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Abstract: This paper investigates the optimal asset allocation of a financial institution whose cus-
tomers are free to withdraw their capital-guaranteed financial contracts at any time. In accounting for
the asset-liability mismatch risk of the institution, we present a general utility optimization problem
in a discrete-time setting and provide a dynamic programming principle for the optimal investment
strategies. Furthermore, we consider an explicit context, including liquidity risk, interest rate, and
credit intensity fluctuations, and show by numerical results that the optimal strategy improves both
the solvency and asset returns of the institution compared to a standard institutional investor’s
asset allocation.

Keywords: asset allocation; asset-liability management; withdrawal risk; liquidity risk; utility maximization

1. Introduction

Recent financial turmoil and market stresses following the sub-prime crisis or the
COVID-19 pandemic had a double impact on asset management: massive withdrawals
accompanied by violent and persistent liquidity shocks. This type of phenomenon consti-
tutes a major risk for financial institutions including banks, insurers, and pension funds
that offer capital-guaranteed contracts, such as deposit accounts or life insurance savings
products, as it can lead to the bankruptcy of the institution.

Capital-guaranteed contracts are characterized by the security of the capital invested,
the absence of predetermined maturity, and the right of customers to surrender it at any
time. The sharp increase in redemptions generally occurs in two main cases: (i) when cus-
tomers consider the financial institution to be at risk, usually during a financial crisis when
default risk increases; or (ii) when customers find more attractive investment opportunities,
usually during periods of rising interest rates. It becomes difficult for a financial institu-
tion to meet its redemptions when it is concomitantly exposed to a liquidity shock that
forces it to sell assets at discounted prices. This situation deteriorates the solvency of the
financial institution that bears the guaranteed-capital risk, which increases the demand for
redemptions and can induce a snowball effect, leading to the insolvency of the institution.

The negative impact of these forced sales at a discounted price on the institution’s
solvency can materialize in several ways. First, they decrease the amount of free surplus
available and hence the institution’s solvency, as the value of the asset decreases. Indeed,
Cao and Petrasek (2014) showed that abnormal stock returns during liquidity crises are
strongly negatively related to liquidity risk and evidence from Favero et al. (2009) showed
that the government bond yields a hike when the liquidity of the securities declines in a
more pronounced way on long-dated bonds (Goyenko et al. 2010). Moreover, as shown by
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Goyenko and Ukhov (2009), illiquidity shocks spill over from stocks to bonds (notably via
flight-to-quality) and reciprocally since it is the channel through which monetary policy
shocks impact the stock market. Furthermore, when the stress is accompanied by a decrease
in the rating of the security, as supported by evidence from Chen et al. (2011) that an increase
in corporate internal liquidity risk hikes credit risk, this weighs on the cost of capital and
thus, again, on the institution’s solvency. In addition, as the asset prices decrease, they are
fueled by a ricochet effect via the unwinding of positions (Allen and Gale 2004) and via
margin calls that increase the downward spiral (Brunnermeier and Pedersen 2008).

The solvency risk implied by a liquidity mismatch between the assets and liabilities of
a financial institution has increased in the recent years for two reasons. First, institutional
investors are not legally required to build a sufficient cushion to absorb the liquidity risk.
For instance, the Solvency II Directive does not require regulatory capital (Solvency Capital
Requirement) to be based on the illiquidity of assets held by European insurers. Yet,
this major risk is taken into account for investment funds: the European Securities and
Markets Authority recently published a set of guidelines on liquidity stress testing to be
implemented from 1 September 2020. Second, the low interest rate environment that has
prevailed since the end of the sub-prime and sovereign debt crises has incentivized financial
institutions in a yield-seeking race, leading to significant investments in illiquid assets.

This paper first investigates, in a fairly general framework, the optimal asset allocation
of a financial institution offering capital-guaranteed contracts and whose customers are free
to withdraw their financial contract at any time on the liability side. We suppose that the
withdrawals occur according to a general marked point process whose jump times represent
the surrender times from the customers and random marks represent the payment values
of each withdrawal. The intensity of the point process, which characterizes the frequency of
withdrawals, may typically be impacted by the uncertainty of the rise of interest rates and
the deterioration of credit quality. We consider a discrete time setting where the transactions
take place at a finite set of discrete times to be consistent with the effective practices of asset
managers. The financial institution, given its risk aversion, searches to optimize the asset
allocation of the investment portfolio by using the expected utility maximization upon the
wealth value at a final horizon. Moreover, several solvency constraints are specified to
impose asset-liability requirements in terms of risk measures, such as the quantile and the
expected shortfall introduced by Föllmer and Leukert (1999, 2000). In literature, portfolio
management with benchmarking and constraints has been studied to find the so-called
Desired Benchmark Strategy; see, for example, Boyle and Tian (2007), with a quantile
constraint outperforming a stochastic benchmark at final time, Gundel and Weber (2007),
with a joint expected shortfall and budget constraint, or El Karoui et al. (2005), with a
deterministic benchmark at all future dates.

In our paper, the solvency risk is examined with a stochastic liability, which represents
the guaranteed-capital level. Moreover, the asset-liability constraints are required in a
dynamic way at each time step. We may also include the constraint at the final time as a
penalty added to the utility function. In order to study these constraints of different nature
in a coherent way, we adopt the random utility as in Blanchard and Carassus (2018), which
allows us to incorporate the penalized utility depending on an extra random element. We
provide a dynamic programming principle for the general optimization problem. The main
technical point is to prove that the admissible trading strategy set under all the required
constraints remains stable by El Karoui (1981). Then, the optimal dynamic investment
strategy can be obtained recursively. For the exponential utility function, the optimal value
function at each time step remains as a weighted exponential function. For the power utility
function, an explicit form of the optimal value function is more difficult to derive. In this
case, we obtain the solution by numerical methods.

The financial institution can invest in interest rate and credit, and therefore it is
exposed to these market risks. In a subsequent step, we consider a special portfolio
subject to withdrawal and liquidity risks under credit intensity and interest rate fluctuation.
Financial liquidity risk increase has been materialized notably in an increase of investments
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in high yield bonds (Bao et al. 2011; Dick-Nielsen et al. 2012). While some assets can be
clearly identified as specifically illiquid, many liquid assets can become illiquid in times of
financial stress. In considering bonds, Favero et al. (2009) and Chen et al. (2011) show that
a rise in government or corporate internal liquidity risk increases credit risk, which further
deteriorates the solvency of the institution. Similarly as in Chen et al. (2017), we suppose
that the liquidity intensity increases with the credit risk. More precisely, the intensity of
liquidity shocks is supposed to be a CEV function (see, e.g., Carr and Linetsky (2006)) of
the credit intensity. In line with practice and the literature, the institution optimizes its
solvency over a given horizon (Berry-Stölzle 2008; Cousin et al. 2016; Pan and Xiao 2017)
and the optimal strategies are illustrated by numerical resolution using the methodology
introduced in Brandt et al. (2005) as well as by the calibration of market data for interest
rate and credit intensity. We show how accounting for the joint risks of liquidity on the
assets side and withdrawals on the liabilities side substantially modifies the optimal asset
allocation and that the latter outperforms standard allocations in terms of the solvency ratio
and asset returns. Specifically, we show how the increase in credit and interest rate risks
pushes the financial institution to secure its allocation, thereby mitigating its default risk.

Our contribution to the literature on optimal asset allocation and asset-liability man-
agement is twofold. First, we introduce an endogenous withdrawal risk, which affects both
the assets portfolio and the liability benchmark. The solvency constraints are examined in
a dynamic setting at all time steps with a random utility. Second, we study the impact of
illiquidity on optimal asset allocation for an explicit portfolio under massive withdrawal
pressure and illustrate how to adjust allocation strategies for financial institutions facing
withdrawal and liquidity shocks.

The optimal asset-liability management problem with withdrawal risk is also an
important concern for life insurance companies who issue variable annuity contracts with
investment guarantees. A typical example is the guaranteed minimum withdrawal benefits
(GMWBs) rider which allows the policyholder to withdraw funds on an annual or semi-
annual basis (there is a contractual withdrawal rate such that the policyholder is allowed to
withdraw at or below this rate without a penalty). The valuation and hedging of GMWB has
been extensively covered in the actuarial literature (see, e.g., Kling et al. 2013; Shevchenko
and Luo 2017; Steinorth and Mitchell 2015), while the computation of the risk-based capital
for risk management and regulatory reasons has only been recently studied (Feng and
Vecer 2016; Wang and Xu 2020). Numerical efficient methods for calculating the distribution
of the total variable annuity liabilities of large portfolios have also been proposed (see,
e.g., Lin and Yang 2020), but, to the best of our knowledge, the issues of the asset-liability
management as well as the asset allocation for such unit-linked life insurance contracts
have not been addressed.

The remainder of this paper is organized as follows. In Section 2, we present the
general optimization problem under different asset-liability constraints. In Section 3, we
focus on a special and realistic case (with asset price specifications and constraints on
asset weights) that is solved via numerical optimization methods. Section 4 provides
a conclusion.

2. General Optimization Problem
2.1. Model Setup under Withdrawals and Solvency Constraints

We consider a financial institution that has a large pool of customer contracts. Let the
market be modeled by a probability space (Ω,F ,P) equipped with a filtration F = (Ft)t≥0,
which satisfies the usual conditions. At the initial date, customers delegate their cash to the
financial institution and the institution immediately invests this cash into financial assets.
We denote the investment portfolio value by X = (Xt)t≥0 with X0 = x > 0. Customers
can be required to withdraw money from their contract freely at any time. The surrender
times are denoted by a sequence of increasing random times {Tw

i }i≥1 and the aggregated
payment process is denoted by Y = (Yt)t≥0, which we will clarify later on. The liability
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value of the pool of contracts (that accounts for withdrawals, in particular) is denoted by
L = (Lt)t≥0.

