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Abstract: This paper proposes a two-step LASSO based vector autoregressive (2-LVAR) model to
forecast mortality rates. Within the VAR framework, recent studies have developed a spatial-temporal
autoregressive (STAR) model, in which age-specific mortality rates are related to their own historical
values (temporality) and the rates of the neighboring cohorts (spatiality). Despite its desirable age
coherence property and the improved forecasting accuracy over the widely used Lee—Carter (LC)
model, STAR employs a rather restrictive structure that only allows for non-zero cohort effects of
the same cohorts and the neighboring cohorts. To address this limitation, the proposed 2-LVAR
model adopts a data-driven principle, as in a sparse VAR (SVAR) model, to offer more flexibility
in the parametric structure. A two-step estimation strategy is developed accordingly to resolve
the challenging objective function of 2-LVAR, which consists of non-standard L2 and LASSO-type
penalties with constraints. Using empirical data from Australia, the United Kingdom, France, and
Switzerland, we show that the 2-LVAR model outperforms the LC, STAR, and SVAR models in most
of our forecasting results. Further simulation studies confirm this outperformance, and analyses
based on life expectancy at birth empirically support the existence of age coherence. The results of
this paper will help researchers understand the mortality projections in the long run and improve the
reserving/ratemaking accuracy for life insurers.

Keywords: mortality forecasting; LASSO; adaptive weights; cohort effects; age-coherence; Lee—Carter
model

1. Introduction

With the ongoing increase of life expectancy around the world, mortality modeling and
forecasting have become essential for measuring mortality and longevity risks. In actuarial
research, mortality risk is generally regarded as the risk of financial losses caused by people
living shorter than expected, whereas longevity risk is caused by people living longer
than expected. There can be several factors driving continual mortality improvements, for
example, advances in medical science, innovative improvements in technology, and changes
in lifestyle. Forecasting mortality rates has become an important task in demographic
research and also in the insurance industry. For the latter, the worldwide mortality
improvements have significant impacts on pension funds as well as policymakers. Unreliable
mortality forecasts can lead to inaccurate pricing and reserving and so greater insolvency
risks. Accurate mortality modeling and forecasting methods are very much needed in
assessing mortality and longevity risks.

Among the existing methods to study and forecast mortality rates, the Lee—Carter
(LC) model (Lee and Carter 1992) can be considered as the most widely used factor-based
model. Please see Renshaw and Haberman (2006) and Cairns et al. (2006) for other related
seminal work. More recent developments of such models include He et al. (2021). Studies
such as Perla et al. (2021), Richman and Wiithrich (2021), and Wang et al. (2021) have
considered machine learning extensions of the LC model. Despite their popularity, factor-
based models have certain limitations, such as identifiability (Hunt and Blake 2018) and

Risks 2022, 10, 219. https:/ /doi.org/10.3390/risks10110219

https://www.mdpi.com/journal /risks


https://doi.org/10.3390/risks10110219
https://doi.org/10.3390/risks10110219
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/risks
https://www.mdpi.com
https://orcid.org/0000-0001-8399-6584
https://orcid.org/0000-0001-8049-5290
https://doi.org/10.3390/risks10110219
https://www.mdpi.com/journal/risks
https://www.mdpi.com/article/10.3390/risks10110219?type=check_update&version=1

Risks 2022, 10, 219

2 0f23

the lack of age coherence. More specifically, age coherence is defined as the condition
that forecast mortality rates will not diverge between any two ages in the long run, and it
is a desirable feature from the perspective of biological reasonableness (Li and Lu 2017).
To tackle these issues, vector autoregressive (VAR) models have been proposed, with a
major advantage of having more flexible temporal modeling of mortality rates (see, for
example, Chang and Shi 2021, 2022a, 2022b; Guibert et al. 2019; Yang and Wang 2013,
among others.) In this study, we take a step further and propose a two-step LASSO based
VAR (2-LVAR) model, and this new approach represents a significant contribution to the
expanding family of VAR-type mortality models.

The current VAR models deal with two major challenges of modeling mortality rates:
the high dimensionality (i.e., the large number of ages relative to the number of years) and
the non-stationarity (i.e., consistent temporal reductions). For instance, the influential work
of Li and Lu (2017) proposed a spatial-temporal VAR (STAR) model with pre-determined
sparsity and imposed equality constraints on the coefficient matrix. Consequently, the STAR
model has a small number of unknown parameters that can be estimated ordinarily and is
a co-integration' system that overcomes the non-stationarity problem. The co-integration
also ensures the desirable age coherence property. However, the sparsity of coefficients of
STAR is rather ad-hoc. As an alternative, Guibert et al. (2019) took a data-driven approach
and developed a sparse VAR (SVAR) model with its estimation conducted via the widely
known elastic-net (ENET) algorithm. To resolve the non-stationarity problem, however, the
SVAR model needs to work with mortality improvements (differenced rates) instead.
Consequently, although the SVAR model may improve the performance of mortality
forecasting in some cases, the age coherence property is lost under the SVAR model (Li and
Lu 2017).

Based on the STAR and SVAR models, recent studies have explored different extensions.
Chang and Shi (2020) employed the STAR specification within a time-varying parametric
framework. Feng et al. (2021) adopted the hyperbolic decay to allow for more flexible
sparsity in the coefficient matrix, whereas Shi (2021) enabled this sparsity by considering
sample correlations among age-specific rates. Chang and Shi (2021) incorporated smoothness
penalties to the SVAR model and constructed a smoothed SVAR (SSVAR) model, which
ensures the age coherence property asymptotically.

In this paper, the proposed 2-LVAR model is a new and more effective approach to
combine the merits of the STAR and SVAR models. It also significantly improves upon many
recent VAR extensions for forecasting mortality rates. In short, we adopt the framework
of Chang and Shi (2021) but work with the undifferenced mortality rates. This setting
ensures age-coherent forecasts without requiring that the sample size grows asymptotically,
and significantly improves the SSVAR model. The parameter estimation, however, is not
straightforward, as the framework requires equality constraints, as in the STAR model.
To cope with this technical difficulty while maintaining ease of implementation, a two-
step estimation strategy is devised. In the first step, we eliminate the equality constraint
via substitution and fit the unconstrained model using a usual LASSO algorithm with
age-adaptive weights. The data-driven sparsity in the coefficients is then obtained. In
the second step, we employ the penalized least squares (PLS) as in the STAR model to
accommodate the smoothness penalties.

To demonstrate the effectiveness of our proposed model, we provide empirical
evidence using the mortality rates of four countries: Australia, the United Kingdom, France,
and Switzerland. All data are sourced from the Human Mortality Database (2021), and the
forecasting performances of the LC, STAR, SVAR, and 2-LVAR models are systematically
compared on ages 0-100 using the crude unisex rates from 1950 to 2016. Taking the
root mean squared error (RMSE) as the forecasting performance measure, we show that
the 2-LVAR model consistently outperforms the LC, STAR, and SVAR models when
the 1950-2000 subset is employed as the training sample and up to the 16-step-ahead
forecasting horizons (2001-2016) are considered. The robustness of our results is further
verified by conducting simulation studies. Finally, the age coherence and improved
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forecasting accuracy of the 2-LVAR model is further supported by an analysis of life
expectancy at birth over the period of 2001-2050.

