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Abstract: In this paper, we introduce a 3D finite dimensional Gaussian process (GP) regression

approach for learning arbitrage-free swaption cubes. Based on the possibly noisy observations of

swaption prices, the proposed ‘constrained’ GP regression approach is proven to be arbitrage-free

along the strike direction (butterfly and call-spread arbitrages are precluded on the entire 3D input

domain). The cube is free from static arbitrage along the tenor and maturity directions if swaption

prices satisfy an infinite set of in-plane triangular inequalities. We empirically demonstrate that

considering a finite-dimensional weaker form of this condition is enough for the GP to generate

swaption cubes with a negligible proportion of violation points, even for a small training set. In

addition, we compare the performance of the GP approach with the SABR model, which is applied to

a data set of payer and receiver out-of-the-money (OTM) swaptions. The constrained GP approach

provides better prediction results compared to the SABR approach. In addition, we show that SABR

calibration is better when using the GP cube output as new observations (in terms of predictive

error and absence of arbitrage). Finally, the GP approach is able to quantify in- and out-of-sample

uncertainty through Hamiltonian Monte Carlo simulations, allowing for the computation of model

risk Additional Valuation Adjustment (AVA).

Keywords: swaption cube; constrained kriging; no arbitrage; option pricing; Hamiltonian Monte Carlo

1. Introduction

The swaption cube is an important financial object as it is used as an input of many
interest-rate derivative pricing engines. It consists in a swaption implied volatility surface,
which is indexed by maturity, strike and tenor. The swaption market is one of the biggest
in the interest rate derivatives market. Swaptions are usually used to hedge, and while
at-the-money (ATM) swaptions are observed to be very liquid, out-of-the-money swaption
prices are often missing or not reliable. The major issue with the swaption cube is that
along its three axes, missing quotes must be interpolated in an arbitrage-free way in order
to be used as the input of some pricing or hedging models.

For equity options, the volatility surface, indexed by the maturity and the strike of
the derivative, is a topic that has been thoroughly studied. A number of machine learning
methods for learning pricing functions have emerged (see, e.g., Ruf and Wang (2019) for an
in-depth literature review). For these volatility surfaces, absence of arbitrage is guaranteed
if there is no call spread, butterfly spread and calendar spread arbitrage opportunities.
A Gaussian process regression methodology, constrained on the no-arbitrage conditions
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for equity options, has been introduced in Chataigner et al. (2021). Using this approach,
they achieved to produce arbitrage-free interpolated prices, and local volatility surfaces,
with their uncertainties. In the literature, several ways of interpolating the missing prices
or volatilities of the swaption cube have been introduced. A distinction needs to be
made between functional interpolation, which is for example polynomial interpolation,
and stochastic interpolation, where stochastic models such as SABR and CEV models
are used. The most common method for interpolating in an arbitrage-free way between
quoted strikes, as well as extrapolating beyond, is to use the SABR model. However,
this construction method requires several observed quotes at different strikes for each
considered pair of tenors and maturities. When there is only one quoted strike observation,
for a given tenor and maturity, three methods are usually employed in the industry to
interpolate the swaption smile. Two of them are based on the cap market. The first
approach consists of using caplet SABR parameters as a basis for the calibration of the
swaption SABR parameters (see, e.g., Hagan and Konikov (2004)). The second, discussed
in Skantzos and Garston (2019), consists of mapping underlying caplet volatilities to the
swaption volatility by making an assumption in relating the moneyness of the swaption to
the moneyness of the underlying caplets. The validity of both approaches decreases when
the tenor of the considered swaptions increases. When cap market data are not available,
parameters of the SABR model are taken as the closest SABR parameters that are calibrated
with quotes. In order to interpolate with respect to maturity and tenor, it is possible to
use functional interpolation directly on swaptions prices, or in a more elaborate manner,
to use functional interpolation on the parameters of stochastic models. As explained in
Johnson and Nonas (2009), in addition to the no call spread and butterfly spread arbitrage,
the interpolated swaption prices must also respect an additional arbitrage condition, named
“in-plane triangular”.

Inspired by the local volatility construction proposed by Chataigner et al. (2021), the
main goal of this paper is to present and study a 3D-constrained GP construction method
for interpolating arbitrage-free swaption price cubes at a given quotation date. Compared
to the equity local volatility construction method proposed in Chataigner et al. (2021),
several improvements have been added:

• The constrained GP regression approach has been extended to an input space of dimen-
sion 3. Numerical implementation of the 3D ‘constrained’ kriging problem is much
more involved than in the 2D case considered in Chataigner et al. (2021). We show that
considering an anisotropic stationary kernel allows us to benefit from the tensorization
of the GP covariance matrix, and it significantly reduces numerical complexity.

• Compared to the equity price surface, the no-arbitrage constraints on swaption prices
are no more directional. Indeed, the in-plane triangular inequality involves prices of
swaptions with different maturities and tenors. This constraint is by far more complex
to handle than the no calendar spreads arbitrage constraint in the equity option case.
It can be viewed as a weaker form of the no calendar spreads arbitrage condition, and
it requires an infinite number of checks in order to be imposed everywhere on the
domain. In our methodology, we consider a weaker version of the in-plane inequality
constraint, and we empirically check in Section 4 that the weaker form is enough to
ensure no arbitrage almost everywhere.

• Computation of the GP prior hyperparameters by Maximum Likelihood Estimation
(MLE) is much longer in the swaption case than in the equity case (see Section 3.3).
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Search for the maximal likelihood has been considerably improved by explicitly
computing the Jacobian of the log-likelihood function.

The paper is organized as follows. In Section 2, we present the conditions on European
swaption prices that preclude from any static arbitrage opportunity at a particular quotation
date. These arbitrage-free conditions on the swaption cube translate into a convexity and a
monotonicity constraints in strike, and into an “in-plane triangular” constraint in maturity
and tenor. In Section 3, we detail the constrained GP regression methodology used to
construct swaption price cubes that do not lead to arbitrage opportunities. Finally, in
Section 4, we apply the presented GP methodology to a data set of payer and receiver
OTM swaptions, and we compare the result to a SABR construction approach, which is the
standard market practice to parameterize rate volatilities.