For now, we do not make strong assumptions on the stochastic dynamics of financial
assets. We consider the investment portfolio as composed of one risk-free asset denoted
by S0 = (S0

t )t≥0, which represents the deposit account influenced only by interest rate
evolution, together with a family of risky assets, namely (S1

t , · · · , Sn
t )t≥0, which may

be sensitive and subject to other financial risks such as credit and liquidity risks. Let
S = (St)t≥0, where St = (S0

t , S1
t , · · · , Sn

t ) is the (n + 1)-dimensional adapted process
representing the vector of asset prices. The trading strategies are described by a (n + 1)-
dimensional predictable process Π = (Πt)t≥0, where for any t ≥ 0, the vector Πt =
(Π0

t , Π1
t , · · · , Πn

t ) represents the proportional share the investor chooses to hold in each of
the assets. We consider a discrete time setting and suppose that the transactions of financial
assets take place at {0 = t0 < t1 < · · · < tm = T}, where the terminal date T is finite. In
other words, for every i ∈ {0, 1, · · · , n},

Πi
t =

m

∑
k=1

Πi
tk
I(tk−1,tk ]

(t) , t ∈ (0, T], Πi
0 = Πi

t0
.

For k = 1, · · · , m, Πi
tk

represents the proportional share at tk of the investor’s holdings
in the asset Si and is Ftk−1-measurable according to the asset prices observed at tk−1. It
holds that

Π0
tk
= 1−

n

∑
i=1

Πi
tk

, for every k ∈ {0, · · · , m}.

We suppose that the market is arbitrage-free. The asset portfolio is used to make the
withdrawal payments of the financial institution who, without loss of generality, has a large
pool of M ≥ 1 customer contracts. The aggregated payment process Y is defined by

Yt =
M

∑
i=1

Γi I{Tw
i ≤t}, t ≥ 0 (1)

where {Γi}1≤i≤M represents the guaranteed value associated to the ith withdrawal re-
quired from the investors and can be considered as a mark to the successive random time
{Tw

i }1≤i≤M. We suppose, in addition, that for a withdrawal claim which takes place at time
Tw

i , the payment is effectively made at inf{tk : tk ≥ Tw
i , k = 0, 1, · · · , m}. Therefore, taking

into account the evolution of traded assets and the withdrawal payments, the investment
portfolio value at tk is given by

Xtk = Xtk−1 + Xtk−1 Πtk ·
( 1

Stk−1

∗ (Stk − Stk−1)
)
− (Ytk −Ytk−1) k = 1, · · · , m. (2)

where for any a = (a1, · · · , an+1) and b = (b1, · · · , bn+1), the notation a ∗ b denotes the
vector (a1b1, · · · , an+1bn+1) and a · b denotes the inner product a1b1 + · · ·+ an+1bn+1.1

Example 1. Consider a large pool of M identical customer contracts. For each contract, the deposit
value guaranteed by the financial institution at t ≥ 0 is Kt = K0eκt, where K0 is the initial
amount and κ is a constant remuneration rate prefixed by the financial institution. The arrival of the
withdrawals is described by a doubly stochastic Poisson process, namely a Cox process N = (Nt)t≥0,
whose jump times, denoted by {Tw

i }i≥1, represent the surrender times. The aggregated payment
process is therefore given by

Yt =
Nt∧M

∑
i=1

KTw
i

. (3)
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The frequency of jumps, that is, of the withdrawals, is characterized by the intensity of the Cox
process N. For example, massive withdrawals may occur under the uncertainty of the rise of interest
rates and the deterioration of the credit quality on financial markets, in which case the intensity of
N will increase.

The financial institution who is exposed to the risk of potentially massive with-
drawals aims at finding the optimal investment strategies according to its risk prefer-
ence or aversion under the expected utility maximization criterion of the final wealth
value of the investment portfolio at a time horizon T > 0. We denote the utility function
of the financial institution by U : R+ → R, which is assumed to be strictly increasing,
strictly concave, and belonging to C1, the class of all differentiable functions whose deriva-
tive is continuous. In addition, we suppose that U satisfies the Inada conditions, i.e.,
limx→0+ U′(x) = +∞ and limx→+∞ U′(x) = 0. In particular, we can choose U as the
power utility U(x) = x1−p/(1− p), where the risk aversion coefficient satisfies p > 0 and
p 6= 1, and x ∈ R+, which means that the wealth can only take positive values. Another
typical example is the exponential utility function, namely U(x) = −e−px, with p > 0 and
x ∈ R. Note that the wealth can take negative values with such a choice of utility function.
In this case, the first Inada condition writes limx→−∞ U′(x) = +∞.2

In practice, the financial institution often imposes on its asset managers to comply
with (i) allocation or (ii) solvency constraints that we will take into consideration. First,
by delegating the management of their assets to an asset manager, financial institutions
usually impose allocation constraints, also known as strategic asset allocation (SAA). Asset
managers thus have leeway in their investment decisions as long as their allocation complies
with the SAA. Therefore, we assume that the proportional shares of the assets or some linear
combinations of these proportions remain in pre-defined intervals. More precisely, all the
conditions translate into m + 1 linear systems of inequality constraints at each transaction
date of the form

AcΠ>tk
≤ Bc, ∀ k = 0, 1, · · · , m, (4)

where Ac is a matrix with q rows and n + 1 columns; Bc is a q-dimensional vector; q is the
number of allocation constraints; and Π>tk

denotes the transposition of the vector Πtk . Such
investment constraints on asset proportions are frequent when asset types are fixed.

Second, we assume that the financial institution has a solvency constraint: it must
keep the ratio of the investment portfolio value over the liability value upon a constant
C > 0. This positive constant represents the minimum regulatory capital imposed by
solvency rules (e.g., Solvency II). Two main cases of solvency constraints may be imposed
on the financial institution. The requirement is considered either in a probability sense in a
dynamic way (for example, with a probability larger than a given threshold α, e.g., 90%) or
by incorporating a penalty function based on a relevant risk measure at the terminal date T
in its optimization problem.

Let us consider the first case. Let α ∈ (0, 1]. The asset-liability constraint is imposed by
the quantile constraint as in Föllmer and Leukert (1999) and expressed here in the following
dynamic form of conditional expectations:

P
(
Xtk /Ltk ≥ C|Ftk−1

)
≥ α, ∀ k = 1, · · · , m. (5)

The solvency threshold requirement is expected to be satisfied at the initial date, i.e.,
X0/L0 ≥ C. Then, at each date, the end-of-period asset-liability ratio should be above the
solvency threshold C with at least a confidence probability level of α. The above constraint
is given in form of conditional probability and is called the “next-period constraint” in
Jiao et al. (2017). In this case, the asset-liability requirement is imposed by considering
two successive dates and accounting for the financial situations of the previous date. The
liability value for the financial institution is determined by the total value of the contracts
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still in the pool, together with their potential payments. For example, in the setting of
Example 1, the liability can be given as

Lt = Kt(M− Nt), if Nt ≤ M. (6)

When Nt > M, all contracts end, and we let Lt = 0. We also refer, e.g., to Frauen-
dorfer and Schürle (2003); Kalkbrener and Willing (2004); Nyström (2008) for examples of
valuations of depository institutions’ non-maturing liabilities.

In a similar way, we could have considered the expected shortfall constraint in Föllmer
and Leukert (2000), given as the following conditional expectation form:

E
[
(Xtk − CLtk )

+|Ftk−1

]
≥ β, β ∈ R+, ∀ k = 1, · · · , m. (7)

As a first optimization approach, the optimal investment is then defined by

Vx
0 = sup

Π∈Ax
E[U(XT)], X0 = x, (8)

where

Ax =


Π = (Πtk )

m
k=0

= (Π0
tk

, · · · , Πn
tk
)m

k=0
:

∀ i ∈ {0, 1, · · · , n} and k ∈ {1, · · · , m},
Πi

tk
is Ftk−1 -measurable,

∀ k ∈ {0, 1, · · · , m}, Π0
tk
= 1−∑n

i=1 Πi
tk

,
the constraints (4) and {(5) or (7)} hold.


By convention, Πi

t0
is F0-measurable.

Our objective is to find an optimal strategy Π̂ and its corresponding optimal invest-
ment portfolio value.

As a second optimization approach, the asset-liability constraints are incorporated
directly in the optimal investment problem as a penalty function. Then, the objective
function is interpreted as a modified expected utility maximization. Let θ > 0 be some risk
aversion level with respect to the asset-liability constraint whose value is chosen by the
financial institution. Once the constraint is triggered, a penalty will be applied. The case of
expected shortfall constraints can be interpreted as the utility optimization with the linear
penalty given as

Vx
0 = sup

Π∈Ax
E[U(XT)− θ(CLT − XT)

+], X0 = x. (9)

To emphasize the impact of large losses, we can also introduce the quadratic penalty
and consider the following problem

Vx
0 = sup

Π∈Ax
E
[
U(XT)− θ

(
(CLT − XT)

+
)2], X0 = x. (10)

The admissible investment strategy set is given by

Ax =

Π = (Π0
tk

, · · · , Πn
tk
)m

k=0 :

∀i ∈ {0, 1, · · · , n} and k ∈ {1, · · · , m},
Πi

tk
is Ftk−1 -measurable,

∀ k ∈ {0, 1, · · · , m}, Π0
tk
= 1−∑n

i=1 Πi
tk

,
the constraint (4) holds.


The last problem (10) will be further investigated and numerically studied in Section 3.
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2.2. General Formulation and Dynamic Programming Principle

To study the optimization problems under different asset-liability constraints in
Section 2.1 in a coherent and parsimonious framework, we adopt the notion of random
utility functions Ũ(·, ·) as in Blanchard and Carassus (2018). By definition, Ũ can de-
pend on some random elements which are FT-measurable and include the penalized
utility function in (9) and (10). In this representation, the function Ũ can be viewed as an
FT ⊗ B(R)-measurable map Ω×R → R such that for any ω ∈ Ω, Ũ(ω, ·) is increasing
and concave. For the simplicity of notation, we omit the variable ω ∈ Ω when referring to
the function Ũ and Ũ(ω, x) is written in abbreviation as Ũ(x).

