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Abstract: We consider a defined-contribution (DC)-pension-fund-management problem under partial
information. The fund manager is allowed to invest the wealth from the fund account into a financial
market consisting of a risk-free account, a stock and a rolling bond. The aim of the fund manager is
to maximize the expected utility of the terminal wealth. In contrast to the traditional literature, we
assume that the fund manager can only observe the stock-price process and the interest-rate process,
but the expected return rate of the stock is unobservable, following a mean-reverting stochastic
process. We apply a martingale approach and Clark’s formula to solve this problem and the closed-
form representations for the optimal terminal wealth and trading strategy are derived. We further
present the results for the constant relative risk aversion (CRRA) function as a special case.
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1. Introduction

With increase in the human lifespan, the proportion of retired people in the total
population has increased, leading to greater economic pressures and many social issues. To
deal with this problem, researchers have analyzed the structure of the pension fund system
and designed new types of pension schemes based on existing pension fund models.

There are two types of pension funds: defined contribution (DC) pension plans and
defined benefit (DB) pension plans. In DC pension plans, the contributions are fixed,
usually as a constant or a fixed proportion of the plan participants’ salary income, and
benefits depend on the returns of the fund portfolio, so the participants bear the investment
risk. In DB pension plans, the benefits at the moment of retirement are determined in
advance, while contributions need to be adjusted at any time to maintain the balance of the
pension. DC pension plans are currently becoming increasingly popular with insurance
companies as they do not bear the total risk.

Previously, researchers tended to focus on DB pension plans. However, DB pension
plans transfer all the risks to the sponsor and might cause bankruptcy. Thus, DB pension
plans are gradually switching to DC pension plans. There has been a number of studies
dealing with DC pension plans. For example, Boulier et al. (2001) considered a DC plan
with a guarantee on the final benefits. The authors of Deelstra et al. (2003) extended the
work of Boulier et al. (2001) by considering the effects of the stochastic interest rate. In
Dong and Zheng (2019), an S-shaped utility maximization for DC pension funds under
short-selling constraints was described. In Guan and Liang (2015), an optimization problem
for DC pension plans under stochastic interest rate models was investigated. See also
Baltas et al. (2022), Tang et al. (2018), Zhang and Ewald (2010) as illustrative examples.
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In practice, investors might not be certain about the dynamics of the prices of risky
assets in the financial market. Even though the volatility term might be estimated very well,
estimation of the expected return is particularly difficult (see, for example, Section 4.2 in
Rogers (2013)). There has been considerable research into portfolio optimization problems
under unobservable or partial information. For example, Björk et al. (2010) provided
optimal solutions for a terminal wealth and portfolio strategy under partial information.
Similar problems were investigated using a martingale dual approach by Lakner (1995,
1998). The authors of Wang et al. (2021) explored the optimal investment strategy under
the mean-variance criterion when the drift term in the stock price is unobservable. See,
also, Liang and Song (2015), Mania and Santacroce (2010), Pham and Quenez (2001) and
Xiong et al. (2021).

In our model, the fund manager invests the wealth into a financial market with a stock
asset, a risk-free asset and a rolling bond, where the drift process µ(t) of the stock price
is stochastic and unobservable. We assume the interest rate in our model is stochastic,
satisfying the Vasiček model. The fund manager aims to maximize the expected utility of
the terminal wealth in the fund account. To avoid large losses arising from financial risks
to the participants, we consider a constraint on the terminal wealth, which is called the
“minimum guarantee”. We apply a martingale dual approach and filtering technique to
solve this problem and closed-form representations for the optimal terminal wealth and
trading strategy are derived. We further present the results for the CRRA function as a
special case.

The paper is organized as follows: In Section 2, we describe the portfolio model in
a financial market with three assets: a cash, a stock and a rolling bond. In Section 3, we
formulate the optimal investment problem for DC pension schemes with a minimum guar-
antee. In Section 4, we first transform the original constrained, non-self-financing optimal
investment problem to an equivalent unconstrained, self-financing optimal investment
problem, then use a filtering technique to describe the partial observable model within a
complete observable framework. By calculating an explicit representation of the optional
projection ζt, and using Clark’s formula to solve (39) in Theorem 1, we finally obtain the
closed-form expressions for the optimal trading strategies. In Section 5, we summarize
the paper.

2. The Financial Market

We consider the financial market in which there is no arbitrage and which is frictionless
and continuously open. We also assume that the transaction amounts are small and have
no influence on the prices. The model considered in this paper is defined in a complete
probability space

(
Ω,F ,F = {Ft}t∈[0,T],P

)
, where Ft denotes all the information in the

financial market up to the moment t. We also assume that F is right continuous and
P-complete.

The market is composed of a risk-free asset (a cash), a stock and a rolling bond. We
allow the fund manager to invest the wealth in the pension account to the above three
financial assets. The price of the riskless asset (also called the cash or the bank account) is
given by

dS0(t)
S0(t)

= r(t)dt, S0(0) = 1, (1)

where r(t) is the short-rate process. The evolution of r(t) satisfies the following Vasiček model:

dr(t) = a(b− r(t))dt− σrdWr(t), r(0) = r0. (2)

We see that the interest rate in the Vasiček model has mean-reverting properties. We
use a > 0 to denote the speed of mean reversion, b > 0 to denote the interest rate’s long-
term mean level, and σr > 0 to denote the volatility of the stochastic interest rate. Wr(t) is a
standard Brownian motion that denotes the interest rate risk.
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The second asset is a stock; we use S(t) to denote the stock price. The dynamic of S(t)
is given by

dS(t)
S(t)

= r(t)dt + σS1(λrdt + dWr(t)) + σS2(µ(t)dt + dWS(t)), S(0) = 1, (3)

where σS1 , σS2 > 0 denote the volatility of the stock and the constants λr and µ(t) denote
the market prices of the interest rate risk and stock price risk, respectively. WS(t) is a
one-dimensional Brownian motion with respect to Ft and is independent of Wr(t).

We assume that the market price of the stock price risk µ(t) is stochastic and its
dynamic is given by

dµ(t) = κ(µ̄− µ(t))dt + σµρdWS(t) + σµ

√
1− ρ2dWµ(t), µ(0) = µ0, (4)

where µ̄ > 0 represents the long-term mean value of µ(t), κ > 0 denotes the rate of mean
reversion, σµ > 0 is the volatility of the process µ(t), and ρ denotes the correlation coefficient
between the process µ(t) and the Brownian motion WS(t). Wµ(t) is a one-dimensional
Brownian motion with respect to Ft and is independent of Wr(t) and WS(t).

