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Abstract: Stock prices are well known to exhibit behaviors that are difficult to model mathematically.
Individual stocks are observed to exhibit short term price reversals and long term momentum, while
their industries only exhibit momentum. Here we show that individual stocks can be modeled
by simple mean reverting processes in such a way that these behaviors are captured, the model is
arbitrage free, and market informational efficiency is preserved. Simulation shows that in such a
market, when mean reversion is sufficiently high, strategies which use reversals would substantially
outperform buy and hold strategies.

Keywords: reversals; momentum; mean reversion; market efficiency; investment strategies;
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1. Introduction

There is a large array of literature that documents reversals and momentum in stock
prices. For example, Hameed and Mian (2015) observe reversals in the best and worst
subset of monthly performers within industries, whereas the industries themselves only
exhibit momentum, as do stocks in the longer term. Figelman (2007) also observes long
term stock momentum, albeit on a different time scale.

Many articles try to explain these behaviors by appealing to investor behavior.
Daniel et al. (1998) try to explain these features via investor overconfidence and biased
self-attribution. Kahneman and Tversky (1979) attribute such features to the certainty and
isolation effects. Booth et al. (2016) attributes momentum and reversals to the interaction of
price momentum with size related effects.

Here we develop a reduced form model for stock price movements that exhibits these
behaviors. We show that reversals and momentum would be observed if stocks were mean
reverting to an industry business cycle1. We analyze the model analytically and through
simulation. Simulation shows that in such a market, strategies which use reversals would
outperform buy and hold strategies, often by a factor of 2 or more in high mean reversion
environments. We also show that this model is arbitrage free and does not violate market
efficiency, thus demonstrating that reversals and momentum can exist in efficient markets.

Mean reversion as a general phenomenon is well known. Mean reversion is commonly
posited for short rate models and mean reverting models are used in commodity option pricing.
They are useful for modeling pairs trading, as well as analyzing the timing of entering and exiting
positions Leung and Li (2015). More recently, mean reverting processes have shown up in the
portfolio optimization literature Amédée-Manesme et al. (2019); Kitapbayev and Leung (2018);
Zhang et al. (2020). Amédée-Manesme et al. (2019) considers mean reversion in real estate deriving
from correlation to mean reverting interest rates. The other references consider assets that mean
revert to a fixed constant long term mean. Our work here differs from the above literature in that
the mean reversion is to a time dependent function capturing the business cycle rather than to a
fixed constant. The models closest to the models we propose here show up in the commodity
option pricing literature Geman (2005) and as the Black–Karasinski model in short rate modeling
Brigo and Mercurio (2001), but not as equity price processes.
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2. Industry and Stock Process Model

We proceed to develop what might be considered a reduced form model for stock
price movements.

Consider Ct, the value of an industry at time t. We could model the industry value in
a number of ways. If we assume the industry value is deterministic with a time dependent
growth rate gt, then

dCt = gtCtdt (1)

In this case, the industry value at time t is:

Ct = C0e
∫ t

0 gsds (2)

If firm values follow the industry except for random perturbations away from the
industry (noise), it is reasonable to assume not that the stock returns themselves are
randomly perturbed, but that the firm value S itself deviates randomly from the industry,
but is always equal to the industry on average. We can do that by defining

dXt = −aXtdt + σdWt (3)

X0 = 0 (4)

St = Cteαt+Xt (5)

where W is Brownian motion, so that X is an Ornstein-Uhlenbeck process with mean
reversion a and instantaneous volatility σ, and αt is a deterministic drift chosen so that
E[eαt+Xt ] = 1. Solving the above stochastic differential equation for X yields, for times
t1 ≤ t2 that

Xt2 = Xt1 e−a(t2−t1) + e−at2

∫ t2

t1

eatσdWt (6)

Thus, X is a Gaussian process with mean and variance given by:

E[Xt] = 0 (7)

var[Xt] =
∫ t

0
e−2ate2asσ2ds

=
σ2

2a

(
1− e−2at

) (8)

and St is lognormal with mean

E[St] = Cteαt+
var[Xt ]

2 . (9)

Choosing

αt = −
var[Xt]