For the optimization problem (8) with different constraints, we introduce a family
of auxiliary functions. For any k ∈ {1, · · · , m}, let ϕk : Ω × R → R be an Ftk ⊗ B(R)-
measurable function, which is assumed to be bounded from below. Similarly, ϕk(ω, x) is
written as ϕk(x) and the variable ω ∈ Ω is omitted.

We summarize the optimization problems stated in the previous section by specifying
the constraint functions ϕk and the generalized utility function Ũ as shown below.

1. By taking Ũ(x) = U(x) and ϕk(x) = 1{x≥CLtk }
− α, we recover problem (8) under

constraint (5).
2. By taking Ũ(x) = U(x) and ϕk(x) = (x− CLtk )

+ − β, we recover problem (8) under
constraint (7).

3. By taking Ũ(x) = U(x)− θ(CLT − x)+ and ϕk(x) = 0, we recover problem (9).

4. By taking Ũ(x) = U(x)− θ
(
(CLT − x)+

)2 and ϕk(x) = 0, we recover problem (10)

Our aim is to maximize the expected final wealth of the function Ũ(XT) under the con-
straint that E[ϕk(Xtk )|Ftk−1 ] ≥ 0 for any k ∈ {1, · · · , m}. More precisely, the optimization
problem is then stated as

Ṽx
0 := sup

Π∈Ax
E[Ũ(XT)], X0 = x, (11)

where Ax is the admissible strategy set defined by

Ax =


Π = (Π0

tk
, · · · , Πn

tk
)m

k=0 :

∀i ∈ {0, 1, · · · , n} and k ∈ {1, · · · , m},
Πi

tk
is Ftk−1 -measurable,

∀ k ∈ {0, 1, · · · , m}, Π0
tk
= 1−∑n

i=1 Πi
tk

,
∀ k ∈ {1, · · · , m}, E[ϕk(Xtk )|Ftk−1 ] ≥ 0,
the constraint (4) holds.


(12)

We now provide a dynamic programming principle for (11). For any admissible
strategy Π and any k ∈ {0, · · · , m}, we denote them by Π(k) = (Πtj)j=0,··· ,k, which is the
truncated process of Π up to tk. We introduce the dynamic value function process as

Ṽtk (Π) = ess sup
Π′∈Ax , Π′(k)=Π(k)

E[Ũ(XΠ′
T )|Ftk ], k = 0, · · · , m (13)

where XΠ′
T denotes the value of the investment portfolio at T under a trading strategy

Π′. Note that in the case where k = m and tm = T, we have Ṽtm(Π) = Ũ(XΠ
T ) = Ũ(XT)

for any Π ∈ Ax, and in the case where k = 0, we recover the initial problem (11). Let
Fm =

(
Ftk

)
k=0,··· ,m denote the discrete time filtration.

Proposition 1. For any admissible strategy Π ∈ Ax in (12) such that E[Ũ(XT)] > −∞, where
XT is given by (2), the process Ṽ•(Π) forms an Fm-supermartingale with terminal value Ũ(XT).
It is a martingale if and only Π is an optimal strategy.
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Although the discrete time control literature is extensive, it does not address the case
under consideration with specific constraints and it is necessary to adapt the standard
proofs. For the sake of completeness, we give the proof of this proposition as well as those
of the next two propositions.

Proof. First, we show that the admissible strategy set Ax is stable under bifurcation (see
El Karoui 1981, Section 1.6); specifically, for any Fm-stopping time τ, any couple of admissi-
ble strategies Π and Π′ in Ax, such that Πτ∧t = Π′τ∧t for any t = t1, · · · , tm, and any set
F ∈ Fτ , the process Π′′ defined by

Π′′t := 11FΠt + 11Fc Π′t, t = t1, · · · , tm

is still an admissible strategy. The key point is to check that Π′′ still satisfies the constraints
E[ϕk(XΠ′′

tk
)|Ftk−1 ] ≥ 0. Since F ∈ Fτ , one has F ∩ {τ ≤ tk−1} ∈ Ftk−1 and Fc ∩ {τ ≤

tk−1} ∈ Ftk−1 . Therefore,

E[ϕk(XΠ′′
tk

)|Ftk−1 ] = 11F∩{τ≤tk−1}E[ϕk(XΠ
tk
)|Ftk−1 ] + 11Fc∩{τ≤tk−1}E[ϕk(XΠ′

tk
)|Ftk−1 ]

+ 11{τ>tk−1}E[ϕk(XΠ′′
tk

)|Ftk−1 ] ≥ 11{τ≥tk}E[ϕk(XΠ′′
tk

)|Ftk−1 ]

since E[ϕk(XΠ
tk
)|Ftk−1 ] ≥ 0, E[ϕk(XΠ′

tk
)|Ftk−1 ] ≥ 0, and {τ > tk−1} = {τ ≥ tk}. Note that

on {τ ≥ tk}, Π′′t = Πt for t = t1, · · · , tk since Π and Π′ coincide up to τ. Therefore,

11{τ≥tk}E[ϕk(XΠ′′
tk

)|Ftk−1 ] ≥ 11{τ≥tk}E[ϕk(XΠ
tk
)|Ftk−1 ] ≥ 0.

The stability of Ax under bifurcation allows us to establish the lattice property as
follows. Let k ∈ {1, . . . , m}. Let Π and Π′ be two admissible strategies that coincide up to
tk. Let F = {ω ∈ Ω |E[Ũ(XΠ

T )|Ftk ](ω) > E[Ũ(XΠ′
T )|Ftk ](ω)}, which belongs to Ftk . The

stability under bifurcation implies that the strategy Π′′ defined as Π′′ = 11FΠ + 11Fc Π′ still
belongs to Ax and one has

E[Ũ(XΠ′′
T )|Ftk ] = max(E[Ũ(XΠ

T )|Ftk ],E[Ũ(XΠ′
T )|Ftk ]).

Therefore, by (Pham 2009, Theorem A.2.3), for any Π ∈ Ax, there exists a sequence of ad-
missible strategies (Π(`))`∈N such that Π(`)(k) = Π(k) for any ` and that E[Ũ(XΠ(`)

T )|Ftk ] ↑
Ṽtk(Π) when `→ +∞. For k′ < k, one has

E[E[Ũ(XΠ(`)
T )|Ftk ]|Ftk′ ] = E[Ũ(XΠ(`)

T )|Ftk′ ] ≤ Ṽtk (Π
(k)).

The supermartingale property of Ṽ•(Π) then follows from the monotone convergence
theorem.

Let Π̂ be an admissible strategy. Since Ṽ•(Π̂) is a supermartingale, it is a martingale if
and only if Ṽ0(Π̂) = E[Ũ(XΠ̂

T )] = E[ṼT(XΠ̂)], namely Π̂, is an optimal strategy.

The value function of each time step is defined in a backward way as in (13). The main
result, which is stated below, shows that the optimal value function at the initial time can
be obtained recursively from tm = T.

Proposition 2. For any strategy Π ∈ Ax in (12) such that E[Ũ(XT)] > −∞, the following
equality holds for k ∈ {m− 1, · · · , 0}:

Ṽtk (Π) = ess sup
Π′∈Ax , Π′(k)=Π(k)

E[Ṽtk+1(Π
′)|Ftk ]. (14)
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In particular, the original problem (11) is given by

Ṽ0(Π) = sup
Π′∈Ax

E[Ṽt1(Π
′)]. (15)

Proof. On the one hand, for any Π′ ∈ Ax such that Π′(k) = Π(k), one has

E[Ũ(XΠ′
T )|Ftk ] = E[E[Ũ(XΠ′

T )|Ftk+1 ]|Ftk ] ≤ E[Ṽtk+1(Π
′)|Ftk ].

In taking the essential supremum with respect to Π′, we obtain

Ṽtk (Π) ≤ ess sup
Π′∈Ax , Π′(k)≤Π(k)

E[Ṽtk+1(Π
′)|Ftk ].

On the other hand, for any fixed Π′ ∈ Ax such that Π′(k) = Π(k), the stability
of Ax under bifurcation allows us to construct a sequence (Π(`))`∈N in Ax such that
Π(`)(k+1) = Π′(k+1) for any ` ∈ N and that E[Ũ(XΠ(`)

T )|Ftk+1 ] ↑ Ṽtk (Π
′) when ` → +∞.

For any ` ∈ N, one has

Ṽtk (Π) ≥ E[Ũ(XΠ(`)
T )|Ftk ] = E[E[Ũ(XΠ(`)

T )|Ftk+1 ]|Ftk ].

In taking the limit when ` → +∞, by the monotone convergence theorem of condi-
tional expectation, we obtain Ṽtk (Π) ≥ E[Ṽtk (Π

′)|Ftk ].

Since the penalized utility function depends on the constraints, it is difficult to obtain
the explicit form of the value function Ṽtk , k ∈ {1, · · · , m− 1} by using analytical methods
in general. Section 3 shows how to derive solutions by using numerical methods.

2.3. An Alternative Dynamic Program with Exponential Utility Function

In optimization problems, we often distinguish investment strategies on proportion or
on quantity, the former leading to positive wealth values and the latter allowing for negative
wealth possibility. We often accordingly choose the power and exponential utility functions.

In this subsection, we consider the specific optimization problem (8) under the two
conditional constraints (5) and (7), and when the utility function of the financial institution is
the exponential function U(x) = −e−px, p > 0. In this context, we adopt a slightly different
form for the investment strategy: π = (πt)t≥0 with πt = (π0

t , · · · , πn
t ) is now a (n + 1)-

dimensional process, which represents the quantity invested on the assets S = (St)t≥0 with
St = (S0

t , · · · , Sn
t ) in the portfolio. For each i ∈ {0, 1, · · · , n}, πi

t = ∑m
k=1 πi

tk
I(tk−1,tk ]

(t), and
t ∈ (0, T], where πi

tk
is an Ftk−1-measurable random variable representing the quantity of

the asset Si that the investor holds at tk according to the asset prices observed on tk−1. Then,
the wealth process at tk is given (instead of (2)) as

Xπ
tk
= Xπ

tk−1
+ πtk · (Stk − Stk−1)− (Ytk −Ytk−1). (16)

We consider the optimal investment problem defined by

Vx
0 = sup

π∈Ax
E[U(Xπ

T )], Xπ
0 = x, (17)

where

Ax =

π = (π0
tk

, · · · , πn
tk
)m

k=0 :
∀ i ∈ {0, 1, · · · , n} and k ∈ {1, · · · , m},
πi

tk
is Ftk−1 -measurable,

and the constraint (5) or (7) holds.