Generally, the drift term µ(t) of the stock price process is difficult to estimate accurately
in real financial markets. In our model, we assume that the fund manager can only observe
the stock price S(t) and the stochastic interest rate r(t), but the drift term µ(t) in the stock
price is unobservable. Let FS,r = {FS,r

t }t∈[0,T](⊂ F) be the filtration generated by the stock
price process S(t) and the interest rate process r(t). In contrast to the full information case,
in this paper, we assume that the filtration FS,r

t is information that can only be observed by
the fund manager at time t.

The third asset is the zero-coupon bond with maturity T; we use B(t, T) to denote its
price process at moment t. In the Vasiček model, it satisfies

dB(t, T)
B(t, T)

= r(t)dt + σB(T − t)(λrdt + dWr(t)),

i.e.,

B(t, T) = exp
{
−
∫ T

t
r(u)du + σB(T − u)(λrdu + dWr(u)) +

1
2

∫ T

t
σ2

B(T − u)du
}

, (5)

where σB(t) = 1−e−at

a σr(> 0) is the volatility of the price of the zero-coupon bond and
B(T, T) = 1.

Since B(t, T) has a residual maturity of T− t > 0, the fund manager needs to adjust
the zero-coupon bond at any time according to the residual maturity but there is no zero-
coupon bond with any residual maturity in the financial market. So, we consider a rolling
bond with a residual maturity of K as a substitute for a zero-coupon bond with any residual
maturity (See also Boulier et al. (2001) and Wang et al. (2021) for more details). The price of
the rolling bond process BK(t) is described by

dBK(t)
BK(t)

= r(t)dt + σK(λrdt + dWr(t)), (6)

where σK = 1−e−aK

a σr(> 0) is the volatility of the rolling bond BK(t). By rearranging terms,
one can easily derive the following relationship between the zero-coupon bond B(t, T) and
the rolling bond BK(t) through the cash asset S0(t):

dB(t, T)
B(t, T)

=

(
1− σB(T − t)

σK

)
dS0(t)
S0(t)

+
σB(T − t)

σK

dBK(t)
BK(t)

. (7)
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3. Statement of the Pension Fund Management

In this section, we describe the pension fund management model. Assume that there
is only one cohort of contributors in the fund; they start to subscript the fund from time
t = 0 until the retirement time T.

3.1. The Random Contribution Rate C(t)

We introduce the stochastic contribution rate C(t), t ∈ [0, T], which represents the
total contributions made instantaneously by the pension members. Since the members’
salaries are influenced by many factors, we assume that C(t) is stochastic and satisfies the
following stochastic differential equation(SDE):

dC(t)
C(t)

= ηdt + σC1(λrdt + dWr(t)) + σC2(µ(t)dt + dWS(t)), C(0) = C0, (8)

where η, σC1 , σC2 are positive constants. We can also see that the contribution C(t) shares
the same stochastic sources as those in the stock price S(t).

3.2. The Guarantee G(T)

In this paper, we consider a guarantee constraint on the terminal wealth. Let f (t), t ∈
[T, T′] be a minimal annuity, where T′ is the random time of death; then, the actuarial
present value of the target at time T is given by

G(T) =
∫ w

T
f (s)B(T, s)s−T pTds, (9)

where w is the maximum age of survival, the minimal annuity function f (s) = f (T)eg(s−T),
where g ≥ 0 represents the coefficient of increase in the cost of living as time increases. The
pension guarantees an annuity of at least f (t) at time t. Here B(T, s) is given by (5) and
s−T pT represents the probability that the members will survive to s given that they are alive
at T, which can be calculated from the mortality rate λ(ν) as s−T pT = e−

∫ s
T λ(ν)dν. In our

model, we assume that λ(ν) = w1ew2ν, where w1, w2 > 0. Then, we obtain

s−T pT = exp
(
−
∫ s

T
λ(ν)dν

)
= exp

(
−
∫ s

T
w1ew2νdν

)
= exp

[
w1

w2
(ew2T − ew2s)

]
.

3.3. The Wealth Process Xπ(T), t ∈ [0, T]

We use π0(t), πS(t) and πK(t) to represent the amount of wealth invested in the risk-
free asset S0(t), the stock index S(t) and the rolling bond BK(t), respectively, which satisfy

π0(t) + πS(t) + πK(t) = Xπ(t),

where Xπ(t) denotes the total wealth at time t under the investment strategy π. So, we have

dXπ(t) = π0(t)
dS0(t)
S0(t)

+ πS(t)
dS(t)
S(t)

+ πK(t)
dBK(t)
BK(t)

+ C(t)dt

= Xπ(t)r(t)dt + πS(t)[σS1(λrdt + dWr(t)) + σS2(µ(t)dt + dWS(t))]

+ πK(t)σK(λrdt + dWr(t)) + C(t)dt,

(10)

with Xπ(0) = x. In our paper, we require that the fund wealth should be greater than the
guarantee G(T) almost certainly at terminal time; that is,

Xπ(T) ≥ G(T), a.s.

Now, we define the set of admissible strategies as follows.
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Definition 1. (Admissible strategy) An investment strategy π = {(πS(t), πK(t))T}t∈[0,T] is
called admissible if

(i) {(πS(t), πK(t))T}t∈[0,T] ∈ FS,r
t ;

(ii) E
{∫ T

0 (Xπ(t))2[(σKπK(t) + σS1 πS(t))2 + (σS2 πS(t))2]dt
}
< ∞;

(iii) Xπ(T) ≥ G(T), a.s.;
(iv) The SDE (10) has a pathwise unique solution {Xπ(t)}t∈[0,T] associated with π satisfying

(i)–(iii).

Denote by Π the set of all admissible strategies.

3.4. The Optimization Criterion

We call function u : [0, ∞) → R
⋃{−∞} a utility function if it is strictly increasing,

strictly concave, continuous on its domain of definition and its derivative function u′(·) is
continuously differentiable on (0, ∞) satisfying the following conditions:

lim
x→∞

u′(x) = 0, lim
x→0

u′(x) = ∞.

In our model, the fund manager aims to maximize the expected utility of the terminal
wealth in the fund account. We assume that the initial wealth is x, and require that the
terminal wealth should be greater than the guarantee. Therefore, we consider the following
optimization problem:

(P) =



max
π∈Π

E[u(Xπ(T)− G(T))],

diffusion Equation (10),

Xπ(0) = x,

s.t. Xπ(T) ≥ G(T), a.s.

4. Solution to the Optimization Problem

In this section, we do three main things: (1) transform the original optimization prob-
lem (P) into an auxiliary problem; (2) solve the optimal investment strategy for the auxiliary
problem; and (3) solve the optimal investment strategy for the original optimization prob-
lem (P). The original problem (P) is different from the traditional optimal portfolio problem:
On the one hand, due to the continuous cash inflows, the problem is non-self-financing; On
the other hand, we consider a minimum guarantee constraint for the terminal fund account.
In Section 4.1, we transform the original problem (P) into a simple investment optimization
problem by introducing an auxiliary process. In Section 4.2, we give closed-form solutions
of the terminal wealth and trading strategy for the auxiliary problem. Since the drift term
µ(t) of the stock price is unobservable, in Section 4.3, we use the filtering technique to
give an estimation of µ(t), and then use the estimation to solve the auxiliary problem. In
Section 4.4, solutions to the original optimization problem (P) are derived.