2. Absence of Static Arbitrages for the Swaption Cube

Before establishing the arbitrage-free constraints for the swaption cube, we set some notation.
Let Sw(Ts, Te, K) be the price, at a given quotation date, of a European payer (receiver)

swaption, with a payer (receiver) swap S(Ts, Te, K) as underlying asset, where Ts and Te

are, respectively, the first and last payment date of the swap with fixed interest rate K. For
equity options, in order to construct an arbitrage-free price or volatility surface, we must
verify that the price of call spreads, butterfly spreads and calendar spreads are positive.
In the strike direction, the butterfly and call-spread arbitrage conditions also apply to the
swaption cube. However, the calendar spread condition does not hold here, as explained
in Johnson and Nonas (2009). A non-trivial no-arbitrage constraint between European
swaptions with the same strike and different option expiries was introduced in this article.
Since this condition translates into an inequality between the price of three swaptions with
the same strikes, it is called an “in-plane triangular condition”.

Proposition 1. The European payer (receiver) swaption price cube (T, t, K)→ Sw(T, T + t, K) is
free of static arbitrage if and only if the three following conditions hold:

(i) For all T, t, K ≥ 0, Sw(T, T + t, K) ≥ 0;
(ii) K → Sw(T, T + t, K) is a convex, decreasing (increasing) function;
(iii) The in-plane triangular condition holds:

For all T, t, h, K ≥ 0, Sw(T, T + t, K) + Sw(T + t, T + t + h, K) ≥ Sw(T, T + t + h, K).

Item (ii) comes from the need for call spreads and butterfly spreads to be positive.
A proof of (iii) is given in Johnson and Nonas (2009).

3. GP Regression to Construct an Arbitrage Free Swaption Cube

In this section, we present a GP-based methodology to build an arbitrage-free Euro-
pean payer (receiver) swaption cube.

For an input domain D of maturities, tenors and strikes, we build at quotation date t0,
a payer (receiver) swaption price cube

Sw : D → R+

(T, t, K) 7→ Sw(T, T + t, K),

satisfying the no arbitrage conditions given in Proposition 1, from n noisy observations
y = [y1, ..., yn]> of the function Sw at input points X = [x1, ..., xn] where xi = (Ti, ti, Ki),
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i = 1, . . . , n. We assume that the price function Sw is represented as a Gaussian process.
The market fit condition is then written as

y = Sw(X) + ε, (1)

where Sw(X) := [Sw(x1), ..., Sw(xn)]> is the vector of the values of the GP at the input
points X. The additive noise term ε = [ε1, ..., εn]T is assumed to be a zero-mean Gaussian
vector, independent from Sw, and with a homoscedastic covariance matrix given as ς2 In,
where In is the identity matrix of size n.

3.1. Classical 3-Dimensional Gaussian Regression

We consider a zero-mean Gaussian process prior on the mapping Sw = Sw(x)x∈D with
covariance function c.

Then, the output vector Sw(X) has a normal distribution with zero mean and covari-
ance matrix C with components cov(Sw(Ti, Ti + ti, Ki), Sw(Tj, Tj + tj, Kj)) = c((Ti, ti, Ki),
(Tj, tj, Kj)) = c(xi, xj). We consider a 3-dimensional anisotropic, stationary covariance
kernel given as, for x and x′ ∈ D,

c(x, x′) = σ2RT(T − T′, θT)Rt(t− t′, θt)RK(K− K′, θK),

where θT , θt, θK are the length scale parameters associated with directions T, t, K, and σ2 is
the marginal variance of the GP prior. The functions RT , Rt and RK are kernel correlation
functions. As explained in Rasmussen and Williams (2005), Sw | y = Sw(X) + ε is again a
GP with mean function η and covariance function c? given respectively by

η(x) = c(x)>(C + ς2 In)
−1y, x ∈ D (2)

and
c?(x, x′) = c(x, x′)− c(x)>(C + ς2 In)

−1c(x′), x, x′ ∈ D, (3)

where c(x) = [c(x, x1), ..., c(x, xn)]>.
Prediction and uncertainty quantification are made using the conditional distribution

Sw | y = Sw(X) + ε. The best linear unbiased estimator of Sw is given as the conditional
mean function (2). The conditional covariance function c∗ can be used to obtain confidence
bounds around the predicted price surface. The hyperparameters of the kernel function c, as
well as the variance of the noise, can be estimated using a maximum likelihood approach or
a cross-validation approach (see Rasmussen and Williams (2005)). The model described in
this subsection corresponds to unconstrained Gaussian process regression, which therefore
does not take into account the arbitrage-free conditions as described in Proposition 1.

3.2. Imposing No Arbitrage Constraints to GP Regression

Conditional on the inequality constraints given in Proposition 1, the process Sw is no
longer Gaussian, and this leads to two difficulties. The first is that we depart from the
classical framework of GP regression, where the posterior distribution remains Gaussian.
The second is that testing the inequality constraints on the entire input domain would
require an infinite number of checks. We will use the solution proposed by Cousin et al.
(2016) which consists of constructing a finite-dimensional approximation SN

w of the Gaussian
prior Sw, which is designed in such a way that the constraints can be imposed for the entire
domain D with a finite number of checks. We then recover the constrained posterior



Risks 2022, 10, 232 5 of 19

distribution by sampling a truncated Gaussian vector. Let us describe the methodology
with more details.

We first rescale the input domain D to [0, 1]3. Without loss of generality, we then
consider a discretized version of this rescaled domain as a 3-dimensional regular grid with
nodes (Ti, tj, Kk), i = 1, ..., NT , j = 1, ..., Nt, k = 1, ..., NK, where NT , Nt, NK are, respectively,
the number of maturities, tenors and strikes we chose for our grid, and (δT , δt, δK) the
corresponding constant steps1. Then, N = NT × Nt × NK is the total number of nodes of
the 3-dimensional grid. Now, each node of the grid is associated with a hat basis function
defined as:

φi,j,k(T, t, K) := max(1− |T − Ti|
δT

, 0)max(1−
|t− tj|

δt
, 0)max(1− |K− Kk|

δK
, 0) .