 (18)
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Let us consider a dynamic programming principle as in Section 2.2. For any k ∈
{0, · · · , m}, we denote it by π(k), which is the truncated process (πtj)j=0,··· ,k of π up to
time tk. The dynamic value function process is defined as

Vtk (π) = ess sup
π′∈Ax , π′(k)=π(k)

E[U(Xπ′
T )|Ftk ], k = 0, · · · , m. (19)

We have the following result, which is similar to Proposition 2.

Proposition 3. For any π ∈ Ax in (18) such that E[U(Xπ
T )] > −∞, we have for any k ∈

{0, · · · , m− 1}
Vtk (π) = ess sup

π′∈Ax , π′(k)=π(k)
E[Vtk+1(π

′)|Ftk ]. (20)

Moreover, the following equality holds for all k ∈ {0, · · · , m}:

Vtk (π) = U(Xπ
tk
− Ztk ), (21)

where ZT = 0 and for k = m− 1, · · · , 0

Ztk :=
1
p

log ess inf
π′tk+1

E
[

exp
(
− pπ′tk+1

· (Stk+1 − Stk ) + p(Ytk+1 −Ytk ) + pZtk+1

)∣∣∣Ftk

]
. (22)

Proof. The first assertion (20) can be proved similarly as in Proposition 2. For the second
assertion (21), we begin from the terminal date T = tm and write Xπ

T as Xπ
tm−1

+πtm · (Stm −
Stm−1)− (Ytm −Ytm−1) by (16). The exponential utility function leads to

U(Xπ
T ) = U(Xπ

tm−1
) exp

(
− p

(
πtm · (Stm − Stm−1)− (Ytm −Ytm−1)

))
.

Then, by (20),

Vtm−1(π) = U(Xπ
tm−1

) ess inf
π′tm

E
[

exp
(
− pπ′tm · (Stm − Stm−1) + p(Ytm −Ytm−1)

)∣∣∣Ftm−1

]
(23)

where the essential infimum is taken under the constraint (5) or (7). We denote it by

Ztm−1 :=
1
p

log ess inf
π′tm

E
[

exp
(
− pπ′tm · (Stm − Stm−1) + p(Ytm −Ytm−1)

)∣∣∣Ftm−1

]
,

and obtain by (23) the equality Vtm−1(π) = U(Xπ
tm−1
− Ztm−1). By similar arguments, we

obtain (21) for all k = m− 1, · · · , 0 in a recursive way.

By the above proposition, the initial problem (17) is decomposed into a family of
successive one-step optimization problems. Compared to Proposition 2, the value functions
Vtk (·) remain as an exponential function at each time step with a supplementary weight Ztk

due to both the exponential utility function setting and the investment strategy in quantity.

3. Application and Numerical Illustrations in the Presence of Liquidity Risk

In this section, we consider a special context with financial assets under different
financial risks including liquidity risk, credit intensity, and interest rate fluctuations. We
numerically solve the optimization problem and illustrate the optimal allocation strategies.

We assume that the asset manager invests in three assets:

(1) the cash with a stochastic instantaneous return rate (rt)t≥0 whose price at t ≥ 0 is
given by S0

t = exp(
∫ t

0 rsds);
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(2) a default-free zero-coupon bond (B0(t, T0))t≥0 with maturity T0 whose price is given
by

S1
t = B0(t, T0) = EQ

[
exp

(
−
∫ T0

t
rsds

)∣∣∣∣Ft

]
, t ≤ T0; and (24)

(3) a default-sensitive zero-coupon bond (B1(t, T1))t≥0 with maturity T1, which is im-
pacted by both credit and liquidity risks. The endogenous credit risk is characterized
by the default intensity (λ1

t )t≥0 and the pre-default price of the bond is given by

B1(t, T1) = EQ
[

exp
(
−
∫ T1

t
(rs + λ1

s )ds
)∣∣∣∣Ft

]
, t ≤ T1. (25)

Appendix A details the financial modeling of the default-free bond B0 and of the pre-
default price B1 of the default-sensitive bond, along with specification of the market
risk processes r and λ1 under both historical measure P and risk-neutral measure Q.
Moreover, following Ericsson and Renault (2006), we assume that random liquidity
shocks on the market exist. According to the literature, e.g., Chen et al. (2017), the
liquidity intensity depends on the global credit quality of the market and, specifically,
is positively correlated with the credit risk level. We suppose that the liquidity
shocks arrive according to a Cox process (Nρ

t )t≥0, where Nρ
t = ∑j≥1 1{σj≤t} and

the random times {σj}j≥1 represent the occurrence times of liquidity shocks. The
liquidity intensity (λ

ρ
t )t≥0 of the Cox process is defined as λ

ρ
t = αρλ

γρ

t + βρ, where
αρ, βρ, γρ ≥ 0 are the scale parameters governing the sensitivity of λρ to λ, the
constant lower bound, and the elasticity parameter, respectively, which is similar to
the extended credit CEV model in Carr and Linetsky (2006).
In such an illiquid market, the bonds are sold at a discounted price that is proportional
to the level of illiquidity described by the aggregated liquidity impact process (δt)t≥0
with δt = ∑j≥1 δj11{σj≤t<σj+1} and {δj}j≥1 valued in (0, 1], which are independent

random marks associated with the liquidity shock time σj (so that δi
σj
= δi

j). In other
words, the realized transaction price of the defaultable zero-coupon bond subject to
liquidity risk is then given by

S2
t = δt B1(t, T1).

Recall that T is the fixed investment horizon and the number of risky assets equals
n = 2. We assume that the transactions of financial assets take place on an equi-spaced
time grid 0 = t0 < t1 < · · · < tm = T with constant time step ∆. The asset portfolio value
X evolves according to the following discrete time dynamics

Xtk = Xtk−1

[
1 + rtk−1 ∆ + Πtk · R

e
tk

]
− (Ytk −Ytk−1) , (26)

where rtk−1 is the instantaneous interest rate at time tk−1; Re
tk
= (Re,1

tk
, Re,2

tk
) is the vector

of the excess returns of the risky assets in excess of the risk-free asset; Πtk = (Π1
tk

, Π2
tk
) is

the vector of Ftk−1-measurable portfolio weights on the risky assets (with a slight abuse
of notation compared to Section 2, where the vector Πtk has for first component Π0

tk
); and

Ytk −Ytk−1 is the amount of surrender payments between tk−1 and tk. Note that the wealth
dynamics (26) derives from (2) by considering that the proportions invested in cash are
such that Π0

tk
= 1− (Π1

tk
+ Π2

tk
) for all k = 0, · · · , m.

The vector Re
tk
= (Re,1

tk
, Re,2

tk
) is composed of the default-free bond excess return Re,1

tk

and the default-sensitive bond excess return Re,2
tk

on the period (tk−1, tk]: Re,1
tk

is defined as

Re,1
tk

= ln
(

B0(tk, T0)

B0(tk−1, T0)

)
− rtk−1 ∆,
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while Re,2
tk

is defined as

Re,2
tk

= ln
(

B1(tk, T1)

B1(tk−1, T1)

)
− (rtk−1 − ln δtk )∆.

We study the numerical solutions of the following specific penalized allocation prob-
lems (see (10))

max
Π∈Ax

EP
[
U(XT)− θ

[
(CLT − XT)

+
]2] (27)

where

Ax =

Π = (Π0
tk

, · · · , Πn
tk
)m

k=0 :

∀i ∈ {0, 1, · · · , n} and k ∈ {1, · · · , m},
Πi

tk
is Ftk−1 -measurable,

∀ k ∈ {0, 1, · · · , m}, Π0
tk
= 1−∑n

i=1 Πi
tk

,
and the constraint (4) holds.


and U is the power utility function with parameter p > 0, p 6= 1, i.e., U(x) = x1−p/(1− p).
The asset manager aims at maximizing the expected utility of her terminal wealth penalized
by a quadratic expected shortfall solvency constraint.

We numerically solve the optimization problem (27) for the set of parameters given
in Table 1. The problem horizon is T = 1 year and we choose 12 time periods for a
monthly rebalancing frequency. We suppose that the withdrawals occur according to a Cox
process defined as in Example 1. The withdrawal counting process intensity is given by
(ηt)t≥0 as ηt = ξη + αηrt + βηλt, where ξη , αη , βη are positive parameters. ξη represents
the structural part of the withdrawal intensity and both αη and βη represent the sensitivity
of the intensity with respect to the level of the short-term interest rate and to the default
intensity, respectively. Note that the withdrawal risk depends on the credit risk and can
thus trigger bankruptcy when they materialize simultaneously. The parameters ξη , αη , βη

are chosen such that the average annual withdrawal rate is 10%.

Table 1. Values of parameters in the central model.

