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Abstract: Heavy tailedness and interconnectedness widely exist in stock returns and large insurance
claims, which contributes to huge losses for financial institutions. Diversification ratio (DR) measures
the degree of diversification using the Value-at-Risk, which is known to capture extreme risks better
than variance. The portfolio optimization strategy based on DR maximizes the effect of diversification
for extreme risks. In this paper, we empirically examine the DR strategy by using more than 350
S&P 500 stocks under the assumption that the stock losses are modeled with a flexible multivariate
heavy-tailed model. This assumption is verified empirically. The performance of DR strategy is
compared with four benchmark strategies: equally weighted portfolio, minimum-variance portfolio,
extreme risk index portfolio, and most diversified portfolio. The performance of comparison includes
annualized portfolio return, modified Sharpe ratio, maximum drawdown, portfolio concentration,
portfolio turnover, and the degree of diversification. DR outperforms other strategies. In particular,
DR shows the highest return and maintains the highest level of diversification during the global
financial crisis of 2007–2009.

Keywords: portfolio optimization; diversification ratio; extreme risk; extreme value theory

1. Introduction

Many empirical studies showed equity returns (losses) and large insurance claims
exhibit heavy tailedness, i.e., the tail of the return (or loss) is power-like, which can lead to
huge losses; see e.g., Jansen and de Vries (1991), Loretan and Phillips (1994), McCulloch
(1997), and Gabaix et al. (2003). Interconnectedness is also empirically observed among
financial assets, e.g., in Billio et al. (2012) and Acharya et al. (2017). Thus, heavy tailedness
and interconnectedness are two features of extreme risks, which can cause sever systemic
risk such as the global financial crisis of 2007–2009. Much research has been devoted to the
study of the systemic risks and the lessons from the financial crisis; see e.g., Gorton (2008),
Huang et al. (2009), Huang et al. (2012), Chen et al. (2014), and Rivera-Escobar et al. (2022).
It is crucial for financial institutions to manage these extreme risks. Diversification is a com-
mon strategy in managing portfolios and it has been studied in different contexts involving
financial risks or insurance risks, for example in Schnieper (2000), Choueifaty and Coignard
(2008), Choo and de Jong (2010), Mainik and Rüchendorf (2010), and Cui et al. (2021).
In this paper, we investigate the performance of an optimal strategy aiming at maximizing
the effect of diversification to mitigate extreme risks.

Quantile-based risk measures such as Value-at-Risk (VaR) can capture the extreme risks
better than the traditional measure, variance, used in the Markowitz portfolio optimization
strategy. In this paper, we measure the effect of diversification by the diversification ratio
(DR), whose formal mathematical definition of DR is presented in Section 2. Intuitively,
DR is the ratio of the risk of the weighted portfolio and the sum of weighted individual
risks, where the risk is measured by VaR. The DR is also called the risk concentration based
on VaR in an actuarial setting; see, for example Degen et al. (2010) and Embrechts et al.
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(2009). In general, 1−DR can be regarded as the measure of the degree of diversification.
Naturally, to maximize the level of diversification, a portfolio optimization strategy is given
by maximizing 1−DR, or equivalently the portfolio that minimizes DR.

Since the focus of this paper is on extreme risks, the underlying risks are modeled by
multivariate regular variation (MRV). The MRV is a multivariate model for extreme risks,
which allows heavy-tailed marginals and flexible dependence structure among the risks.
The technical details of MRV is introduced in Section 2.

Cui et al. (2022) focused on the asymptotic properties of the DR strategy but the
performance was simply examined by showing it yields the lower portfolio risk than other
strategies during the 2007–2009 global financial crisis period. In this paper, we aim to
conduct a more comprehensive empirical analysis to examine DR’s performance with S&P
500 stocks. We first carried out a preliminary analysis of the dataset to show that MRV is a
reasonable model for stock losses. The dataset contains 361 stocks, which have complete
historical data from 1 January 2000 to 29 June 2020. We find that alternate-day log-losses
have weak serial dependence and thus can be viewed as independent data while daily
log-losses show a stronger dependence. For the alternate-day log-losses, we also verify the
heavy tailedness of each stock. Through this analysis, we proceed to assume the 361 stocks’
log-losses follow a MRV model. Although this is a rough assumption, we are still able to
obtain interesting observations. In the second part of the empirical study, we also refined
the study by grouping the stocks with similar tail heavy tailedness.

The DR portfolio is empirically tested using a 5-year moving window and alternate-
day rebalancing. That is, the optimal weights on each trading day are determined using
the data in the past five years and the portfolio is rebalanced every other day. The portfolio
values are then calculated based on the optimal weights on all the rebalancing days in
the backtest period, from 3 January 2005 to 29 June 2020. We examine the performance
of the DR strategy from various aspects. Further, its performance is compared with four
benchmark strategies together with the S&P 500 index. Two classic benchmarks are equally
weighted (EW) portfolio and minimum variance (MV) portfolio. The other two benchmarks
are the extreme risk index (ERI) strategy and most diversified portfolio (MDP) strategy,
whose formal definitions are presented in Section 2. The ERI was proposed in Mainik
and Rüchendorf (2010) under the MRV structure. ERI uses VaR to measure risks and is
essentially the “minimum-VaR” strategy, seen as the counterpart of MV. The MDP was
proposed in Choueifaty and Coignard (2008). The MDP shares the same structure as DR
while using variance as the risk measure. Thus, it can be considered the counterpart of DR.

Overall, DR shows very promising return with the highest annualized return of 15.05%
among the five strategies together with the S&P 500 index. More importantly, DR maintains
the feature of diversifying risks during the financial crisis of 2007–2009, which means
it performs better than other strategies in crisis time. An interesting observation is that
strategies based on VaR (DR and ERI) are very selective in stocks and have high turnover,
especially during the crisis time, while strategies based on variance (MV and MDP) rely
on more stocks and the turnover is moderate over time. This can be explained by VaR
being more sensitive to extreme risks as opposed to variance taking both profits and losses
into account. Since the turnover is high for the DR and ERI strategies, we further analyze
the effect of transaction costs and find that when the transaction cost is relatively low,
DR can still outperform other strategies, which is due to that DR strategy consists of
fewer stocks than other strategies. Aside from fitting all 361 stocks into a MRV model,
we study performance of the five strategies within groups of stocks exhibiting similar
heavy tailedness. Specifically, the stocks are split into three groups based on their tail
index, which is a measure of heavy tailedness. DR outperforms other strategies in the
group with the most stocks, whose heavy tailedness lies in the middle. DR has the most
effect of diversification for all three groups of stocks. In summary, DR is a feasible strategy
to diversify extreme risks and it performs exceptionally during the crisis time, proxying
extreme occurrences.
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The paper is organized as follows. In Section 2, we formulate the DR strategy, introduce
the model for extreme risks and the estimation method for DR. The preliminary analysis
of the independence and heavy tailedness of log-losses of S&P 500 stocks are carried out
in Section 3. Section 4 contains comprehensive empirical studies of DR with the S&P
500 stocks and the comparisons with other benchmark strategies: EW, MV, ERI, and MDP.
Section 5 concludes the paper. One proof and some figures and tables are relegated to
Appendix A.