Define the process Lt as follows:

dLt = −Lt[λrdWr(t) + µ(t)dWS(t)], L0 = 1.

Then, Lt is a positive local martingale and has the following expression:

Lt = exp
{
−
∫ t

0
[λrdWr(s) + µ(s)dWS(s)]−

1
2

∫ t

0

[
λ2

r + µ2(s)
]
ds
}

. (11)

Assumption 1. We assume that {Lt}t≥0 is a martingale on (F ,P).

From the Novikov condition, we know that if λr and µ(s) satisfy E
[
e
∫ T

0 (λ2
r+µ2(s))ds

]
< ∞,

then Lt is a martingale.
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Define
dP̃
dP

∣∣∣
FT

= LT ,

and we define Ẽ as the expectation operator under the risk-neutral measure P̃. By the above
assumption and applying the Girsanov Theorem, we know that

dW̃(t) = (dW̃r(t), dW̃S(t))T = (λrdt + dWr(t), µ(t)dt + dWS(t))T

is a two-dimensional Brownian motion under the probability measure P̃.
With the Brownian motion (W̃r(t), W̃S(t)), we can rewrite the dynamics of the instan-

taneous interest rate and the price of the stock as

dr(t) = a(b− r(t))dt + σrλrdt− σrdW̃r(t), (12)

dS(t)
S(t)

= r(t)dt + σS1dW̃r(t) + σS2 dW̃S(t).

By solving SDE in (12), we get

r(t) = r0e−at +
∫ t

0
ea(s−t)(ab ds + σrλrds− σrdW̃r(s)). (13)

4.1. Transformation of the Problem

Since the wealth process (10) is not a self-financing process, there is no direct approach
to solve the optimization problem (P). As in Boulier et al. (2001), Deelstra et al. (2003)
and Wang et al. (2021), we first introduce some auxiliary processes to transfer the original
problem to an equivalent problem.

We denote D(t, s, r(t), C(t)) as a loan corresponding to all contributions that the
members will inject into the fund in the future. It is important to note that t, s, r(t), C(t) are
the different variables in D(t, s, r(t), C(t)), respectively. This loan will be paid back with
the contribution; thus, its value can be written as:

D(t, s, r(t), C(t)) = Ẽ
[
e−
∫ s

t r(u)duC(s)
∣∣Ft

]
.

We will replicate it with the rolling bond, the cash asset and the stock. Under the
risk-neutral measure P̃, the dynamic of the stochastic interest rate process is given by (12),
and the stochastic contribution rate process is given by

dC(t)
C(t)

= ηdt + σC1dW̃r(t) + σC2dW̃S(t).

So, from the risk-neutral pricing formula, we find D(t, s, r(t), C(t)) satisfies the follow-
ing partial differential equation:

Dt + Dr[a(b− r) + λrσr] + DCCη + 1
2 Drrσ2

r + 1
2 DCCC2(σ2

C1
+ σ2

C2
)

−DrCCσC1 σr − rD = 0,
(14)

with D(s, s, r(s), C(s)) = C(s), where Dt, Dr, DC are the first-order partial derivatives of
D(t, s, r(t), C(t)) with respect to the variables t, r(t), C(t), respectively, and Drr, DCC, DrC
are the second-order partial derivatives of D(t, s, r(t), C(t)) with respect to the variables
r(t) and C(t). For simplicity, we sometimes use D to mean D(t, s, r(t), C(t)).

To solve (14), we assume that D(t, s, r(t), C(t)) has the following form

D(t, s, r(t), C(t)) = C(t) exp[ f1(s− t) + f2(s− t)r(t)]. (15)

Let s− t = τ. Then, by differentiating D(t, s, r(t), C(t)) with respect to t, r, C, respec-
tively, we get
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Dt = −Dτ = −D
[

f ′2(τ) + f ′2(τ)r
]
, DC = exp{ f1(τ) + f2(τ)r},

Dr = D f2(τ), DCC = 0, Drr = D f 2
2 (τ), DCr = exp{ f1(τ) + f2(τ)r} f2(τ),

where the sign
′

represents the first derivative of the function. By substituting the above
expressions into (14), we obtain

D f ′1(τ) + Dη + D f2(τ)(ab + σrλr) +
1
2 D f 2

2 (τ)σ
2
r − D f2(τ)σrσC1

−(D f ′2(τ) + D f2(τ)a + D)r = 0,
(16)

with D(s, s, r(s), C(s)) = C(s). Note that (16) is equivalent to the following two equations
with boundary conditions{

f ′1(τ) + η + f2(τ)(ab + σrλr) +
1
2 f 2

2 (τ)σ
2
r − f2(τ)σrσC1 = 0,

f1(0) = 0,{
f ′2(τ) + f2(τ)a + 1 = 0,

f2(0) = 0.

By solving the above two equations, we deduce the solutions of f1(τ) and f2(τ) as

f1(τ) =
∫ τ

0
[ab f2(s) +

1
2

f 2
2 (s)σ

2
r + (λr − σC1)σr f2(s) + η]ds, f2(τ) =

e−aτ − 1
a

.

By applying the Itô formula, we find that D(t, s, r(t), C(t)) satisfies the following SDE:

dD =Dtdt + Dr(dr(t)) + DC(dC(t)) +
1
2

Drr(dr(t))2 +
1
2

DCC(dC(t))2 + DrC(dr(t))(dC(t))

=D
[
r(t)dt + (σC1 − f2(s− t)σr)(λrdt + dWr(t)) + σC2(µ(t)dt + dWS(t))

]
, (17)

with boundary condition D(s, s, r(s), C(s)) = C(s).
Let F(t, T) =

∫ T
t D(t, s, r(t), C(t))ds, according to (1), (3), (6) and (17), we have

dF(t, T) = −C(t)dt + πF
0 (t)

dS0(t)
S0(t)

+ πF
K(t)

dBK(t)
BK(t)

+ πF
S (t)

dS(t)
S(t)

, (18)

where

πF
K(t) =

∫ T
t σS2 D(t, s, r(t), C(t))(σC1 − f2(s− t)σr)ds− σS1 σC2 F(t, T)

σS2 σK
,

πF
S (t) =

σC2

σS2

F(t, T),

πF
0 (t) = F(t, T)− πF

K(t)− πF
S (t).

Given F(t, T) in (18), we are able to transfer the original optimal problem (P) into
a self-financing investment problem. However, we also require that the terminal wealth
Xπ(T) should be greater than a minimum guarantee. So, in the remaining part of this
section, we continue to transfer this problem into an unconstrained problem.