Short term interest Default intensity

a(r) 0.59 a(1) 0.39
b(r) 0.005 b(1) 0.02
σ(r) 0.06 σ(1) 0.1
αr 0.1 αλ 1

ZC bond B0 ZC bond B1

T0 10 T1 10

Surrender risk Liquidity shock

ξη 0 αρ 100
αη 333.33 βρ 0
βη 333.33 γρ 1

γ 0.0972

Other parameters Initial value

M 100 r0 0.007
K0 0.01 λ0 0.023
κ 0.01 X0 1.2
C 1.2
θ 1
p 20
T 1
∆ 1/12
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Concerning the liquidity risk, the parameters αρ, βρ are chosen such that the average
number of liquidity shocks per year is between 1 and 2 (see Figure 1). In addition, we
assume for the numerical simulation that the illiquidity impact is given by

δk =
1

1 + γ
(

Nρ
tk
− Nρ

tk−1

)
where γ is a positive parameter that represents the sensitivity of the shock severity with
respect to the number of liquidity shocks. The greater the number of shocks is in the
period, the greater the negative impact ln δtk is on the returns of the default-sensitive bond.
Then, γ is chosen such that E[ln δ1

k | Nρ
tk
− Nρ

tk−1
> 0] = −10%, i.e., given a liquidity

shock, the expected impact on the annual return rate is 10%. The interest rate and default
intensity processes are supposed to follow an independent CIR process. The interest rates
are calibrated on the 10-year ZC swap and the default intensity on the credit spread of the
10-year Italian government bonds on year 2016 with a monthly frequency. We choose to
calibrate the data for year 2016 because it was a hectic year during which the risk premia
increased substantially, especially following the vote in favor of Brexit. This setting is called
the central model specification.

time
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N
ρ t
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1.8

2 Mean, 5% and 95% quantiles of liquidity shock counting process

time
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

an
nu

al
 e

xc
es

s 
re

tu
rn

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15 Mean, 25% and 75% quantiles of annual excess returns

Default-free bond
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Figure 1. Empirical mean: 25% and 75% quantiles of sampled paths of Nρ (left) and of sampled paths
of the risky assets’ annual excess return rates Re,1

t /∆ and Re,2
t /∆ (right) at the end of each rebalancing

period, i.e., at time t1, . . . , tm.

In the central model, we additionally consider some linear constraints on optimal
proportions, which correspond to the SAA provided by the asset owner to the asset man-
ager. The optimal proportions on risky assets Πt = (Π1

t , Π2
t ) are such that the sum

Π1
t + Π2

t is between 0 and 100%; the proportion of risk-free assets is less than 20%, i.e.,
1− (Π1

t + Π2
t ) ≤ 0.2; and each component is between 0 and 100%. These conditions trans-

late into a linear system of inequality constraints of the form AcΠ>tk
≤ Bc, where

A>c =

(
1 −1 −1 1 −1 0 0
1 −1 −1 0 0 1 −1

)
and

B>c =
(

1 0 −0.8 1 0 1 0
)
.

The optimization problem (27) corresponds to a Markov decision process with an
underlying Markovian state process defined as (Xt, Zt) with

Zt =
(

rt, λ1
t , Nt

)
.
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It is worth noting that the liquidity shock counting process Nρ is not a state variable
since it only appears through its independent increments. The Markovian state process
(X, Z) has the following approximated discrete time dynamics3:

Xtk = Xtk−1

[
1 + rtk−1 ∆ + Πtk · R

e
tk

]
− (Ytk −Ytk−1)

rtk = rtk−1 + a(r)(b(r) − rtk−1)∆ + σ(r)
√

rtk−1 ∆ek

λ1
tk

= λ1
tk−1

+ a(1)(b(1) − λ1
tk−1

)∆ + σ(1)
√

λ1
tk−1

∆e1
k

Ntk = Ntk−1 + ∆Nk with ∆Nk ∼ Poi(ηtk−1 ∆)

Nρ
tk

= Nρ
tk−1

+ ∆Nρ
tk

with ∆Nρ
tk
∼ Poi(λρ

tk−1
∆)

where (ek) and (e1
k) are two independent sequences of i.i.d. standard Gaussian random vari-

ables. To facilitate comparisons in the solutions of (27), we assume that the Poisson noises
in the doubly stochastic Poisson processes Nρ and N are frozen to a deterministic path.4

We consider the methodology introduced by Brandt et al. (2005) to find numerical
solutions of the optimization problem (27). We first derive the Bellman equation associated
with the considered Markov decision process. The cost-to-go function and corresponding
optimal strategies can then be obtained at each rebalancing date using a backward iterative
procedure (dynamic programming). At each iteration date, we perform a Taylor expansion
of the cost-to-go function, which gives an approximation of optimal strategies as solutions of
a quadratic optimization problem. The coefficients of this quadratic optimization problem
are expressed in the form of conditional expectations, which are estimated by simulation-
regression techniques (least square Monte Carlo) and using previously computed strategies.
The numerical procedure is described in Appendix B.

Figure 1 (left side) shows that most sample paths of Nρ exhibit a single liquidity shock
at the sixth period (t = 0.5).5 As a consequence, the excess return rate on the default-
sensitive bond falls by about 10% in this period (Figure 1, right side).

Figure 2 displays the optimal proportions of the default-free bond, the default-sensitive
bond, and the risk-free assets obtained as the solution of (27). As required by the allocation
constraints, the proportion of the risk-free asset is always smaller than 20%. In addition,
the trend of optimal strategies is strongly affected by the occurrence of the liquidity shock
at the sixth period (see Figure 1, right side, and Figure 2). The proportion invested in the
default-sensitive bond whose return falls by 10% due to liquidity shock at the sixth period
goes to zero just before the shock and is smaller than the proportion in the default-free bond
before the shock6. After the shock, the proportion of the default-sensitive bond increases,
which allows for a higher return of the asset portfolio.
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Figure 2. Empirical mean: 25% and 75% quantiles of the optimal proportions invested in the default-
free bond (up), default-sensitive bond (middle), and risk-free asset (bottom).

We analyze the performance of the obtained optimal strategies when the latter are
applied to sampled paths of the state process.7 Figure 3 compares the optimal penalized
utilities of wealth U(XΠ

t ) − θ[(CLt − XΠ
t )+]2 (upper left side), asset values XΠ

t (upper
right side), and asset-liability ratios XΠ

t /Lt (bottom) at each date t0, t1, · · · , tm with the
corresponding values obtained when (i) using the risk-free asset only (referred to as the
“risk-free strategy”) and (ii) when proportions in the three assets are fixed to a constant
value over time (10% in the risk-free asset, 40% in the default-free bond, and 50% in the
default-sensitive bond, referred to as the “fixed-proportion strategy”). We observe that the
optimal strategy, on average, outperforms the fixed-proportion and risk-free strategies, and
exhibits lower variability than the fixed-proportion strategy. The negative trend in asset
portfolio values XΠ

t is due to the surrender payments in each period, i.e., the positive term
Ytk −Ytk−1 in (26).
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Figure 3. Empirical mean: 25% and 75 % quantiles of the penalized utilities of wealth (upper left),
asset values (upper right), and asset-liability ratios (bottom) when using the risk-free asset only,
when using fixed proportions invested in the three considered assets (10% in the risk-free asset,
40% in the default-free bond, and 50% in the default-sensitive bond), and when using the optimal
proportions in the three assets as solution of (27).
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We now study how optimal strategies are impacted by a change in input parameters.
Figure 4 compares the optimal strategy in the central model specification and when the level
of the short-rate process rt increases from 0.7% to 5%. This has two direct consequences.
First, the annual return on the risk-free asset increases with the same magnitude level.
Second, the average annual surrender rate doubles and goes from 10% to 20%. Figure 4
shows that the optimal proportion in the risk-free asset increases to nearly 20%, which is its
maximum possible value. The optimal proportion invested in the default-sensitive bond
slightly decreases over the period.
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Figure 4. Sensitivity of optimal strategies to a change in the level of short rate.

Figure 5 compares the optimal strategy in the central model specification and when the
level of the default intensity process λ1

t increases from 2.3% to 10%. This change negatively
impacts the price of the default-sensitive bond, which increases the long-term return of
this bond; however, it triples the frequency of withdrawal payments and multiples the
frequency of liquidity shocks by eight. Therefore, the main effect is a significant fall of
the optimal proportions invested in the default-sensitive bond to reduce the risk of losses
arising from the forced sales of assets to meet redemptions.

These results show how accounting for joint liquidity risks (on the asset side) and
withdrawal risks (on the liability side; i) substantially modifies the optimal allocation of a
financial institution offering guaranteed-capital contracts to mitigate its default risk and
(ii) improves both its solvency ratio and asset returns.

Appendix C provides an additional sensitivity analysis with respect to change in αρ,
βρ, γ1, and θ.
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Figure 5. Sensitivity of optimal strategies to a change in the level of default intensity.

4. Conclusions

This study examined an optimal investment allocation problem for a financial in-
stitution offering capital-guaranteed contracts that incorporate the option of withdrawal
at any time. Both the financial assets and the withdrawal frequency are influenced by
market factors including credit quality, liquidity risk, and interest rate level. By using a
dynamic programming approach, we provide a recursive formula for obtaining the optimal
strategy for this utility maximization problem under several asset-liability constraints. The
numerical resolution provides a detailed description of the optimal trading strategies.

This paper contributes to the existing literature (e.g., Berry-Stölzle 2008) by highlight-
ing the importance, for an institutional asset manager, of taking into account the snowball
effect that may occur in certain market configurations, such as financial crises. Indeed, the
combination of redemptions on the liabilities side and financial illiquidity on the assets
side can lead to insolvency for the financial institution.

We show that financial institutions should adjust their optimal asset allocation to
account for the illiquidity mismatch between assets and liabilities. Specifically, to mitigate
its default risk, a financial institution needs to reduce its exposure to risky assets when it
expects a rise in credit risk (i.e., during financial turmoil) that can trigger a decrease in the
liquidity of assets and an increase in redemptions, thereby forcing the institution to sell
assets at discounted prices and deteriorate its solvency.

The method used in this paper has some limitations, however. First, we modeled
the transaction dates as discrete. Although this assumption is generally quite realistic, it
is possible that the frequency of transactions may be higher during certain periods, e.g.,
during times of crisis. A possible amendment to the model would be to consider transaction
dates based on stopping times. Besides, we fixed the horizon T of the problem. The model
could be reconstructed by considering a horizon based on a stopping time, for example,
when the solvency ratio crosses a certain threshold. Finally, in the numerical simulations,
we set the shock time. It would be interesting to analyze the optimal allocation when the
shock time is an inaccessible stopping time, i.e., during which we do not observe the effect
of the reduction of the allocation before the shock.

