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Abstract: We analyse four stochastic claims reserving methods in terms of their capability to estimate
reserve risk and how successful they are at predicting distributions and VaRs of claim developments in
particular. Both actual data and hypothetical claim triangles support our results. The appropriateness
of the Solvency II risk margin on a one-year horizon and of the IFRS 17 risk adjustment in the long
run largely vary by the chosen risk model. Despite the fact that IFRS 17 does not uniquely prescribe
the metric for risk adjustment, we expect that VaR will be widely applied by insurance firms. Overall,
actual data suggest that VaRs are predominantly underestimated by the models. Nevertheless, the
99.5%–VaRs under Solvency II are mostly sufficient on a 10-year-horizon to cover liabilities.

Keywords: stochastic reserving; value-at-risk; Solvency II; IFRS 17; probabilistic forecasts

JEL Classification: G22; C53

1. Introduction

The stochastic nature of values in run-off triangles (and quadrangles) has generally
not been examined in traditional non-life reserving. Instead, actuaries have tended to
focus on ameliorating the point estimates for ultimate claims. This approach has grad-
ually changed since stochastic claims reserving methods became common practice, see
England and Verrall (2002); Wüthrich and Merz (2008). The prediction of future claims’ or
payments’ random nature is more and more frequently required in the insurance industry;
therefore, the spread of stochastic methods in practice is fairly natural. The estimation of
standard deviation, value-at-risk (VaR) and tail value-at-risk (TVaR) have started to become
regular exercises in the insurance and financial industries.

England et al. (2019) demonstrates methods for analysing reserve risk and provides
models for full predictive claim distribution, which can be applied both for SII and IFRS
17. In the present article, we scrutinise the appropriateness of these models and compare
them with two other reserving methods. In essence, stochastic reserving methods forecast
probability distributions. Therefore, it is reasonable that we apply tools from the theory of
probabilistic forecasts in order to measure the quality of the reserving techniques. The theory
of probabilistic forecasting has become widespread in recent years, see Gneiting et al. (2007);
Gneiting and Katzfuss (2014). Applications of this theory for non-life claims reserving can
be found in Arató et al. (2017), for instance.

We will show that the VaR estimations of the tested methods are generally inaccurate.
This result is not surprising: the adequate estimation of the 95%-VaR can hardly be expected
based on 50–200 connected data points, let alone of the 99.5%-VaR. Nevertheless, our view
is that this inherent inaccuracy does not necessarily mean that the system is less useful,
since the 99.5%-VaR that the standard formula of SII yields has hardly anything to do with
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the real 99.5%-VaR. Yet, the system works. The stochastic reserving methods demonstrated
in the present paper reflect on the future’s uncertainty; however, we need to acknowledge
their limits.

In the past decade, granular models were established that use policy-by-policy claim de-
velopment information. These models are referred to as micro models Antonio and Plat (2014).
Even more recently, non-linear neural network regression models have started to be ex-
plored Wüthrich (2018). Due to the availability of actual observations, we focus on models
on run-off triangles.

In terms of structure, after the present introduction, Section 2 compares the predictive
performance of four models on real data from Meyers and Shi (2011). The time horizon of
forward-looking is one year in accordance with Solvency II. Section 3 repeats the same test
of model appropriateness, but on artificially simulated data from log-normal and gamma
distributions. Section 4 is the juxtaposition of one-year Solvency II and multi-year IFRS 17
value-at-risk quantiles. Despite the fact that IFRS 17 does not stipulate the exact metric for
risk adjustment calculation, we may expect that VaR will be widely applied by insurance
institutions. Fully completed triangles (quadrangles), i.e., claim run-offs in the long run are
looked at in Section 4 and in more detail in Martinek (2019). Section 5 concludes the paper.

2. Actual Data–Based Validation of Techniques

Several insurance institutions have contributed to the publishing of actual loss data
from six business lines Meyers and Shi (2011). We will refer to these data as NAIC data
(National Association of Insurance Commissioners). The associated claims occurred during
accident years between 1988 and 1997 with a development lag of a maximum of 10 years
each. Therefore, each triangle is of the size 10× 10. In the present analysis, 355 observations
have been used, combined from business lines of commercial auto and truck liability and
medical insurance (84), medical malpractice—claims made (12), other liability—occurrence
(99), private passenger auto liability and medical (88), product liability—occurrence (14),
and workers’ compensation (58).