Define G(t):
G(t) = E[Ht

TG(T)|Ft], 0 < t < T, (19)

where
Ht

T =
LT
Lt

e−
∫ T

t r(u)du. (20)

By substituting the expression of G(T) defined in (9) into (19), we obtain

G(t) = E
[

Ht
T

∫ w

T
f (s)B(T, s)s−T pTds

∣∣Ft

]
. (21)
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In addition, because
B(t, T) = Ẽ

[
e−
∫ T

t r(s)ds
∣∣∣Ft

]
,

where Ẽ is the expectation under the measure P̃. By using the expressions of Lt in (11), Ht
T

in (20), and from the Bayes formula, one can rewrite G(t) in (21) as

G(t) =
∫ w

T
f (s)E

[
Ht

TẼ
[
e−
∫ s

T r(u)du
∣∣∣FT

]∣∣∣Ft

]
s−T pTds

=
∫ w

T
f (s)Ẽ

[
e−
∫ T

t r(u)duẼ
[
e−
∫ s

T r(u)du
∣∣∣FT

]∣∣∣Ft

]
s−T pTds

=
∫ w

T
f (s)Ẽ

[
e−
∫ s

t r(u)du
∣∣∣Ft

]
s−T pTds =

∫ w

T
f (s)B(t, s)s−T pTds.

Moreover, from (7), we know that

dG(t) =
∫ w

T
f (s)(dB(t, s))s−T pTds

= πG
0 (t)

dS0(t)
S0(t)

+ πG
K (t)

dBK(t)
BK(t)

,
(22)

where πG
K (t) and πG

0 (t) are compositions of G(t) as follows:

πG
K (t) =

∫ w

T
f (s)B(t, s)s−T pT

σB(s− t)
σK

ds,

πG
0 (t) = G(t)− πG

K (t).

Define a new portfolio

Zπ(t) = Xπ(t) + F(t, T)− G(t), (23)

then, by (10), (18) and (22), we obtain the differential expression of the new transformed
wealth process Zπ(t) as

dZπ(t) =πZ
0 (t)

dS0(t)
S0(t)

+ πZ
S (t)

dS(t)
S(t)

+ πZ
K(t)

dBK(t)
BK(t)

=Zπ(t)r(t)dt + πZ
S (t)[σS1(λrdt + dWr(t)) + σS2(µ(t)dt + dWS(t))]

+ πZ
K(t)σK(λrdt + dWr(t)),

(24)

where πZ
0 (t), πZ

S (t) and πZ
K(t) denote the proportion of the new wealth process Zπ(t)

invested in the risk-free asset S0(t), S(t) and BK(t) at moment t, respectively. Let πZ =
{(πZ

S (t), πZ
K(t))

T}t∈[0,T]. From (18), the differential form of F(t, T) can be expressed by
S0(t), S(t), BK(t). Similarly, by (22), the differential form of D(t) can be expressed by
S0(t), BK(t). So, from the relationship between Xπ(t) and Zπ(t) in (23), we can obtain the
relationship between π and πZ as

πZ
S (t) = πS(t) + πF

S (t),

πZ
K(t) = πK(t) + πF

K(t)− πG
K (t), (25)

πZ
0 (t) = π0(t) + πF

0 (t)− πG
0 (t),

we also know that Zπ(T) = Xπ(T)− G(T).
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Finally, after the above series of transformations, we simplify the original problem (P)
into the following optimization problem on Zπ(t) without constraint,

(Q) =



max
π∈Π

E[u(Zπ(T))],

diffusion Equation (24),

Zπ(0) = z,

s.t. Zπ(T) ≥ 0, a.s.

where

z = x + F(0, T)− G(0). (26)

4.2. Explicit Representation of the Optimal Terminal Wealth

In the financial market, the only observable information to the fund manager is the
stock price process S(t) and the stochastic interest rate r(t), while the drift term µ(t) of the
stock price process is unobservable; that is, we consider the optimal investment problem
under incomplete information. We useFS,r to denote the filtering of observable information.
In this subsection, we first compute an explicit solution of the optional projection of P-
martingale L to FS,r and then explore expressions for the optimal terminal wealth and the
optimal trading strategy under incomplete information.

Define ζ = {ζt, t ∈ [0, T]} as

ζt = E[Lt|FS,r
t ]. (27)

In geometrical terms, this means that E[Lt|FS,r
t ] is the orthogonal projection (in (F ,P)

of L onto the subspace (FS,r,P)). Note that ζ is a martingale on (FS,r,P). For every FS,r
t -

measurable random variable V, Fu-measurable random variable Y and FS,r
u -measurable

random variable W, 0 ≤ t ≤ u ≤ T, we have

Ẽ[V] = E[ζtV],

Ẽ[Y|FS,r
t ] =

1
ζt
E[LuY|FS,r

t ], (28)

Ẽ[W|FS,r
t ] =

1
ζt
E[ζuW|FS,r

t ].

The only information that can be observed is the stock price S(t) and the stochastic
interest rate r(t) but the drift process µ(t) of the stock price is unobservable. Thus, to solve
this problem, we consider the conditional mean and covariance of µ(t) as:

m(t) = E[µ(t)|FS,r
t ], m(0) = m0,

γ(t) = E[(µ(t)−m(t))2|FS,r
t ], γ(0) = γ0.

By applying a similar approach to the use of Theorem 3.1 in Lakner (1998), in the
following proposition, we show that ζt can be explicitly expressed with the conditional
expectation m(t), which implies that ζt is observable under FS,r

t .

Proposition 1. The process ζt has the following explicit representation:

ζt = exp
{
−
∫ t

0

(
λrdW̃r(s) + m(s)dW̃S(s)

)
+

1
2

∫ t

0

(
λ2

r + m2(s)
)

ds
}

. (29)
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Proof. We know that (dW̃r(t), dW̃S(t))T = (λrdt + dWr(t), µ(t)dt + dWS(t))T; then Lt
given in (11) can be rewritten as

Lt = exp
{
−
∫ t

0
(λrdW̃r(s) + µ(s)dW̃S(s)) +

1
2

∫ t

0
(λ2

r + µ2(s))ds
}

,

and 1/Lt satisfies

d
(

1
Lt

)
=

1
Lt

(
λrdW̃r(t) + µ(t)dW̃S(t)

)
.