Building on this work, several avenues of research may be considered. First, can we
establish a link between the risk aversion and parameters α, β, and θ in the constraints
of the problem? Moreover, from the point of view of prudential regulation, how should
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parameters α, β, and θ be calibrated? Second, liquidity stresses may materialize differently,
for example, without any major impact on the selling price but simply as a limited supply
of assets. What would happen to the optimal allocation in this case? Third, we built our
model on a run-off portfolio where the terms of the contracts may be very different from
the new market conditions. The institution that continues to offer new contracts modifies
its solvency and capacity to withstand financial shocks. What would happen to the optimal
allocation when we take into account the arrival of new business? Fourth, replicating a
numerical analysis with a large number of assets with different correlations can offer richer
solutions to financial institutions. On a theoretical level, the same model can be enriched
by developing the dynamics of liabilities. Finally, the risk analysis of liquidity mismatch
between assets and liabilities can be extended to the case of exchange-traded funds that
offer liquidity to clients, which is often better than the liquidity of the assets in which
they invest.
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Appendix A. Stochastic Dynamics of Financial Assets

For the numerical illustrations, we consider that the asset manager can invest in three
assets (n = 2): the risk-free asset (the deposit account with a stochastic instantaneous
return rate), a default-free zero-coupon bond with maturity T0, and a default-sensitive
zero-coupon bond with maturity T1.

We begin with a “default-free” zero-coupon bond, which only bears the interest rate
evolution and adopts the affine term structure modeling approach for the bond pricing. We
assume that, under the risk-neutral probability measure Q, the short-term interest rate r is
described by a mean-reverting affine diffusion of the form

drt = a(b− rt)dt + σ(rt)dWr,Q
t , (A1)

where Wr,Q is a Brownian motion under the risk-neutral probability Q; a and b are positive
parameters; and σ(·) is a positive deterministic function. The price of the cash S0 is given by

S0
t = exp

( ∫ t

0
rsds

)
, S0

0 = 1. (A2)

The price of the default-free zero-coupon bond of maturity T0 is given by

B0(t, T0) = EQ

[
exp

(
−
∫ T0

t
rsds

)∣∣∣∣Ft

]
. (A3)
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Given the affine structure of the model (cf. Duffie 2005), the zero-coupon bond price
can be expressed as

B0(t, T0) = exp(−A0(T0 − t)rt + C0(T0 − t)), (A4)

where A0 and C0 are deterministic functions that can be expressed in the closed form, e.g.,
in the Vasicek or CIR models. The risk-neutral dynamics of the zero-coupon price is then
given by

dB0(t, T0)

B0(t, T0)
= rtdt− σ0(t, T0)dWr,Q

t (A5)

where σ0(t, T0) = A0(T0− t)σ(rt). By the Girsanov theorem, an F-adapted process αr exists
such that, under the historical probability P, the dynamics of B0 can be expressed as

dB0(t, T0)

B0(t, T0)
= (rt + σ0(t, T0)α

r
t)dt− σ0(t, T0)dWr,P

t . (A6)

The change of the probability measure is defined by the Radon–Nikodym derivative

dQ
dP

∣∣∣∣
Ft

= exp
(∫ t

0
αr

sdWr,P
s −

1
2

∫ t

0
|αr

s|2ds
)

. (A7)

In the following section, we consider the specific case of the CIR model, i.e., when
σ(rt) = σ(r)√rt. Moreover, if we require that the dynamics of r remain in the same family
after the equivalent change of the probability measure, the suitable choice of the interest-rate
risk premium is αr

t = αr√rt such that

drt = a(r)(b(r) − rt)dt + σ(r)√rtdWr,P
t .

The risk-neutral parameters in (A1) are then such that a = a(r) − σ(r)αr, b = a(r)b(r)

a(r)−σ(r)αr ,
and the functions A0 and C0 of the arbitrage-free price B0(t, T0) of the zero-coupon bond
with maturity T0 in (A4) are given by

A0(x) =
2(1− e−hx)

h + a + (h− a)e−hx ,

C0(x) = −2ab

[
x

a + h
+

1
(σ(r))2

ln

(
h + a + (h− a)e−hx

2h

)]
,

h =
√

a2 + 2(σ(r))2.

Then, we consider a defaultable bond and explain how it is evaluated. The endogenous
credit risk is characterized by an individual default intensity. More precisely, we assume
that the credit risk of the risky bond B1(t, T1) is characterized by the default intensity
process λ1, which is an F-adapted process. In addition, we assume that λ1 belongs to the
same class of affine processes as the short-term interest rate such that the term structure of
the defaultable bond can be represented in the same way, that is

dλ1
t = a1(b1 − λ1

t )dt + σ(λ1
t )dW1,Q

t , (A8)

where a1, b1 are constants, σ(λ1
t ) = σ(1)

√
λ1

t is of the same type as the volatility function of

(A1), and W1,Q
t is a Brownian motion independent of Wr,Q

t under Q. Hence, the pre-default
price of the bond with maturity T1 at time t ≤ T1 is given by

B1(t, T1) = EQ
[

exp
(
−
∫ T1

t
(rs + λ1

s )ds
)∣∣∣∣Ft

]
, t ≤ T1. (A9)
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Then, by using Duffie (2005), the risky bond price can be expressed as

B1(t, T1) = exp
(
− A0(T1 − t)rt − A1(t, T1)λ

1
t + C0(T1 − t) + C1(T1 − t)

)
, (A10)

where A0 and C0 are as in (A4) and both A1 and C1 are deterministic functions such that

A1(x) =
2(1− e−h1x)

h1 + a1 + (h1 − a1)e−h1x ,

C1(x) = −2a1b1

[
x

a1 + h1
+

1
(σ(1))2

ln

(
h1 + a1 + (h1 − a1)e−h1x

2h1

)]
,

h1 =
√

a2
1 + 2(σ(1))2.

Moreover, one has

dB1(t, T1)

B1(t, T1)
= (rt + λ1

t )dt− σ0(t, T1)dWr,Q
t − σ1(t, T1)dW1,Q

t , (A11)

where σ1(t, T1) = A1(T1 − t)σ(λ1
t ). We consider the following change of the probability

measure

dQ
dP

∣∣∣∣
Ft

= exp
(∫ t

0
(αr√rsdWr,P

s + αλ
1

√
λ1

t dW1,P
s )− 1

2

∫ t

0
((αr)2rs +

(
αλ

1

)2
λ1

t )ds
)

, (A12)

Using this change of the probability measure,

dλ1
t = a(1)(b(1) − λ1

t )dt + σ(λ1
t )dW1,P

t ,

with a1 = a(1) − σ(1)αλ
1 , b1 = a(1)b(1)

a(1)−σ(1)αλ
1

. The pre-default dynamic of the bond under the

historical probability P is given by

dB1(t, T1)

B1(t, T1)
= (rt + λ1

t + σ0(t, T1)α
r√rt + σ1(t, T1)α

λ
√

λt)dt− σ0(t, T1)dWr,P
t − σ1(t, T1)dW1,P

t , (A13)

while the dynamics of the bond B0 given in (A6) under the historical probability P is
unchanged.

Appendix B

Appendix B.1. Value Function and Bellman Equation

Without loss of generality, let us consider the time grid 0 < · · · < t < t + 1 < · · · < T
instead of t0 < · · · < tk < tk+1 < · · · < T. For t = 0, · · · , T, we define the value function
J as

Jt(Xt, Zt) = max
Πt+1={Πs}T

s=t+1

E
[

u(XΠ
T )− θ

[
(CLT − XΠ

T )+
]2
|Xt, Zt

]
.

The Bellman equation is given by

Jt(Xt, Zt) = max
Πt+1

E[Jt+1(Xt+1, Zt+1)|Xt, Zt]. (A14)

where

JT(XT , ZT) = u(XT)− θ
[
(CLT − XT)

+
]2 (A15)

= u(XT)− θ(CLT − XT)
2I{CLT>XT}. (A16)
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Given (26), the time t + 1 value function writes

Jt+1(Xt+1, Zt+1) = Jt+1(Xt[R
f
t+1 + Πt+1 · Re

t+1]− (Yt+1 −Yt), Zt+1).

where we define R f
t+1 := 1 + rt∆.

Moreover, let

ϕt(Zt) = E
[

Yt+1

Yt

∣∣∣∣Zt

]
.

A Taylor expansion of Jt+1(Xt+1, Zt+1) around (XtR
f
t+1 + Yt(1− ϕt(Zt)), Zt+1) is

given by

Jt+1(Xt+1, Zt+1)

= Jt+1

(
XtR

f
t+1 + Yt(1− ϕt(Zt)), Zt+1

)
+∂1 Jt+1

(
XtR

f
t+1 + Yt(1− ϕt(Zt)), Zt+1

)[
XtΠt+1 · Re

t+1 + Yt ϕt(Zt)−Yt+1
]

+
1
2

∂2
1 Jt+1

(
XtR

f
t+1 + Yt(1− ϕt(Zt)), Zt+1

)[
XtΠt+1 · Re

t+1 + Yt ϕt(Zt)−Yt+1
]2

+ . . .

At each time t, we want to find Πt+1, which maximizes E[Jt+1(Xt+1, Zt+1)|Xt, Zt]
under the linear inequality constraint AcΠt+1 ≤ Bc. Let us define

At+1 = ∂1 Jt+1

(
XtR

f
t+1 + Yt(1− ϕt(Zt)), Zt+1

)
Re

t+1

−∂2
1 Jt+1

(
XtR

f
t+1 + Yt(1− ϕt(Zt)), Zt+1

)
[Yt+1 −Yt ϕt(Zt)]Re

t+1

Bt+1 = ∂2
1 Jt+1

(
XtR

f
t+1 + Yt(1− ϕt(Zt)), Zt+1

)
Re

t+1(Re
t+1)

′.