Four models are compared in this paper. The first two can be found in England et al. (2019).
These are non-parametric and parametric bootstrapped modifications of the original model
Mack (1993), resampling with replacement from the scaled bias adjusted Pearson residuals.
The third and the fourth ones are credibility-type models that embed information from a
range of observed triangles in the completion of every single triangle, see Martinek (2019).
One is based on the over-dispersed Poisson model and the other one is a semi-stochastic
model. See Appendix A for a more detailed description of the models.

Value-at-risk is a key metric in SII that determines the solvency capital ratio and
consequently the risk margin. We have tested the relation of estimated VaR to the actu-
ally observed claims data, see Table 1. Each element of the table reflects the following:
Applying a given model one-by-one on the available triangles to calculate the 99.5%, 98%
and 95%–VaR, in what percentage of the cases does the estimated VaR exceed the actual
observation? All metrics correspond to the claims development result +(1)− (2)− (3),
where (1) stands for the claims reserves at the beginning of calendar year y, (2) denotes the
payments made during calendar year y and (3) represents the claims reserves at the end
of calendar year y. Similarly, in the multiyear case, (1) and (3) are the beginning and the
end of the period reserve, and (2) the payments made in this particular time frame. If a
reserving model perfectly fits the underlying characteristics of the data, this value should
be exactly the VaR-percentile on average in the corresponding column of the table.

We have concluded that all of the observed models underestimate the VaR based on the
NAIC data. The most extreme one is the parametric version of the Mack bootstrap, where
only 62.3% of the total ultimate claims are below the 99.5%-VaRs. The credibility semi-
stochastic model performs somewhat better, where this value is 97.2% vs. the 99.5%-VaR.
Overall, running the four models on the actual data implies a systematic underestimation
of VaRs, i.e., the underestimation of the capital requirement and the risk margin.
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Table 1. The relation between the estimated VaR and how frequently that number exceeds the actual
claim value observation.

0.995 0.98 0.95

Non-parametric Mack Bootstrap 95.5% 91.8% 87.0%
Parametric Mack Bootstrap 62.3% 58.9% 53.5%
Credibility ODP 97.2% 93.0% 87.6%
Credibility Semi-stochastic 97.2% 97.2% 94.9%

Subsequently, we look at the claim distributions estimated by the models in comparison
with the empirical distributions determined by the actual claims. In probabilistic forecasts
α-coverage expresses the probability that the observation (from the real distribution) falls
into the α-central prediction interval of the estimated distribution, see Baran et al. (2013). In
other words, with F estimation and G real distribution, α-coverage is the G-measure of the
central α prediction interval of F, i.e.,

α− coverage = G
(

F−1
(

1− α

2

)
, F−1

(
1 + α

2

))
.

In the ideal case when F ≡ G the α-coverage value is exactly α, see the ideal coverage line in
Figure 1. Observe that each of the models are below the ideal identity line, which reinforces
the finding pointed out in relation to the VaR, i.e., overly narrow prediction intervals. For
instance, the 50%-coverage of the prediction made by the non-parametric Mack bootstrap
model is 36%, very similarly to the credibility semi-stochastic (34%) and credibility ODP
(37%) methods, and only the parametric Mack bootstrap stands out with 19%.
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Figure 1. α-coverage with α values between 10% and 90% from all business lines combined.

In order to further improve our understanding of the prediction quality, we have visualised
the PIT-plots for each model, see Meyers (2015). Firstly, we have calculated the probability
integral transform values of each triangle and prediction: Fi(xi), where Fi is the prediction
made by the specific model on one triangle and xi the real observation. Secondly, we have
plotted the histogram of Fi(xi) ∀i. If xi is governed by Fi for each i, then Fi(xi) ∼ Uniform(0, 1).
Hence, we expect a uniform histogram for a perfect model (as a necessary condition). However,
the plots turn out to be non-uniform in Figure 2 and mainly underdispersed ∪-shaped, which
implies narrow prediction intervals. In addition, these graphs are asymmetric, meaning that
the predictions’ levels of underdispersion are asymmetric.
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Figure 2. PIT histograms corresponding to the four reserving models and based on all business
lines combined.

Continuous ranked probability scores (CRPS) measure the quality of probabilistic
forecasts, see Gneiting and Raftery (2007). By definition, given a prediction F and claim
observation x,

CRPS(F, x) = −
∞∫
−∞

(
F(y)− 1{x≤y}

)2
dy.