So, we have

Ẽ
[∫ t

0
d
(

1
Lu

)∣∣∣∣FS,r
t

]
= Ẽ

[∫ t

0

1
Lu

(
λrdW̃r(u) + µ(u)dW̃S(u)

)
du
∣∣∣∣FS,r

t

]
. (30)

To apply Theorem 5.14 in Liptser and Shiryayev (1977), we need to check the following
two conditions:

Ẽ
[
|λr|
Lu

]
+ Ẽ

[
1

Lu
|µ(u)|

]
< ∞, u ∈ [0, T] (31)

and ∫ T

0

{
Ẽ
[
|λr|
Lu

∣∣∣∣FS,r
u

]}2

+

{
Ẽ
[

1
Lu
|µ(u)|

∣∣∣∣FS,r
u

]}2

du < ∞, a.s. (32)

The inequality in (31) is true because

Ẽ
[

1
Lu
|λr|

]
+ Ẽ

[
1

Lu
|µ(u)|

]
= λr +E[|µ(u)|] < ∞.

According to (28), the left-hand side of (32) can be rewritten as∫ T

0

1
ζ2

u

{
E
[
|λr|

∣∣FS,r
u

]}2
+

1
ζ2

u

{
E
[
|µ(u)|

∣∣FS,r
u

]}2
du =

∫ T

0

1
ζ2

u

(
λ2

r + m2(u)
)

du. (33)

Due to the continuity of m and ζ, we know that the above equation is also finite; thus,
(32) is true.

By Theorem 5.14 in Liptser and Shiryayev (1977), and relations in (31) and (32), we
know that the right-hand side of (30) is equal to

∫ t

0
Ẽ
[

λr

Lu

∣∣∣∣FS,r
u

]
dW̃r(u) +

∫ t

0
Ẽ
[

1
Lu

µ(u)
∣∣∣∣FS,r

u

]
dW̃S(u). (34)

According to the definitions of m and ζ in (27), the left-hand side of (30) is equal to

Ẽ
[

1
Lt

∣∣∣∣FS,r
t

]
− 1 =

1
ζt
− 1, (35)

and according to (34), the right-hand side of (30) becomes∫ t

0

1
ζu

E[λr|FS,r
u ]dW̃r(u) +

∫ t

0

1
ζu

E[µ(u)|FS,r
u ]dW̃S(u)

=
∫ t

0

1
ζu

λrdW̃r(u) +
∫ t

0

1
ζu

m(u)dW̃S(u).
(36)

Thus, from the equivalency of (35) and (36), we get

d
(

1
ζt

)
=

1
ζt

λrdW̃r(t) +
1
ζt

m(t)dW̃S(t),
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that is,
1
ζt

= exp
{∫ t

0

(
λrdW̃r(s) + m(s)dW̃S(s)

)
− 1

2

∫ t

0
(λ2

r + m2(s))ds
}

, (37)

and (29) is an obvious consequence of (37). Hence, our proof is complete.

Assuming that u is a utility function, define the (continuous, strictly decreasing)
function I : (0, ∞) 7→ [0, ∞) as the inverse function of u′, to satisfy

lim
y→∞

I(y) = 0, lim
y→0

I(y) = ∞.

Through a similar derivation of Theorem 2.5 as in Lakner (1998), we obtain closed
solutions for the optimal terminal wealth and the optimal trading strategy for the auxil-
iary problem.

Theorem 1. Suppose that, for any constant x ∈ (0, ∞), there is

Ẽ[I(xζT)] < ∞,

in which I(·) is the inverse of u′(·).
Then, we can obtain the optimal terminal wealth

Ẑπ(T) = I(βe−
∫ T

0 r(s)dsζT),

where the constant β is uniquely determined by the following relationship

Ẽ[e−
∫ T

0 r(s)ds I(βe−
∫ T

0 r(s)dsζT)] = z. (38)

The optimal wealth process Ẑπ(t) and the optimal trading strategy {π̂(t)}t≥0 can be implicitly
determined by

e−
∫ t

0 r(s)dsẐπ(t) = Ẽ[e−
∫ T

0 r(s)ds I(βe−
∫ T

0 r(s)dsζT)|FS,r
t ]

= z +
∫ t

0
e−
∫ u

0 r(s)ds
[(

σS1 π̂Z
S (u) + σKπ̂Z

K(u)
)

dW̃r(u) + σS2 π̂Z
S (u)dW̃S(u)

]
.

(39)

4.3. Explicit Formula for the Optimal Trading Strategy

In the optimization problem (Q), the drift term µ(t) in the stock price is unobservable;
thus, the manager would first need to estimate the value of µ(t) and use the estimated
value of µ(t) to determine the optimal current investment strategy. In this sub-section, we
compute some optimal solutions to the auxiliary problem (Q). Similar to Wang et al. (2021),
we first estimate the value of µ(t) by the filtering technique. Then, the estimated value
of µ(t) is substituted into the optimal problem (Q). Finally, we deduce the closed-form
expression for the optimal investment strategy.

We use filtering theory to estimate the value of µ(t) using information from FS,r
t .

For the original theorem and the corresponding proof of the filtering theory, we refer
to Theorem 8.1 and subsections 8.2 in Liptser and Shiryayev (1977). First, we rearrange
Equations (2)–(4) into matrix form as1:

(
dr(t)
dS(t)
S(t)

)
=


(

a(b− r(t))
r(t) + σS1 λr

)
︸ ︷︷ ︸

A0

+

(
0

σS2

)
︸ ︷︷ ︸

A1

µ(t)

dt + 0︸︷︷︸
B1

dWµ(t) (40)

+

(
−σr 0
σS1 σS2

)
︸ ︷︷ ︸

B2

(
dWr(t)
dWS(t)

)
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and

dµ(t) = ( κµ̄︸︷︷︸
a0

+ (−κ)︸ ︷︷ ︸
a1

µ(t))dt + σµ

√
1− ρ2︸ ︷︷ ︸
b1

dWµ(t) +
(

0 σµρ
)︸ ︷︷ ︸

b2

(
dWr(t)
dWS(t)

)
.

Denote B = (B1, B2), b = (b1, b2) and introduce the following notations:

b ◦ b = b1 ◦ bT
1 + b2 ◦ bT

2 ,

b ◦ B = b1 ◦ BT
1 + b2 ◦ BT

2 ,

B ◦ B = B1 ◦ BT
1 + B2 ◦ BT

2 ,

where the symbol “◦” is the operator for matrix multiplication. Since B1 = 0, we have
B ◦ B = B2 ◦ BT

2 and (B ◦ B)−1 = (B2 ◦ BT
2 )
−1 = (B−1

2 )T ◦ B−1
2 , b ◦ B = b2 ◦ BT

2 .
From Theorem 10.3 in Liptser and Shiryayev (1977), we know that m(·) is the unique

solution of the following linear system of SDE:

dm(t) = (a0 + a1m(t))dt + [b2 ◦ BT
2 + γ(t)AT

1 ](B2 ◦ BT
2 )
−1×{(

dr(t)
dS(t)
S(t)

)
− (A0 + A1m(t))dt

}
,

(41)

where γ(·) is the unique solution of the following deterministic Riccati equation:

γ′(t) =a1γ(t) + γ(t)aT
1 + b ◦ b− [b2 ◦ BT

2 + γ(t)AT
1 ](B2 ◦ BT

2 )
−1[b2 ◦ BT

2 + γ(t)AT
1 ]

T

=− γ2(t)− 2
(
κ + σµρ

)
γ(t) +

(
σµ

√
1− ρ2

)2
,

(42)

with γ(0) = γ0.
By calculation, we know that

(B2)
−1 =

(
−σr 0
σS1 σS2

)−1

=

(
− 1

σr
0

σS1
σrσS2

1
σS2

)
, (43)

and from (40), we have(
dr(t)
dS(t)
S(t)

)
− (A0 + A1m(t))dt

=

(
−σrdWr(t)

σS1dWr(t) + σS2(µ(t)dt + dWS(t))− σS2 m(t)dt

)
=

(
−σr 0
σS1 σS2

)(
dW̃r(t)− λrdt

dW̃S(t)−m(t)dt

)
.