2

= −σ2

4a

(
1− e−2at

) (10)

then gives St the desired mean.
Note that here we are transitioning from Ct being the overall value of the industry

to expressing the optimal value of a company in this industry. For simplicity, we assume
all firms revert to this overall level so as to capture behavior between the industry and
the economy. The relationship between the sizes of different firms could be captured by
instead having each firm revert to the appropriate percentage of the total industry level,
and accounting for how these percentages change over time.
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Suppose a given industry has a cyclical growth rate. Say its growth rate gt is cyclical
ranging from a low of l to a high of h with a period of p years, so that

gt =
l + h

2
+

h− l
2

sin(2πt/p). (11)

If its value strictly follows this growth rate, then its value is

Ct = C0e
l+h

2 t+ (h−l)p
4π (1−cos(2πt/p)). (12)

This amounts to assuming that there is an underlying deterministic hidden variable
driving the value of the industry and that it has cyclic growth.

So, the model we will be considering is n stocks in a given industry, all of which are
mean reverting to an overall cyclic industry level:

gt =
l + h

2
+

h− l
2

sin(2πt/p) (13)

dCt = gtCtdt (14)

dXi,t = −aiXi,tdt + σidWi,t (15)

Si,t = e−
σ2
4a (1−e−2at)+Xt (16)

where the Wi are uncorrelated Brownian motions. In our simulations, we will select
particular values of h and l, and use the same mean reversion and volatility for all of
the stocks.

3. Model Properties
3.1. Empirical Behavior

To illustrate the model behavior, we consider an industry with 30 companies. The
industry follows C1 with a 5 year cycle, a low rate of return of−1% and a high rate of return
of 5%. Each stock has a volatility of 20%. Figures 1 and 2 show the underlying dynamics
with a mean reversion of 5 and of 1, respectively. We display the deterministic industry
firm level, a sample path for the average stock value, and a sample path for one of the
stocks in the industry. The average firm deviates around the average deterministic level,
as do individual firms, albeit with much higher volatility. With lower mean reversion, the
stock takes much longer to return to the industry level, and the industry does not follow
the deterministic level as closely.

3.2. Bounded Variance

For a process Y following geometric Brownian motion, with

dY = µYdt + σYdW (17)

for constants µ and σ, we have that

d ln Y =

(
µ− σ2

2

)
dt + σdWt, (18)

so the variance of ln Y is σ2t, which grows without bound.
In our case,

d ln S =

(
C′

C
+ α′

)
dt + dX (19)

so the variance of ln S equals the variance of X, which is bounded.
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Figure 1. Market and one sample stock, mean reversion 5. The average firm value deviates around
the underlying deterministic value, as do individual firms, but with higher volatility.

Figure 2. Market and one stock, mean reversion 1. Similar behavior is observed to the mean reversion
5 case, but the stock and market take longer to return to the underlying deterministic level.

One might object to the model on these grounds, as this differs from the common
practice of assuming stocks follow geometric Brownian motion, and thus have unbounded
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growth of log variance. However, there is little evidence to support such behavior of the
long term variance. In practice, we can at best attempt to estimate the variance of ln St from
one historically observed path. For time periods greater than a year, we typically have very
few samples, or overlapping (correlated) samples, or samples that span over substantial,
world changing events. Not to mention the fact that changes in drift will impact sample
variances. All of these issues reduce the confidence we have in assuming the variance
of ln St grows linearly with t, and thus of holding bounded variance as a point against
this model.

3.3. Momentum and Reversals

Because the stock price process is mean reverting to Ct, the drift of St is negative when
St > Ct, and is positive when St < Ct. This constitutes a reversal. Since the rate of reversion
is a, the reversal roughly occurs on a time scale of 1/a. So, strong reversals on a monthly
basis would constitute a mean reversion on the order of 6 to 12. Smaller mean reversions
will exhibit reversals to a lesser degree.

On the other hand, the industry itself, being the sum of the values of the companies in
the industry, will have greatly dampened reversal behavior. It will only exhibit reversal
behavior when a large percentage of the companies have inflated values that are not
compensated for by substantially deflated values of the remaining companies.

On larger time scales, since the process mean reverts to Ct, when the business cycle is
booming, all of the industry stocks will exhibit momentum in that they are mean reverting
to Ct which itself exhibits momentum. Similarly, when the industry is in the bust part of
the cycle, all of the industry stocks will exhibit poor long term performance.