2. The DR Portfolio Optimization Strategy

In this section, we first introduce the MRV model for extreme risks and then we define
the DR portfolio optimization strategy. Lastly, under the MRV model, we present the
estimation method for the DR strategy.

2.1. Model for Extreme Risks

Multivariate regular variation (MRV) is a general multivariate model for extreme risks.
It includes a flexible tail dependence structure for the higher dimensional situation and
regularly varying marginal distributions. Typical examples of MRV include elliptical distri-
butions with a regularly varying radial component, multivariate Student’s t distributions,
multivariate α-stable distributions, Archimedean copulas with regularly varying generator,
and marginals, among others.

Let X = (X1, X2, . . . , Xn)T be a non-negative random vector. If there exists a proba-
bility measure Ψ on B(Sd−1

+ ), where Sd−1
+ =

{
s ∈ Rd

+ : ‖s‖ = 1
}

is the unit sphere in Rd
+

with respect to the norm || · ||, such that for all x > 0 as t→ ∞

Pr
(
‖X‖ > tx, X

‖X‖ ∈ ·
)

Pr(‖X‖ > t)
v−→ x−αΨ(·), on B(Sd−1

+ ), (1)

where v−→ means vague convergence, then X is said to be multivariate regularly varying.
The parameter α is called the tail index of X, and the probability measure Ψ is called the
spectral measure of X. Throughout the paper, we denote that X is MRV with index α and
spectral measure Ψ by X ∈ MRVα(Ψ).

The univariate regular variation is simply by restricting the dimension d to 1. Let F be
the distribution function F of the random variable X. Then F is said to be regularly varying
(RV) or heavy tailed if there exists α > 0 such that for any x > 0,

lim
t→∞

F(tx)
F(t)

= x−α.

We denote it by F ∈ RV−α where α is called the tail index. Large price fluctuations
and large insurance claims are often modeled with a heavy-tailed distribution.

2.2. DR Strategy

Let X := (X1, . . . Xd)
T be a non-negative random vector indicating the losses of

d assets. The value of a portfolio is given by wTX, where the weights satisfy w =

(w1, w2, . . . , wd)
T ∈ Σd :=

{
x ∈ [0, 1]d : x1 + x2 + . . . + xd = 1

}
. For this portfolio, di-

versification ratio (DR) based on VaR at level q ∈ (0, 1) is defined as:

DRw,q =
VaRq(wTX)

∑d
i=1 wiVaRq(Xi)

(2)

where VaRq(X) = inf{x ∈ R : Pr(X ≤ x) ≥ q} is the VaR of a random variable X at level
q. From the above definition, 1−DRw,q can be regarded as the measure of the degree of
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diversification. Thus, to maximize the level of diversification is to maximize 1−DRw,q, or
equivalently the portfolio that minimizes DR is

wq = arg min
w∈Σd

DRw,q. (3)

The analytical solution to the maximizing DR portfolio wq is generally unavailable.
Usually the alternative solution is to estimate by numerical methods; however, the com-
putational burden increases exponentially with respect to the dimension d, making such
an estimate less feasible for higher d. In Cui et al. (2022), an approximation of wq is
proposed and its property is studied under MRV model. Next we introduce this approxi-
mation method.

Instead of directly estimating wq, we first consider the limit of DR:

DRw,1 := lim
q↑1

DRw,q.

If X ∈ MRVα(Ψ) with α > 1, Cui et al. (2022) showed that

DRw,1 =
η1/α

w

∑d
i=1 wiη

1/α
ei

(4)

with ei = (0, . . . , 1, . . . , 0) having only the ith component as 1 for i = 1, . . . , d and

ηw =
∫

Σd
(wTs)αΨ(ds).

Let w∗ denote the optimal solution

w∗ = arg min
w∈Σd

DRw,1. (5)

The computation of w∗ is straightforward. In fact, Cui et al. (2022) showed that if
X ∈ MRVα(Ψ) with α > 1, then

lim
q↑1

wq = w∗. (6)

That is, when q is close to 1, w∗ can be used as an approximation of wq. In this paper,
we call w∗ the DR portfolio optimization strategy.

The above DR strategy is proposed based on VaR. Other quantile based risk measures,
such as Expected Shortfall (ES) and expectiles can be applied as well and they will yield the
same strategy with using VaR. This is because under the MRV model these quantile-based
risk measures are linearly proportional to VaR when the confidence level q approaching 1;
see e.g., Mao and Yang (2015). Since the DR strategy is computed to minimize DRw,1, the
expression of DRw,1 in (4) is the same by replacing VaR in (2) with other risk measures that
are asymptotically linearly proportional to VaR, such as ES or expectiles. Thus, applying
different quantile-based risk measures (which are asymptotically linearly proportional
to VaR) in (2), they all have the same solution w∗ in (5). This means the DR strategy is
“partially” independent of the choice of risk measures and it does not suffer from using VaR
even though some drawbacks of VaR are frequently discussed, such as lack of subadditivity
and not capable of predicting a large loss that is beyond VaR.