Then, the GP prior Sw is approximated on D by the following finite-dimensional process:

SN
w (T, T + t, K) =

NT

∑
i=1

Nt

∑
j=1

NK

∑
k=1

Sw(Ti, Ti + tj, Kk)φi,j,k(T, t, K), for all (T, t, K) ∈ D. (4)

Note that the process SN
w corresponds to a piecewise linear interpolation of Sw at nodes

(Ti, tj, Kk), for i = 1, . . . , NT , j = 1, . . . , Nt, and k = 1, . . . , NK.
If we denote Sw(Ti, Ti + tj, Kk) as ξi,j,k, then the vector ξ = [ξ1,1,1, . . . , ξi,j,k . . . , ξNT,Nt,NK ]

>

is a zero-mean Gaussian vector with N× N covariance matrix ΓN with components ΓN
x,x′ =

c(x, x′) for x and x′ two nodes of the grid. Let us define φ(T, t, K) as the N dimensional
vector given as:

φ(T, t, K) = [φ1,1,1(T, t, K), ..., φi,j,k(T, t, K), ..., φNT ,Nt ,NK (T, t, K)].

Then, the finite-dimensional GP prior defined in (4) can be restated in matrix form:
Equality (4) can then be written as:

SN
w (T, T + t, K) = φ(T, t, K) · ξ.

Then, if we define Φ(X) as the n × N matrix of basis functions such that each
row i corresponds to the vector φ(xi), we have that SN

w (X) = Φ(X) · ξ, with SN
w (X) :=

[SN
w (x1), ..., SN

w (xn)]>.
From now on, we will refer to Φ(X) as Φ.

Proposition 2. The following statements hold for European payer swaptions.

(i) The finite-dimensional process SN
w uniformly converges to Sw on D as NT → ∞, Nt → ∞

and NK → ∞, almost surely;
(ii) SN

w is a decreasing function of K on D if and only if ξi,j,k ≥ ξi,j,k+1;
(iii) SN

w is a convex function of K on D if and only if ξi,j,k+2 − ξi,j,k+1 ≥ ξi,j,k+1 − ξi,j,k.

These properties can be proved using the same methodology as in Maatouk and Bay
(2017) for proving monotonicity and convexity. Note that these inequality constraints are
linear in the components of ξ.

Remark 1. For a European receiver swaption, the above properties are the same for (i) and (iii).
However, (ii) has to be replaced by : SN

w is an increasing function of K if and only if ξi,j,k ≤ ξi,j,k+1.
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However, it is not possible to impose the in-plane triangular condition everywhere on
the domain D with a finite number of checks. In empirical Section 4, we consider a weaker
version of this constraint by only imposing its validity for time steps of size 1 year.

This constraint is set using a “fictitious grid” of maturities T∗ = [T∗1 , T∗2 , . . . , T∗N∗T
],

where T∗1 = T1, TN∗T
= TNT and the step δ∗T = 1

T1−TNT
. Therefore, it is a rescaled 1 year step.

Formally, we consider the following weaker version of the in-plane triangular condition:

SN
w (T∗l , T∗l+1, K) + SN

w (T∗l+1, T∗l+2, K)− SN
w (T∗l , T∗l+2, K) ≥ 0, l = 1, . . . , N∗T . (5)

This is equivalent to:

φ(T∗l , T∗l+1, K) · ξ + φ(T∗l+1, T∗l+2, K) · ξ −φ(T∗l , T∗l+2, K) · ξ ≥ 0. (6)

Then, (6) is linear in ξ and can be added to the constraints defined in Proposition 2.
Given property (i) of Proposition 2, if we defineM as the set of 3-dimensional contin-

uous functions which are increasing and monotonic with respect to K, and respecting the
in-plane triangular inequality (for steps of size 1 year, defined as (5)), then our construction
problem consists in finding the conditional distribution of SN

w such that{
y = SN

w (X) + ε

SN
w ∈ M.

Given properties (ii) and (iii) of Proposition 2, our process SN
w satisfies the no-arbitrage

conditions in the strike direction on the entire domainD when these constraints are satisfied
at the nodes. The problem above can then be restated as follows{

y = Φ · ξ + ε

ξ ∈ Cineq.

Indeed, SN
w ∈ M ⇔ ξ ∈ Cineq, where Cineq is a set of linear inequality constraints

as defined in (ii), (iii) of Proposition 2 and the relaxed in-plane triangular inequality
constraint (6).

3.3. Maximum Likelihood Estimation

The parameters of the kernel function c and the noise parameter ς can be given as
an input or estimated. Let Θ = [θT , θt, θK, σ, ς2]>. In our approach, we estimate Θ as the
hyperparameter vector that maximizes the marginal log likelihood L(Θ) for the process SN

w .
The unconstrained Gaussian Likelihood is written as P(y = Φ · ξ + ε|Θ). Under the

finite dimensional approximation, the marginal log likelihood can be expressed as:

L(Θ) = −1
2

y>(ΦΓNΦ> + ς2 In)
−1y− 1

2
log(det(ΦΓNΦ> + ς2 In))−

n
2

log(2π). (7)

This marginal log likelihood also has a closed form derivative with respect to each
parameter Θi (see Rasmussen and Williams (2005)), which is given as:

∂L(Θ)

∂Θi
=

1
2

y>A−1 ∂A
∂Θi

y− 1
2

tr(A−1 ∂A
∂Θi

). (8)

Here, A = (ΦΓNΦ> + ς2 In) and ∂A
∂Θi

is the element-wise derivative of A with respect
to Θi.
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This closed form can be used in order to shorten the computation time of the MLE
in practice. This is useful because the computation of the MLE is longer for the swaption
cube than for the equity surface, since the product ΦΓNΦ> depends on the dimension of
the problem.

Remark 2. The reason for the choice of maximizing the unconstrained likelihood instead of max-
imizing the constrained likelihood P(y = Φ · ξ + ε|ξ ∈ Cineq, Θ) is discussed in Bachoc et al.
(2019). In this paper, it is explained that constraining the GP increases the computational burden of
the maximization, with a negligible impact on the resulting MLE.

