat−1e−bxdx

E(e−θSt) = (1 +
θ

b
)−ta, with µ = a/b
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A.3. α-Stable Subordinator

For such a process with parameter α ∈ (0, 1), then:

Π(dx) =
α

Γ(1− α)
x−1−αdx

E(e−θSt) = e−tθ
α

, with µ =∞.

The expected claim being infinite, this model is of less interest in practice.

A.4. Inverse Gaussian Process

For such a process with parameter b > 0, then:

Π(dx) =
t√

2πx3
e−b

2x/2dx

Pt(dx) =
t√

2πx3
e−(bx−t)

2/2xdx

E(e−θSt) = e−tb(
√

1+2θ/b2−1), with µ = 1/b.

A possible extension is the generalized inverse Gaussian process.

B. Useful Properties

The following property is used in the proof of Lemmas 9 and 14. It is surely known, but we have no
precise reference to give. A proof is presented below for completeness. Note that the result is easy to
see in the compound Poisson case.

Property 17.

lim
t↓0

P (St > y)

t
= Π̄(y) a.e., y > 0 (A1)

Proof. Define σt as a compound Poisson measure with parameter 1/t and jump distribution Pt

(so, P (St > y) = Pt(]y,∞))). For θ > 0, let σ̂t(θ) and P̂t(θ) denote the associated Laplace transforms.
Observing that:

σ̂t(θ) = exp

(
P̂t(θ)− 1

t

)
= exp

(∫
]0,∞)

(e−θx − 1)
Pt(dx)

t

)
(A2)

we see that the Lévy measure of σt is given by Pt/t.
Let t ↓ 0 in Equation (A2). Using P̂t = (P̂1)

t, we get:

lim
t↓0

σ̂t(θ) = lim
t↓0

exp

(
et ln P̂1(θ) − 1

t

)
= exp(ln P̂1(θ)) = P̂1(θ).

By Lévy’s continuity theorem, this means that limt↓0 σt = P1. Thus, an analogous result holds for the
corresponding Lévy measures (see, e.g., Theorem 8.7 in [27]), that is:

lim
t↓0

Pt
t

= Π.
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Equivalently:

lim
t↓0

∫
]0,∞)

f(x)
Pt(dx)

t
=

∫
]0,∞)

f(x)Π(dx) (A3)

for every bounded continuous function, f .
Now, let y > 0. For any ε > 0, we may consider the function:

fy,ε(x) =


0 if x < y

(x− y)/ε if y ≤ x ≤ y + ε

1 if x > y + ε

Evidently:
fy,ε(x) ≤ 1]y,∞)(x) ≤ fy−ε,ε(x)

so that after multiplication by Pt/t and integration over ]0,∞), Equation (A3) yields:∫
]0,∞)

fy,ε(x)Π(dx) ≤ lim inf
t↓0

Pt(]y,∞))

t
≤ lim sup

t↓0

Pt(]y,∞))

t
≤
∫
]0,∞)

fy−ε,ε(x)Π(dx) a.e.

Moreover:

Π̄(y + ε) =

∫
]0,∞)

1]y+ε,∞)(x)Π(dx) ≤
∫
]0,∞)

fy,ε(x)Π(dx)

Π̄(y − ε) =

∫
]0,∞)

1]y−ε,∞)(x)Π(dx) ≥
∫
]0,∞)

fy−ε,ε(x)Π(dx).

Therefore, as ε ↓ 0:

Π̄(y + 0) ≤ lim inf
t↓0

Pt(]y,∞))

t
≤ lim sup

t↓0

Pt(]y,∞))

t
≤ Π̄(y − 0) a.e.

As the non-increasing function, Π, is continuous, except perhaps on a countable set, we deduce that
limt↓0 Pt(]y,∞))/t = Π̄(y) a.e. �

The next property is used when proving Corollary 3 and Proposition 10.

Property 18. If c 6= µ, then for any u ≥ 0:

χ(u) ≡
∫
]u,∞)

P y−u
c

(dy) <∞ a.e. (A4)

Proof. First, suppose c > µ. By Equation (5) rewritten as Equation (14), we have:

P (St < u+ ct)− P (T (u) > t) =

∫
]u,u+ct[

E

[(
1− Sτ

cτ

)
1{0≤Sτ<cτ}

]
P y−u

c
(dy)

Evidently, this difference of probabilities is in [0, 1]. Thus, for any positive real n0, such that ct > n0:

0 ≤
∫
]u,u+n0[

E

[(
1− Sτ

cτ

)
1{0≤Sτ<cτ}

]
P y−u

c
(dy) ≤ 1.