The contributions of this paper are three-fold. First, the proposed 2-LVAR model
significantly complements the influential studies of Li and Lu (2017) and Guibert et al. (2019),
as well as their recent extensions. In particular, the age coherence property of 2-LVAR addresses
the current problem of the SVAR model. As for the SSVAR model, the age coherence feature
under our model strictly (rather than asymptotically) holds, which is also more suitable for
mortality data with limited sample size. The sparsity of coefficients determined by the LASSO
(L1) penalty is more flexible than those studied in Feng et al. (2021) and Shi (2021). Second,
the employed two-step estimation process successfully resolves the technical difficulty in
fitting our rather complex specification. The LASSO-based estimation in the first step is well
developed, whereas the estimation in the second step has a closed-form solution, being the
same as under the STAR model. Thus, the overall estimation procedure is computationally
efficient. The desirable asymptotic behavior and limited-sample performance are also briefly
demonstrated and discussed for those two-step estimators. In our simulation studies, via
simulation evidence, the computational cost of 2-LVAR is at a similar level compared to the
STAR and SVAR counterparts. Third, we systematically study the forecasting performance
of the 2-LVAR model for mortality data of four different countries. Its outperformance over
the LC, STAR, and SVAR models indicates the effectiveness of our method to model and
forecast mortality rates. Moreover, like the STAR, SVAR, and SSVAR models, the proposed
framework can be readily extended to accommodate multi-population modeling. This
extension would provide unique information about the cross-population properties and
can ensure coherent (non-diverging) forecasts across both ages and populations.

The remainder of this paper is organized as follows. In Section 2, we describe the STAR
and SVAR models and briefly explain their drawbacks and also those of recent extensions.
We specify the 2-LVAR model and discuss relevant technical details in Section 3, including
the statistical properties and estimation procedure. In Section 4, we conduct empirical
and simulation studies. Finally, Section 5 concludes this paper and highlights future areas
of research.

2. Existing VAR Models

The expanding family of VAR mortality models are attracting increasing attention
and provide a sound alternative to traditional factor-based models in the field of modeling
and forecasting mortality rates. Compared to those factor-based models such as LC, VAR
models offer more flexibility in the specification of the temporal structure, and would
capture time, age, and cohort dependencies of mortality data more adequately, without
normalization constraints (Guibert et al. 2019; Li and Lu 2017). In addition, when certain
parameter constraints are imposed, VAR models can lead to coherent projections between
ages and/or between populations. A typical VAR(1) model has the following specification:

yr = C+By,_1 + ¢, 1)

where y; = (Y1, Y24, ---,yNt) is the age-specific logged central mortality rates vector
(N x1),C=(c1,¢2,...,cn)" is the intercept, B is the coefficient matrix, also known as the
Granger causality matrix, and & = (€1, €24,...,€n,)  is the vector of error terms. The
sample size is denoted by T.

However, there are two outstanding issues in employing a VAR model to study
mortality data as discussed in the literature (Shi 2021):

1.  To produce meaningful estimates and forecasts, the VAR process has to be stationary.
However, mortality rates are usually treated as following a non-stationary process in
the literature, due to their declining trends over time.

2. Under a standard VAR framework, there are often more unknown parameters than
observations for mortality data. Consider a VAR(1) model for N age groups. For
Inm,; of each age x, all N lagged log mortality rates need to be considered. Hence,



Risks 2022, 10, 219

4 0f 23

the total number of unknown parameters to be estimated is p = N(N + 1), which
includes N intercepts. Since the number of years T is usually small (dozens), the
p >> NT issue will arise even for an intermediate size of N such as 50. The >>
sign indicates that the number of unknown parameters is much greater than that of
observations. This issue is particularly relevant in life insurance practice.

Two pioneering approaches have been proposed in the literature that attempt to
address these issues in VAR models. Li and Lu (2017) designed the STAR model with a
restrictive coefficient matrix. The restriction focuses on the cohort effects and essentially
only allows mortality rates of neighboring ages to interact. To modify this rather ad-hoc
structure, Guibert et al. (2019) employed the SVAR model with an ENET penalty estimation
method. The SVAR model uses a pure data-driven method to forecast mortality rate
improvements within a high-dimensional VAR framework.

2.1. The STAR Model

The STAR model allows for the cohort and period effects in mortality modeling. To
deal with the stationarity issue, the STAR model employs an equality constraint in the
coefficient matrix such that there is co-integration on the temporal dimension. To reduce
the dimensionality of p, STAR applies the sparse spatial information for the age groups.
Specifically, Li and Lu (2017) imposed an ad-hoc sparse structure on the coefficient matrix
to restrict the number of non-zero parameters.

Considering the VAR(1) model given in Equation (1), the specification of STAR model
is provided below:

Vi =c1+Yyi—1+ters
Yo = 2+ (1 —a2)yo -1+ a2y1,4—1 + €24, and
Vig=ci+ (1 — i — Bi)Vig—1 + aiVi—1,6-1 + BilVli—2,4-1 + €t
wherei = 3,4,...,N,and t = 1,2,...,T. The error terms ¢;; are assumed to follow a

multivariate Gaussian distribution with mean vector 0 (N x 1) and variance—covariance
matrix £ (N x N). The coefficient matrix is constrained such that

1 0 0
ay 1—ap 0
B=| B3 a3 l—az3—B3 0 )
0 ‘BN aN 1—DCN—‘BN

In other words, the parameters in each row sum up to be 1 exactly. According to Li and Lu
(2017), this constraint ensures a co-integrated system, which is stationary to carry out the
further estimation.

The elements in B defined above provide direct interpretations of the period and
cohort effects. This property can be considered as one benefit of applying VAR-type models
in mortality modeling. Specifically, the diagonal components of B represent the period
effect that captures the impacts of lagged mortality rates of the same age. The sub-diagonal
components represent the effects of different cohorts. As defined in Equation (2), ay is the
cohort effect of the same cohort, whereas B is the cohort effect of the next younger cohort.

As proved by Li and Lu (2017), by ensuring that all rows of B sum up to 1 (the
equality constraint), the specification of the STAR model has co-integration and thus
resolves the stationarity issue. Specifically, for all neighboring age pairs, y;; and y;11, are
co-integrated with the order (1,—1). In other words, although y; ; is assumed non-stationary
fori=1,...,N,y;; — yiy1, will be stationary fori = 1,..., N — 1. Therefore, forecast rates
of neighboring age groups will not diverge in the long run and are age coherent. Moreover,
as the total number of parameters becomes p = 3N — 3, which is usually much smaller
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than NT, it enables the estimation of VAR. The forecasting is performed in an iterative
fashion as follows:
9141 = C+ By, forh = 1and
yAtJ’,h == C + Byt+h,1, for h > 1
Further, the PLS objective function is used to estimate the parameters. Quadratic
smoothness penalties are imposed to reduce the randomness in estimates caused by small

sample sizes of mortality data (Li and Lu 2017). Specifically, the following objective function
is used in the estimation of STAR model:

- .1
(€,B) =argmin =} |ly — C = Byra [l + 11 [CH|3 + 2 |[B'HE,
4 t=1

where ||.||» and ||.||r are L2 norm for a vector and Frobenius norm for a matrix, respectively.
In addition, the H matrix is defined as below:

10 0 07
-1 1 Do

H=| 9 -1 - o0 ol ®)
.10
L0 0 -1 1]

Essentially, the smoothness penalties involving #; and #; in the above function are
non-standard L2-type penalties. They aim to reduce the irregularities over neighboring
elements in M and neighboring rows of B, which would be caused by randomness due
to small sample sizes of mortality data (Li and Lu 2017). The larger #; and 7, are, the
smoother the estimates will be.