(44)

By substituting (43) and (44) into (41), we obtain

dm(t) = −(κ + σµρ + γ(t))m(t)dt + (σµρ + γ(t))dW̃S(t) + κµ̄dt, m(0) = m0. (45)

It is known that (42) has an explicit solution, the solution is

γ(t) =
√

C
C1e2

√
Ct + C2

C1e2
√

Ct − C2
−
(
κ + σµρ

)
, (46)
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where

C =
(
κ + σµρ

)2
+ σ2

µ(1− ρ2),

C1 =
√

C + γ0 + κ + σµρ,

C2 = −
√

C + γ0 + κ + σµρ.

Define

φ(t) = exp
{
−(κ + σµρ)t−

∫ t

0
γ(s)ds

}
, (47)

then, m(t) in (45) has an explicit expression:

m(t) = φ(t)
{

m0 +
∫ t

0
φ−1(s)

[
(σµρ + γ(s))dW̃S(s) + κµds

]}
. (48)

Moreover, from the theory of filtering (formula (12.65) in Liptser and Shiryayev (1978)),
we know the process

(dWr(t), dWS(t))T =B−1
2

(
dr(t),

dS(t)
S(t)

)T

− B−1
2 (A0 + A1m(t))dt (49)

=(dW̃r(t)− λrdt, dW̃S(t)−m(t)dt)T

is a two-dimensional Brownian motion with respect to (P,FS,r
t ). Denote dW(t) = (dWr(t),

dWS(t))T. Then, with the new defined Brownian motion (Wr(t), WS(t)), the dynamics of
the stochastic interest rate and the price of the stock can be rewritten as

dr(t) = a(b− r(t))dt− σrdWr(t),

dS(t)
S(t)

= r(t)dt + σS1(λr + dWr(t)) + σS2(m(t)dt + dWS(t)).

Based on the above analysis and calculations, we provide the expressions of the
optimal strategies for our transformed portfolio problem (Q).

Theorem 2. Suppose that for some K∗ > 0,2

I(x) < K∗(1 + x−5/2), (50)

− I′(x) < K∗(1 + x−2). (51)

Then the optimal trading strategies for the auxiliary problem (Q) satisfy the following equation

π̂Z
S (t)=−

β

σS2

e
∫ t

0 r(s)dsẼ
[
e−2

∫ T
0 r(s)dsζT I′(βe−

∫ T
0 r(s)dsζT)×(∫ T

t
φ(s)φ−1(t)(σµρ + γ(t))dWS(s) + m(t)

)∣∣∣FS,r
t

]
,

π̂Z
K(t)=−

σr(e−a(T−t) − 1)
aσK

Ẑπ(t)− e
∫ t

0 r(s)dsẼ
{

βe−2
∫ T

0 r(s)dsζT I′(βe−
∫ T

0 r(s)dsζT)

[
σr(e−a(T−t) − 1)

aσK

+
λr

σK
−

σS1

σKσS2

(∫ T

t
φ(s)φ−1(t)(σµρ + γ(t))dWS(s) + m(t)

)]∣∣∣FS,r
t

}
,

where
Ẑπ(t) = e

∫ t
0 r(s)dsẼ

[
e−
∫ T

0 r(s)ds I(βe−
∫ T

0 r(s)dsζT)
∣∣∣FS,r

t
]
,

ζt, β, γ(t), φ(t) and m(t) are given in (29), (38), (46), (47) and (48), respectively.
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For simplicity, we defer the detailed proof of Theorem 2 to Appendix A.

Remark 1. For the optimal problem (Q), if we already know the investment proportion πZ
S invested

in the stock price and the investment proportion πZ
K invested in the rolling bond, then the investment

proportion πZ
0 invested in the risk-free asset can be obtained from the relation πZ

0 +πZ
S +πZ

K = Zπ .

Define a CRRA function u as

u(x) =
xδ

δ
, ∀x ≥ 0, (52)

where δ < 0, and I(x) = x
1

δ−1 .
The relative risk aversion coefficient of this utility function is − xu′′(x)

u′(x) = δ− 1, which
is independent of x; therefore, it is denoted a constant relative risk aversion function. In
particular, for the CRRA utility function, the optimal investment strategies have much
simpler representations.

Corollary 1. When u is a CRRA utility function. Then, the optimal trading strategies become

π̂Z
S (t)=

β−
1

1−δ

σS2(1− δ)
e
∫ t

0 r(s)dsẼ
[

e
δ

1−δ

∫ T
0 r(s)dsζ

− 1
1−δ

T ×(∫ T

t
φ(s)φ−1(t)(σµρ + γ(t))dWS(s) + m(t)

)∣∣∣FS,r
t

]
,

π̂Z
K(t)=

β−
1

1−δ e
∫ t

0 r(s)ds

σK(1− δ)

{(
λr +

δσr(e−a(T−t) − 1)
a

)
Ẽ
[

e
δ

1−δ

∫ T
0 r(s)dsζ

− 1
1−δ

T

∣∣∣FS,r
t

]

−
σS1

σS2

Ẽ
[

e
δ

1−δ

∫ T
0 r(s)dsζ

− 1
1−δ

T

(∫ T

t
φ(s)φ−1(t)(σµρ + γ(t))dWS(s) + m(t)

)∣∣∣FS,r
t

]}
,

where z is given in (26) and

β−
1

1−δ = z
{
Ẽ
[

e
δ

1−δ

∫ T
0 r(s)dsζ

− 1
1−δ

T

]}−1
.

Remark 2. (The case when δ is positive) Let θ ∈ (0, 1) and we consider δ ∈ (0, θ]. In this case, the
inequalities (50) and (51) might not hold. To overcome the difficulties, we substitute the parameters
into Proposition 4.6 in Lakner (1995), so that, in order for Equations (50) and (51) to hold, we
propose the following stronger condition:

γ0 + Tσ2
µ <

1
8K‖B−1

2 ‖2T
min

{
1

45
,

(1− θ)2

(θ + 3)(θ + 7)

}
,

where
K = max

t≤T
e−2κt.