Since reversals at the industry level are dampened, its momentum will be exhibited
both on a small time scale as well as on long time scales.

3.4. Arbitrage and Market Efficiency

There has been much discussion of market efficiency since the ground breaking work
of Fama (1970). Discussion has largely been about the extent to which the markets exhibit
various degrees of efficiency, and the properties exhibited by efficient markets. For a general
summary, see Shiller (2015).

More recently, there has been work on the relationship between market efficiency,
martingale properties and the condition of a market being arbitrage free. This was first
discovered by Samuelson (1965) and further elaborated on by Jensen (1978). Most recently,
Jarrow and Larsson (2020) clarified and formalized the relationship between arbitrage and
market efficiency. They showed that a market is informationally efficient in the sense of
Fama (1970) if there exists a change of measure making the stock processes over the money
market account martingales. The existence of such a change of measure also shows that the
market is arbitrage free.

To see that market efficiency holds for this model, it suffices to show that there exists a
change of measure making X a martingale. This suffices because it reduces us to the case
where S is geometric Brownian motion with deterministic drift. The change of measure
making X a martingale would have to be given by changing measure to make W ′ Brownian
motion, where

dW ′ = − aX
σ

dt + dW (20)

We follow the argument given by Kolmo and Eldredge (2012). By Corollary 5.14,
Chapter 3 of Karatzas and Shreve (1998), it suffices to show that there exists an unbounded
and increasing sequence ti with t0 = 0 such that

E

[
e

1
2
∫ ti+1

ti

a2X2
t

σ2 dt
]
< ∞ (21)
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for all i ≥ 0.
Given S ≥ 0 and ε > 0, and applying Jensen’s inequality to the above exponential

expression, we have that

e
1
2
∫ S+ε

S
a2X2

t
σ2 dt

= e
1
ε

∫ S+ε
S

εa2X2
t

2σ2 dt

≤ 1
ε

∫ S+ε

S
e

εa2X2
t

2σ2 dt
(22)

By Tonelli’s theorem, we can change the order of integration, so

E

[∫ S+ε

S
e

εa2X2
t

2σ2 dt

]
=
∫ S+ε

S
E

[
e

εa2X2
t

2σ2

]
dt. (23)

Thus, it suffices to find a constant ε > 0 such that for all S, the right hand side of
Equation (23) is finite. Then we can choose ti = iε.

Since Xt ∼ N
(

0, σ2

2a
(
1− e−2at)), let γt =

√
σ2

2a (1− e−2at), and Zt = Xt/γt. Then
Zt ∼ N(0, 1), so

E

[
e

εa2X2
t

2σ2

]
= E

[
e

εa2γ2
t

2σ2 Z2
t

]

=
1√

1− εa2γ2
t

σ2

(24)

provided that

1− εa2γ2
t

σ2 > 0 (25)

because Z2
t is chi-squared with one degree of freedom, so we know its moment

generating function.
Solving for ε, we see that Equation 25 holds if

ε
(

1− e−2at
)
<

2
a

(26)

Since, for t ≥ 0, 0 ≤
(
1− e−2at) < 1, it suffices to select ε = 1

a . Then the integrand on
the right hand side of Equation 23 is continuous and bounded, and hence the integral is finite.

We conclude that the model admits an equivalent martingale measure with respect
to the money market account. It then follows that the market is arbitrage free and, from
Jarrow and Larsson (2020), that the model proposed here satisfies the efficient market
hypothesis. We conclude that momentum and reversals can exist in efficient markets, at
least in the above sense.

4. Buy Losers, Sell Winners

Due to the mean reversion, it is likely that good performance will be followed by bad
performance and vise-versa. This will occur roughly on a time frame of 1/a. If one knew
the industry level Ct, the mean reversion a, and the volatility σ, then one could determine
exactly the drift of each stock, and make an optimal decision as to which stocks to buy
and which stocks to short. However, it is difficult to determine these parameters, so we
will not know for sure whether the drift of St exceeds that of the industry or lags that of
the industry.