One major drawback of the STAR model is the ad-hoc structure assumed in (2). The
non-zero constraints can cover only the cohort effects of the same cohort and the next
younger cohort. They cannot accommodate the cohort effects of younger or older cohorts.
Moreover, the STAR model ignores the possible differences in the sparsity of Granger
causality matrix B between different populations.

Based on the STAR framework, Feng et al. (2021) and Shi (2021) suggested two
modifications to allow for more flexible sparsity in B. Feng et al. (2021) set the effect
of younger cohorts to reduce hyperbolically, whereas Shi (2021) used the sample correlation
for this decay rate. Despite the improved flexibility, there are two remaining issues. First,
the older cohorts (super-diagonals in B) are treated as immaterial with Os. This structure
is still ad-hoc and may not be applicable for all populations. Second, for computational
convenience, the decay rates in Feng et al. (2021) and Shi (2021) are set the same across all
age-specific mortality rates. This assumption is inflexible compared to the alternative of
using age-specific decay rates.

2.2. The SVAR Model

As previously discussed, the issue of p >> NT makes it infeasible to estimate the
VAR model via the usual least squares method. Recall that the >> sign indicates that the
number of unknown parameters is much greater than that of observations. In the general
econometrics content, one potential solution is the SVAR model. In the existing literature,
the SVAR model has been extensively studied (see, for example, Basu and Michailidis 2015;
Fan et al. 2011, among others), and different methods have been explored in shrinking
the entries of Granger causality matrix B to zero. For instance, one common method is
to employ a LASSO-type (L1) penalty to force some coefficients in the Granger causality
matrix B to become exactly zero.
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Regarding the modeling and forecasting of mortality data, Guibert et al. (2019)
employed the SVAR model as a pure data-driven approach and an alternative of STAR.
There are two major differences compared to the STAR method. First, in order to have
stationarity, the differenced mortality rates (Ayy: = Yxt — Yxi—1), Or the mortality
improvements, are modeled. Second, instead of the ad-hoc structure in (2), the choices of
non-zero entries in B are determined by the data. In the matrix form, the specification of
SVAR model with lag one is displayed below:

Ay =C+BAy;_1+ ¢,

where Ay = (Ayay, ..., Ayny)’. The estimation is conducted via the widely adopted
ENET algorithm (Zou and Hastie 2005). When only the LASSO penalty is considered, we
have the following objective function:

A 1 & N
(C,B) = argmin > Y 1Ay —C—Byql5+AY1Bil
4 t=1 ij

where ||.||2 is the L2 norm or the Euclidean distance of a vector, A is the L1 penalty parameter
that aims to shrink some of the f; js to zero and therefore controls the sparsity of B matrix.

Note that the initial SVAR model is not tailored to mortality data, and so employing
it without suitable modifications may generate questionable results. For instance, the
empirical analysis in Guibert et al. (2019) indicated that the mortality improvement at age
95 could still influence the improvement at age 45 (i.e. ,[345/95 # 0), which is not sensible. To
overcome this problem, Chang and Shi (2021) employed age-adaptive weights, the details
of which will be discussed in Section 3.

A more critical issue of the SVAR model, however, is the lack of age coherence. This
problem arises from the fact that there is no co-integration allowed, as a direct consequence
of using the mortality improvements. The SSVAR model developed in Chang and Shi
(2021) may achieve age coherence, though only asymptotically. This limitation may hinder
the performance in mortality forecasting, especially when the training data often have a
small sample size.

3. The 2-LVAR Model

In this section, we specify the proposed 2-LVAR model and present the two estimation
steps of the model, together with a procedure to select tuning parameters. Statistical
properties related to the co-integration and age coherence are also briefly discussed.

3.1. Model Specification

To retain the merits of STAR and SVAR models, it is preferable to work with the
original mortality rates via a data-driven approach. The 2-LVAR model is particularly
designed to study and forecast mortality in this direction.

With the same model specification expressed in Equation (1), the major difference
between the 2-LVAR and STAR models rests on the specifications of Granger causality
matrix B. The more flexible matrix in the 2-LVAR model is displayed below:

Bi1 Pz Bz - Pin
B 1 B2 P2z - Pon

,BNl ,BNN

This more flexible specification is able to incorporate more complicated patterns in the
cohort effects, compared to the recent extensions by Feng et al. (2021) and Shi (2021). To have
the co-integration, as in the STAR model, we require the equality constraint }; ;; = 1 for
alli =1,...,N. Further, we follow Chang and Shi (2021) to impose smoothness penalties



Risks 2022, 10, 219

7 of 23

and employ age-adaptive weights (see below). The former helps reduce the irregularities in
parameter estimates due to small sample sizes, whereas the latter recognizes the lessened
cohort effects with widened age gaps.

The aim of setting age-adaptive weights, denoted by w;; foralli,j =1,2,...,N,is to
penalize B;; differently by |i — j| when estimating the non-zero entries in B. The rationale is
that the mortality rates at a particular age i are more correlated to those of ages closer to i,
compared to those of ages far away from i (Shi 2021). Hence, for larger |i — j|, B;; should
more likely be shrunk to zero or ;; should be more penalized in the objective function.
Accordingly, Chang and Shi (2021) defined w;; as follows:

- —exp{'i;” } @

where |i — j| is the absolute distance between two ages i and j, and 0 is a tuning parameter
that controls the sensitivity of shrinkage to the distance between i and j. According to
Chang and Shi (2021), the choice of 6 is confounded with the L1 penalty and may be
specified by the user rather than estimated from the data. As will be shown in Equation (6),
the value of § and the penalty term A have a confounding impact on the loss function. Thus,
it is adequate to fix the value of 0 and select A only as the tuning parameter. In this study,
we follow Chang and Shi (2021) and let 6 = 10.

It is worth noting that other than the exponential function to derive wij, methods such
as the Matérn family (Cressie and Wikle 2015) may also be adopted, which requires more
rigorous computations.

3.2. Estimation of the 2-LVAR Model

The estimation of 2-LVAR model is a non-trivial problem. Ideally, based on the
discussions in Section 3.1, the objective function of the 2-LVAR model may be constructed
from those of the STAR and SVAR models jointly. Following Chang and Shi (2021), together
with the adaptive weights, it may be stated as below:

o>

(&

1¢
) =argmin= ) |ly: —C— By 1||2+A2wz;|ﬁz,] +m[[CHIZ + 2 |BH|E  ©)
=

ij

where H and w;; are defined in (3) and (4), respectively, and we constrain that Zj]i 1Bii=1
foralli =1,...,Nand B;; € (—1,1). As stated in previous research such as Li and Lu
(2017), those constraints are imposed to ensure the stationarity of the VAR system. A formal
proof is given at the end of this section.