Our focus of this paper is to empirically study the performance of DR strategy with
the S&P 500 stock data. As mentioned in the introduction, we compare the DR strategy
with four benchmark strategies together with the S&P 500 index: two classic benchmarks,
EW and MV, and two other benchmarks, ERI and MDP. The ERI is defined as

ERI = arg min
w∈Σd

lim
q↑1

VaRq(wTX)

VaRq(||X||1)
,
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which was proposed in Mainik and Rüchendorf (2010) under the MRV structure. ERI
uses VaR to measure risks and is essentially the “minimum-VaR” strategy, seen as the
counterpart of MV. The MDP is defined as

MDP = arg min
w∈Σd

var(wTX)

∑d
i=1 wivar(Xi)

,

which was proposed in Choueifaty and Coignard (2008). The MDP shares the same
structure as DR while using variance as the risk measure. Thus, it can be considered the
counterpart of DR.

2.3. Estimation of DR Strategy

Now we are ready to present the estimation for the maximizing DR portfolio.
Assume X ∈ MRVα(Ψ) with α > 1. Let X1, . . . Xn be an i.i.d. sample of X. We follow

the same estimation method proposed in Cui et al. (2022) for the optimal portfolio ŵ∗,
which is consistent with that of Mainik and Rüchendorf (2010). That is we first estimate
DRw,1 by

D̂Rw,1 =
η̂1/α̂

w

∑d
i=1 wiη̂

1/α̂
ei

where ei = (0, . . . , 1, . . . , 0) having only the ith component as 1 for i = 1, . . . , d, and
η̂w =

∫
Σd(wTs)α̂Ψ̂(ds) with α̂ and Ψ̂ the estimators of the tail index α and the spectral

measure Ψ. Then we obtain an estimate ŵ∗ by minimizing D̂Rw,1.
To estimate of α and Ψ, we rewrite X i in polar coordinates of with respect to || · ||1 as

(Ri, Si), i.e.,

(Ri, Si) =

(
||X i||1,

X i
||X i||1

)
. (7)

Assume that the distribution function of R is continuous. Let R(1) ≥ R(2) ≥ · · · ≥ R(n)
be the order statistics. Let π(1), . . . , π(n) denote the indices corresponding to R(1), . . . , R(n)
in the original sequence R1, . . . , Rn. Then, we can identify Sπ(j) corresponding to R(j) for
j = 1, 2, . . . , n. By using the Hill estimator (see Hill 1975), α is estimated as

α̂ =
k

∑k
n=1 log

(
R(n)/R(k+1)

) , (8)

where k is chosen such that k → ∞ and k/n → 0. The spectral measure Ψ can be esti-
mated by

Ψ̂ =
1
k

k

∑
j=1

δSπ(j)
, (9)

where δ
π(j)(·) is the Dirac measure.

Cui et al. (2022) showed that both ŵ∗ and D̂Rw,1 are consistent estimators. The rest of
this section is devoted to the asymptotic normality results for the estimator D̂Rw,1. Let Un
denote the (k + 1)-st upper-order statistic of R1, . . . , Rn transformed by FR:

Un := FR

(
R(k+1)

)
,

and
ΨUn(·) = Pr(S ∈ ·|FR(R) > Un).

The proof of the following theorem is relegated to Appendix A.



Risks 2022, 10, 101 6 of 26

Theorem 1. Let X1, . . . , Xn be an i.i.d. copy of X ∈ MRVα(Ψ) with α > 1 and Ψ
(

∂Σd
)
= 0.

Assume that the distribution function FR of R in (7) is continuous, the estimator α̂ is asymptotically
normal, √

k(α̂− α)
w→ Y = N

(
µα, σ2

α

)
, (10)

and there exists a mapping b ∈ l∞
(

Σd
)

such that for any w ∈ Σd:

√
k(ΨUn fw,α −Ψ fw,α)→ b(w).

Further, assume that (α̂− α) and
(

Ψ̂−ΨUn

)
are asymptotically independent. Then

√
k
(

D̂Rw,1 −DRw,1

)
w→ z

(
BΨ fξ j ,α + b

(
ξ j

)
+ cjY

)
1≤j≤d+1

,

where
z = ∇h(ηw, ηe1 , . . . , ηed)

with∇h being the gradient of h,

h(x1, . . . , xd+1) =
x1/α

1

∑d+1
i=2 wix

1/α
i

, x ∈ (0, 1]d+1,

BΨ is a Brownian bridge with time Ψ(·), ξ1 = w, ξ j = ej for j = 2, . . . , d + 1, Y given in (10) is
independent of B(Ψ(·)), and

cj =
∫

Σd
(ξT

j s)α log
(

ξT
j s
)

Ψ(ds), j = 1, . . . , d + 1.

3. Preliminary Data Analysis of Stock Losses

In this section, we carry out a preliminary data analysis for real market stock log-losses.
We first describe the data and show that alternate-day stock losses do exhibit weak serial
dependence and heavy tailedness.

3.1. Data

We obtain all the stocks listed in the S&P 500 index from 1 January 2000 to 29 June
2020 from S&P Capital IQ Platform and Financial Modelling Prep API. To have enough
data points, we consider the stocks that survived the entire 20 year-long testing period.
Further we remove stocks with negative or null prices or prices that did not match across
retrieval sources, leaving 361 stocks.

Let the price of stock i at time t be denoted by Pt(i). Since our focus of this paper is
extreme losses of stocks, we study the log-loss at time t for stock i, denoted by Xt(i),

Xt(i) = − log
(

Pt(i)
Pt−1(i)

)
.

For simplicity, we can call Xt(i) the loss of stock i, and −Xt(i) is the log-return of stock i.

3.2. Independence

Daily stock losses are known to have serial dependence and are usually modeled
by stationary time series; see e.g., Loretan and Phillips (1994) and Longin (1996). Clus-
tering of extreme values is also observed for daily stock losses; see e.g., McNeil (1998)
and Hamidieh et al. (2009). The extremal index θ is often used to determine the cluster
size of extreme values in stationary time series. An informal interpretation of the ex-
tremal index is θ ≈ (mean size of cluster)−1; see Leadbetter et al. (2012). Formally, the
extremal index is defined as follows. Let {Xn}n∈Z be a strictly stationary time series and
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Mn = max{X1, X2, . . . , Xn}. Let {X̃n}n∈Z be an i.i.d. sequence with same marginal distri-
bution as {Xn}n∈Z and M̃n = max{X̃1, X̃2, . . . , X̃n}. For some norming sequences cn > 0
and dn, if

lim
n→∞

Pr
(

Mn − dn

cn
≤ x

)
= H(x)

and

lim
n→∞

Pr

(
M̃n − dn

cn
≤ x

)
= Hθ(x),

where H(x) is a non-degenerate distribution function, then θ is called the extremal index of
{Xn}n∈Z. In this paper, we estimate the extremal index by the following estimator used in
McNeil (1998)

θ̂ = n−1 log(1− Ku/m)

log(1− Nu/(mn))
,

where n is the sample size divided into m blocks, u is the threshold, Nu is the number of
exceedances of u, and Ku is the number of blocks in which u is exceeded.