We have approximated the expected CRPS by the average of scores resulting from prediction-
observation pairs in Table 2. Sporadically, there can be score values with extreme absolute
values; therefore, the median scores are also shown in the table. CRPS has its range
in (−∞, 0) and the higher the value, the better the prediction. The best ones, the non-
parametric Mack bootstrap and credibility ODP models, perform similarly, trailed by the
parametric Mack bootstrap model, and lastly, the credibility semi-stochastic one, which
underperforms all of them. (The extreme CRPS is due to an extreme value, see the median
for comparison.)

Table 2. Mean and median CRPS values.

Mean CRPS Median CRPS

Non-parametric Mack Bootstrap −11,935 −476
Parametric Mack Bootstrap −15,280 −1364
Credibility ODP −11,934 −525
Credibility Semi-stochastic −150,681,798 −1705

At last, the average width of prediction

EG

(
F−1

(
1 + α

2

)
− F−1

(
1− α

2

))
expresses the G-expected value of the α-central prediction interval’s width determined
by F, where F is the predicted distribution and G is the real one, α ∈ (0, 1). The lower
the average width, the sharper the prediction. Note that this metric is expressed in terms
of monetary value. In Figure 3, it can be observed that the Mack bootstrap methods are
consistently sharper than the credibility-type methods.
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Figure 3. Average width values for 10% ≤ α ≤ 90% from all business lines.

3. Validation of Techniques from Simulations

Having tested the predictive power of the models on actual data in Section 2, now
we simulate fictitious claim histories, i.e., upper triangles and their lower counterparts.
Two claim evolution models, the log-normal and the gamma ones, will be used, see
Arató et al. (2017). Once these hypothetical observations are done, the validation works in
exactly the same manner as in Section 2. The selection of log-normal and gamma models is
arbitrary; however, in one form or another these are applied by the insurance industry.

The sample size is 2000, i.e., the number of observed triangles (quadrangles) is signifi-
cantly larger than in the NAIC database. The number of bootstrapping steps in the Mack
bootstrap and credibility ODP models is 200,000 for each triangle. For the initial parameter
selection of both log-normal and gamma models, we have estimated the parameters from
the triangle published by Taylor and Ashe (1983). This initial run-off triangle has been used
exclusively for setting the model parameters.

First, we look at the quality of VaR estimations. When the real claim run-off is gov-
erned by the log-normal model, we observe that each of the four estimation methods
underestimates the quantiles, see Table 3. In contrast, if the real model is gamma, then both
Mack bootstrap models and the credibility ODP model highly overestimate the associated
VaRs, see Table 4. Remarkably, the credibility semi-stochastic method consistently underes-
timates VaRs regardless of the underlying simulation, while it has outperformed all the
other estimation methods on real data in Section 2.

Table 3. Which actual VaR does the estimated VaR approximate if the underlying model is log-normal.

0.995 0.98 0.95

Non-parametric Mack Bootstrap 98.0% 96.0% 93.2%
Parametric Mack Bootstrap 98.8% 96.9% 93.5%
Credibility ODP 98.1% 94.8% 90.9%
Credibility Semi-stochastic 62.8% 61.1% 58.1%

Table 4. Which actual VaR does the estimated VaR approximate if the underlying model is gamma.

0.995 0.98 0.95

Non-parametric Mack Bootstrap 99.9% 99.7% 98.8%
Parametric Mack Bootstrap 100.0% 99.6% 98.4%
Credibility ODP 100.0% 99.8% 98.7%
Credibility Semi-stochastic 69.3% 68.5% 66.6%
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In terms of coverage, Mack bootstrap and credibility ODP models perform reasonably
well, see Figures 4 and 5. As we have seen above with VaR estimation performance, the
credibility semi-stochastic method is again an outlier compared to the other three, resulting
in underdispersed estimations. These findings in the log-normal and gamma simulations,
to the contrary, are substantially different than in the case of real observations.

For further visualisation of how narrow or good-fit the prediction intervals are, see
the PIT histograms in Figures 6 and 7. For the log-normal underlying distribution, all the
methods except for the semi-stochastic one (that has ∪-shaped PIT) result in uniform PIT
histograms. However, in the case of the gamma distribution, all the methods deviate from
the uniform shape. See Appendix B for CRPS and average width figures.
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Figure 4. Coverage values from the log-normal data.
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Figure 6. PIT histograms from the log-normal data.
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Figure 7. Histograms of PIT values from the gamma data.