3.4. The Most Probable Response Cube and Measurement Noises

In the constrained GP regression case, we consider the mode of the truncated Gaussian
process as an estimator for the cube instead of the mean. For the unconstrained GP
regression case, mean and mode coincide because of the Gaussian profile of the conditional
distribution, but the mode is easier to compute.

The maximum a posteriori (MAP) of SN
w given the constraints satisfies the constraints

on the entire domain. In the sense of Bayesian statistics, it coincides with the mode of the
truncated Gaussian process. Its expression is given in Cousin et al. (2016),

MSN
w
(T, t, K) :=

NT

∑
i=1

Nt

∑
j=1

NK

∑
k=1

ξ̂
i,j,k

φi,j,k(T, t, K), (9)

where ξ̂ =
(

ξ̂
(1,1,1)

, · · · ξ̂(i,j,k), · · · , ξ̂
(NT ,Nt ,NK)

)>
is the MAP of the Gaussian coefficients ξ,

which satisfies the inequality constraints. In order to locate the largest noise terms, we
proceed as in Chataigner et al. (2021). We compute the joint MAP(ξ̂, ε̂) of the truncated
Gaussian vector (ξ, ε). This joint MAP (ξ̂, ε̂) is solution of:

argmax
ϑ,e

P
(
ξ ∈ [ϑ, ϑ + dϑ], ε ∈ [e, e + de] | Φ · ξ + ε = y, ξ ∈ Cineq

)
.

The fact that (ξ, ε) is Gaussian with a mean 0 with the covariance matrix and the
block-diagonal matrix (

ΓN 0
0 ς2 In

)
,

implies that (ξ̂, ε̂) is a solution to the quadratic problem:

argmin
Φ·ϑ+e=y, ϑ∈Cineq

(
ϑ>(ΓN)−1ϑ + e>(ς2 In)

−1e
)

. (10)

The most probable response cube is then MSN
w
(x) = Φ(x) · ξ̂, for x ∈ D, and the most

probable measurement noise is ε̂.

3.5. Sampling

Contrary to constrained spline interpolation approaches, the GP regression is a truly
probabilistic approach. Sampling of the posterior distribution can be used for uncertainty
quantification. The sampling paths of the swaption price cube consist of sampling ξ
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truncated on Cineq, such that Φ · ξ + ε = y. The conditional distribution of ξ | y = Φ · ξ + ε is
multivariate normal with mean vector µcond and covariance matrix Σcond defined as follows:

µcond = ΓNΦ>(ΦΓNΦ> + ς2 In)
−1y, (11)

and

Σcond = ΓNΦ>(ΦΓNΦ> + ς2 In)
−1ΦΓN . (12)

In practice, we will sample this truncated distribution by using Hamiltonian Monte
Carlo, as presented in Pakman and Paninski (2012). The starting vector we must choose has
to satisfy the constraints. Thus, ξ̂, the MAP of ξ defined in Section 3.4, is an ideal candidate.

4. Empirical Results

This section compares the performance of the “constrained” GP regression with a
calibrated SABR approach.

4.1. Data

For our empirical study, our data set consists of, at a quotation date t0, 112 OTM
payer swaptions, 28 ATM swaptions and 112 OTM receiver swaptions with maturities
T = [5, 10, 15, 20] and tenors t = [1, 2, 5, 10, 15, 20, 30]. There is then N = 252 input
prices. For OTM payer swaptions, quotes are provided for the relative strikes KrelPayer =

[0.0025, 0.005, 0.01, 0.02]. For the OTM receiver swaptions, we have KrelReceiver
= [−0.02,−0.01,

−0.005,−0.0025]. At the money, the prices of payer and receiver swaptions coincide. Each
option of our data set is listed with market price, market implied normal volatility, forward
swap rate, absolute strike and annuity. The annuities are computed from a yield curve, and
they are built from the observed swap rates.

Absence of Arbitrages in the Data Set

The first step of our analysis is to check if the data set itself is exempted from arbitrages,
as defined in Proposition 1. The in-plane triangular condition compares swaptions with
the same absolute strike and different options expiries. Since the options in our data set are
quoted for relatives strikes, we do not have multiple observations for the same absolute
strike; then, we lack the data to test the in-plane triangular constraint. We can, however,
test the monotonicity and convexity constraint in the strike direction for both payer and
receiver swaptions and for each pair (Maturity, Tenor) := (T, t). In this data set, there are
28 pairs of maturities and tenors.

As stated in Table 1, there are no violations of the monotonicity constraint; therefore,
the data set is exempted from call spreads arbitrage. The data set is not exempted from
butterfly spreads arbitrage because, for the payer swaptions, only 67.86% of the pairs (T, t)
respect the convexity constraint. Nevertheless, arbitrable observations are not removed
from the data set, since the magnitude of constraint violation is relatively low2, and we
consider that these data bring valuable information to the swaption cube construction
problem. In our GP methodology, we assume that violations of the no-arbitrage constraints
are due to measurement noises. The idea is that even if observations may slightly violate
the convexity constraints, due to, e.g., a lack of market liquidity, the predicted GP surface is
guaranteed to respect this constraint everywhere on the input domain.
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Table 1. Percent of pairs (T, t) respecting the absence of arbitrage in strike constraints defined in
Proposition 1.

Pairs (T, t) Respecting the
AOA Constraints Input Data

Monotonicity Constraint in
K Convexity Constraint in K

Payer 100% 67.86%
Receiver 100% 100%

4.2. SABR Model Benchmark

In all our study, we will use the SABR model as a benchmark regarding the prediction
performance for our Gaussian process model. The SABR model has become a market
standard for interpolation of swaption volatilities in the strike direction.

In this section, we briefly explain the calibration of the SABR model and how we
estimate the parameters of the model.

4.2.1. SABR Model

SABR is a dynamic model in which the forward process F and the volatility process σ̂

satisfy the following system of SDE:
dF̂(t) = σ̂(t)F̂(t)βdW(t), F̂(0) = f
dσ̂(t) = ασ̂(t)dZ(t), σ̂(0) = σ

dW(t)dZ(t) = ρdt

where W, Z are Wiener processes with correlation ρ ∈ [−1, 1], α ≥ 0, 0 ≤ β ≤ 1 and σ > 0.
In our study, we fix β = 1. In order to construct the swaption price cube via the SABR
model, we consider as many SABR models as underlying swap, i.e., pair (T, t).

