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Abstract: Actuaries utilize demographic features such as mortality and longevity rates for pricing,
valuation, and reserving life insurance and pension contracts. Capturing accurate mortality estimates
requires factual mortality assumptions in mortality models. However, the dynamic and uncertain
nature of mortality improvements and deteriorations necessitates better approaches in tracking
mortality changes, for instance, using the causes of deaths features. This paper aims to determine
temporal homogeneous clusters using unsupervised learning, a clustering approach to group causes
of death based on (dis)similarity measures to set representative clusters in detection and monitoring
death trends. The causes of death dataset were derived from the World Health Organization, Global
Health Estimates for males and females, from 2000 to 2019, for Kenya. A hierarchical agglomerative
clustering technique was implemented with modified Dynamic Time Warping distance criteria.
Between 6 and 14 clusters were optimally achieved for both males and females. Using visualisations,
principal clusters were detected. Over time, the causes of death trends of these clusters have
demonstrated a correlated association with mortality and longevity rates, rationalizing why insurance
and pension offices may include this approach as a preliminary step to undertake mortality and
longevity modelling.

Keywords: unsupervised learning; cause of death; insurance; hierarchical clustering; spatial
modelling; applications of statistics

1. Introduction

Mortality data associated with information such as cause of death is helpful, not only
in the medical field (Foreman et al. 2012), but also in insurance and pension funds (Cox
1976). Actuaries in life insurance companies and pension funds analyze mortality and
longevity risks using death and survival data to evaluate pricing, valuation, and reserving
life insurance products. According to Ashley et al. (2019), the patterns and frequency
of causes of death can be a leading indicator of insurance claims. Studies by Kwon and
Nguyen (2019) using data from the United States and South Korea have demonstrated
that improvements in mortality should be tracked and monitored. Furthermore, the
United States population observation report (Holman and MacDonald 2021) concluded by
clarifying the importance of considering the prevalence of the causes of death in mortality
improvement assumptions for insurance to track mortality trends. Therefore, incorporating
causes of death features can be beneficial in monitoring mortality changes over time to
explain the specific drivers of increased insurance claims.
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Mortality and longevity models form the core of actuarial work in tracking the mortal-
ity and survival of policyholders. Life insurance companies face increased death claims due
to higher-than-expected mortality experiences, while pension funds are negatively affected
by increased longevity rates. Correct estimation of these models is of vital interest to
insurance and pension firms because it directly impacts profit or loss. Various models that
incorporate data on the causes of death have been employed to model mortality (Caselli
et al. 2019; Tabeau et al. 1999; McNown and Rogers 1992). Arnold and Sherris (2013) have
shown that models that incorporate the cause of death model improve the assessment of
mortality and longevity risks. These models are in contrast to those reviewed by Booth
and Tickle (2008), which utilize extrapolation approaches from historical trends to predict
mortality. Cause of death approaches have been the alternative of extrapolation models
(Janssen 2018) and are being considered due to their perspectives on the underlying process
of aggregate mortality (Robertson et al. 2013; Olshansky et al. 2002).

However, modeling mortality by causes faces critical challenges. Firstly, the causes
of death data are non-stationary. That is, their mean and variances change continuously,
rendering them more difficult to model in comparison to a stationary series. Secondly,
causes of death suffer from the assumption of independence (Chiang 1968), where one
cause of death influences another. These issues have led to the development of newer
approaches in dealing with the cause of death models referred to as co-integration analyses
(Arnold and Glushko 2021; Gaille and Sherris 2011), where econometrics approaches, such
as Vector Error Correction Models (VECM), are applied to overcome the independence
assumption among the causes of death by identifying co-integrated variables within the
variables over the short and long term. Other approaches include the Copula type models,
which incorporate the dependence relationship among cause-specific rates described by Li
and Lu (2018). Such methods may seek a preliminary understanding of death trends and
relationships of the causes of death before usage; thus, we aim to fill this gap.