This estimate θ̂ is calculated for all stock losses at different frequencies: (a) daily
(5345 data points), (b) alternate-day (2672 data points), and (c) weekly losses (1069 data
points), at different threshold levels. The number of blocks m is set as 41 and 82 to account
for semi-annual and quarterly blocks. In Figure 1, we show the boxplots of these results.
We can see that both the alternate-day and weekly losses have a larger extremal index
close to 1 than that of the daily losses. This means both alternate-day and weekly losses
can be considered independent observations or having very weak dependence in the data.
More importantly, it implies that when working with alternate-day or weekly losses, the
estimation methods have a better convergence speed than with daily losses. Since the
weekly losses do not show a more significant improvement in the independence of data
and its data size is about one third of the alternate-day losses, our analysis in the rest of
this paper is based on alternate-day data.

Ljung–Box Q test is carried out on the serial autocorrelation on the fifth lag for alternate-
day losses of each stock, denoted by Q(5). The p-values of these tests are reported in Table 1.
About half of the stocks do not reject the null hypothesis of no autocorrelation at 1% level.
This also coincides with the estimation of extremal index that the alternate-day data shows
weak dependence across the series.

Table 1. Number of stock falls in p-value intervals for exploratory analysis.

p-Value Interval LB-Q(5) Co-Skewness Co-Kurtosis PE

(0, 0.001] 144 316 293 115
(0.001, 0.01] 62 7 18 64
(0.01, 0.05] 66 8 8 61
(0.05, 0.1] 26 7 8 29
(0.1, 0.3] 28 10 13 50
(0.3, 1.0] 35 12 20 42



Risks 2022, 10, 101 8 of 26

(a)

(b)

(c)

Figure 1. Estimates of extremal index for stock losses with different frequencies. (a) Daily losses;
(b) alternate-day losses; (c) weekly losses.
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3.3. Heavy Tailedness

In this subsection, we examine the heavy tailedness of stock losses. First, the skewness
and kurtosis are calculated for all 361 stocks using estimators proposed in Richardson
and Smith (1993) based on generalized method of moment, which are robust against
heteroskedasticity. More specifically, we set Kansas City Southern (NYSE:KSU) as the
first asset and its loss is denoted by Xt(1). The cross-skewness of stock 1 with stock i,
i = 2, 3, . . . , 361, is denoted by S1i. The cross-kurtosis of stock 1 and stock i is denoted
by K1i. Let ρ1i be the correlation between stock 1 and stock i. Under the null hypothesis
that the stock losses are multivariate normal distributed, the limiting distribution for S1i is
given in Richardson and Smith (1993) as:

√
TS1i → N(0, 4ρ2

1i + 2), as n→ ∞.

Similarly, the limiting distribution for K1i is:

√
TS1i → N(0, 4ρ4

1i + 16ρ2
1i + 4), as n→ ∞.

The p-values of both skewness and kurtosis statistics are reported in Table 1. We can
see the majority of stocks exhibit excessive skewness and kurtosis. This implies the stock
losses have heavy tails.

So far, we have shown that it is more reasonable to model the stock losses with a
heavy-tailed distribution and the alternate-day losses can be considered to be independent
observations. Next, we explicitly test whether stock losses satisfy the heavy-tailed assump-
tion. More specifically, we test if the distribution function of the stock loss is regularly
varying with tail index α. We apply the PE test; see e.g., Hüsler and Li (2006). The test
statistic PEn for stock i is defined as:

PEn = k
∫ 1

0

(
log Xn−bktc,n(i)− log Xn−k,n(i)

α−1 + log t

)2

tη dt

where X1,n(i) ≤ X2,n(i) ≤ · · · ≤ Xn,n(i) are the order statistics. The tail index α can be
estimated using the Hill estimator; see Hill (1975). Under some conditions, as n→ ∞, the
test statistic PEn converges to

PE =
∫ 1

0

(
t−1W(t)−W(1) + log t

∫ 1

0
(s−1W(s)−W(1)) ds

)2

tη dt

where W(·) is Brownian motion. Here, we set η = 0.5 and k = b0.04nc. The limiting
distribution PE is calculated as follows. The Brownian motion on [0, 1] is simulated with a
interval size of 1

10000 . The integral is approximated by a Riemann sum and the calculation
repeated 50, 000 times to approximate PE’s distribution. The p-values of the PE test for all
stocks are reported in Table 1. Half the stocks do not reject the PE test at the 1% level. This
verifies that it is reasonable to model the stock losses to be regularly varying.

Lastly, we estimate the tail index of each stock by using the Hill estimator defined in (8)
by using 5-year rolling window. That is, from 3 January 2005 to 29 June 2020, one every
other day, the tail index of each stock is estimated using the previous 5-year alternate-day
data. Figure 2 shows the estimates of all the stocks. Almost all tail indices fall significantly
both in 2008–2009 and in 2020 as tails become heavier in response to extreme risk market
movements.
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Figure 2. Tail indices estimated by Hill estimator for 361 S&P500 stocks.

4. Empirical Study

In this section, we examine the performance of the portfolio that minimizes the DR.
It is also compared with other four strategies, EW, MV, ERI, and MDP, together with the
S&P 500 index. We first carry out the analysis by assuming all the 361 stocks follow a MRV
model. Then we group the stocks with similar tail indices and analyze the performances of
the five strategies for each group. Before the empirical study, we discuss the estimation
method for DR portfolio and the backtest method.

By fitting the stock losses with the MRV model, the DR portfolio is estimated using
the method introduced in Section 2. To be more specific, we first calculate DRw,1 using (4),
which is the limit of DRw,q by letting q go to 1. The solution of minimizing DRw,1, w∗, is
used to approximate the DR portfolio wq. In the calculation of DRw,1, since only considering
loss, ηw is estimated by

η̂w =
1
k ∑

(
wTSπ(j)

)α̂

+
.