The challenge of the estimation is the need to deal with the equality constraint and
smoothness penalties at the same time. Note that under the non-standard L2 form of the
smoothness penalties, even without the equality constraint, the objective function cannot be
solved using the ENET algorithm. Incorporating the equality constraint further complicates
the computation. To resolve this technical problem, we split the estimation (objective
function) into two steps (parts), where each step (part) can be efficiently computed. In
short, we convert the optimization into an unconstrained LASSO exercise in the first step
and solve the PLS with a closed-form solution in the second step.

In the first step, the aim is to locate the non-zero elements of the B matrix using
adaptive weights w;;. With a pre-determined A, one then needs to minimize the objective
function given below:

o 1 T N
(C,B) = fggli Z ly: —C— By l5+ A Y wiilBijl, (6)
t=1 1,]

where w;; is defined in (4), and we constrain that Z Zq1Bij=1foralli=1,..., N.
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To accommodate the equality constraint without increasing the computational burden,
this constraint may be eliminated via substitution. Without loss of generality, consider the
first age with the following specification:

Y1t = c1+ Briyie—1 + Brayo -1+ + BINYNt—1 T+ €1t (7)

Under the constraint ) f1; = 1, we can write f17 = 1 — 12 — - - - — B1n. Now, we substitute
this in Equation (7) and obtain

Yt —Yi—1 =1+ Pr2(yoi—1 —yi—1) + -+ BINWUN—1 — Y1,4-1) + €1t

Then, for ages spanning 2 to N, we have that

Yor—VYoi—1=0C2+ Poi(yi—1 —Y2-1) + -+ Ban(UNt—1 — Y2ui-1) + €24,
Vit = Yig—1 = i + Bin(Y1,0-1 — Yig—1) + -+ Bin(UN -1 — Vig—1) + €its 8)

YNt —YNt—1 =N+ BN1(V1—1 —YNt—1) + - - F BNN-1(UN-14-1 — YUNt—1) + EN -

Letting Ay;y = yiy — yiy—1 foralli =1,2,..., N we can rewrite (6) as follows:

N T N
Y Y Ay —ci— Y Bij(yj1 — yie—1) P+ A Y wi|Bil. 9
=i i i

With pre-determined A and w;;, it becomes an unconstrained LASSO problem with weights.
Solving it will help identify the locations of non-null ;; in the B matrix.

After obtaining the non-zero locations, the second step is to adopt the smoothness
penalties to reduce the irregularities in estimates. The optimization problem is now
analogous to that of the STAR model, as the sparsity in the B matrix is now determined.
We can write the objective function for the second step as follows:

™M=
M'ﬂ

N , N
Wie—ci— Y B 1> +m Y (ci— i)+ Z(ﬁu Bi—1i-1)>  (10)

2 j=1 i=2 i=2
N

1N— N i—-2
+ 13 Z ; Biivk — Bi—titk—1)>+ Y Y (Bijick — Bi—1,i—k—1)°]-

i=3k=1

I
—

i t

Note that if ,31-]- = 0 is obtained as in the first step, the corresponding f;; is set to 0 in
Equation (10), or otherwise it has to be estimated. In addition, we consider three smoothing
parameters: #; for the intercept M, #; for the temporal effects (diagonal components of B),
and 73 for the cohort effects of different ages (all sub- and super-diagonals of B). In this
step, we define y}/tfl as a new independent variable that is determined by the estimated
Bij in the first step. Specifically, for a given age i, if the estimated f;; # 0, this y;.,tfl =Yji-1
or otherwise _1/; ;_1 = 0. Since all losses are in quadratic form, for a set of pre-determined
smoothing parameters, the optimization follows that for a PLS and therefore has closed-
form solution.”

Despite the two-step nature of 2-LVAR model estimation, the proposed strategy is
expected to produce asymptotically consistent estimators, under fairly general assumptions.
A brief discussion on the assumptions and further simulation results on a small sample
(the case of mortality data) are provided in Appendix B.
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3.3. Tuning Parameter Selection of the 2-LVAR Model

Altogether, in the 2-LVAR model, there are four parameters that need to be pre-
determined and are referred to as tuning parameters: A, #1, 2, and #3. Among them, A is
selected in the first step of parameter estimation, and the rest are selected in the second step.
A usual strategy of selecting those tuning parameters is to employ the cross-validation
technique. However, the leave-one-age-group-out method is not applicable in our case,
because of the time-series nature of mortality data. Therefore, in line with the recent studies
of Chang and Shi (2021) and Shi (2021), we employ the procedure known as ‘evaluation
on a rolling forecasting origin” discussed in Hyndman and Athanasopoulos (2018). The
selection procedure of A in the first step is described below:

1. Outof T data points, we use the first 80% as the training sample (i.e., y;,1, ¥i2, - - -, Y 0.81])s
where [-] is a function to obtain the integer part;

2. For a given A, minimize (9) via applying the usual LASSO with adaptive weights on
the training sample and obtain 1-step-ahead forecast J; o g7]1;

3. Extend the training sample by including one more observation (y; (pg7)+1) and repeat
step 2 to obtain 1-step-ahead forecast J; jo g7] 12/

4. Repeat steps 2 and 3 until the forecast j; 7 is generated foralli = 1,...,N;

5. Calculate the root mean square error (RMSE) value as

1 N T—[0.8T]
(T—08T]) x N ; hgl (Yi08T)+h = JijosT]41)*

Then, the optimum value of A can be selected as the value producing the smallest
RMSE through a grid search. In this paper, the grid search of A is performed over
[0.01,0.15].> With the optimum A, we can identify the locations of non-zero entries in B.
Based on its well-studied features, the LASSO algorithm is computationally efficient.

In the second step and for the remaining three tuning parameters 71, #2, and #3,
the same procedure as described above can be followed. Note that the #s are selected
simultaneously via a grid search. In this paper, we consider the range of [0.01,10] for all
three 775.* As discussed above, the loss function in the second step has closed-form solutions.
Consequently, despite its two-step estimation nature with four tuning parameters to be
selected, our 2-LVAR model is computationally efficient. The computational packages are
explained in Appendix A.

3.4. Stationarity of the 2-LVAR Model

In order to maintain the stationarity of the 2-LVAR model, which ensures age-coherent
forecasts, the following assumptions will be made on the 2-LVAR model.

Assumption 1. All series in y; are I(1) time series processes, where I(-) indicates the order of
integration.

Assumption 2. Each row of B sums up to one. That is, YN Bij=1forj=12,...,N.
Assumption 3. The range of all coefficients in B is (—1,1).
Assumption 4. Rank(B) = N.

Note that Assumptions 1-3 are standard in the existing literature. Particularly,
Assumption 1 states that the log mortality rates y; are considered as non-stationary, as
they have a linear long-term trend. Such an assumption is general and widely adopted in
mortality literature (see, for example, Lee and Carter 1992; Li and Lee 2005, among others).
Assumptions 2 and 3 are technical assumptions. They suggest that the row sum of the
Granger causality matrix B is equal to one in which each entry f;; of B can take values
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in between —1 and 1. As detailed in Section 3.2, these two assumptions are imposed as
parameter constraints in the estimation procedure. Similar assumptions have been made in
related literature employing the VAR-type models, such as Li and Lu (2017), Chang and Shi
(2021), and Feng et al. (2021). Finally, according to Assumption 4, y; ; cannot be rewritten
as a perfect linear combination of variables other than y;;_; in y;_;, otherwise B is not
full-rank. The proposition below summarizes the stationarity property of the proposed
2-LVAR model.