Causes of death data are dynamic and unique to the country of origin. The adoption
of the International Classification of Diseases (ICD) by the World Health Organization
(WHO) created standardization in classifying causes of death globally. Newer causes of
death, such as COVID-19, as described by Shaylika (2020), emerged while others, such
as smallpox, have been declared eradicated by the World Health Organization (Meyer
et al. 2020). Furthermore, Acquired Immunodeficiency Syndrome (HIV/AIDS) had been a
significant contributor to deaths in Kenya, although this is on a declining trend. In 2022,
countries are required to implement the ICD 11 framework according to Medicare Centers
for Medicaid Services and National Center for Health Statistics (2019). Most developing
countries, however, do not participate in the ICD framework, thereby continuing their
disadvantage. Therefore, there is the need for such countries to have a reliable framework
in accounting for causes of deaths in mortality models.

Besides exclusion from key reporting frameworks such as ICD, most developing
countries lack coherent approaches in mortality models mainly because of unreliable data
(Arnold and Sherris 2015). These countries have insufficient historical data, a key input
in mortality models, especially for extrapolation techniques. With this realization, cause
of death models would seem relevant and suitable, incognizant of the newer modeling
approaches in the short run. As a preliminary strategy to undertaking cause-o-death mod-
eling, this research is motivated to be a complementary approach based on the application
of an exploratory clustering technique, in order to understand the dynamics of trending
causes of death in terms of homogeneous clusters.

Therefore, the aim of this paper is to look at how data on deaths, specifically, the
causes of death, influence the trend of aggregate mortality rates over time to aid methodical
detection, quantification, and monitoring of the causes of death where a standardized
classification, insufficient data, and modeling frameworks are nonexistent. For these
reasons, an exploratory approach will be employed to identify and gauge the temporal
causes of deaths in Kenya to analyze the fluctuations in the various causes of death.
Eventually, the causes of death will be clustered into representative groups using a temporal
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clustering technique, which is an unsupervised learning algorithm. These groups may
then be used as informational benchmarks for mortality modeling by analyzing their
trending structures.

The contributions of this paper are:

• The addition of a clustering approach of the causes of death that allows for temporality.
This gap is essential because it would enable actuaries to incorporate causes of death
features in their judgment for future mortality experience.

• Applying the causes of death features in a developing country setting to expand
mortality modeling literature in such jurisdictions.

1.1. Clustering

Clustering is a machine learning algorithm, as pointed out by (Richman 2018). It is
categorized as unsupervised learning because it uses traits within the data to detect and
classify key observations into similar groupings using set criteria (Han et al. 2011).

There are five main types of clustering: partitioning, hierarchical, density-based,
grid-based, and model-based techniques (Charrad et al. 2019). Partition (pam) clustering
algorithms are further subdivided into hard (Crisp) and soft (Fuzzy) clustering. In the case
of hard clustering, observations belong to just one cluster. Examples of hard clustering
include: K-means, K-medoids, and Clustering Large Applications (CLARA) algorithms. In
the case of soft clustering methods, data points can belong to any cluster with a level of
likelihood, for instance, the fanny clustering approach described by Gan and Valdez (2020).

Clustering techniques have been incorporated into many fields such as biology, finance,
agriculture, and Geographic Information Systems (GIS) (Lamb et al. 2020). In actuarial
applications, Yao (2016) applied clustering in non-life insurance in the ratemaking of car
insurance by explaining the general approach in territory clustering. Valuing life insurance
products such as variable annuity contracts, Gan and Huang (2017), as well as Gan and
Valdez (2016), selected representative policies using clusters to predict models. O’Hagan
and Ferrari (2017) applied clustering in actuarial science as a data compression procedure
where complex assets and liabilities were divided into several clusters to act as a single
representative policy. These policies were subsequently used to model the performance of
policy portfolios.

1.2. DTW Barycenter Averaging—DBA

According to Charrad et al. (2019), there are over 30 clustering algorithms; however,
the best option depends on the type of the dataset, the clustering goal, and the compression
level. Conventional clustering approaches do not perform well in the presence of moving
objects relative to time. In the case of time series data, static clustering methods ignore the
similarity of subsequent series, which may be utilized to compare objects more effectively
(Guijo-Rubio et al. 2020). This shortcoming calls for a suitable model when dealing with
time-series data.