For a pair (T, t), the calibration procedure is explained in Section 4.3.4. To accommo-
date with negative rates, we use the so-called Shifted SABR model defined as follows:

dF̂(t) = σ̂(t)(F̂(t) + s)βdW(t), F̂(0) = f
dσ̂(t) = ασ̂(t)dZ(t), σ̂(0) = σ

dW(t)dZ(t) = ρdt

where s is the shift parameter.

4.2.2. Model Calibration and Pricing

As explained in Hagan et al. (2002), an approximated analytical solution for the
implied volatility exists. The volatility of a swaption with maturity Tex is given as the
following asymptotic approximation, where we consider β = 1:

σN(K) = σ
f − K

log f
K

·
(

z
x(z)

)
·
[

1 + (− 1
24

σ2 +
1
4

ρσα +
1

24
(2− 3ρ2)α2)Tex

]
,

where

z =
α

σ
log

f
K

, x(z) = log

(√
1− 2ρz + z2 − ρ + z

1− ρ

)
.

This model is free of arbitrage except for very low strikes and large maturities Tex,
for which the smile σN(K) leads to negative probabilities and therefore arbitrages. This
behavior of the smile for such strikes and maturities has been empirically shown in Hagan
et al. (2014). The normal volatilities of the shifted SABR model are obtained by replacing
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in the formula above f by f + s and K by K + s, where s is the shift parameter, which is
chosen according to the data set. In our study, we consider s = 0.025.

In this approach, a set of parameters (β, σ, α, ρ) is mapped to each distinct pair (T, t)
observed. Once we fixed β = 1, the other parameters (σ, α, ρ) are calibrated by minimizing
the following across the m strikes observed for the observed pair (T, t):

m

∑
k=1

[σN(Kk; σ, α, ρ)− σMARKET(Kk)]
2, m > 0. (13)

Then, once the parameters are calibrated for each observed pair (T, t), the price of
European payer and receiver swaptions Sw(T, t, K) is obtained using the normal SABR
volatility σN(K) as input in Bachelier’s pricing formula.

4.2.3. Unobserved Parameter Estimation

The previous section explained how to calibrate the parameters of the shifted SABR
model for each pair (T, t), where we have at least one observation of swaptions prices.
In order to reconstruct the cube, a set of parameters (β, σ, α, ρ) needs to be mapped to
each unobserved couple (T, t). As previously, β is set to 1. Then, for each unobserved
pairs (T, t), each parameter of the set (σ, α, ρ) is chosen as the weighted average of the
corresponding parameter of the four nearest calibrated pairs (T, t). The weight is the
inverse of the distance between the unobserved pair and the four nearest calibrated pairs.
This method of interpolation and extrapolation has been chosen because it offered better
results than a cubic spline approach, especially when extrapolating in-sample. From now
on, this method will be referred to as the “barycentric mean” approach. One problem
of such a method of interpolation and extrapolation is that the SABR model parameters
(β, σ, α, ρ), for each unobserved pair (T, t), are estimated independently in contrary to the
classical calibration. For an unobserved pair (T, t), there is then no guarantee that the
resulting smile will be free of arbitrage. The absence of arbitrage of the swaption cube
obtained using this method is investigated in Section 4.3.3.

4.3. Absence of Arbitrage, Calibration and Prediction Performance

In this section, we compare the violation of AOA, calibration and prediction per-
formance for the cubes constructed from the constrained GP approach and the SABR
benchmark approach introduced in Section 4.2.

4.3.1. Implementation of the GP Regression Approach

Since OTM payer and receiver swaptions are different contracts, with different do-
mains of strike (absolute and relative), they need to be considered separately. For the
OTM payer swaptions, the limits of the 3-dimensional grid are defined by DPayer where T :
[5, 20], t : [1, 30] and K : KPayer, and the limits of the 3-dimensional grid for OTM receiver
swaptions are defined by DReceiver where T : [5, 20], t : [1, 30] and K : KReceiver. For both
payer and receiver swaptions, we consider a GP method with matern 5/2 kernels3 over a
[0, 1]3 rescaled domain. The parameters of the kernels [θT , θt, θK, σ] and the homoscedastic
noise variance are fitted through MLE as described in Section 3.3. Each different set of
observed data will lead to a different metamodel. The MLE is maximized with the function
’minimize’, with the method ’L-BFGS-B’, from the Python library ’Scipy.optimize’. With the
purpose of not ending up with a local minimum, the algorithm is restarted 20 timed with
random starting points. In order to speed up the computation time, the Jacobian of the log
likelihood is given as the input of the optimizer routine.
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The grid of basis functions for constructing the finite-dimensional process SN
w consists

of six nodes in the absolute strike direction, seven nodes in the tenor direction and six
nodes in the maturity direction.

In order to solve the quadratic problem (10), and thereby find the MAP, the Python
library ’quadprog’ is used. Sampling of the posterior swaption cubes distribution is
conducted by Hamiltonian Monte Carlo (see Section 3.5). Its implementation is inspired by
the algorithm described in Pakman and Paninski (2012).

4.3.2. Calibration and Testing Methodology

Let us now explain the methodology used for calibration and testing in practice for
our GP regression model and for the SABR model.

GP regression models and the SABR model are fitted on the same randomly generated
subsets of the whole data set. Each random subset is divided in two equally sized subsets:
one with prices of OTM payer swaptions and ATM swaptions and the other with prices of
OTM receiver swaptions and ATM swaptions. For the prediction performance, the whole
dataset is chosen as the testing dataset.

For the SABR model to calibrate correctly, each pair (T, t) needs at least one ATM
swaption observation, one OTM payer swaption observation, and one OTM receiver
swaption observation. When a small random training set is chosen, it is possible that some
pairs (T, t) end up with one or two observations; then, the calibration could lead to absurd
results. To address this issue, we decided that each random training set will always contain
one observation of the ATM price and at least one observation of a payer and receiver
OTM price for the pairs (5, 5), (5, 10), (10, 5) and (10, 10). Those points are very liquid in
the market, and quotes are then expected in practice. The details of the SABR calibration
procedure are explained in Appendix A.