Proposition 1. Under Assumptions 1 to 4, the difference between any two series of age-specific
mortality rates y; ; and y;; in the VAR system (1) is stationary for all i,j =1,...,N.

Proof. See Appendix C. [

The above proposition specifies the stationarity of the 2-LVAR model, and this property
ensures the desirable age coherence property in the long run, which are considered as
advantages over the LC and SVAR models. Compared to the age-coherent STAR model,
we highlight that the proposed 2-LVAR model enables us to examine the cohort effects
of mortality rates more comprehensively via a data-driven approach with age-adaptive
weights and computational efficiency. Specifically, the data-driven approach replaces the
ad-hoc structure of the STAR model, whereas the age-adaptive weights provide more
meaningful interpretation of the cohort effects than what SVAR provides. The adopted 2-
step estimation procedure successfully tackles the computational difficulty. In the first step,
the (unconstrained) LASSO method is well developed and is thus fast to execute. In the
second step, the PLS estimation has a closed-form solution with close-to-nil computational
cost. These properties ensure the overall computational efficiency of the 2-LVAR model.

4. Empirical Analyses

To demonstrate the effectiveness of the 2-LVAR model, we examine the crude unisex
mortality rates of Australia obtained from the Human Mortality Database (2021). Two large
European populations of the United Kingdom (UK) and France are also investigated, and
the Switzerland data are exploited to check the performance for a small population. To have
a reliable and sufficient dataset, we follow Booth et al. (2006) to select an appropriate range
of data from 1950 to 2016 covering ages 0-100. The temporal range is to be consistent with
recent studies including Guibert et al. (2019), such that the results are directly comparable.
The log central mortality rates are plotted in Figure 1. For all four countries, the mortality
rates demonstrate consistent improvements over time. Compared with the other three
populations, the mortality curves of Switzerland are more irregular with larger variations
at ages 0-50, due to the smaller population size.

In the rest of this study, we split the entire sample into two sub-periods 1950-2000
(training) and 2001-2016 (test). The out-of-sample forecasting performances of the LC (as a
widely used benchmark), STAR, SVAR, and 2-LVAR models are systematically compared.
Additionally, a simulation study is conducted to check the robustness of our results. Finally,
we perform an analysis on the life expectancies at birth over a long period of time.
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Figure 1. Logged central mortality rates of Australia, the UK, France, and Switzerland. The datasets
include both males and females and span the period of 1950-2016.

4.1. Out-of-Sample Forecasting Performance

Consistent with Li and Lu (2017), we adopt the root mean square error (RMSE) to
compare the forecasting performances of the LC, STAR, SVAR, and 2-LVAR models. Three
RMSE calculations are used in the comparison from different perspectives: RMSE over
age groups (RMSEy), RMSE at individual forecasting horizons (RMSE}), and the overall
RMSE measure (RMSE,; ,). The definitions of these RMSEs are as follows:

1 16 .
RMSEx = | 76 2. (Vxrsn = Ixren)?,
h=1
1 100
RMSE;, = 101 Z(yx,T-‘rh - ?x,T+h)2r and
x=0
RMSEy; ), = (Y741 — Gx14i)%
! 101 x h & =,

More specifically, RMSE), is obtained by averaging the RMSE values over all 16 forecasting
steps for the age group x. Similarly, to produce RMSE},, the RMSE values are averaged over
all 101 age groups at the time horizon h; RMSE,j; j, is calculated by considering both age
and time dimensions up to the step /. The descriptive statistics of RMSEy are presented in
Table 1. Figures 2 and 3 display specific values of RMSE, and RMSE},, respectively.
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Table 1. Summary of overall RMSE over age groups.

Model RMSE ;11,16 Mean Std. Dew. Q1 Qs
Panel A: Australia
LC 0.1874 0.1626 0.0936 0.0934 0.1997
STAR 0.1562 0.1373 0.0747 0.0650 0.1951
SVAR 0.1945 0.1512 0.1242 0.0596 0.1934
2-LVAR 0.1357 0.1154 0.0718 0.0556 0.1526
Panel B: UK
LC 0.1623 0.1454 0.0726 0.0912 0.1935
STAR 0.1285 0.1175 0.0521 0.0851 0.1375
SVAR 0.1208 0.1055 0.0591 0.0516 0.1568
2-LVAR 0.1168 0.1047 0.0520 0.0693 0.1170
Panel C: France
LC 0.2159 0.1661 0.1387 0.0548 0.2601
STAR 0.1173 0.1062 0.0500 0.0604 0.1367
SVAR 0.1423 0.1208 0.0749 0.0673 0.1594
2-LVAR 0.1158 0.1023 0.0545 0.0669 0.1274
Panel D: Switzerland
LC 0.3431 0.2610 0.2238 0.0871 0.4365
STAR 0.2517 0.2173 0.1277 0.1168 0.2782
SVAR 0.2882 0.2174 0.1814 0.0737 0.3239
2-LVAR 0.2301 0.1875 0.1341 0.0995 0.2359

Note: This table summarizes the RMSE across age groups (RMSE;) for Australia, the UK, France, and Switzerland.
The training sample includes 1950-2000, and the test sample includes 2001-2016. The compared models are
LC, STAR, SVAR, and 2-LVAR; RMSE,j; 14 is the overall RMSE value across all ages and the 16 forecasting steps.
Other reported statistics are mean, standard deviation (Std. Dev.), first quartile (Q1), and the third quartile (Q3) of
the RMSE,.

In Table 1, we summarize the RMSE values calculated at each age group over all
the 16-step-ahead forecasts (RMSEy) of mortality rates of Australia, the UK, France, and
Switzerland. For comparison purposes, we also report RMSE; 14, the overall RMSE
value across all ages and the 16 forecasting steps. The mean, standard deviation (Std.
Dev.), first quartile (Q1), and the third quartile (Q3) of the RMSE, are reported. For each
population, the numbers in bold indicate the smallest RMSE,j; 14 or descriptive statistic
values among the LC, STAR, SVAR, and 2-LVAR models. From Table 1, it can be clearly seen
that the smallest mean of RMSE, is obtained from our new model 2-LVAR for all countries.
Regarding the variation in performance, the resulting standard deviation under 2-LVAR is
among the smallest of all models. It is also worth noting that Q3 of RMSE, produced by
2-LVAR is lower than those of the other competing models in all cases. Therefore, when
RMSE; is examined, our model appears to provide the highest level of average forecasting
accuracy with only small variations among ages and no excessively large errors. Similarly,
when the overall measure RMSE; 14 is employed, the 2-LVAR model outperforms the LC,
STAR, and SVAR counterparts for all four populations.

Figure 2 provides specific RMSE, values for all ages. It can be observed that for
all countries, the LC and SVAR models may generate very large errors at young ages,
especially for those younger than age 50. For the older ages 90-100, however, the STAR
model is almost always the worst performing model. This may indicate that the ad-hoc
and restrictive structure of (2) could negatively impact the forecasting accuracy at such
old ages. Overall, findings consistent with those in Table 1 can still be drawn: RMSE of
the 2-LVAR model is on average lower than those of the three competing models, with
limited variations and no excessively large errors. Thus, employing age-adaptive weights
with a data-driven approach would further improve the forecasting accuracy of the STAR
framework.
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Figure 2. RMSE over age groups for mortality data of Australia, the UK, France, and Switzerland.
The training sample includes 1950-2000, and the test sample includes 2001-2016. The age group
includes 0-100. The compared models are LC, STAR, SVAR, and 2-LVAR.