According to Aghabozorgi et al. (2015), clustering applications in the field of time-
stamped data are based on sequential data measurements taken across a period from
the same source and are used to track change over time, i.e., Dynamic Time Warping,
DTW (Lee et al. 2020; Sakoe 1971). This approach tracks the evolution of data over time,
creates clusters that follow observations through time, and forms clusters based on the
(dis)similarity distance measurement relevant to the given time series. It computes a
dynamic distance approach by analyzing two sequences and obtaining an optimal warping
path between them, while adhering to specific criteria such as monotonicity (Sard 2019).
DTW has been used to overcome some of the drawbacks of the standard Euclidean and
Manhattan distance shown in Table 1. That is, it enables the dynamic evolution of data
points with time. Time-series clustering developments have evolved over the years, aiming
to minimize the computational cost and improve accuracy. However, the classic DTW
has continued to be as effective (Wang et al. 2013). DTW has been implemented on many



Risks 2022, 10, 99 4 of 34

fronts, such as water quality monitoring in hydrology (Lee et al. 2020), gene expression in
bioinformatics (Aach and Church 2001), and finance (Tsinaslanidis et al. 2014).

Table 1. Distance Criteria.

Distance Criteria Description Reference

Manhattan (l1 norm) dman(x, y) =
n
∑

i=1
|(xi − yi)| (Aggarwal et al. 2001)

Euclidean (l2 norm)
deuc(x, y) =

(
d
∑

j=1
(xj − yj)

2

) 1
2 (Aggarwal et al. 2001)

DTW DTWP(x, y) =
(

∑
mφ lcm(k)p

Mφ

)1/p
∀k ∈ φ

(Aghabozorgi et al. 2015; Sard 2019; Zhao
and Itti 2018; Sakoe 1971)

This paper extends the DTW methodology by incorporating a prototype function
known as Barycenter Averaging (DBA), which aims to minimize its squared distance from
an original sequence repeatedly (Petitjean et al. 2011). Furthermore, evaluation has been
shown to compare favorably with other prototyping functions in literature (Soheily-Khah
et al. 2015; Zhao and Itti 2018). It is a suitable prototyping function that complements the
centroid linkage criteria to capture the overall mean of the centroids over time.

The paper is outlined as follows. Section 2 will describe the source and elements of
the dataset and the methods implemented. The results and discussion will be presented
in Section 3 together with their interpretations, which will outline the implications of
the results based on the research question. The conclusion and future extensions will be
presented in Section 4.

2. Materials and Methods
2.1. Data Source

The data is derived from the World Health Organization, WHO database for Kenya,
from https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates/
ghe-leading-causes-of-death (accessed on 1 December 2021). It contains 131 causes of death
with GHE codes (see Table A1 in Appendix A); the features are: year {2000–2019}, gender
{Male, Female} and, age {0–1, 1–4, . . . , 75–79, 80–85, 85+ years}, which will be sub-set into two
that are between 20 years and up to 60 years and over 60 years (WHO 2020).

The universal set of 131 causes of deaths will be denoted by C.S. and it will be used to
represent the gender: male and female. The years of interest will be 2000 to 2019, denoted
by T. Two sets of age brackets will be used, 20 ≤ x < 60 and x ≥ 60. The age of 20 to 60
will be key in monitoring mortality risk and entails the minimum legal age to be eligible
for life insurance in many countries. Additionally, individuals over the age of 60 have
repercussions on pension and often consist of retirees affected by longevity risk.

The fundamental quantity of interest will be the death rate mx,s,c,t, which is the ratio
of deaths to the mid-year population for each age (x), sex (s), cause (c), and year (t) given
by dx,s,c,t

Px,s,t
. The approach of using death rates, and not the number of deaths would enable

the time differential to be factored into the clusters.
Before clustering, the deaths data will be transformed by scaling to reduce the variabil-

ity of the magnitude of death rates generated by leading causes of deaths and low-tiered
causes. Using hierarchical clustering and visualizations, the research questions will be
answered from the data by exploring the trends and patterns of the leading causes of death
based on gender {male, female}, age {20≤ x < 60 and x≥ 60}, and year (period) {2000–2019},
grouped annually.

2.2. Notations

A clustering set is denoted as a set of collections, also called a power set, such that

S =
k
∪

i=1
Ci where Ci ∩ Cj 6= ∅, i 6= j. Let Ci represent the ith cluster while ci stands for

https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates/ghe-leading-causes-of-death
https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates/ghe-leading-causes-of-death
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the center of cluster Ci and Cj represents the jth cluster while cj stands for the center of
cluster Cj. Further, ni and nj are the cardinality belonging to cluster Ci denoted |Ci| and
Cj denoted |Cj|, respectively. The distance d (xi,yi) is the distance between the objects xi
and yi in cluster Ci and d (xj,yj) is the distance between the objects xj and yj in cluster Cj.