Then for the CRRA utility function with δ ∈ (0, θ], the optimal investment strategies are the
same as those provided in Corollary 1.

4.4. Optimal Trading Strategy for the Original Problem

Following the relationship between π and πZ in (25), in this sub-section, we can obtain
the optimal investment strategy for the original optimization problem (P).
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Corollary 2. Based on relationships in (23) and (25), the solution of the optimal investment
strategy for the original problem (P) can be shown as

π̂S(t)= π̂Z
S (t)− πF

S (t) = −
β

σS2

e
∫ t

0 r(s)dsẼ
{

e−2
∫ T

0 r(s)dsζT I′(βe−
∫ T

0 r(s)dsζT)×

(∫ T

t
φ(s)φ−1(t)(σµρ + γ(t))dWS(s) + m(t)

)∣∣∣FS,r
t

}
−

σC2

σS2

∫ T

t
D(t, s)ds,

π̂K(t)= π̂Z
K(t)− πF

K(t) + πG
K (t)

=−σr(e−a(T−t) − 1)
aσK

(
X̂π(t) +

∫ T

t
D(t, s)ds−

∫ w

T
f (s)B(t, s)s−T pTds

)
−e
∫ t

0 r(s)dsẼ
[

βe−2
∫ T

0 r(s)dsζT I′(βe−
∫ T

0 r(s)dsζT)

(
σr(e−a(T−t) − 1)

aσK
+

λr

σK

−
σS1

σKσS2

(∫ T

t
φ(s)φ−1(t)(σµρ + γ(t))dWS(s) + m(t)

))∣∣∣FS,r
t

]

−
∫ T

t σS2 D(t, s)(σC1 − f2(s− t)σr)ds− σS1 σC2 F(t, T)
σS2 σK

+
∫ w

T
f (s)B(t, s)s−T pT

σB(s− t)
σK

ds.

Similarly, for the CRRA utility, we derive the following results.

Corollary 3. When u is a CRRA function in (52), the optimal trading strategy is given by

π̂S(t)=
β−

1
1−δ

σS2(1− δ)
e
∫ t

0 r(s)dsẼ
[

e
δ

1−δ

∫ T
0 r(s)dsζ

− 1
1−δ

T ×(∫ T

t
φ(s)φ−1(t)(σµρ + γ(t))dWS(s) + m(t)

)∣∣∣FS,r
t

]
−

σC2

σS2

∫ T

t
D(t, s)ds,

π̂K(t)=
β−

1
1−δ

σK(1− δ)
e
∫ t

0 r(s)ds

{(
λr +

δγσr(e−a(T−t) − 1)
a

)
Ẽ
[

e
δ

1−δ

∫ T
0 r(s)dsζ

− 1
1−δ

T

∣∣∣FS,r
t

]
−

σS1

σS2

Ẽ
[

e
δ

1−δ

∫ T
0 r(s)dsζ

− 1
1−δ

T

(∫ T

t
φ(s)φ−1(t)(σµρ + γ(t))dWS(s) + m(t)

)∣∣∣FS,r
t

]}

−
∫ T

t σS2 D(t, s)(σC1 − f2(s− t)σr)ds− σS1 σC2 F(t, T)
σS2 σK

+
∫ w

T
f (s)B(t, s)s−T pT

σB(s− t)
σK

ds.

5. Conclusions

In this paper, we investigate an optimal investment problem of a DC pension scheme
under partial information. The fund manager is allowed to invest the wealth from the fund
account into a financial market consisting of a risk-free account, a stock and a rolling bond.
The drift of the stock price process is modeled by a mean-reverting stochastic process. In
the model, we also take into account the minimum guarantee and stochastic contribution
rate. The fund manager aims to maximize the expected utility of the terminal fund. We
assume that the only information that can be observed by the fund manager is the stock
price S(t) and the stochastic interest rate r(t), but that the drift term µ(t) in the stock price
is unobservable. Obviously, the problem we consider is not self-financing, and we also
require that the amount of the terminal fund should be greater than a minimum guarantee.
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To overcome these difficulties, we first transform the original problem into a self-financing,
unconstrained auxiliary problem, then use the martingale method and Clark’s formula
to obtain the expressions of the optimal investment strategy. In future work, we plan to
continue to explore the optimal investment problem in DC pension schemes using the
framework provided in this paper but operating under the assumption that both the drift
and the volatility of the stock price are stochastic and unobservable. To obtain explicit
expressions of the optimal trading strategy, we will combine the martingale method and
the stochastic dynamic programming method to analyze the problem and consider some
special cases.
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Appendix A

In this section, we provide the proof of Theorem 2. We define the gradient operator D
acting on a subset of the class of functions of {W̃(t), t ≤ T} as D1,1. For detailed explana-
tions of the definitions of the space D1,1 and the operator D, we refer to Ocone and Karatzas
(1991) and Shigekawa (1980). We introduce Clark’s formula (refer to Karatzas et al. (1991)).
Clark’s formula guarantees that, for any stochastic variable A ∈ D1,1, we have the follow-
ing expression:

Ẽ[A | FS,r
t ] = ẼA +

∫ t

0
Ẽ[(Du A)T | FS,r

u ]dW̃(u). (A1)

For an N-dimensional random variable A ∈ (D1,1)
N and N-dimensional Brownian

motion B(t), define DA as a matrix with components (DA)i,j = Di Aj, i, j = 1, 2, · · · , N.
The following lemmas provide major steps for finding the optimal trading strategies

under partial information. Since the proofs are closely related to those in Lakner (1998) and
Ocone and Karatzas (1991), we omit them.

Lemma A1. For every u ∈ [0, T], m(u) ∈ D1,1 and

Dtm(u) = φ(u)φ−1(t)(σµρ + γ(t))1{t≤u}.

Denote F = f (W̃r(t), W̃S(t)) = (λr, m(t)) and DF = (D1F, D2F) with components

DiF =
∂ f
∂xi , i = 1, 2,

where “∂” denotes a partial differential operator. Using Malliavin derivatives, we have

Dt

(
λr

m(u)

)
=

 ∂λr
∂W̃r(u)

∂λr
∂W̃S(u)

∂m(u)
∂W̃r(u)

∂m(u)
∂W̃S(u)


=

(
0 0
0 φ(u)φ−1(t)(σµρ + γ(t))

)
,

(A2)



Risks 2022, 10, 211 17 of 20

also, by (13), we have

Dt

∫ T

0
r(u)du =

∫ T

t
Dtr(u)du =

∫ T

t

 ∂r(u)
∂W̃r(u)
∂r(u)

∂W̃S(u)

du (A3)

=

( ∫ T
t

(
−
∫ u

t σrDtea(s−u)dW̃r(s)− σrea(t−u)
)

du
0

)

=

(
−
∫ T

t σrea(t−u)du
0

)
=

(
σr(e−a(T−t)−1)

a
0

)
.