An approximation of the optimal strategy Π̂t+1 can be obtained as the solution of the
following quadratic optimization problem.

max
Πt+1

{
XtΠt+1E[At+1|Xt, Zt] +

1
2

X2
t Πt+1E[Bt+1|Xt, Zt]Π′t+1

}
. (A17)

s.t. AcΠt+1 ≤ Bc (A18)

Note that without the inequality constraint, the solution is explicit and given by

Π̂t+1 = −{XtE[Bt+1|Xt, Zt]}−1E[At+1|Xt, Zt].

In the presence of linear inequality constraints, we rely on a quadratic programming
solver.

Appendix B.2. Computation of E[At+1|Xt, Zt] and E[Bt+1|Xt, Zt]

Let us recall that

Jt(Xt, Zt) = max
{Πs}T

s=t+1

E
[
U(XT)− θ

[
(CLT − XT)

+
]2|Xt, Zt

]
or equivalently

Jt(Xt, Zt) = max
{Πs}T

s=t+1

E[v(XT , ZT)|Xt, Zt]

with
v(x, z) := U(x)− θ

[
(Cl(z)− x)+

]2
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where l(·) is the deterministic function such that LT = l(ZT). Note that

∂1v(x, z) = U′(x) + 2θ(Cl(z)− x)I{Clt(z)>x} and ∂2
1v(x, z) = U′′(x)− 2θI{Cl(z)>x}.

Using the prescribed (26) dynamics of X, we can write the terminal asset portfolio
value in the following way:

XT = XT−1[R
f
T + ΠT · Re

T ]− (YT −YT−1)

= ...

= Xt

T

∏
s=t+1

[R f
s + Πs · Re

s] +
T

∑
s=t+1

(Ys−1 −Ys)
T

∏
u=s+1

[R f
u + Πu · Re

u]

Let us define

XΠ̂
T (Xt) = Xt

T

∏
s=t+1

[R f
s + Π̂s · Re

s] +
T

∑
s=t+1

(Ys−1 −Ys)
T

∏
u=s+1

[R f
u + Π̂u · Re

u]

=: Xtψt + ϕt.

where Π̂s are the optimal portfolio weights at the rebalancing date s− 1. Thus, we can write

Jt(Xt, Zt) = E
[
U(Xtψt + ϕt)− θ[(CLT − (Xtψt + ϕt))+]

2|Xt, Zt

]
= E

[
vT(XΠ̂

T (Xt), ZT)|Xt, Zt

]
.

It follows that

∂1 Jt+1(Xt+1, Zt+1) = E
[
∂1v(XΠ̂

T (Xt+1), ZT)ψt+1|Xt+1, Zt+1

]
∂2

1 Jt+1(Xt+1, Zt+1) = E
[
∂2

1v(XΠ̂
T (Xt+1), ZT)ψ

2
t+1|Xt+1, Zt+1

]
.

Additionally, it follows that

E[At+1|Xt, Zt]

= E
[
∂1 Jt+1

(
XtR

f
t+1 + Yt(1− ϕt(Zt)), Zt+1

)
Re

t+1|Xt, Zt

]
−E
[
∂2

1 Jt+1

(
XtR

f
t+1 + Yt(1− ϕt(Zt)), Zt+1

)
[Yt ϕt(Zt)−Yt+1]Re

t+1|Xt, Zt

]
= E

[
E
[
∂1v
(

XΠ̂
T

(
XtR

f
t+1 + Yt(1− ϕt(Zt))

)
, ZT

)
ψt+1|Xt+1, Zt+1

]
Re

t+1|Xt, Zt

]
−E
[
E
[
∂2

1v
(

XΠ̂
T

(
XtR

f
t+1 + Yt(1− ϕt(Zt))

)
, ZT

)
ψ2

t+1|Xt+1, Zt+1

]
[Yt ϕt(Zt)−Yt+1]Re

t+1|Xt, Zt

]
= E

[
∂1v
(

XΠ̂
T

(
XtR

f
t+1 + Yt(1− ϕt(Zt))

)
, ZT

)
ψt+1Re

t+1|Xt, Zt

]
−E
[[

∂2
1v
(

XΠ̂
T

(
XtR

f
t+1 + Yt(1− ϕt(Zt))

)
, ZT

)
ψ2

t+1

]
[Yt ϕt(Zt)−Yt+1]Re

t+1|Xt, Zt

]
= E

[
Ãt+1|Xt, Zt

]
and

E[Bt+1|Xt, Zt]

= E
[
∂2

1 Jt+1

(
XtR

f
t+1 + Yt(1− ϕt(Zt)), Zt+1

)
Re

t+1(Re
t+1)

′|Xt, Zt

]
= E

[
E
[
∂2

1v
(

XΠ̂
T

(
XtR

f
t+1 + Yt(1− ϕt(Zt))

)
, ZT

)
ψ2

t+1|Xt+1, Zt+1

]
Re

t+1(Re
t+1)

′|Xt, Zt

]
= E

[
∂2

1v
(

XΠ̂
T

(
XtR

f
t+1 + Yt(1− ϕt(Zt))

)
, ZT

)
ψ2

t+1Re
t+1(Re

t+1)
′|Xt, Zt

]
= E

[
B̃t+1|Xt, Zt

]
.
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Note that

XΠ̂
T

(
XtR

f
t+1 + Yt(1− ϕt(Zt))

)
=
[

XtR
f
t+1 + Yt(1− ϕt(Zt))

]
ψt+1 + ϕt+1

where

ψt+1 =
T

∏
s=t+2

[R f
s + Π̂s · Re

s]

ϕt+1 =
T

∑
s=t+2

(Ys−1 −Ys)ψs

Then, assuming that optimal strategies Π̂(X, Z) have been computed at time T −
1, · · · , t + 1 for different sample paths of X, Z, we can estimate E[At+1|Xt, Zt] and
E[Bt+1|Xt, Zt] by regression of Ãt+1 and B̃t+1 on explanatory variables Xt, Zt.

Appendix B.3. Numerical Procedure

The Bellman equations are solved using a forward–backward iterative procedure on
the time grid t = 0, · · · , T. The first forward procedure aims at constructing a suitable
discrete representation of the state space. The second backward procedure corresponds to
solving Bellman’s equation on this discretized state space. Once optimal strategies have
been pre-computed, their performances are assessed on sample paths of the exogenous
state variables.

1. Discretizing the state space by simulating state processes. We generate n indepen-
dent sample paths of the exogenous state processes r and λ1 (and accordingly modify
paths of N) on the time grid t = 0, · · · , T. At each time t, the state space grid is been
defined as the collection of sample values taken by these processes. Knowing that
optimal strategies are constrained in a bounded domain, the state space for the state
variable X is approximated by collecting, at each time t = 0, · · · , T, sample values of
X generated from (26) using sampled paths of r and λ1, and by employing, at each
rebalancing date, uniformly distributed sampled strategies on the bounded domain.

2. Solving the Bellman equation on the discretized state space

• The time-T value of cost-to-go function JT is initialized on each point of the
time-T state space grid using (A16).

• For each time iteration t, t = T − 1, · · · , 0 and for any point (Zt, Xt) in the time-t
state space grid, Π̂t+1(Zt, Xt) is obtained as the solution of (A17). The coefficients
of the quadratic optimization problems E[At+1|Xt, Zt] and E[Bt+1|Xt, Zt] are
approximated using previously computed values of Π̂s+1 s = t + 1, · · · , T − 1
interpolated on the corresponding state space grid and using regression on the
sample path of Z.

3. Assessing the performance of optimal strategies. For each sample path of the state
processes r and λ1, we compute the value of the optimal asset portfolio by using,
at each rebalancing date, the optimal strategy that best represents the state variable
current value. The employed strategy is found by interpolating pre-computed optimal
strategies on the current state space grid. Based on these sample paths, we can then
compute sample paths of the optimal asset portfolio together with any relevant
statistics.

Appendix C. Other Sensitivity Analyses

Figure A1 compares the optimal strategy in the central model specification and when
the degree of risk aversion decreases from p = 20 to p = 10. Consistently, we observe
that the optimal proportions in the default-sensitive bond (the riskiest asset) uniformly
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increase over the period and the proportions of the two other assets uniformly decrease
over the period.

Sensitivities of the optimal strategies to a change in αρ, βρ, γ1, and θ are depicted in
Figures A2–A5, respectively. When parameter αρ increases, the number of liquidity shocks
over [0, T] increases; therefore, we observe a reduction of the proportion invested in the
defaultable bond. When parameter θ increases, the solvency penalty is stronger and, as a
result, the proportion invested in the riskier asset (the more volatile one) decreases.
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Figure A1. Sensitivity of optimal strategies to a change in the degree of risk aversion.
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Figure A2. Sensitivity of optimal strategies to a change in αρ.
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Figure A3. Sensitivity of optimal strategies to a change in βρ.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Π
t,1

0
0.2
0.4
0.6
0.8

1 Default-free bond

γ = 0.972
γ = 0.389

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Π
t,2

0
0.2
0.4
0.6
0.8

1 Default-sensitive bond

γ = 0.972
γ = 0.389

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1-
Π

t,1
-Π

t,2

0
0.2
0.4
0.6
0.8

1 Risk-free asset

γ = 0.972
γ = 0.389
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Figure A5. Sensitivity of optimal strategies to a change in θ.

Notes
1 The investment portfolio value may become negative if almost all customers decide to withdraw money from their contract and if

the value of the invested assets falls, but this happens with a very low probability (see, e.g., the case study considered in Section 3
and Figure 3).

2 See Section 2.3 for a more detailed discussion.
3 Note that the discrete versions of the CIR processes have been simulated using the methodology proposed in Alfonsi (2005).
4 Meaning that when simulating these Cox processes from a standard Poisson process, only one single deterministic path of the

Poisson process is used.
5 Even if Poisson noise is frozen to a deterministic path, the differences in Nρ sampled paths is due to its stochastic intensity λρ.
6 The intensity of the liquidity shock is observed just before the jump and therefore the optimal allocation takes it into account.
7 We used the same to numerically solve Bellman equations.