2.3. Clustering Tendency

Before performing the cluster analysis, the cluster ability was assessed using Hopkins
statistics (Lawson and Jurs 1990) for each age group. The existence of clusters in the dataset
was determined by measuring the probability of whether the data comes from a uniform
distribution. Any value equal to 0.5 illustrates that the data is uniform. Additionally, values
less than 0.5 and closer to zero present non-cluster able data. According to Hopkins Statistic,
the aim is to achieve an H value closer to one. It is expressed as below:

H =

n
∑

i=1
yi

n
∑

i=1
xi +

n
∑

i=1
yi

(1)

2.4. Hierarchical Agglomerative Clustering

A hierarchical agglomerative clustering mechanism was applied to obtain homoge-
nous groups of the causes of death that are distinct to ages, sex, and time. Using the
agglomerative (combining) technique, a bottom-up approach, individual causes of deaths
are continually merged into successive clusters of the hierarchical clustering. The number
of the causes of death data is classified over the period 2000 to 2019. The results will enable
us to select the ideal groups applicable to insurance companies in the long run. These
techniques will allow scaling to incorporate newer causes of death and cluster groups. It
will involve the following step-wise procedure on the data, as shown by Algorithm 1.

Algorithm 1 Hierarchical Agglomerative Clustering Algorithm

1. Designate all data points as individual single clusters.
2. Compute distance measurement and matrix.
3. Combine the clusters using linkage criteria.
4. Update the distance matrix.
5. Iterate the procedure until each data point becomes a single cluster.

The key parameters of interest include the distance measure criteria, and the linkage
criteria is presented as follows:

2.5. Distance Measures

Table 1 shows some of the distance criteria used in the literature. We will implement
the DTW distance with a DBA prototype function.

Table 2 gives some of the linkage criteria described by Gan et al. (2007) and Lance and
Williams (1967). The centroid linkage criterion will be implemented because our results
will require averaged centroid extractions.

2.6. Stepwise Procedure for DTW Barycenter Averaging (DBA)

In conjunction with the DTW distance, individual causes of death sequences may be
modeled with underlying means. Stepwise, it is an iterative selective process that com-
mences randomly with one of the series in the data as a reference (centroid). Subsequently,
it computes the DTW alignment between the cluster and the centroid series. For each
centroid point, the average is calculated using the values in each group and then performed
repeatedly until a specific number of iterations have converged.
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Table 2. Linkage criteria.

Linkage Criteria Equation Reference

Single Cij = min
x∈Ci ,y∈Cj

d(x, y) Minimum pair distance between
points in cluster i and j

Average (UPGMA) Cij = ∑
x∈Ci ,y∈Cj

d(x,y)
ni xnj

Average pair distance between
points in cluster i and j

Complete Cij = max
x∈Ci ,y∈Cj

d(x, y) Maximum pair distance between
points in clusters i and j

Centroid (UPGMC) Cij = ‖xi − xj‖2
Pair distance between cluster

centroid i (mean vector of length p
features) and cluster centroid j

Median (WPGMC) Cij =
Cik−Cil

2 − Ckl
4

Euclidean distance between
weighted centroids of the two

clusters

Mcquitty (WPGMA) Cij =
Cik+Cil

2

Weighted mean of the
between-cluster dissimilarities

between the points in cluster i and j

2.7. Cluster Validity

Cluster validity is the process of evaluating and determining optimal clusters that
exist in a dataset and subsequently assessing the resultant clusters to ensure the quality
of the clusters, such as internal, external, and relative cluster validity, which are the three
categories of cluster validity indices (Gan et al. 2007). The difference between the first
two validity measures is that the external compares the resulting partition to the right one.
In contrast, internal validity measures analyze the partitioned data and measure cluster
purity. External CVIs are valid if the ground truth is understood. A heuristic approach
will be preferred when selecting the optimal number of clusters. The best set of internal
cluster validity indexes and visualization techniques are used to perform this task. The
majority of internal indices calculate a quality measure by combining cluster cohesiveness
(inside or intra-variance) and cluster separation (between or inter-variance (Arbelaitz et al.
2013), they are implemented by the dtwclust and tsclust package in R (Sard 2019) and
Montero and Vilar (2015), respectively. Cluster validity index of the seven indices with
their objective criterion are as described by Wang and Zhang (2007) as shown by Table 3.
Both the maximizing and minimizing cluster validation functions are implemented with
the aim of enhancing the optimality of the achieved clusters.