Letting t→∞, we get by the SLLN and the dominated convergence theorem:

0 ≤
∫
]u,u+n0[

E
[(

1− µ

c

)
1{0≤µ<c}

]
P y−u

c
(dy) ≤ 1.
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As this holds for any n0, we deduce that Equation (A4) is true in that case.
Now, consider c < µ. It is sufficient to establish that the Laplace transform of χ, i.e.:

Lθ(χ) =

∫
[0,∞)

e−θu χ(u)du =

∫ ∫
{(y,u): 0≤u<y}

e−θu P y−u
c

(dy)⊗ du

is finite for some θ > 0. Putting z = y − u, we have:

Lθ(χ) =

∫
]0,∞)

eθz
[∫

[0,∞)

e−θy P z
c
(dy)

]
dz

and using Equation (2):

Lθ(χ) =

∫
]0,∞)

exp

{
θz +

z

c

∫ ∞
0

(e−θx − 1)Π(dx)

}
dz. (A5)

To get Lθ(χ) <∞, it suffices to choose θ, such that the term, {. . .}, in Equation (A5) is negative, i.e.:∫ ∞
0

(e−θx − 1)Π(dx) < −cθ

By Equation (20), c < µ implies θ0 > 0 and from Equation (19), we see that any θ in (0, θ0) will
guarantee the validity of this condition. �

Remark. Property 18 is not true when c = µ. To show this, consider, for instance, the compound
Poisson model with parameter λ and i.i.d. claim amounts Xi of the exponential law with parameter
α = 1/E(X). Of course, µ = λ/α. By definition:

χ(u) =
∞∑
n=1

∫
]u,∞)

e−λ(y−u)/c
[λ(y − u)/c]n

n!
e−αy

αnyn−1

(n− 1)!
dy +

∫
]u,∞)

e−λ(y−u)/c δ0(dy)

where δ0 is the Dirac measure at zero. It is easily checked that χ(u) <∞ iff M(u) <∞, where:

M(u) =
∞∑
n=1

∫
]0,∞)

e−λy/c
(λy/c)n

n!
e−αy

αnyn−1

(n− 1)!
dy.

Now, we have:

M(u) =
∞∑
n=1

(λα/c)n

n!(n− 1)!

∫
]0,∞)

e−(α+λ/c)yy2n−1dy =
∞∑
n=1

(λα/c)n

n!(n− 1)!

(2n− 1)!

(α + λ/c)2n
.

By Stirling’s formula:

(2n− 1)!

n!(n− 1)!
≈

√
2π(2n− 1)

√
2πn

√
2π(n− 1)

e−(2n−1)(2n− 1)2n−1

e−nnne−(n−1)(n− 1)n−1
≈ 1√

πn
22n−1

so that:

M(u) ≈
∞∑
n=1

[
4λα/c

(α + λ/c)2

]n
1

2
√
πn

. (A6)

Denote by h(α) the factor, [. . .], in the r.h.s. of Equation (A6). We see that h(α) has a maximum at
α = λ/c, with h(λ/c) = 1. Consequently, the series, M(u), and, thus, χ(u), diverges when c = λ/α.
Note that when c 6= λ/α, then h(α) < 1, so that χ(u) <∞, which is in agreement with Equation (A4).

The following identities involve θ(s), the non-negative root of Equation (19). They are used several
times in Sections 2–4.
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Property 19. For s, u ≥ 0, ∫
[0,∞)

e−s
u+z
c

u

u+ z
Pu+z

c
(dz) = e−θ(s)u. (A7)

As a consequence:

χ(s,−u) =

∫
[0,∞)

e−s
u+z
c Pu+z

c
(dz) = cθ′(s)e−θ(s)u (A8)

and in particular:
χ(−u) = e−θ0u/(1− l0/c) (A9)

Proof. Let us go back to the dual model studied in Step 1 of Section 2. Take x = ct (which is allowed).
For the first-meeting level, S̃T̃ , Equation (9) then gives:

ν(dz) =
u

u+ z
Pu+z

c
(dz).

Thus, the l.h.s. of Equation (A7) can be written as:∫
[0,∞)

e−s
u+z
c ν(dz) = E(e−s

u+S̃
T̃

c 1{S̃T̃<∞}
) = E(e−s

u+S̃
T̃

c ).

Moreover, by construction, S̃T̃ = −u+ cT̃ , so that:∫
[0,∞)

e−s
u+z
c

u

u+ z
Pu+z

c
(dz) = E(e−sT̃ ). (A10)

Now, for θ(s) defined through Equation (19), we know that the process, {exp[θ(s)(ct− S̃t)− st]}, is
a martingale. Applying the optional stopping theorem at time T̃ then gives:

E[eθ(s)(cT̃−S̃T̃ )−sT̃ ] = 1

which shows that:
E(e−sT̃ ) = e−θ(s)u. (A11)

Combining Equations (A10) and (A11) then yields Formula (A7).
By differentiating with respect to s, we have:∫

[0,∞)

e−s
u+z
c
u

c
Pu+z

c
(dz) = −θ′(s)ue−θ(s)u

and Formula (A8) follows. For s = 0, Equation (A8) becomes Equation (A9) after using Equation (45).
�
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