Note that
m(u) ∈ D1,1,

m2(u) ∈ D1,1,

(λr, m(u)) ∈ (D1,1)
2.

Lemma A2. The following relations hold:

Ẽ[‖(λr, m(u))‖i] < ∞, i = 1, 2, 3, 4,

Ẽ
[∫ T

0
‖2m(u)Dtm(u)‖2du

] 1
2

< ∞,

sup
u≤T

Ẽ[‖(λr, m(u))‖q] < ∞, f or every u ∈ [0, T] and some q > 1,

sup
u,t≤T

Ẽ
[∫ T

0

∣∣∣Dj
t‖(λr, m(u))‖2

∣∣∣4du
]
< ∞, j = 1, 2,

Ẽ
[∫ T

0
‖(λr, m(u))‖2du

] 1
2

< ∞,

ẼζT < ∞,

in which || · || is the Euclidean norm.

Introduce

V1 = −
∫ T

0
(λr, m(u))dW̃(u) , V2 =

1
2

∫ T

0

∥∥∥∥( λr
m(u)

)∥∥∥∥2

du.

Lemma A3. Both V1 and V2 are members of D1,1, and

DtV1 = −
∫ T

t

[
Dt

(
λr

m(u)

)]
dW̃(u)−

(
λr

m(t)

)
, (A4)

DtV2 =
∫ T

t

[(
Dt

(
λr

m(u)

))(
λr

m(u)

)]
du, (A5)

where Dt

(
λr

m(u)

)
is given in (A2).

Lemma A4. The following relations hold:

Ẽ
(∫ T

0
‖DtV1‖4dt

)
< ∞ (A6)
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and

Ẽ
(∫ T

0
‖DtV2‖4dt

)
< ∞. (A7)

By applying (A6) and (A7), we have the following result.

Lemma A5. The random variable ζT in (29) is a member of D1,1 and

DtζT = ζT(DtV1 + DtV2). (A8)

Furthermore, by considering (A2), (A4), (A5), (A8) and (49), we obtain that

DtζT =ζT

[
−
∫ T

t

(
0 0
0 φ(u)φ−1(t)(σµρ + γ(t))

)(
dWr(u)
dWS(u)

)
−
(

λr
m(t)

)]
=ζT

(
−λr

−
∫ T

t φ(u)φ−1(t)(σµρ + γ(t))dWS(u)−m(t)

)
.

(A9)

So far, we have found the explicit expression of DtζT . However, in addition to ζT ,

I(βe−
∫ T

0 r(u)duζT) and e−
∫ T

0 r(u)du also have random terms, so we still need to calculate

Dt I(βe−
∫ T

0 r(u)duζT) and Dte−
∫ T

0 r(u)du. We first introduce the following auxiliary result
when we prove Theorem 2.

Lemma A6. Given ζT in (27), the function I as the inverse of the derivative of the utility function
u, and with (50) and (51) for I and −I′, the following four relations hold:

Ẽ
[

I(βe−
∫ T

0 r(u)duζT)
]
< ∞, (A10)

Ẽ
(∫ T

0

∥∥∥βζT I′(βe−
∫ T

0 r(u)duζT)Dte−
∫ T

0 r(u)du

+βe−
∫ T

0 r(u)du I′(βe−
∫ T

0 r(u)duζT)DtζT

∥∥∥2
dt
) 1

2
< ∞, (A11)

Ẽ
[
e−
∫ T

0 r(u)du I(βe−
∫ T

0 r(u)duζT)
]
< ∞ (A12)

and

Ẽ
(∫ T

0

∥∥∥I(βe−
∫ T

0 r(u)duζT)Dte−
∫ T

0 r(u)du

+e−
∫ T

0 r(u)duDt I(βe−
∫ T

0 r(u)duζT)
∥∥∥2

dt
) 1

2
< ∞. (A13)

Proof of Theorem 2. In this proof, we use Lemmas A1–A6 and Lemma A.1 in Ocone and
Karatzas (1991). From Lemma A.1 in Ocone and Karatzas (1991) and (A10)–(A13), for every
β ∈ (0, ∞), we obtain four results:

e−
∫ T

0 r(u)du I(βe−
∫ T

0 r(u)duζT) ∈ D1,1,

Dte−
∫ T

0 r(u)du I(βe−
∫ T

0 r(u)duζT)

=I(βe−
∫ T

0 r(u)duζT)Dte−
∫ T

0 r(u)du + e−
∫ T

0 r(u)duDt I(βe−
∫ T

0 r(u)duζT),
(A14)

I(βe−
∫ T

0 r(u)duζT) ∈ D1,1
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and
Dt I(βe−

∫ T
0 r(u)duζT) =βζT I′(βe−

∫ T
0 r(u)duζT)Dte−

∫ T
0 r(u)du

+ βe−
∫ T

0 r(u)du I′(βe−
∫ T

0 r(u)duζT)DtζT .
(A15)

By substituting e−
∫ T

0 r(s)ds I(βe−
∫ T

0 r(s)dsζT) for A in (A1), we have

Ẽ[e−
∫ T

0 r(s)ds I(βe−
∫ T

0 r(s)dsζT) | FS,r
t ] = Ẽ[e−

∫ T
0 r(s)ds I(βe−

∫ T
0 r(s)dsζT)]+∫ t

0
Ẽ
{[

Du

(
e−
∫ T

0 r(s)ds I
(

βe−
∫ T

0 r(s)dsζT

))]T
| FS,r

u

}
︸ ︷︷ ︸

C

dW̃(u). (A16)

For the second item on the right-hand side of (A16), by (A3), (A9), (A14) and (A15),
we have

C= Ẽ
[

e−
∫ T

0 r(s)ds I(βe−
∫ T

0 r(s)dsζT)

(
−σr(e−a(T−u) − 1)

a
, 0

)

+βe−2
∫ T

0 r(s)dsζT I′(βe−
∫ T

0 r(s)dsζT)

(
−σr(e−a(T−u) − 1)

a
, 0

)∣∣∣FS,r
u

]
+Ẽ
[

βe−2
∫ T

0 r(s)dsζT I′(βe−
∫ T

0 r(s)dsζT)×(
−λr,−

∫ T

u
φ(s)φ−1(u)(σµρ + γ(u))dWS(s)−m(u)

)∣∣∣FS,r
u

]
.

Finally, by (39) and (A16), we complete our proof.

Notes
1 Here the bold formatting represents a 2× 1 zero vector.
2 Inequalities (50) and (51) are used to guarantee the inequalities (A10)–(A13) in the Appendix A hold.
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