In this section, we have scrutinised claims evolutions with finite higher moments.
However, it is interesting to consider the performance of reserving models in the context of
distributions with non-finite moments. Denuit and Trufin (2017) presents a case study based
on real claims and describes a frequency-severity setting with a discrete mixture severity
distribution for each claim size: gamma or inverse Gaussian with probability 1− $ as a
light-tailed component and Pareto type II with probability $ as a heavy-tailed component.

4. Reconciliation of Solvency II Risk Margin with IFRS 17 Risk Adjustment

In this section, we compare in two ways how the one-year 99.5%-VaR of SII relates
to the multiyear VaR of IFRS 17, i.e., the long-term view of reserve risk. In contrast to SII,
the IFRS 17 regime does not stipulate the exact way of risk calculation and how the risk
adjustment needs to be determined. Nevertheless, we may assume that a large proportion
of market participants will apply either VaR or possibly TVaR for the shocked scenarios.

Firstly, we take a reserving model and β ∈ {0.995, 0.98, 0.95}, and observe the propor-
tion of actual long-term observations compared to the total where the models’ one-year
β-VaR would have also been sufficient on the long-run. Secondly, for every method and
run-off triangle i, we find which multiyear αi-VaR is equal to the one-year 99.5%-VaR.
Overall, 50,000 scenarios have been used in the Mack Bootstrap models.

In Table 5, we show how the one-year VaRs relate to the actual observations, i.e., in
what ratio they exceed the actually observed payments in the total (10-year) run-off of
claims, see Equation (1). In other words, the number of cases where the one-year VaR
exceeds the long-run claims development divided by the total number of observations.
This table contains comparisons not only for the SII one-year 99.5%-VaR, but also for the
98% and the 95% ones. For instance, applying the non-parametric Mack Bootstrap method,
the resulted 99.5%−VaR values (in accordance with SII) provided a sufficient capital buffer
in 87.9% of the cases in the long-run. Observe that these values are rather different per
estimation method, just as we have seen in Table 1.
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1
#observation ∑

i∈observation
1{one-year β–VaR of observation i > total actual multiyear payment of observation i} (1)

Table 5. The ratio of one-year 99.5%-, 98%- and 95%-VaRs exceeding the multiyear actuals. Results
are based on the combined 355 observation from 6 business lines.

0.995 0.98 0.95

Non-parametric Mack Bootstrap 87.9% 83.9% 77.2%
Parametric Mack Bootstrap 54.6% 49.9% 46.2%
Credibility ODP 92.1% 87.0% 81.1%
Credibility Semi-stochastic 93.5% 92.1% 90.4%

In the second comparison, we determine which αi results in the same multiyear VaR
as the 99.5%-VaR on the NAIC data, i.e., we solve

VaRαi (multiyear) = VaR99.5%(one-year) ∀i ∈ observation, (2)

where the left hand side represents the multiyear and the right hand side the one-year
development of claims. The results are based on 355 observations (company per business
line) from the NAIC database, and the six business lines contribute to the results combined.
In Table 6, these αi solutions per method are shown. In contrast to the first comparison,
the second one produces αi ∈ (0, 1) values. Therefore, each of the four models outlines
a distribution of αi values, and the quartiles, means and medians are incorporated into
the table.

Table 6. Multiyear equivalent of the one-year 99.5%–VaR stemming from the four estimation method
(in %).

Lower Quartile Median Mean Upper Quartile

Non-parametric Mack Bootstrap 96.0 97.2 96.2 98.3
Parametric Mack Bootstrap 96.9 98.1 92.7 100.0
Credibility ODP 97.1 98.4 97.4 99.1
Credibility Semi-stochastic 66.7 77.8 76.9 88.9

5. Conclusions

We have tested the accuracy of four stochastic claims reserving models on both actual
and hypothetical run-off triangle data. In particular, results show that their capacity to
estimate the widely used VaR metrics is generally limited. This finding is in line with
our expectations as the size of observation (upper triangle) that provides the basis for
the calibration of the future’s estimation is small. Nevertheless, it is reassuring that the
99.5%-VaR under SII that these models determine is sufficient on a 10-year-horizon for
the majority of actually observed cases: 87.9% for the Non-parametric Mack Bootstrap,
54.6% for the Parametric Mack Bootstrap, and 92.1%–93.5% for the Credibility ODP and
semi-stochastic models. We also emphasise at the same time that these results are higher in
every case except for the semi-stochastic one if we determine the VaRs from the simulations
themselves rather than from the comparison to known future outcomes.