In Figure 3, we plot the RMSE values averaged over all ages (RMSE;,) at each
individual forecasting step over 1-16 (corresponding to 2001-2016). Distinct differences
among all four models are displayed. The LC model often leads to the worst forecasting
performance, except for the Australian population. In contrast, the RMSE, of 2-LVAR
model has among the smallest errors at most steps for all countries, suggesting the highest
overall accuracy. The differences between the RMSEs of 2-LVAR and those of the other
models are more obvious at larger forecasting steps (above 4). In addition, the increment in
RMSE), for the 2-LVAR model is getting lower with the increase in steps compared to the
competing models. This result reflects higher forecasting accuracy of 2-LVAR compared to
the LC, STAR, and SVAR models in the long run.



Risks 2022, 10, 219

14 of 23

Method Method

?7
~

Y 2-LVAR 2-LVAR
—— STAR —— STAR
— LC — LC
SVAR SVAR

Z
0.05
4 8 12 16 4 8 12 16
Steps Steps
(a) Australia (b) UK
0.3 0.45
0.40
0.35
02 Method Method
2-LVAR 2-LVAR
~
NS —— STAR 0.30 —— STAR
— c — LC
SVAR SVAR
0.25
0.1 y
0.20 //l
4 8 12 16 4 8 12 16
Steps Steps
(c) France (d) Switzerland

Figure 3. RMSE over forecasting steps for mortality data of Australia, the UK, France, and Switzerland.
The training sample includes 1950-2000, and the test sample includes 2001-2016. The compared
models are LC, STAR, SVAR, and 2-LVAR.

Following Li and Lu (2017), to compare the actual and forecast mortality rates visually,
we calculate the average mortality rates across ages 0-100 in all four countries. The actual
rates over 1950-2016 and the forecast rates over 2001-2016 produced by all four models are
illustrated in Figure 4. To further examine the interval results, 95% prediction intervals (PIs)
are included in addition to the point forecasts for the proposed 2-LVAR model. Consistent
with Li and Lu (2017) and Shi (2021), the PIs are obtained by simulating 1000 scenarios
from the multivariate Gaussian distributed errors. That is, the errors are assumed to follow
a multivariate Gaussian distribution with 0 means and the variance—covariance matrix
equal to the sample variances and covariances’. The h-step forecast #;,, is then equal to
M+ B, 1+ &1y, where &, is obtained via the simulation. Overall, it is clear that the
point forecasts for the 2-LVAR and STAR models are much closer to the observed values
when compared to LC and SVAR for all countries. When considering the interval forecasts,
the 95% Pls of the 2-LVAR model cover the observed values satisfactorily over 2001-2016.
Moreover, it is worth noting that for the Switzerland data, all the point forecasts of LC and
some of SVAR even fall outside the PIs of the 2-LVAR model. The coverage rates of those
PIs are studied in next section.
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Figure 4. Forecast vs. actual mortality rates for mortality data of Australia, the UK, France, and
Switzerland. The training sample includes 1950-2000, and the test sample includes 2001-2016. The
compared models are LC, STAR, SVAR, and 2-LVAR. Presented curves are rates averaged across ages
0-100 for each model or the actual dataset. Dashed lines are the corresponding 95% Pls.

4.2. Simulation Results

To check the robustness of our empirical findings, we conduct a simulation study.
Following Feng and Shi (2018), 1000 random scenarios are simulated for all four countries.
The true underlying models are assumed to be weighted penalized regression splines with
a monotonicity constraint, as described in Wood (1994). This model is often employed to
smooth out the crude mortality rates. We take the following steps to produce simulated
data for all countries:

1. Fit the entire sample over 1950-2000 using the weighted penalized regression splines
and calculate the residual errors by subtracting the fitted rates for age x at time ¢ from
the observed log central mortality rates;

2. Assume a multivariate Gaussian distribution for the collected errors using the sample
means and covariances, and simulate 51 x 101 errors for each country; and

3. Add simulated errors to the fitted values obtained in step 1, and repeat all steps to
produce 1000 scenarios.

For each of the 1000 scenarios for all countries, we fit the LC, STAR, SVAR, and 2-LVAR
models to produce 16-step-ahead forecasts. Using the observed sample over 2001-2016, the
RMSE,; 16 values are then calculated. For each population, we present summary statistics
(mean, standard deviation, first quartile Q;, and third quartile Q3) for these 1000 RMSE
values in Table 2.



Risks 2022, 10, 219 16 of 23
Table 2. Summary of simulation results.

Model Mean Std. Dev. Q1 Qs
Panel A: Australia
LC 0.1892 0.0014 0.1883 0.1901
STAR 0.1667 0.0031 0.1647 0.1687
SVAR 0.1935 0.0049 0.1902 0.1965
2-LVAR 0.1377 0.0031 0.1355 0.1395
Panel B: UK
LC 0.3472 0.0028 0.3453 0.3493
STAR 0.1433 0.0043 0.1403 0.1460
SVAR 0.2811 0.0084 0.2788 0.2877
2-LVAR 0.1231 0.0052 0.1196 0.1264
Panel C: France
LC 0.2166 0.0004 0.2163 0.2169
STAR 0.1235 0.0021 0.1221 0.1249
SVAR 0.1419 0.0024 0.1404 0.1434
2-LVAR 0.1138 0.0021 0.1123 0.1152
Panel D: Switzerland
LC 0.3491 0.0018 0.3479 0.3502
STAR 0.2519 0.0023 0.2504 0.2534
SVAR 0.2817 0.0078 0.2762 0.2863
2-LVAR 0.2276 0.0073 0.2219 0.2322

Note: This table summarizes the RMSE,; 16 produced by the LC, STAR, SVAR, and 2-LVAR models for the
simulated mortality data of Australia, the UK, France, and Switzerland. The simulation is based on the weighted
penalized regression splines with 1000 replicates. Mean, Std. Dev., Q1, and Q3 are the resulting sample mean,
standard deviation, first quartile, and third quartile of RMSEj; 15 produced out of 1000 replicates for each model.

Overall, the descriptive statistics displayed in Table 2 are consistent with our previous
findings. Despite giving the lowest standard deviations in RMSE, the LC model results in
lowest average accuracy. In contrast, being consistent among all countries, our 2-LVAR
model produces the lowest mean, Q;, and Q3 of the RMSE; 14, with relatively small
variations. To compare the differences visually, we plot smoothed densities of the RMSEs
in Figure 5. For all four countries, the densities generated under the 2-LVAR model are
centered to the left end with small standard deviations, and their shapes are roughly a bell
curve.

Regarding the computation runtime, the completed estimation of the LC, STAR,
SVAR, and 2-LVAR models required 0.03, 0.41, 0.57, and 1.03 seconds, respectively. The
runtime is averaged across all replicates and all populations. This result illustrates the
computational efficiency of the proposed 2-LVAR model as argued in Section 3. Thus,
with marginally increased computational cost, our simulation results demonstrate that
overall the 2-LVAR model outperforms the LC, STAR, and SVAR models in terms of the
out-of-sample forecasting accuracy.