2.8. Cluster Elimination Approach

To present the applicability of the proposed clustering methodology in life insurance
and pensions, a cause elimination approach will be adopted. This approach is based on the
multiple decrement model under competing risks (Chiang 1968). It has previously been
applied in studies by Kwon and Nguyen (2019), Li et al. (2019), Kaishev et al. (2007), and
Alai et al. (2015). This approach will be extended to clusters assuming independence of the
clusters holds.

Let the probability of dying due to cluster c be qc
x,t. The mortality adjusted as a result

of cluster elimination due to cluster c for the age group x in the year t is represented
by q∗(c)x,t = (1− φ)qc

x,t. Where φ represents the mortality change factor such that φ ∈ Q,
bounded by −1 < φ < 1. This factor represents the improvement or deterioration of
mortality from the expected mortality. If φ is negative or positive, the modified mor-
tality will increase or decrease, respectively. As the assumption of independence of the
causes of death holds, the extra mortality resulting from the cluster elimination will be
re-distributed to the remaining clusters using proportional weights as explained by Alai
et al. (2015). Furthermore, the central death rates mx derived from the population data will
be transformed to the annualized probability qx type consistent with life tables by applying
the following transformation formula: q(x, c, t) = 2m(x,c,t)

2+m(x,c,t) , where q(x, c, t) = qc
(x,t) can
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be used interchangeably. The following quantities will be derived and computed from
the dataset:

q∗−c
x,t = q−c

x,t + φ

(
qc

x,t ×
q−c

x,t

(1− qc
x,t)

)
(2)

p∗τx,t = pτ
x,t + φ

(
qc

x,t ×
pτ

x,t

(1− qc
x,t)

)
(3)

A hypothetical temporary life assurance and life annuity products payable in arrears
will be developed for males and females aged 20 and 60 years based on the Dickson et al.
(2019) approach. The respective Actuarial Present Values (APV) will be achieved based on
Equations (4) and (5) for n = 0, 1, . . . , 9

APVassurance =
9

∑
k=0

vk+1
k p(20, t)∗(τ)q(20 + k,−c, t)∗ (4)

APVannuity =
10

∑
k=1

vk
k p(60, t)∗(τ) (5)

According to the prevailing government bond yields, a basis of 13% per annum
effective rate will be applied. This rate reflects the interest rate risk for Kenya. A 10-year
window period assumes that historical trends will continue like the current mortality rates.
The achieved clusters’ behavior regarding the overall mortality will be monitored and
observed based on the different values of the mortality shocks, for 0, ±5%, ±10%, and
±15%. The motivation of this scenario-based approach is also to incorporate the usage of
±10% rate of mortality shock recommended by legislation in Kenya (Insurance Regulatory
Authority 2017). The influence of eliminating a cluster in the age group and gender will be
quantified and assessed in conjunction with the derived Actuarial Present Values (APV)
and assumption rates using visualization techniques.

Table 3. Cluster Validity Index (Internal).

Index Description Objective Criteria

Silhouette (Sil)

S(i) = bi−ai
max(bi ,ai)

,

ai =
1

n(c(i))∑j∈c(i) dist(i, j)

bi = min
ck∈C\ci

∑
j∈ck

dist(i,j)
n(ck)

Maximum

Dunn (D)
D =

min
ck ,cl∈C,ck 6=cl

(
min

i∈ck ,j∈cl
dist(i,j)

)
max
cm∈C

diam(cm)

Maximum

COP COP(C) = 1
N ∑

ck∈C
|ck|

1
|ck | ∑

xi∈ ck
de(xi ,ck)

min
xi∈ck

max
xj∈ck

de(xi ,xj )
Minimum

Calinski-Harabasz (CH) CH(C) =
N−K ∑

ck∈C
|ck |de(ck ,X)

K−1 ∑
ck∈C

∑
xi∈ ck

de(xi ,ck)
Maximum

Davies-Bouldin (DB)
DB(C) = 1

K ∑
ck∈C

max
cl∈C\ck

{
S(ck)+S(cl)

de(ck ,cl)