The appropriate estimation of extreme quantiles such as the 99.5%-VaR can hardly be
expected from any new model. Similar findings have been made in relation to the banking
industry, where it is often assumed that the observations are i.i.d. variables, yet the 99.5%-
VaR estimations are highly uncertain from low sample sizes, see Danielsson and Zhou (2016).

Comparing triangle-based models with micro models and machine learning models
requires further analysis. We see the testing of such models as the next step in the pursuit
of better VaRs.
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Appendix A

Appendix A.1. Non-Parametric Mack Bootstrap Model

This model can be found in Section 2 and Appendix A of England et al. (2019),
which we briefly summarise here. With Ci,j cumulative claims, where i = 1, . . . , J + 1 and
j = 0, . . . , J, Mack (1993) assumed in its original distribution-free model that conditional
expectations and variances of cumulative claims can be expressed as

E(Ci,j+1
∣∣Ci,0 . . . Ci,j) = λjCi,j (A1)

Var(Ci,j+1
∣∣Ci,0 . . . Ci,j) = σ2

j Ci,j (A2)

where 0 ≤ j ≤ J − 1. Mack (1993) presented estimators

λ̂j =

J−j
∑

i=1
Ci,j fi,j

J−j
∑

i=1
Ci,j

(A3)

and

σ̂2
j =

1
J − j− 1

J−j

∑
i=1

Ci,j
(

fi,j − λ̂j
)2

, except for J − 1 : σ̂2
J−1 = min

(
σ̂2

J−3, σ̂2
J−2,

σ̂4
J−2

σ̂2
J−3

)
, (A4)

where fi,j =
Ci,j+1

Ci,j
.

England and Verrall (2006) showed the way to bootstrap Mack’s model by considering
it as a GLM. We follow Appendix A of England et al. (2019) to schematically present the
steps of the algorithm:

1. Calculate all fi,j and CL development factors λ̂j (see Equation (A3))

2. Calculate unscaled Pearson residuals rP(i, j) =
√

Ci,j( fi,j − λ̂j)

3. Adjust Pearson residuals for bias correction radj
P (i, j) = J−j

J−j−1 rP(i, j)
4. Calculate parameters σ̂2

j (see Equation (A4))

5. Calculate scaled residuals

rPS(i, j) =
rP(i, j)

σ̂j
(A5)

 https://www.casact.org/publications-research/research/research-resources/loss-reserving-data-pulled-naic-schedule-p
 https://www.casact.org/publications-research/research/research-resources/loss-reserving-data-pulled-naic-schedule-p
https://science-cloud.hu/
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6. Calculate scaled bias adjusted residuals radj
PS (i, j) = radj

P (i,j)
σ̂j

7. Repeat the following N times (in our case N = 200,000)

(a) Resample radj
PS (i, j) residuals with replacement to obtain a new triangle of residuals

(b) Solve Equation (A5) for fi,j to obtain f B
i,j = rB

i,j
σ̂j√
Ci,j

+ λ̂j

(c) Calculate new λ̃j =

J−j
∑

i=1
Ci,j f B

i,j

J−j
∑

i=1
Ci,j

CL factors from the pseudo-ratios

(d) Starting with the latest cumulative claim, predict one step ahead by resampling
with replacement (rF(·)) from the scaled bias adjusted residuals:

C̃i,J−i+2|Ci,J−i+1 = λ̃J−i+1Ci,J−i+1 + rF(i, J − i + 2)σ̂J−i+1

√
Ci,J−i+1 (A6)

(e) Continue the previous step recursively to obtain the cumulative claims for
subsequent years

(f) Derive the increments from cumulative claims and sum the claims either on a
yearly basis or for all years to obtain ultimate claims (one year or multiyear)

(g) Repeat from (a)

Appendix A.2. Parametric Mack Bootstrap Model

This model works exactly as the one in the previous section. The only difference is in
steps 7 (d–e), where we sample from a parametric (Gamma) distribution instead of residuals:
C̃i,J−i+2|Ci,J−i+1 ∼ Γ(ai,J−i+2, bi,J−i+2), where distribution parameters are set such that
E
(
C̃i,J−i+2|Ci,J−i+1

)
= λ̃J−i+1Ci,J−i+1 and Var

(
C̃i,J−i+2|Ci,J−i+1

)
= σ̃2

J−i+1Ci,J−i+1.

Appendix A.3. Credibility Overdispersed Poisson Model

This model can be found in Section 3.3 of Martinek (2019), which we briefly summarise
here. The idea is to use external information (other triangles) for the claim estimation from
a particular run-off triangle on the analogy of credibility theory.