Finally, we compute the coverage rate of the 95% PIs as explained in Section 4.1. This
rate is calculated by considering the proportions that the PIs cover the true values, as
plotted in Figure 4. For each previously generated replicate, we compute the 95% PI of
mortality rate averaged across all ages over 2001-2016. The proportion of the true values
falling within this PI is then recorded. On average, this proportion is 97.7%, 99.1%, 98.7%,
and 96.3% for Australia, the UK, France, and Switzerland, respectively. Thus, the interval
estimation of 2-LVAR introduced in Section 4.1 provides a reasonable way to construct
the Pls.
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Figure 5. Density plots of RMSEs of simulated mortality rates of Australia, the UK, France, and
Switzerland. The curves are based on smoothed densities produced by the 1000 RMSE; 14 for
each model.

4.3. Analysis of Life Expectancy over the Long Term

Considering the long-term dynamics, we examine the (period) life expectancy at birth
(ep) for each country. Note that the calculation of ¢y involves the mortality rates of all
ages. Thus, apart from the demographic importance, the analysis of ¢y provides insightful
information for the mortality dataset under investigation and is particularly useful for a
long-term view.

In line with our previous setting, the training sample consists of years 1950-2000. We
then forecast the life expectancy at birth up to 2050. To demonstrate the influence of age
coherence, we compare only the forecasts of the LC and 2-LVAR models. Figure 6 displays
both point and interval forecasts for all the four countries examined. The observed ¢y over
1950-2016 and the forecast ¢y of the LC and 2-LVAR models over 2001-2050 are plotted.
Based on 1000 simulated scenarios, the 95% PIs from the 2-LVAR model are also reported,
where errors are assumed to follow a multivariate Gaussian distribution (Li and Lu 2017;
Shi 2021).

For all four countries, it is clear that the 2-LVAR model consistently produces higher
mean forecasts of ¢g than the LC model. This difference supports the fact that the mortality
forecasts of the 2-LVAR model are age-coherent. According to Li and Lu (2017), age-coherent
mortality forecasts will lead to higher life expectancy than non-age-coherent forecasts, as
the mortality improvements at very old ages are higher for age-coherent forecasts. Over the
period 20012016, forecast values of ey from the 2-LVAR model are closer to the observed
values than forecast ¢y from the LC model in all countries. Further, all the observed values
of eg fall well within the corresponding 95% PIs under the 2-LVAR model. In 2050, for
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Australia, the UK, France, and Switzerland, point forecast values of ey obtained from the
2-LVAR model are 89.2, 84.6, 87.0, and 91.5, respectively, and those obtained from LC model
are 86.1, 83.6, 86.1, and 86.3, respectively. Nevertheless, the widths of PIs for 2-LVAR are
narrower than the LC counterparts. As Section 4.2 has shown evidence on the satisfactory
coverage rate of the 2-LVAR PlIs, it may be inferred that the interval estimation of 2-LVAR is
more efficient than that of the LC model.
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Figure 6. Forecast life expectancy at birth for Australia, the UK, France, and Switzerland using the
LC and 2-LVAR models. The training sample includes 1950-2000. The life expectancy is forecast over
2001-2050. Dashed lines are the corresponding 95% Pls.

In summary, regarding out-of-sample forecasting accuracy, the proposed 2-LVAR
model consistently outperforms the LC, STA, R and SVAR models for the populations of
Australia, the UK, France, and Switzerland. This outperformance is shown by the RMSE
values obtained over ages (RMSEy), forecasting steps (RMSE},), and both age and time
(RMSEj; 16)- The age coherence property of the 2-LVAR model is demonstrated when life
expectancy at birth (ep) over 2001-2050 is forecast for all four countries. Once again, we
observe more accurate out-of-sample forecasts of ey under the 2-LVAR model than under
LC over 2001-2016. All our results show that the proposed 2-LVAR model can serve as a
powerful and effective tool in forecasting and studying mortality rates for demographic
and actuarial research.

5. Conclusions and Future Research

In this study, we proposed a two-step LASSO based vector autoregressive (2-LVAR)
model to study and forecast mortality rates. We demonstrated the effectiveness of the
2-LVAR model by considering mortality data of four populations: Australia, the UK, France,
and Switzerland for 1950-2016. The following key results highlight the performance and
effectiveness of the 2-LVAR model.
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First, the 2-LVAR model retains the advantages of both the STAR (Li and Lu 2017)
and SVAR (Guibert et al. 2019) models by adopting a more general framework. It resolves
the outstanding issues of the recently developed extensions of STAR and SVAR models
in Feng et al. (2021), Shi (2021), and Chang and Shi (2021). Specifically, we remove the
ad-hoc structure of the Granger causality matrix as in the STAR model and adopt a data-
driven approach to select non-zero elements. Compared to the SVAR model, by employing
the age-adaptive weights proposed in Chang and Shi (2021), the data-driven approach
is more appropriately tailored to mortality data. Second, the proposed 2-LVAR model
has attractive technical features. The two-step strategy largely reduces the challenge to
accommodate the constrained LASSO with non-standard L2-type penalties. In each step,
the estimation algorithm involved is either well developed (unconstrained LASSO with
weights in the first step) or in closed-form (for PLS in the second step). Consequently, the
overall computational efficiency of 2-LVAR is at a similar level as the less complicated
counterparts STAR and SVAR models and much higher than those of the SSVAR and
CSVAR models. Further, working with the equality constraint and undifferenced mortality
rates, the desirable co-integration is realized, and thus age-coherent forecasts of mortality
rates can be obtained. Third, our empirical analyses demonstrate the improved out-of-
sample forecasting accuracy of 2-LVAR over the LC, STAR, and SVAR models. Using a
comprehensive dataset of crude unisex mortality rates of Australia, the UK, France, and
Switzerland over 1950-2016 for ages 0-100, our 2-LVAR model generally outperforms the
three competing models. Simulation results further confirm these findings.

As for future research directions, it is worth exploring ways to address the limitations
of the 2-LVAR model. For instance, as shown in Section 4.1, the coverage rate of Pls of
2-LVAR is higher than expected. This result may be attributed to the lower efficiency of the
sample variance—covariance matrix when it is used to estimate the population parameters
with a small sample size. To overcome this inefficiency, future research may consider
the modeled error dependencies as in Li and Lu (2017) and Chang and Shi (2021). Other
possibilities include exploring the Bayesian framework to enable more comprehensive
parametric structure on the covariance (Li et al. 2019). In addition, this paper focuses
on the single-population scenario only. Due to reasons such as global improvement in
public health, medical advances, transportation, and technology, the mortality rates of
(geographically, socially, culturally, etc.) related populations tend to be (strongly) correlated.
Thus, it is worth investigating multi-population mortality modeling. Previous studies such
as Li and Lee (2005), Cairns et al. (2011), and Zhou et al. (2014) have made significant
attempts on the multi-population mortality modeling to study common patterns in a large
group of populations. The extension of VAR-type models to a multi-population framework
is usually straightforward, and attempts have been made for the STAR and SVAR models.
Following Li and Lu (2017), Guibert et al. (2019), and Chang and Shi (2021), a similar
extension can be made for the 2-LVAR model. See Appendix D for an example. In simplicity,
the ideal overall objective function will involve population-wide tuning penalties. The
specific two-step objective functions and other relevant technical issues remain for future
work. Finally, it is worth noting that the data availability of Human Mortality Database
(2021) is extended to 2018, when the paper was written. Future studies may consider
extending the temporal range and make use of the more recent mortality rates.
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Appendix A. Computational Packages

We use the software R (R Core Team 2022) to perform the computations of all models.
The LC and SVAR models are implemented using the demography (Heather Booth et al.
2019) and sparsevar (Vazzoler 2021) packages, respectively. The SVAR and 2-LVAR models
are computed with code written by the authors.