The tail index α is estimated α̂ using (8). The proportion k is chosen to balance bias and
variance of estimation. Here, we choose k as 4% when estimating α. The spectral measure
estimator Ψ̂ is given by (9), where k is 10%.

We perform out-of-sample tests to examine the robustness of the DR strategy. The
DR is minimized on a 5-year rolling window. The backtest period is from 3 January
2005 to 29 June 2020. The rolling window is moved on alternate days and the portfolio
is rebalanced on alternate days as well. For example, on 3 January 2005, the optimal
weights are calculated based on previous 630 observations (5 years before 3 January 2005).
There are a total of 2021 rebalancing dates in the backtest period. To calculate portfolio
weights, we deploy sequential least-squares programming methods given an equal weight
(1/d, 1/d, . . . , 1/d) initialization. We restrict to no short selling and thus all the weights are
non-negative and in between 0 and 1. The error margin is set as 1× 10−10.

4.1. Analysis for All Stocks

We first carry out our analysis on all 361 stocks. When we apply the DR or ERI
strategies, we fit the 361 stocks into a MRV model. This is a very rough fitting but some
interesting results can be obtained. In the next subsection, a finer fitting is carried out for
subgroups of the 361 stocks. This approach was also used in Mainik et al. (2015).

The portfolio values under all five strategies (DR, EW, MV, ERI, and MDP) together
with S&P 500 index in the backtest period are plotted in Figure 3. Although not directly
implied by our theoretical results, the DR strategy overall has the highest portfolio value,
especially during the financial crisis of 2007–2009 period and 2020 stock market crash due
to the COVID-19 pandemic.
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(a) (b)

Figure 3. The values of portfolios of 361 stocks under the strategies of DR, EW, MV, ERI, and MDP,
and the values of S&P 500 index. The initial value for each portfolio is set as $100. (a) The entire
backtest period 2005–2020; (b) the financial crisis of 2007–2009 period.

In Table 2, we further compare the performance of the five strategies from different
aspects. Subsequently, we discuss them individually.

Table 2. Performance comparisons for DR, EW, MV, ERI, MDP, and S&P 500 index for the 361-stock
portfolio.

Metric DR EW MV ERI MDP S&P 500

Cumulative return (CR) 747.92% 373.02% 190.77% 268.63% 564.54% 154%
Annualized return 14.26% 10.17% 6.88% 8.47% 12.53% 5.98%
Annualized Sharpe ratio 0.8203 0.5974 0.6057 0.6986 0.8423 0.2849
Annualized STARR0.95 0.3617 0.2452 0.2498 0.2918 0.3578 0.1139
Maximum drawdown 43.79% 51.64% 39.15% 35.51% 49.08% 56.78%
Concentration coefficient 8.6449 361.0000 21.8908 8.1329 21.7522 N/A
Average turnover 0.0679 0.0000 0.05176 0.0543 0.0343 N/A
CR with θ = 0.1% 622.21% 373.02% 158.30% 224.51% 514.36% N/A
CR with θ = 0.5% 279.76% 373.02% 60.83% 94.77% 348.74% N/A
CR with θ = 1% 69.71% 373.02% −11.06% 2.76% 202.96% N/A
PCA 28.96% 39.39% 20.13% 14.19% 22.44% N/A
Skewness 0.6555 −0.0494 −1.1730 −0.7705 −0.6376 −0.2556
Kurtosis 14.3580 7.9947 11.4814 6.2075 7.8981 13.9341

The cumulative return (CR) is return over entire backtest period from 3 January 2005
to 29 June 2020 with alternate-day rebalancing. The annualized return (AR) annualizes CR
by counting 126 alternate trading days in a year, and AR is calculated as

AR = (1 + CR)
126
2021 − 1.

As seen from Figure 3, with no surprise, the DR portfolio has higher CR and AR than
the rest.

The Sharpe ratio is estimated by using the sample mean and sample variance for the
alternate-day rebalanced portfolios. Since the risk-free return rate r f is both difficult to
estimate and close to 0, we approximate r f = 0 for calculations. In Table 2, the annualized
Sharpe ratio is reported, which is approximated by multiplying the alternate-day Sharpe
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ratio with
√

126. The MDP portfolio has the highest Sharpe ratio among all of the five
strategies and this is much expected as MDP is diversifying away risks measured by the
variance, which is the same measure used in the Sharpe ratio. Since our focus here is on
extreme risks, standard deviation is not a good risk measure in this case. A modification
of the Sharpe ratio, by replacing the standard deviation with Expected Shortfall (ES) risk
measure, is better to capture extreme risks and hence a good performance metric in this
context. More specifically, this modified Sharpe ratio, called STARRp(Z), is defined as

STARRp(Z) =
E(Z− r f )

ESp(Z− r f )
,

where Z is the portfolio return and r f is risk-free rate; see e.g., Rachev et al. (2005). We let
r f = 0 and ESp is the expected shortfall risk measure at confidence level p ∈ (0, 1).
In empirical studies, we take p = 95%. The ES of a loss Z is estimated as

ÊS0.95(Z) =
1

2020× 5%

2020×5%−1

∑
i=0

Z(n−i)

where Z(n) ≥ Z(n−1) ≥ · · · ≥ Z(1) are the order statistics. The annualized STARR ratio,
reported in Table 2, is obtained by multiplying alternate-day STARR ratio with

√
126. DR

has the highest annualized STARR ratio.
Maximum drawdown assesses relative riskiness of one strategy versus another. A low

maximum drawdown indicate losses from investment were small. DR has a lower draw-
down than EW, MDP, and the index. ERI having the lowest maximum drawdown is
somewhat expected as it, by definition, minimizes aggregate risks of the portfolio.

Concentration coefficient (CC) for a strategy at time t is defined as

CCt =
1

||wt||22
,

where wt is the optimal portfolio weights. For equally weighted portfolios, CC is maxi-
mized. When a portfolio concentrates on fewer stocks, the value of CC decreases. While
CC ignores correlations in exposures, it is effective to capture risk appetite and stress levels
with low computational complexity. In Figure 4, CC is plotted for DR, MV, ERI, and MDP
in the backtest period. Both DR and ERI have very low CCs over time and are very stable.
MV and MDP have high CCs over the financial crisis of 2007–2009 and around 2018. This
shows that the selection of stocks are related to the choices of the risk measures: especially
during the crisis time, strategies (MV and MDP) using variance as the risk measure need
more stocks to diversify away the risk while strategies (DR and ERI) using VaR need fewer
stocks. The average CC over the backtest period is calculated for each strategy shown
in Table 2. Again, DR and ERI have similar but small CC suggesting they are selective
in stocks.