Similarly to the Mack Chain Ladder model, the Bayesian-type model assumptions are:

(C1) Each Fj∀j ∈ {1, . . . , J − 1} CL factor is a positive random variable and these are
mutually independent.

(C2) Cumulative claims C1,j, . . . , CI,j are conditionally independent on σ
(
{F1, . . . , FJ−1}

)
.

(C3) Conditional distribution
Ci,j+1

Ci,j

∣∣∣σ({F1, . . . , Fj, Ci,1, . . . , Ci,j
})

depends only on

σ
({

Fj, . . . , Ci,j
})

and E
(Ci,j+1

Ci,j

∣∣∣Fj, Ci,j

)
= Fj, Var

(Ci,j+1
Ci,j

∣∣∣Fj, Ci,j

)
=

σ2
j (Fj)

Ci,j
with some

σ2
j (Fj).

Define the credibility based predictor Ccred
i,J = Ci,I−i+1

J−1
∏

j=I−i
Fcred

j of the ultimate claim

Ci,J given DI with Fcred
j = argmin

F̂j :F̂j=
I−j
∑

i=1
ai,jYi,j+constant

E
(
(F̂j − Fj)

2
∣∣B(j)

)
, where B(j) = {Ci,k :

i + k ≤ I + 1, k ≤ j} is the information in the triangle up to column j and Yi,j =
Ci,j+1

Ci,j
.

It can be shown that the credibility based estimators of the development factors can

be written as Fcred
j , where F̂j =

I−j
∑

i=1
Ci,j+1

I−j
∑

i=1
Ci,j

, f j = E(Fj), αj =

I−j
∑

i=1
Ci,j

I−j
∑

i=1
Ci,j+

σ2
j

τ2
j

, and credibility factors

σ2
j = E(σ2

j (Fj)) and τ2
j = Var(Fj). Parameters σ2

j , τ2
j are approximated based on several

run-off triangles, see the reference for technical details.
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In summary, the model consists of three main steps:

1. Take all D1, . . . ,Dn run-off triangles and estimate f j = E[Fj] along with the credibility
parameters σ2

j , τ2
j .

2. For each triangle, change the chain ladder factors to the credibility chain ladder factors.
3. Continue with the bootstrap overdispersed Poisson model with these credibility chain

ladder factors.

Appendix A.4. Credibility Semi-Stochastic Model

This model can be found in Section 3.5 of Martinek (2019), which we briefly summarise
here. The idea of using other run-off triangles in each particular case is similar to the
Credibility ODP model. There are two assumptions:

(A1) Each cumulative claim Cj links multiplicatively to the previous development year
Cj−1 through a random variable αj, j = 2, . . . , J.

(A2) Random variables αj are discrete uniform on the set of development factors
I−j
∑

l=1
C(k)

l,j+1

I−j
∑

l=1
C(k)

l,j

: k ∈ {1, . . . , n}


The main steps of the model:

1. Calculate CL link ratios for all observed triangles D1, . . . ,Dn, which results in
aj,k j ∈ {1, . . . , I − 1}, k ∈ {1, . . . , n}.

2. Sample a′j,1, . . . , a′j,M from aj,1, . . . , aj,n with replacement for each j and a large M.
3. Multiply cumulative claims recursively (up to the ultimate claim) for each

run-off triangle: Ĉ(s)
i,l = Ci,J+1−i

l−1
∏

j=J+1−i
a′j,s, s ∈ {1, . . . , M}, i < l ≤ J.

Appendix B

See Tables A1 and A2 for the mean and median CRPS results that correspond to the sim-
ulations in Section 3. Similarly, Figures A1 and A2 demonstrate the average width graphs.

Table A1. Mean and median CRPS values if the underlying model is log-normal.

Mean CRPS Median CRPS

Non-parametric Mack Bootstrap −4941 −2770
Parametric Mack Bootstrap −4602 −2753
Credibility ODP −3473 −2589
Credibility Semi-stochastic −205,575 −4815

Table A2. Mean and median CRPS values if the underlying model is gamma.

Mean CRPS Median CRPS

Non-parametric Mack Bootstrap −80,643 −32,500
Parametric Mack Bootstrap −361,968 −30,677
Credibility ODP −40,455 −30,538
Credibility Semi-stochastic −21,323,470 −49,740
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Figure A1. Average width values from the log-normal data.
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Figure A2. Average width values from the gamma data.
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