In practice, reversals are invested in based on the previous period’s returns. The
strategy is to buy those with poor recent performance (buy the losers) and sell those with
high recent performance (sell the winners). If reversals occur in this industry, then such a
strategy should outperform the industry average. We call this the “reversals” strategy.
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We confirm that reversals consistently occur in our model through simulation. For an
industry with 30 stocks, and stock and market parameters as detailed above, we simulate the
stock processes and calculate the value of the strategy which each month buys the 9 stocks
(30% of the industry) whose previous month’s performance was worst, and shorts the 9 stocks
with the best previous month’s performance. We repeat this experiment 20 times. Figure 3
graphs the value of the strategy over time in each of the 20 experiments over a 10 year period
in the case where the mean reversion is 2. Figure 4 does the same in the case where the mean
reversion is 1. Table 1 gives the mean, standard deviation and percentiles of the annualized
return distribution achieved over the 20 simulations after 10 years.

Table 1. Return statistics of the reversals strategy after 10 years for 20 industry simulations. We run
the simulations for mean reversions of 1.0 and 2.0.

Statistic MR = 1 MR = 2

mean return 6.5% 12.5%
return std 3.0% 2.5%
min return 1.1% 7.6%
25%ile return 4.1% 10.9%
50%ile return 6.8% 12.8%
75%ile return 8.4% 14.1%
max return 13.0% 16.9%

With a mean reversion of 2, we observe an annualized continuous return between
7.6% and 16.9%, substantially higher than the overall industry average with the above
parameters, which is about 2%. With a mean reversion of 1, the improvements are much
more modest, with 4 scenarios exhibiting returns less than 4%, the largest return being
13%, and most scenario returns between 4% and 9%. One scenario returns only 1.1%,
substantially below the market return of 2%. Improving on that under low mean reversion
would require adjusting the strategy.

Figure 3. Reversals strategy performance, 20 simulations of 30 stocks, mean reversion 2.
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Figure 4. Reversals strategy performance, 20 simulations of 30 stocks, mean reversion 1. With low mean
reversion, strategy returns are more modest, and have a higher probability of underperforming the industry.

The behavior as a function of the mean reversion is given in Figure 5. Because the
reversals strategy holds fewer stocks, it’s return has a higher standard deviation than
holding the market. In general, the market return closely follows overall underlying return
for Ct, which is about 2%. The performance of the reversals strategy improves on this
when the mean reversion is large enough. At a mean reversion of 0.75, the average strategy
return is 4.1%, double that of the market, albeit with a standard deviation of 2.8%. At a
mean reversion of 1.0, the mean return is 6.5%, with a standard deviation of 3.8%. A mean
reversion of 2 yields a mean return of 12% with a standard deviation of 3.1%.

Figure 5. Reversals strategy performance as a function of mean reversion, 10 year horizon, 50 trials
for each mean reversion. Error bars show standard deviation of returns.
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5. Summary

Motivated by the observation of reversals and momentum in the stock market, we con-
sidered a stock process model where each stock in an industry reverts to an
underlying deterministic cyclic level representing the industry’s business cycle. Math-
ematical considerations show that in such a model, one would observe short term reversals
and long term momentum, while the industry would just exhibit momentum. We showed
that such a model is arbitrage free, which also demonstrates that momentum and reversals
can exist in efficient markets (as defined by Jarrow and Larsson (2020)).

The above analysis was tested through simulation. In simulations with the industry
following a 5 year cycle with returns cycling from −1% to 5%, and stocks with volatility
of 20%, we observed that once mean reversion is above about 1.0, a reversal strategy of
buying the bottom 30% of the stocks (in terms of the previous month’s performance) and
selling the top 30% would substantially outperform buy and hold strategies with high
probability. At a mean reversion of 1, such a strategy yields a mean return of 6.5% versus a
return of about 2% for the market. A mean reversion of 2 yields a mean return of 12.5%
with a standard deviation of 2.5%.

Author Contributions: Conceptualization, H.J.S. and J.P.; methodology, H.J.S. and J.P; software,
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writing—original draft preparation, H.J.S.; writing—review and editing, H.J.S. and J.P.; visualization,
H.J.S. All authors have read and agreed to the published version of the manuscript.
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Note
1 The existence of business cycles is well documented in the literature. See for example Zarnowitz (1992), or, for more recent

research on the subject, Fernández-Villaverde and Guerrón-Quintana (2020) and Cerra et al. (2020).
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