The portfolio turnover is defined as τt = ||wt − wt−1||1 where wt is the optimal
portfolio weights. Turnover captures extent of re-balancing at each time-stamp by proxy
on change in weights vector, and evaluates transaction costs of a strategy. In Figure 5, the
turnovers are plotted for DR, MV, ERI, and MDP in the backtest period. The average of
turnover for each strategy is reported Table 2. Both DR and ERI have higher turnover than
other strategies.



Risks 2022, 10, 101 13 of 26

Figure 4. CC of DR, MV, MDP, and ERI for the 361-stock portfolio over the backtest period.

Figure 5. Turnover of DR, MV, MDP, and ERI for the 361-stock portfolio over the backtest period.

From the above analysis, the VaR-based strategies (DR and ERI) have high turnover
compared to the variance-based strategies (MV and MDP). This may be due to that VaR is
more sensitive to extreme risks as opposed to variance taking both profits and losses into
account. At the same time, DR and ERI have very low CCs, which means these strategies
consist of fewer stocks. Thus, next we add the transaction cost to see if how low CC and
high turnover affect the performance of these strategies. According to Wrobel (2017), from
April 2007 to August 2008 the transaction cost increased 37.6% and from August to October
in 2008 the transaction cost increased 26.9%, which is the highest levels in 5 years. That is
the transaction cost during the financial crisis of 2007–2009 is higher than the normal time.
For simplicity, we assume a constant transaction cost: the transaction cost per dollar amount
traded is θ during normal time, and the cost during the crisis time is θ f c = 1.5θ. That is the
transaction cost is one and a half times of that in the normal time. Let θ = 0.1%, 0.5%, 1%.
The cumulative return with transaction cost is reported in Table 2 and the corresponding
portfolio values are shown in Figure 6. When the transaction cost is as low as θ = 0.1%,
DR still outperforms other strategies due to its low CC. Once the transaction cost is higher
(θ = 0.1%, 0.5%, 1%), EW has the best performance and DR has the moderate performance
because of its high turnover.
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θ 2005–2020 Financial crisis of 2007–2009

0.1%

0.5%

1%

Figure 6. Portfolio value of 361 stocks with transaction cost θ = 0.1%, 0.5%, 1% and θ f c = 1.5θ.

We further plot the optimal weights for DR, MV, ERI, and MDP at each rebalancing
date during the backtest period in Figure 7. The patterns of the optimal weights reinforce
the observations in the study of the CC and turnover that DR and ERI consist of fewer
stocks and have more significant changes in composition. They have similar patterns, i.e.,
frequent large changes in stock composition during crises (2008 financial crisis and 2020
stock market crash) and rather stable otherwise, while MV and MDP exhibit frequent but
small changes in composition throughout. This difference should be attributed to the choice
of risk measure. VaR is a measure to capture extreme risks better than variance so that both
DR and ERI strategies are more sensitive in the crisis time, where extreme risks occur.



Risks 2022, 10, 101 15 of 26

(a) (b)

(c) (d)

Figure 7. Optimal weights under the strategies DR, MV, ERI, and MDP for the 361-stock portfolio
over the backtest period. (a) DR; (b) MV; (c) ERI; (d) MDP.

To analyze the degree of diversification, we perform principal component analysis
(PCA) for each strategy. The first principal component is calculated on the weighted returns,
that is for a 2021× 361 matrix M, with

M[i, j] = w∗i (j)(−Xi(j))

where w∗i (j) is the optimal weight and −Xi(j) is the log-return of the jth stock at time i.
To account for temporal changes, we compute percentage of the sample variance explained
by the first principal component on the first i rows of the matrix M at each time point
i = 1, 2, . . . , 2021 in the backtest period. The estimated percentage of variance is plotted
over time in Figure 8. We report the last percentage (i = 2021) in Table 2. The smaller this
value the greater the diversification. ERI has almost the smallest percentage of sample
variance explained by the first principal component for majority of the time as showed
in Figure 8 and the smallest average value among all strategies although it has a low
concentration coefficient. DR shows the smallest percentage after the 2008 crisis started.
Similar pattern can be expected for the COVID-19 pandemic period. Although complete
performance of the strategies over the pandemic are not shown here due to the time range
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of data, still we can conclude that DR is efficient in diversifying extreme risks and thus a
feasible strategy in the period of a crisis.

Figure 8. Percentage of variance explained by first principal component for 361-Stock portfolio over
the backtest period.

The skewness and kurtosis of portfolio returns are reported as well. DR has a right
skew while all the benchmark strategies have left skews. DR also has the highest kurtosis.
This reinforces the findings in cumulative return and annualized returns that DR has the
ability to generate higher risk-adjusted returns.

We ascertain DR’s distinctness with DR weights’ cosine similarity and DR returns’
Pearson correlation coefficient against other strategies in Table 3. We observe low cosine
similarities on DR weights coupled with high correlation on returns with other strategies.
This dichotomy reinforces DR’s novelty in portfolio allocation since correlated returns
hint at it capitalizing on similar temporal market movements as other strategies, while
dissimilar weights (and higher returns) suggest it does so with an effective distinctive
methodology.

Table 3. Comparing DR to benchmarks.

Metric EW MV ERI MDP

Cosine Similarity [−1, 1] 0.1538347 0.1862669 0.2448010 0.4276556
Correlation Coefficient [−1, 1] 0.8041764 0.7697190 0.7314304 0.8724533

4.2. Analysis of Grouped Stocks

In the previous section, all 361 stocks are fitted into a MRV model. In this subsection,
we consider portfolios of stocks grouped with similar tail indices. Figure 9 shows the
distribution of the tail indices calculated by Hill estimator based on a 5-year window of
alternate-day data from 1 January 2000 to 31 December 2004 for all 361 stocks. We divide
these stocks into three buckets as shown in Table 4.