For the sake of comparability, the observed data for the (T, t) pairs (5, 5), (5, 10), (10, 5)
and (10, 10) are also included in the training data for the GP.

All results below are produced from the following experimental procedure. We first
choose a percentage p. Then, the training set is constituted of two random subsets S1 and S2.
S1 includes a random p% of the ATM swaptions and OTM payer swaptions, and S2 includes
a random p% of the ATM swaptions and OTM receiver swaptions. The SABR model is fitted
on the union of S1 and S2 (there is one set of parameters (β, σ, α, ρ) for each pair (T, t), which
is obtained through calibration or interpolation and extrapolation). The GP regression model
is fitted two times, once on S1 and once on S2, and then, the results for the payer and receiver
swaptions are gathered together. For each ATM value, the value kept is the average of the
values obtained for the swaptions payer and receiver ATM if there is zero or two observations
of this value. If there is only one observation, then the predicted value is taken from the output
of the GP which was fitted on this observation. For each percentage of training data p we
consider, random sampling, fitting, and testing is repeated 200 times. Then, the performance
results are averaged and presented in the tables of Sections 4.3.3–4.3.5.

4.3.3. Absence of Arbitrage in the Predicted Swaption Cube

In this subsection, we compare the performances of the constrained GP regression
model and the SABR model with respect to the arbitrage-free constraints defined in
Proposition 1. The grid we use for testing is a grid of maturities, tenors such that,
T = [5, 6, . . . , 19, 20], t = [1, 2, . . . , 29, 30] and of nine strikes K evenly spaced between
the minimum and the maximum of KPayer when testing the payer swaption cube, and
between the minimum and maximum of KReceiver when testing the receiver swaption cube.
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More precisely, for the monotonicity and convexity in strike constraints, we check how
many pairs (T, t) among the 480 pairs of the testing grid respect the constraints. For the
in-plane triangular constraint, we check the constraints on 5000 randomly selected T1, T2,
T3, K values in the the testing grid. Tables 2 and 3 (respectively, Tables 4 and 5) show the
results for payer (respectively, receiver) swaptions.

Table 2. Respect of the no-arbitrage constraints for the predicted OTM payer swaptions priced by
constrained and unconstrained GP regression, for increasing sizes of training set.

Respect of the
AOA Constraints

GP Payer

Decrease in
Strike

(Constrained)

Convexity in
Strike

(Constrained)

In-Plane
Triangular
Inequality

(Constrained)

Decrease in
Strike

(Unconstrained)

Convexity in
Strike

(Unconstrained)

In-Plane
Triangular
Inequality

(Unconstrained)

p = 15% 100% 100% 100% 87.84% 8.18% 99.58%
p = 30% 100% 100% 100% 93.79% 13.22% 99.97%
p = 50% 100% 100% 100% 94.37% 10.24% 99.98%
p = 70% 100% 100% 100% 99.55% 5.98% 99.97%
p = 90% 100% 100% 100% 92.17% 1.51% 99.92%

Table 3. Respect of the no-arbitrage constraints for the predicted OTM payer swaptions priced
by the chosen SABR model with barycentric mean parameter interpolation, for increasing sizes of
training set.

Respect of the AOA Constraints
SABR Payer Decrease in Strike Convexity in Strike In-Plane Triangular Inequality

p = 15% 99.00% 99.70% 98.09%
p = 30% 99.49% 99.82% 97.96%
p = 50% 99.82% 99.91% 99.186%
p = 70% 99.96% 99.99% 99.90%
p = 90% 100% 100% 100%

Table 4. Respect of the no-arbitrage constraints for the predicted OTM receiver swaptions priced by
constrained and unconstrained GP regression, for increasing sizes of training set.

Respect of the
AOA Constraints

GP Payer

Increase in
Strike

(Constrained)

Convexity in
Strike

(Constrained)

In-Plane
Triangular
Inequality

(Constrained)

Increase in
Strike

(Unconstrained)

Convexity in
Strike

(Unconstrained)

In-Plane
Triangular
Inequality

(Unconstrained)

p = 15% 100% 100% 99.51% 31.46% 82.67% 97.10%
p = 30% 100% 100% 99.08% 49.29% 82.08% 97.37%
p = 50% 100% 100% 99.53% 56.49% 86.41% 98.00%
p = 70% 100% 100% 99.78% 60.03% 93.69% 97.95%
p = 90% 100% 100% 99.94% 56.36% 91.74% 97.87%

Table 5. Respect of the no-arbitrage constraints for the predicted OTM receiver swaptions priced by
the SABR model with barycentric mean parameter interpolation, for increasing sizes of training set.

Respect of the AOA Constraints
SABR Receiver Increase in Strike Convexity in Strike In-Plane Triangular Inequality

p = 15% 99.77% 98.73% 97.67%
p = 30% 99.82% 99.22% 97.62%
p = 50% 99.94% 99.67% 99.05%
p = 70% 100% 99.94% 99.88%
p = 90% 100% 100% 100%

We can observe that the prices produced by the SABR model, for a training set of
size p = 50% of the total input data size or lower, do not respect the monotonicity and
convexity constraints. Still, the number of pairs (T, t) violating the constraints compared to
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the total number of pairs is very low. When we check for which pairs (T, t) the constraints
are not respected, we see that our method for avoiding absurd parameters values during
the calibration of the SABR model does not prevent arbitrage for the observed pairs. For
instance, pairs (T, t) with less than three observations or no observations of one side of
the smile can produce parameters leading to arbitrage. Arbitrage is also violated for
unobserved pairs, for which the parameters are interpolated or extrapolated by barycentric
mean. For training sets of size higher than 50% of the total input size, we can consider that
the SABR model produces free of arbitrages prices.

For payer and receiver swaptions, the monotonicity and convexity constraints in strike
are always ensured for prices estimated through constrained Gaussian process regres-
sion (CGPR), unlike prices predicted through unconstrained Gaussian process regression
(UGPR). We can remark that receiver swaptions prices estimated through UGPR achieve
91.74% on the convexity in strike test, while payer swaptions achieve only 1.51% even when
the 90% of the data set is given as training data. This difference in performance could be
explained by the fact that the payer swaption database is not convex everywhere in strike.