Appendix B. A Discussion on the Consistency and Efficiency of the 2-LVAR Model

Although a thorough investigation is out of the scope of this study, we briefly discuss
the asymptotic consistency of the estimators of 2-LVAR model in this section. As described
in Section 3, the first step of fitting 2-LVAR is equivalent to solving a usual non-constrained
weighted LASSO problem. Following the seminal work of Fu and Knight (2000) (see
Theorem 1 therein), as long as a regularity assumption holds and A = o(T), we can
infer that the estimators are all asymptotically consistent. The second-step objective
function is essentially convex with quadratic terms only. Thus, assuming that smoothness
penalties are all o(T) and using the convexity lemma in Pollard (1991), one can show that
the corresponding estimators are asymptotically consistent. Therefore, despite its two-
step nature, the resulting estimators of 2-LVAR model are expected to be asymptotically
consistent. The limitation is, however, that the estimation efficiency might be relatively lower.

As mortality data are often of small size, we perform a simplified simulation study
to illustrate the behavior of 2-LVAR estimators with limited sample sizes. In the true
model assumed as in Equation (1), we let T = 67 (years 1950-2016), N = 101 (ages 0-100),
c; = —0.1 (average mortality improvement), B;; 1 = B;;+1 = 0.2 (first sub- and super-
diagonal) and B;; = 0.6 (diagonal), and all other Bs are set to 0. For the correlation matrix of
errors, we let corr(e; s, €j41+) = corr(gjt, €i11¢) = 0.1 and all other off-diagonal correlations
are 0. With 1000 replicates, the fitted 2-LVAR estimates are summarized in Table A1l. On
average, it can be seen that only small bias is present for all parameters. This result shows
the consistency of estimators of the proposed 2-LVAR model even when studying mortality
data in practice.

Table Al. Simulated estimates of the 2-LVAR model.

m; ,Bi,i—l ,Bi,i Bi,i+1
Bias —0.0023 0.0048 —0.0060 0.0051
SE 0.0105 0.0095 0.0114 0.0098

Note: Bias and SE of 1;, B iie1/ ,Bi,ir and Bi,z‘+1 are the average bias and standard errors of all age-wise estimators,
respectively. For example, bias of 17; is the average of 101 bias produced for m; withi =1,...,101.

Appendix C. Proof of Proposition 1

Under Assumption 2, without loss of generality, the last column of B can be denoted
by (1 — Zy:_ll Bin,1— ZnNz_ll Bonseos1— ZnNz_ll B N,n> /. In short, since we assume the row
sum of B is 1, the last entry of each row in B is 1 minus the sum of coefficients of the

remaining N — 1 entries in the same row. Based on this notation, subtracting y;_1 on both
sides of Equation (1), we have that

Ay =M+ (B-1In)yi1 + &,
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Ayir = i+ Bii(Y1,-1

where Iy is the N x N identity matrix, Ay; = y; — y;—1 (first difference) for any arbitrary y;.
For the ith equation, it is easy to see that

N-1
Ayip=ci+Bityr—1+-+ Bii—Dyip—1+-+ 1= ) Bra)ynit-1+e&r
n

=1
Combining common factors of s, we have
—yni-1) + o+ Bii = D (Yip—1 —yng—1) + o Bin-1(UN—1-1 — YN-1) T Eir
In a matrix form, this can be written as

Y1,6-1 — YNt-1

Ayr =M+ (B Onx1) : + & (A1)
YN-1,t—1 — YNt-1
YN,t—1 —YNt-1

where Bisan N x (N — 1) matrix given by
5 IN-1
B=BunN-1)— < 01 (N 1) >

Here, B(;.yy_1) is the first (N — 1) columns of B. Therefore, now we can rewrite Equation (A1)
as follows:
Ay =M+ BAy, 1 + &, (A2)

since (y1,-1 — YNt-1,-- - YN—1¢-1 — YN+—1) in Equation (A1) is equal to A'y;_1, and A is
an N x (N — 1) matrix given below:

1 0 0 0 0
01 0 0 - 0
S . (A3)
0 0 0 0 - 1
-1 -1 -1 -1 -+ -1

It is then straightforward to see that Equation (A2) can be treated as a vector error correction
model (VECM), the features of which are formally proposed and discussed in Engle and
Granger (1987). In our case, Equation (A2) is a VECM with the columns of A containing
the co-integration vectors and the columns of B containing the corresponding coefficients.
Clearly, Equation (A3) implies that the rank of A is N — 1. Moreover, by considering
Assumptions 3 and 4, we can infer that the matrix (B — Iy) is full-rank. Thus, since
(B —1Iy) = BA’ and the rank of A is N — 1, B has full column rank or rank(B) = N — 1.
Therefore, it is shown that the mortality processes y; are co-integrated and the rank of
co-integration is N — 1. Furthermore, from matrix A, y; ; is co-integrated with yy  for all
i€ (1,2,...,N—1). Hence, by induction, one can demonstrate that any two series in y;
are co-integrated, and, therefore, the difference between any two series is stationary.

Appendix D. An Example of Two-Population Extension of the 2-LVAR Model

In the simplest case of two populations, the ideal overall objective function can be
revised to

1
ATEME 2 Y. llye =M = By;_1[3 + [P® o B|ly + 11 [M'H®)|3 + 1| B'H?) | 3.
4 =1



Risks 2022, 10, 219 22 0f 23

where y; and M are 2N X 1 (corresponding values of two populations stacked on each
other), Bis 2N x 2N, o is the element-by-element multiplication, and

P2 — MW AW
MW LW |

Here, W is the N x N matrix consisting of adaptive weights of w;;. Note that two LASSO

penalty parameters are assumed, for each of the two populations; H®) is 2N x 2N matrix
consisting of four blocks of H defined in (3). To ensure the age coherence, we will again
require each row of B to sum up to 1.

Notes

1 Please see Engle and Granger (1987) for a formal definition of co-integration. In simplicity, co-integration suggests that some

linear combination of multiple non-stationary sequences will become stationary.

As stated in Appendix B of Li and Lu (2017), obtaining the estimates is equivalent to solving a large linear system of equations.
Those equations are structured by setting the first order of partial derivatives to exactly 0. As explained by Li and Lu (2017), such
a linear system will have a unique (closed-form) solution, since its determinant is polynomial in #’s and is non null. An example
of this analytical solution can be found in Appendix B of Shi (2021). The closed-form estimator of 2-LVAR model is analogous to
that therein, with adjustments on X and penalty matrices (S’s).

3 This range is chosen as considered in Guibert et al. (2019) (SVAR) and Chang and Shi (2021) (SSVAR) for the same L1-type loss.
4 This range is chosen as considered in Li and Lu (2017) (STAR) and Chang and Shi (2021) (SSVAR) for the same L2-type loss.

Under the iid Gaussian assumption, it is well known that the sample variance-covariance matrix is a consistent estimator.
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