}
Where, S(ck) =

1
|ck | ∑

xi∈ck

de(xi, ck)
Minimum

Modified Davies-Bouldin
(DB*) DB∗(C) = 1

K ∑
ck∈C

max
cj∈C\ck

{S(ck)+S(cl)}

min
cl∈C\ck

{de(ck ,cl)}
Minimum

Score Function (SF)

SF(C) = 1− 1
eebcd(C)+wcd(C) where

bcd(C) = ∑
ck∈C
|ck|de(ck, X)&

wcd(C) = ∑
ck∈C

1
|ck | ∑

xi∈ck

de(xi, ck)

Maximum
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3. Results and Discussions
3.1. Cluster Tendency

Based on Table 4, the clustering tendency of the dataset is set out by the Hopkins
Statistic. For both male and female age groups, the values are closer to one, indicating the
existence of clusters in the data for all age groups. This finding explains that the data is
cluster-able and appropriate to perform clustering.

Table 4. Hopkins Statistics Results.

Gender and Age Hopkins Statistic

Male aged 20 years to 60 years 0.9521319
Male aged over 60 years 0.9597553

Female aged 20 years to 60 years 0.9661622
Female aged over 60 years 0.9727848

3.2. Optimal Clusters

Table 5 shows the optimal cluster results based on age for males and females. It
was found that more clusters emerged from younger males and females than their older
counterparts. This finding validates the reason for lower life expectancies in developing
countries due to more causes of death in younger ages (Roser et al. 2013).

Table 5. Optimal clusters.

Age Partition Centroid Extraction

Males

20 ≤ x < 60 10

x ≥ 60 6

Females

20 ≤ x < 60 14

x ≥ 60 11

3.3. Cluster Validity Indices

This section presents the results of seven cluster validity indices ranked either by
maximizing or minimizing their objective functions (refer to Table 3). The best cluster
is selected from the highest and lowest ranking indices depending on the criteria of the
objective function, which is either maximization or minimization. Tables 6–9 show the
aggregate ranking based on all the objective functions for a given cluster. Because this is an
iterative and parameterized approach, the range of the cluster limits was set between 2 and
15, which was also the default in the tsclust package algorithm.

Visually, Figures 1 and 2 were the representation of the outcomes distinguished by
the black vertical broken line signifying the optimal cluster points. They show that some
validation indices performed abnormally. For instance, the Score Function (SF) chose cluster
2 as the best cluster representation for all ages and gender, but it was not an optimum
choice compared to the rest of the indices. The probable reason might be that the Score
Function index works well with hyper spheroid data structures and not time series, as
Saitta et al. (2007) investigated.
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Table 6. CVI results for females aged over 60.

Clusters CH COP D DB DBstar SF Sil Rank

10 29.44639 0.11639 0.232254 0.341024 0.505107 1.8 × 10−5 0.617272 3
11 29.62869 0.111384 0.232254 0.33342 0.490175 2.6 × 10−5 0.620358 1
12 25.55996 0.107246 0.232254 0.334859 0.48636 3.0 × 10−5 0.613325 2
13 26.17275 0.1068 0.232254 0.35341 0.53423 2.7 × 10−5 0.578546 6
14 23.59811 0.091103 0.240698 0.414231 0.50472 3.0 × 10−7 0.58151 9
15 23.54658 0.083028 0.26351 0.471052 0.521689 5.3 × 10−9 0.6016 10
2 111.2881 0.235012 0.171448 0.950741 0.950741 9.5 × 10−5 0.579936 13
3 67.6292 0.225413 0.1901 0.561149 0.574342 8.3 × 10−5 0.494053 12
4 38.85082 0.229005 0.1901 0.600825 0.610435 3.2 × 10−5 0.45468 14
5 35.32424 0.2118 0.1901 0.361477 0.440401 7.0 × 10−5 0.432569 7
6 29.89726 0.2041 0.212661 0.351287 0.440946 8.3 × 10−5 0.411587 5
7 24.10709 0.200178 0.212661 0.362019 0.448074 7.0 × 10−5 0.406142 11
8 35.31805 0.124642 0.232254 0.390179 0.51908 1.3 × 10−5 0.624278 4
9 30.08999 0.122617 0.232254 0.379862 0.535502 1.2 × 10−5 0.617032 8

Table 7. CVI results for females aged 20 to 60.