In Section 3.2, we explain that we implement the in-plane triangular inequality con-
straints only for time steps of length 1 year. For payer swaptions, we see that the in-plane
triangular constraint is always respected by the CGPR, and we can consider that it is
also respected by the UGPR. The receiver swaptions table (Table 4) shows the impact of
the 1-year step constraint. While the UGPR does not respect the in-plane triangular con-
straint everywhere, the CGPR produces a negligible error. Although this error is negligible,
it is proof that this 1-year step constraint for the GPR is not enough to ensure that the
in-plane triangular inequality is respected everywhere in the estimated price cube. In
Johnson and Nonas (2009), it is mentioned that practitioners only consider the monotonic-
ity and convexity of Proposition 1. Our empirical results support their decision. Even
though our 1-year step constraint does not totally prevent in-plane triangular arbitrage, it
could still be helpful for extrapolation.

Figure 1 below presents a few graphical examples of price curves for fixed tenors
and maturities produced by constrained Gaussian process regression (left side) and un-
constrained Gaussian process regression (right side). We can easily observe the impact of
the monotonicity and convexity along the strike direction constraint. In the bottom row
of Figure 1, we can notice that the mean relative error of the unconstrained GP regression
is lower than the one of the constrained GP regression. If we observe those two graphs,
we can see that the unconstrained GP price crosses the option data price with the higher
relative strike while the constrained GP price does not. The constrained GP regression
forces the path of the mode of the GP to be convex and increasing/decreasing in strike.
Since the payer data set is not convex everywhere, it is not surprising that the convexity
constraint increases the testing error.
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Figure 1. Constrained GP (left) and unconstrained GP (right) price curves for p = 10% (top), p = 50%
(middle) and p = 70% (bottom).

4.3.4. Calibration Performance

Table 6 shows the calibration performance of our models.

Table 6. Mean relative calibration error and calibration RMSE of the constrained GP regression and
SABR model with barycentric mean parameter interpolation, for increasing sizes of training set.

Average Calibration
Error

Constrained GP Mean
Relative Error

SABR Mean Relative
Error Constrained GP RMSE SABR RMSE

p = 15% 1.77% 1.61% 2.68 12.65
p = 30% 2.29% 1.47% 2.78 10.56
p = 50% 2.67% 2.21% 3.43 11.67
p = 70% 3.02% 2.87% 3.88 13.85
p = 90% 3.25% 3.22% 4.11 14.59

Based on the mean relative error metric, the SABR model calibrates better than the
constrained GP model. That was to be expected, because the constrained GP regression
assumes that the observations are noisy in order to avoid over-fitting and to respect the
constraints of no arbitrage. Since the SABR model is not constrained, it gives better mean
relative error. We can observe that the mean relative error increases with the size of the
training set, and that the error of the GP regression model converges to the error of the
SABR model. However, the constrained GP model average RMSE is lower than the average
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RMSE of the SABR model on all percentages p tested. This means that the estimated
standard deviation of the distribution of the absolute errors of the SABR model is on
average higher than the one of the constrained GP model.

4.3.5. Prediction Performance

Table 7 shows the prediction performance of our models.

Table 7. RMSE of the constrained GP regression and SABR model with barycentric mean parameter
interpolation, for increasing sizes of training set.

Average Prediction Error Constrained GP RMSE SABR RMSE

p = 15% 29.01 172.42
p = 30% 27.83 58.55
p = 50% 9.98 33.25
p = 70% 6.30 20.57
p = 90% 4.71 16.54

Based on the mean RMSE metric, the constrained GP regression performs better than
the SABR model for all percentages. For larger and larger training sets, the two models
perform better and better in prediction with respect to the RMSE.

The complexity of the GP regression is dominated by the inversion of the matrix of size
(Nobs, Nobs), where Nobs is the number of observations in S1 when we fit the payer swaption
cube or the the number of observations in S2 otherwise. The total complexity when
producing the cube is then a O((N3

obspayer
+ N3

obsreceiver
)× L1), where L1 is the computation

cost of the function ’minimize’ with 20 restarts and with the input of the Jacobian matrix of
the MLE, defined in (8), as it significantly speeds up the minimization. The complexity of
the calibration of the SABR model is O((Nobspayer + Nobsreceiver

)× L2) where Nobs is the total
number of observed data and L2 is the computation cost of the function ’minimize’ with 20
restarts and without inputing a Jacobian4. Thus, one of the main drawbacks of GP-based
interpolation is the computer time that can be quite substantial for a large dataset.

4.3.6. SABR Model Calibrated on the GP Predicted Cube

Instead of calibrating the SABR model directly on the observations, it is possible to
use the GP-predicted cube as input. Table 8 shows a significant improvement with respect
to the RMSE between the two methods, especially for low percentage of input data. Indeed,
for these ones, the SABR model cannot be calibrated properly because the smile is not well
enough described. In fact, we need for each tenor and maturity at least one receiver OTM
and one payer OTM to define the skew rho and the convexity alpha, plus a point near the
ATM to define the model volatility sigma. As the percentage decreases, this condition is
less satisfied. Thus, by using the GP cube, we provide an idea of the whole smile and get
around the issue. We can see that the gain for p = 15% is lower than for p = 30%. This
can be explained by the fact that the performance of the GP model deteriorates when there
are too few observations. Tables 9 and 10 provide a comparison of the performance of the
SABR model and GP-SABR model with respect to the no arbitrage constraints.
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Table 8. Average gain in RMSE when calibrating the SABR model with the output of the GP
regression model.

Percentage of
Data Used as

Input
p = 15% p = 30% p = 50% p = 70% p = 90%

RMSE relative
gain 63% 68% 59% 35% 19%

Table 9. Respect of the no-arbitrage constraints for the predicted OTM payer swaptions priced by
the SABR model calibrated on observations or on the output of the GP model, for increasing sizes of
training set.