The group of stocks with tail indices α ≤ 2.5 contains the most heavy-tailed securities.
The portfolio values for each strategy are plotted in Figure A1 in Appendix A. The portfolio
values with transaction costs are plotted in Figure A2. The performance of each strategy for
this group of stocks is reported in Table A1. DR has the moderate performance in returns.
When the transaction cost is included, DR has low returns among the five strategies but it
is still higher than ERI. DR has the lowest average percentage of sample variance explained
by the first principal component. This shows that DR has highest significant effect of
diversification for the most heavy-tailed stocks.
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Figure 9. Distribution of tail indices of all 361 stocks.

Table 4. Number of stocks across groupings.

Tail Index Groupings Number of Stocks

α ≤ 2.5 84
2.5 < α ≤ 3.5 195

3.5 < α 82

The group of stocks with tail indices 2.5 < α ≤ 3.5 is by far the largest, with 195 listed
securities. The portfolio values for each strategy are plotted in Figure A3; the portfolio values
with transaction costs are plotted in Figure A4. The performance is reported in Table A2. DR
performs similar to that of the entire 361 stocks: it has highest cumulative return, annualized
return, Sharpe ratio, STARR, and lowest average percentage of sample variance explained
by the first principal component. When the transaction cost is low (θ = 0.1%), DR still has
the highest return rate due to low CC; however, when the transaction cost is higher, DR
has moderate performance due to high turnover. This shows that DR works well for a vast
majority of our securities universe.

The group of stocks with tail indices α > 3.5 contains the most light-tailed stocks. The
portfolio values for each strategy are plotted in Figure A5 and the portfolio values with
transaction costs are plotted in Figure A6. The performance is reported in Table A3. Again,
DR has the lowest average percentage of sample variance explained by the first principal
component, reflecting the most significant effect of diversification. When transaction cost
presents, DR has moderate performance.

To summarize, DR has highest effect of diversification in all three groups of stocks.
It performs the best for most of the stocks with tail indices 2.5 < α ≤ 3.5.

5. Conclusions

In this paper, we empirically test the performance of a portfolio optimization strategy
that minimizes DR on S&P 500 stocks. The performance is compared with benchmark
strategies: EW, MV, ERI, and MDP. The DR and MDP strategies have similar structure of
capturing the degree of diversification but using VaR and variance as the risk measure,
respectively. ERI and MV are strategies that minimize risks, which are measured by
VaR and variance, respectively. DR and ERI, both using VaR as the risk measure, are
very selective in stocks and have high turnovers. This implies that strategies based on
VaR have major changes in stock compositions during the crisis time, highlighting high
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sensitivity to extreme risks. When there is no transaction cost or low transaction cost, DR
shows promising cumulative return, annualized return, Sharpe ratio, and STARR at 95%.
In addition, it showcases the highest unfaltering level of diversification when the strategy
is performed for the entire stock universe during the crisis time and for grouped stocks
with similar tail indices over the entire test period.

Our study shows the importance of analyzing diversification benefit based on mea-
sures for extreme risks in portfolio optimization. In the data range analyzed, the DR
strategy outperformed other strategies by diversifying more risks away and maintaining a
good level of return during the crisis times, both 2007–2009 global financial crisis and the
COVID-19 pandemic. Moreover, the DR strategy is invariant from using different quantile-
based risk measures in the definition of DR (2), such as ES and expectiles, which means it
does not suffer from the drawbacks of VaR. Thus, the DR strategy can be applied when
extreme risks present in the market, that is when stronger interconnectedness is shown
among the stocks and some stocks show sharp declines in prices. The current analysis is
built upon the assumption that the underlying risks can be modeled by the MRV. Due to
the difficulty of verifying the MRV model for high dimensional data, the proposed model
(MRV) may not be appropriate to be applied in the entire stock market. For future research,
flexible high dimensional models that can capture extreme risks should be investigated
to see if the DR strategy can still have good performance during the crisis times. Another
drawback of the current DR strategy is that it only extracts the most diversification benefit;
that is, only the downside risk is minimized. This may be the reason that the DR strategy
performs well during the crisis time but not as good as some other strategies in the normal
time. For future work, strategies that can achieve higher return and also maintain the most
diversification benefit may perform equally well during the crisis and the normal time,
which is of great importance to study.
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Appendix A

Appendix A.1. Proof

Proof of Theorem 1. By Theorem 4.5(a) of Mainik and Rüchendorf (2010), the estimators
ηξ j

for 1 ≤ j ≤ d + 1 satisfies that

√
k
(

η̂ξ j
− ηξ j

)
w→ BΨ fξ j ,α + b

(
ξ j

)
+ cjY.

Note that DRw can be rewritten as

DRw,1 = h
(
ηw, ηe1 , . . . , ηed

)
.
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The gradient of h is

∇h =

(
∂h
∂xi

)
1≤i≤d+1

=

 1/αx1/α−1
1

∑d+1
i=2 wix

1/α
i

,
−1/αw1x1/α

1 x1/α−1
2(

∑d+1
i=2 wix

1/α
i

)2 , . . .

.

The Hessian matrix of h is

∇2h =

(
∂2h

∂xi∂xj

)
1≤i,j≤d+1

,

where
∂2h
∂2x1

=
1/α(1/α− 1)x1/α−2

1

∑d+1
i=2 wix

1/α
i

,

for 2 ≤ i ≤ d + 1

∂2h
∂2xi

=
−1/α(1/α− 1)wi−1x1/α

1 x1/α−2
i

(
∑d+1

j=2 wix
1/α
j

)2
+ (1/α)2w2

i−1x1/α
1 x2/α−2

i(
∑d+1

j=2 wix
1/α
j

)4 ,

and
∂2h

∂x1∂xi
=
−(1/α)2wix

1/α−1
1 x1/α−1

i(
∑d+1

j=2 wix
1/α
j

)2 ,

and for 2 ≤ i 6= j ≤ d + 1

∂2h
∂xi∂xj

=
(1/α)2wi−1wj−1x1/α

1 x1/α−1
i x1/α−1

j(
∑d+1

i=2 wix
1/α
i

)4 .

By the Taylor expansion, for x, y ∈ (0, 1]d+1 and yt → y, we have for t > 0,∣∣∣∣h(x + tyt)− h(x)
t

−∇h(x)yt

∣∣∣∣ ≤ t
∣∣∣yT

t

{
∇2h(x)

}
yt

∣∣∣+ o(t2).