Clusters CH COP D DB DBstar SF Sil Rank

10 23.03112202 0.176992601 0.301793526 0.453123272 0.626611534 1.0 × 10−5 0.480769677 7
11 20.66332201 0.176400898 0.301793526 0.537548358 0.72011021 1.4 × 10−7 0.489997742 14
12 17.79499587 0.171086725 0.301793526 0.487769359 0.683949639 1.4 × 10−5 0.483808735 11
13 26.24365828 0.156145699 0.363306552 0.439806196 0.670187773 4.0 × 10−7 0.518376075 2
14 20.62380578 0.147637517 0.363306552 0.432068468 0.645016557 1.8 × 10−6 0.504644184 1
15 20.75436142 0.144098812 0.326536521 0.448140897 0.648934575 1.5 × 10−6 0.465248088 4
2 114.5256387 0.337413364 0.312118689 0.801389578 0.801389578 5.2 × 10−5 0.496747633 9
3 58.42907753 0.348064594 0.312118689 0.528629753 0.611530795 2.5 × 10−5 0.351772891 3
4 27.97383786 0.299237587 0.312118689 0.592248656 0.619617138 1.8 × 10−5 0.314562125 10
5 40.80354807 0.211871067 0.312118689 0.591605495 0.692876715 3.8 × 10−6 0.567527201 6
6 39.30113349 0.194009708 0.312118689 0.708201159 0.855088578 2.3 × 10−8 0.576778735 13
7 34.14609145 0.187249741 0.312118689 0.568824721 0.665277285 5.5 × 10−8 0.556010119 8
8 29.25958277 0.181636074 0.270400505 0.529890711 0.665009974 7.5 × 10−8 0.536580308 11
9 32.26731808 0.183907178 0.270400505 0.437247903 0.663384937 1.2 × 10−5 0.526151517 4

Table 8. CVI results for males aged over 60.

Clusters CH COP D DB DBstar SF Sil Rank

10 24.99659434 0.123090442 0.182248041 0.655482395 0.798173272 4.2 × 10−9 0.591802123 9
11 27.34635291 0.118726105 0.182248041 0.61964455 0.764738128 6.8 × 10−9 0.585583308 3
12 27.88938198 0.101299096 0.25335064 0.76589228 0.961728169 9.9 × 10−12 0.626175884 6
13 24.3911496 0.0980419 0.25335064 0.694189214 0.853283966 1.6 × 10−11 0.596910016 9
14 24.48443327 0.096394885 0.25335064 0.66805504 0.90634624 1.4 × 10−11 0.593231137 12
15 22.28606152 0.093863224 0.25335064 0.627373338 0.898826858 2.3 × 10−11 0.590170622 11
2 59.74292696 0.396250575 0.123056136 0.883154977 0.883154977 2.0 × 10−5 0.471770673 14
3 45.59389522 0.374735197 0.123056136 0.580674345 0.666813972 3.6 × 10−5 0.332955657 4
4 24.63063128 0.285170151 0.123056136 0.595182936 0.715895755 1.7 × 10−5 0.255229931 13
5 26.77686722 0.274703824 0.123056136 0.508507562 0.613479317 2.3 × 10−5 0.219229328 5
6 32.62536615 0.200419606 0.182248041 0.587586059 0.648327692 3.1 × 10−7 0.485483154 1
7 25.35447125 0.182995324 0.182248041 0.626840469 0.727005256 4.9 × 10−7 0.473163122 6
8 25.56041713 0.180540144 0.182248041 0.536630486 0.666798427 5.5 × 10−7 0.457705734 2
9 28.39544452 0.128737317 0.182248041 0.777960456 0.866845765 2.6 × 10−9 0.605605777 6
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Table 9. CVI results for males aged 20 to 60.