Respect of the
AOA Constraints

Payer

Decrease in
Strike (SABR)

Convexity in
Strike (SABR)

In-Plane
Triangular
Inequality

(SABR)

Decrease in
Strike

(GP-SABR)

Convexity in
Strike

(GP-SABR)

In-Plane
Triangular
Inequality

(GP-SABR)

p = 15% 99.45% 99.80% 98.51% 99.90% 99.98% 100%
p = 30% 99.68% 99.98% 96.63% 100% 100% 100%
p = 50% 99.75% 99.90% 99.37% 100% 100% 100%
p = 70% 100% 100% 100% 100% 100% 100%
p = 90% 100% 100% 100% 100% 100% 100%

Table 10. Respect of the no-arbitrage constraints for the predicted OTM receiver swaptions priced by
the SABR model calibrated on observations or on the output of the GP model, for increasing sizes of
training set.

Respect of the
AOA Constraints

Receiver

Increase in
Strike (SABR)

Convexity in
Strike (SABR)

In-Plane
Triangular
Inequality

(SABR)

Increase in
Strike

(GP-SABR)

Convexity in
Strike

(GP-SABR)

In-Plane
Triangular
Inequality

(GP-SABR)

p = 15% 99.87% 99.20% 98.22% 99.99% 99.53% 99.52%
p = 30% 99.88% 99.40% 96.43% 100% 99.76% 99.97%
p = 50% 99.88% 99.70% 99.10% 100% 99.80% 100%
p = 70% 100% 100% 100% 100% 99.80% 100%
p = 90% 100% 100% 100% 100% 99.80% 100%

4.4. Uncertainty Quantification

By sampling the truncated Gaussian distribution described in Section 3.5, it is possible
to obtain uncertainties for all the prices estimated through GP regression. The sampling
is performed by Hamiltonian Monte Carlo, using the mode ξ̂ as the starting vector. In
practice, we sample the distribution 5000 times. Therefore, we obtain 5000 GP paths of
the swaption price cube, all respecting the constraints. These samplings could be used
to generate quantiles and calculate model error due to uncertainty. Uncertainties due to
interpolation/extrapolation could also be propagated into rate models to see the impact on
exotic products pricing. For example, we could calibrate an HJM model with “a percentile
90” cube swaption and “a percentile 10” cube swaption; then, we price a basket of bermuda
options with these two models and study the differences (AVA model).

Figure 2 shows examples of price curves produced by constrained and unconstrained
GP regression alongside their empirical pointwise quantiles. We can observe that adding
observations reduces the size of the pointwise confidence intervals. We can also ob-
serve that unconstrained GP regression leads to wider pointwise confidence intervals. In
Figure 2(right-top), the 5% empirical quantile of the posterior of the unconstrained GP is
even negative, which is not allowed for prices.
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Figure 2. Constrained GP (left) and unconstrained GP (right) price curves with uncertainties for
p = 10% (top), p = 40% (middle) and p = 80% (bottom).

5. Conclusions

In this paper, we introduce a methodology to construct a free of arbitrage swaption
price cube based on GP regression. We apply this methodology on a data set of ATM,
OTM payer and OTM receiver swaptions. We show that the constrained GP regression
leads to arbitrage-free swaption cubes along the strike direction for any size of the training
data. Even though the practitioners were usually satisfied by the fact that there are no
call spreads and butterfly spreads, we go further by considering the in-plane triangular
inequality introduced by Johnson and Nonas (2009). We empirically demonstrate that
imposing a finite-dimensional weaker form of this condition is enough for the GP to
generate swaption cubes with a negligible proportion of violation points, even for a small
training set. We then compare the constrained GP model to a state-of-the-art SABR model
fitted on the same data set. We show that the constrained GP performs better in prediction
than the SABR model. The predictive performance of SABR seems to improves significantly
when the model is calibrated on the GP-predicted cube. Finally, the GP approach is able to
quantify in- and out-of-sample uncertainty through Hamiltonian Monte Carlo simulations,
allowing for computation of model risk Additional Valuation Adjustment.
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6. Further Research

A topic left to be addressed is the update of GP hyperparameters when a new quote
streams in. A straightforward solution could be to use the last estimation of the maximum
log-likelihood as the new starting point of the optimizer routine. However, since the
computation cost of the GP regression increases when the number of observation increases,
this solution could be intractable in practice. For this problem, Bayesian Optimization
could be considered. As explained in Shahriari et al. (2016), Bayesian Optimization consists
of selecting the n + 1-th set of hyperparameters, based on an acquisition function computed
with the current posterior distribution of the likelihood function. Yin et al. (2019) present
another way of selecting the n + 1-th point, based on a mean square error criteria.
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A.C. and A.M. All authors have read and agreed to the published version of the manuscript.
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Appendix A. Calibration of the SABR Model

The calibration procedure we applied is as follows:

1. Calibration of the parameters of the SABR model for the pairs (5, 5), (5, 10), (10, 5)
and (10, 10).

2. For all the other pairs, take as a starting value for the parameters α, ρ and σ the value
of the calibrated parameters of the nearest neighbor among the pairs (5, 5), (5, 10),
(10, 5) and (10, 10).

3. Then, for the pairs (T, t), calibrate:

(a) α, ρ and σ if there is at least three observations.
(b) α only if there is one or two observations of payer swaptions OTM (or receiver

swaptions OTM).
(c) σ only if the only observation is the price of a swaption ATM.
(d) ρ and α if there is an observation of a payer swaption OTM and an observation

of a receiver swaption OTM.
(e) α and σ if we observed one swaption ATM and one payer or receiver swap-

tion OTM.

The calibration of the parameters of the model is made through the function ’minimize’
introduced in Section 4.3.1, with the same number of random restarts.

Notes
1 This choice has been made for the sake of clarity. It is also possible to consider a grid with heterogeneous steps.
2 For the observed pairs (T, t) that do not respect the convexity constraint, the violation errors range from 0.4% to 4% of the average

swaption price involved in the convexity constraint.
3 A 1-dimensional Matern 5/2 kernel is given as c(x, x′) = σ2(1 +

√
5|x−x′ |

θ + 5(x−x′)
3θ2 )exp(−

√
5|x−x′ |

θ ).
4 To give an idea, for p = 90%, the computation time for both methods takes less than 30 seconds on a laptop.
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