Since ∑d+1
i=2 wix

1/α
i is bounded away from 0 and x1/α−2

i < ∞ for any xi ∈ (0, 1], Hessian
matrix∇2h(x) < ∞. Hence,∣∣∣∣h(x + tyt)− h(x)

t
−∇h(x)y

∣∣∣∣→ 0, as t ↓ 0 and yt → y

That is, the function h is Hadamard differentiable. By the functional delta method
(e.g., Theorem 20.8 in Van der Vaart (2000)), the desired result follows.



Risks 2022, 10, 101 20 of 26

Appendix A.2. Tables and Figures

The followings are figures and tables from Section 4.2.

(a) (b)

Figure A1. Portfolio values for grouped stocks with tail indices α ≤ 2.5. (a) Portfolio with α ≤ 2.5 in
the entire backtest period; (b) portfolio with α ≤ 2.5 in the crisis period.

Table A1. Performance comparisons for DR, EW, MV, ERI, MDP, and S&P 500 index for stocks with
α ≤ 2.5.

Metric DR EW MV ERI MDP S&P 500

Cumulative return 305.59% 324.20% 219.87% 154.42% 406.11% 154.00%
Annualized return 9.12% 9.43% 7.52% 5.99% 10.64% 5.98%
Annualized Sharpe ratio 0.5941 0.6070 0.6279 0.4928 0.7259 0.2849
Annualized STARR0.95 0.2512 0.2469 0.2601 0.2048 0.3028 0.1139
Maximum drawdown 47.69% 46.62% 38.06% 42.21% 41.22% 56.78%
Concentration coefficient 8.1558 84.0000 13.1616 7.1420 18.2519 N/A
Average turnover 0.0590 0.0000 0.0474 0.0450 0.0279 N/A
CR with θ = 0.1% 252.50% 324.20% 187.16% 129.16% 374.40% N/A
CR with θ = 0.5% 100.97% 324.20% 86.49% 50.77% 266.19% N/A
CR with θ = 1% −0.62% 324.20% 8.70% −10.76% 164.92% N/A
PCA 11.27% 38.34% 28.32% 17.65% 14.74% N/A
Skewness −0.2476 −0.1166 −0.8514 −0.8160 −0.4977 −0.2556
Kurtosis 8.4234 8.7792 11.6180 10.5831 7.0308 13.9341
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θ 2005–2020 Financial crisis of 2007–2009

0.1%

0.5%

1%

Figure A2. Portfolio values with transaction cost for grouped stocks with tail indices α ≤ 2.5 when
θ = 0.1%, 0.5%, 1%, θ f c = 1.5θ.
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(a) Portfolio with 2.5 < α ≤ 3.5 in the entire backtest period (b) Portfolio with 2.5 < α ≤ 3.5 in the crisis period

Figure A3. Portfolio values for grouped stocks with tail indices 2.5 < α ≤ 3.5.

Table A2. Performance comparisons for DR, EW, MV, ERI, MDP, and S&P 500 index for stocks with
2.5 < α ≤ 3.5.

Metric DR EW MV ERI MDP S&P 500

Cumulative return 742.46% 388.84% 189.04% 284.35% 545.97% 154.00%
Annualized return 14.21% 10.40% 6.84% 8.76% 12.33% 5.98%
Annualized Sharpe ratio 0.8510 0.6035 0.5980 0.7096 0.8258 0.2849
Annualized STARR0.95 0.3611 0.2477 0.2480 0.3046 0.3401 0.1139
Maximum drawdown 46.62% 52.52% 38.50% 42.16% 51.96% 56.78%
Concentration coefficient 7.8232 195.0000 16.4092 6.5321 18.6969 N/A
Average turnover 0.0697 0.0000 0.0527 0.0473 0.0321 N/A
CR with θ = 0.1% 618.14% 388.84% 157.13% 244.67% 500.34% N/A
CR with θ = 0.5% 278.86% 388.84% 61.01% 122.79% 347.81% N/A
CR with θ = 1% 70.01% 388.84% −10.33% 28.98% 210.39% N/A
PCA 8.94% 39.19% 25.99% 19.34% 15.75% N/A
Skewness −0.2755 −0.0556 −1.1798 −0.5133 −0.6143 −0.2556
Kurtosis 8.1260 7.7376 11.0068 4.5851 7.6877 13.9341
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θ 2005–2020 Financial crisis of 2007–2009

0.1%

0.5%

1%

Figure A4. Portfolio values with transaction cost for grouped stocks with tail indices 2.5 < α ≤ 3.5
when θ = 0.1%, 0.5%, 1%, θ f c = 1.5θ.
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(a) Portfolio with 3.5 < α in the entire backtest period (b) Portfolio with 3.5 < α in the crisis period

Figure A5. Portfolio values for grouped stocks with tail indices α > 3.5.

Table A3. Performance comparisons for DR, EW, MV, ERI, MDP, and S&P 500 index for stocks with
α > 3.5.

Metric DR EW MV ERI MDP S&P 500

Cumulative return 414.42% 375.12% 314.14% 356.74% 714.50% 154.00%
Annualized return 10.75% 10.20% 9.26% 9.93% 13.97% 5.98%
Annualized Sharpe ratio 0.5735 0.5575 0.6558 0.6698 0.7861 0.2849
Annualized STARR0.95 0.2505 0.2327 0.2683 0.2870 0.3326 0.1139
Maximum drawdown 48.03% 54.70% 54.34% 45.40% 49.61% 56.78%
Concentration coefficient 6.6431 82.0000 9.7144 5.7968 13.1654 N/A
Average turnover 0.0510 0.0000 0.0376 0.0362 0.0221 N/A
CR with θ = 0.1% 353.40% 375.12% 280.57% 319.34% 673.63% N/A
CR with θ = 0.5% 173.39% 375.12% 171.35% 197.86% 529.65% N/A
CR with θ = 1% 45.01% 375.12% 77.77% 94.07% 386.70% N/A
PCA 22.79% 42.73% 29.79% 23.27% 35.33% N/A
Skewness 0.3535 0.0349 −0.8981 −0.3410 −0.3370 −0.2556
Kurtosis 10.2420 7.6200 10.6307 4.9313 6.1345 13.9341
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θ 2005–2020 Financial crisis of 2007–2009

0.1%

0.5%

1%

Figure A6. Portfolio values with transaction cost for grouped stocks with tail indices α > 3.5 when
θ = 0.1%, 0.5%, 1%, θ f c = 1.5θ.
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