References
Alfonsi, Aurelien. 2005. On the discretization schemes for the CIR (and Bessel squared) processes. Monte Carlo Methods and

Applications 11. [CrossRef]
Allen, Franklin, and Douglas Gale. 2004. Financial Intermediaries and Markets. Econometrica 72: 1023–61. [CrossRef]
Bao, Jack, Jun Pan, and Jiang Wang. 2011. The Illiquidity of Corporate Bonds. The Journal of Finance 66: 911–46. [CrossRef]
Berry-Stölzle, Thomas R. 2008. The impact of illiquidity on the asset management of insurance companies. Insurance: Mathematics and

Economics 43: 1–14. [CrossRef]
Blanchard, Romain, and Laurence Carassus. 2018. Multiple-priors optimal investment in discrete time for unbounded utility function.

The Annals of Applied Probability 28: 1856–92. [CrossRef]
Boyle, Phelim, and Weidong Tian. 2007. Portfolio management with constraints. Mathematical Finance 17: 319–43. [CrossRef]
Brandt, Michael W., Amit Goyal, Pedro Santa-Clara, and Jonathan R. Stroud. 2005. A Simulation Approach to Dynamic Portfolio

Choice with an Application to Learning About Return Predictability. Review of Financial Studies 18: 831–73. [CrossRef]
Brunnermeier, Markus K., and Lasse Heje Pedersen. 2008. Market Liquidity and Funding Liquidity. Review of Financial Studies 22:

2201–38. [CrossRef]
Cao, Charles, and Lubomir Petrasek. 2014. Liquidity risk in stock returns: An event-study perspective. Journal of Banking & Finance 45:

72–83. [CrossRef]
Carr, Peter, and Vadim Linetsky. 2006. A jump to default extended CEV model: An application of Bessel processes. Finance and

Stochastics 10: 303–30. [CrossRef]
Chen, Hui, Rui Cui, Zhiguo He, and Konstantin Milbradt. 2017. Quantifying Liquidity and Default Risks of Corporate Bonds over the

Business Cycle. The Review of Financial Studies 31: 852–97. [CrossRef]

http://doi.org/10.1515/156939605777438569
http://dx.doi.org/10.1111/j.1468-0262.2004.00525.x
http://dx.doi.org/10.1111/j.1540-6261.2011.01655.x
http://dx.doi.org/10.1016/j.insmatheco.2007.09.005
http://dx.doi.org/10.1214/17-AAP1346
http://dx.doi.org/10.1111/j.1467-9965.2007.00306.x
http://dx.doi.org/10.1093/rfs/hhi019
http://dx.doi.org/10.1093/rfs/hhn098
http://dx.doi.org/10.1016/j.jbankfin.2013.09.020
http://dx.doi.org/10.1007/s00780-006-0012-6
http://dx.doi.org/10.1093/rfs/hhx107


Risks 2022, 10, 15 28 of 28

Chen, Tsung-Kang, Hsien-Hsing Liao, and Pei-Ling Tsai. 2011. Internal liquidity risk in corporate bond yield spreads. Journal of
Banking & Finance 35: 978–87. [CrossRef]

Cousin, Areski, Ying Jiao, Christian Y. Robert, and Olivier David Zerbib. 2016. Asset allocation strategies in the presence of liability
constraints. Insurance: Mathematics and Economics 70: 327–38. [CrossRef]

Dick-Nielsen, Jens, Peter Feldhütter, and David Lando. 2012. Corporate bond liquidity before and after the onset of the subprime crisis.
Journal of Financial Economics 103: 471–92. [CrossRef]

Duffie, Darrell. 2005. Credit risk modeling with affine processes. Journal of Banking & Finance 29: 2751–802. [CrossRef]
El Karoui, Nicole. 1981. Les aspects probabilistes du contrôle stochastique. In Ninth Saint Flour Probability Summer School—1979 (Saint

Flour, 1979). Lecture Notes in Math. Berlin and New York: Springer, vol. 876, pp. 73–238.
El Karoui, Nicole, Monique Jeanblanc, and Vincent Lacoste. 2005. Optimal portfolio management with American capital guarantee.

Journal of Economic Dynamics and Control 29: 449–68. [CrossRef]
Ericsson, Jan, and Olivier Renault. 2006. Liquidity and Credit Risk. The Journal of Finance 61: 2219–50. [CrossRef]
Favero, Carlo, Marco Pagano, and Ernst-Ludwig von Thadden. 2009. How Does Liquidity Affect Government Bond Yields? Journal of

Financial and Quantitative Analysis 45: 107–34. [CrossRef]
Feng, Runhuan, and Jan Vecer. 2016. Risk based capital for guaranteed minimum withdrawal benefit. Quantitative Finance 17: 471–78.

[CrossRef]
Föllmer, Hans, and Peter Leukert. 1999. Quantile hedging. Finance and Stochastics 3: 251–73. [CrossRef]
Föllmer, Hans, and Peter Leukert. 2000. Efficient hedging: Cost vs. shortfall risk. Finance and Stochastics 4: 117–46.
Frauendorfer, Karl, and Michael Schürle. 2003. Management of non-maturing deposits by multistage stochastic programming.

European Journal of Operational Research 151: 602–16. [CrossRef]
Goyenko, Ruslan, Avanidhar Subrahmanyam, and Andrey Ukhov. 2010. The Term Structure of Bond Market Liquidity and Its

Implications for Expected Bond Returns. Journal of Financial and Quantitative Analysis 46: 111–39. [CrossRef]
Goyenko, Ruslan Y., and Andrey D. Ukhov. 2009. Stock and Bond Market Liquidity: A Long-Run Empirical Analysis. Journal of

Financial and Quantitative Analysis 44: 189–212. [CrossRef]
Gundel, Anne, and Stefan Weber. 2007. Robust utility maximization with limited downside risk in incomplete markets. Stochastic

Processes and Their Applications 117: 1663–88. [CrossRef]
Jiao, Ying, Olivier Klopfenstein, and Peter Tankov. 2017. Hedging under multiple risk constraints. Finance and Stochastics 21: 361–96.

[CrossRef]
Kalkbrener, Michael, and Jan Willing. 2004. Risk management of non-maturing liabilities. Journal of Banking & Finance 28: 1547–68.

[CrossRef]
Kling, Alexander, Frederik Ruez, and Jochen Russ. 2013. The Impact of stochastic volatility on pricing, hedging, and hedge efficiency

of withdrawal benefit guarantees in variable annuities. ASTIN Bulletin 41: 511–45. [CrossRef]
Lin, X. Sheldon, and Shuai Yang. 2020. Fast and efficient nested simulation for large variable annuity portfolios: A surrogate modeling

approach. Insurance: Mathematics and Economics 91: 85–103. [CrossRef]
Nyström, Kaj. 2008. On deposit volumes and the valuation of non-maturing liabilities. Journal of Economic Dynamics and Control 32:

709–56. [CrossRef]
Pan, Jian, and Qingxian Xiao. 2017. Optimal asset–liability management with liquidity constraints and stochastic interest rates in the

expected utility framework. Journal of Computational and Applied Mathematics 317: 371–87. [CrossRef]
Pham, Huyên. 2009. Continuous-time stochastic control and optimization with financial applications. In Stochastic Modelling and

Applied Probability. Berlin: Springer, vol. 61, pp. xviii, 232. [CrossRef]
Shevchenko, Pavel V., and Xiaolin Luo. 2017. Valuation of variable annuities with Guaranteed Minimum Withdrawal Benefit under

stochastic interest rate. Insurance: Mathematics and Economics 76: 104–17. [CrossRef]
Steinorth, Petra, and Olivia S. Mitchell. 2015. Valuing variable annuities with guaranteed minimum lifetime withdrawal benefits.

Insurance: Mathematics and Economics 64: 246–58. [CrossRef]
Wang, Jindong, and Wei Xu. 2020. Risk based capital for variable annuity under stochastic interest rate. ASTIN Bulletin 50: 959–99.

[CrossRef]

http://dx.doi.org/10.1016/j.jbankfin.2010.09.013
http://dx.doi.org/10.1016/j.insmatheco.2016.06.020
http://dx.doi.org/10.1016/j.jfineco.2011.10.009
http://dx.doi.org/10.1016/ j.jbankfin.2005.02.006
http://dx.doi.org/10.1016/j.jedc.2003.11.005
http://dx.doi.org/10.1111/j.1540-6261.2006.01056.x
http://dx.doi.org/10.1017/S0022109009990494
http://dx.doi.org/10.1080/14697688.2016.1189087
http://dx.doi.org/10.1007/s007800050062
http://dx.doi.org/10.1016/S0377-2217(02)00626-4
http://dx.doi.org/10.1017/S0022109010000700
http://dx.doi.org/10.1017/S0022109009090097
http://dx.doi.org/10.1016/j.spa.2007.03.014
http://dx.doi.org/10.1007/s00780-017-0326-6
http://dx.doi.org/10.1016/s0378-4266(03)00131-6
http://dx.doi.org/10.2143/AST.41.2.2136987
http://dx.doi.org/10.1016/j.insmatheco.2020.01.002
http://dx.doi.org/10.1016/j.jedc.2007.03.004
http://dx.doi.org/10.1016/j.cam.2016.11.037
http://dx.doi.org/10.1007/978-3-540-89500-8
http://dx.doi.org/10.1016/j.insmatheco.2017.06.008
http://dx.doi.org/10.1016/j.insmatheco.2015.04.001
http://dx.doi.org/10.1017/asb.2020.20

	Introduction
	General Optimization Problem
	Model Setup under Withdrawals and Solvency Constraints
	General Formulation and Dynamic Programming Principle
	An Alternative Dynamic Program with Exponential Utility Function

	Application and Numerical Illustrations in the Presence of Liquidity Risk
	Conclusions
	Stochastic Dynamics of Financial Assets
	 
	Value Function and Bellman Equation
	Computation of E[ At+1|Xt,Zt] and E[ Bt+1|Xt,Zt]
	Numerical Procedure

	Other Sensitivity Analyses
	References