Clusters CH COP D DB DBstar SF Sil Rank

10 23.37155949 0.155797 0.36972481 0.47549 0.58735429 1.5 × 10−7 0.568804 1
11 22.75250061 0.149873 0.27293163 0.50896 0.64024307 1.5 × 10−8 0.603456 6
12 23.13907169 0.141859 0.27293163 0.5322 0.6292448 2.3 × 10−10 0.576129 4
13 22.90632651 0.132435 0.27293163 0.46538 0.64787178 3.8 × 10−8 0.550531 5
14 22.96812575 0.102317 0.27293163 0.50069 0.63744017 1.8 × 10−10 0.577709 3
15 20.69612814 0.104242 0.27293163 0.53184 0.70119603 2.2 × 10−10 0.566868 9
2 64.59981838 0.758969 0.244642 0.49813 0.49812756 1.2 × 10−3 0.330671 2
3 34.00898982 0.51517 0.23087144 0.52147 0.59828352 7.1 × 10−4 0.221762 7
4 9.490859724 0.462423 0.23087144 0.60857 0.64559839 8.3 × 10−5 0.206575 14
5 17.88334313 0.436439 0.23087144 0.59989 0.62708712 1.8 × 10−4 0.183655 10
6 10.15629379 0.443874 0.23087144 0.58828 0.61021394 1.1 × 10−4 0.155563 12
7 7.483384607 0.429315 0.23087144 0.59759 0.63214043 1.4 × 10−5 0.163761 13
8 15.98544384 0.244135 0.36972481 0.57682 0.63000799 1.9 × 10−7 0.331158 8
9 10.37996996 0.227101 0.36972481 0.6093 0.65769103 2.0 × 10−7 0.262339 11
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3.4. Comparison of the Dynamic Time Warping—DBA with the Euclidean (l1 Norm) and the
Manhattan (l2 Norm) Distance Metrics

This section presents the results of the proposed modified DTW approach in compar-
ison to the Euclidean (l1 norm) and the Manhattan (l2 norm) distance metrics, referred
to in Table 1, based on age, gender, and clusters. The comparisons are represented in
Figures 3–6. Generally, the DTW has shown superior performance based on the seven
validity indices outlined in Table 3. For males aged 20 to 60 and over 60 years, six out of
the seven indices identified DTW as the best distance metric. Similarly, females aged 20
to 60 had five out of the seven supporting the DTW. However, DTW and the Euclidean
distance jointly lead with three out of seven indices among females aged over 60, with
Manhattan only scoring the best under the Dunn index. Despite the results among older
females, these results suggest that the DTW distance metric is the best performing model
and is suitable for detecting optimal clusters in temporal datasets. Studies of Bartkowiak
et al. (2018) have confirmed that the performance accuracy of DTW measures on smaller
datasets are better than the lock-step measures, which include both the Euclidean and
Manhattan distance criteria because of the dilating alignments of the warping window with
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time. Furthermore, Cassisi et al. (2012) demonstrated that the Euclidean distance was lim-
ited because it could only compare observations with similar lengths, unlike DTW, which
could incorporate varying series lengths. DTW overcomes the one to one comparison by
achieving the many to one comparisons. It shows that the DTW accepts various alignments
of the series datasets because it is less sensitive to non-uniform amplitude scaling and
captures structural distortions among non-linear datasets.
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rates of the causes in cluster 5 among females aged 20 to 60 years. Tuberculosis, cervix uteri 
cancer, stomach cancer, and larynx cancer have experienced a general decline despite a 
trend break scenario, meaning that their trends did not consistently reduce from the year 
2000 to 2019, as shown. This result explains one of the shortcomings of using this approach 
in monitoring one-directional trends. Figure 10 represents the average death rates of the 
causes of death in cluster 4 among females aged 20 to 60 years partitioned in 2000, 2010, and 
2019. Notably, all the increasing causes in this cluster are cancer. Breast and esophagus can-
cers have significantly increased, while thyroid cancer has the least. This result implies that 
cancers are increasingly the leading cause of death among females aged 20 to 60. Similar 
studies such as (Mahase 2019) suggest that cancer will be the most prevalent cause of death 
not only in high-income countries but also globally. Furthermore, Hamdi et al. (2021) have 
specifically identified esophagus cancer as the leading cancer cause of death in Kenya and 
its region, as confirmed by these results.  
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3.5. Centroid Cluster Extraction Results

The centroid extractions and the comparative column charts were also obtained for
each age, gender, time, and cause and visually inspected. In general, the causes detected
in these clusters have shown trending structures based on co-movement that exist among
causes: trending upwards (increasing), trending downwards (declining), outliers, and
insignificant ones. For the complete cluster member list see Tables A2–A5.

3.5.1. Females Aged 20 to 60

Figure 7 illustrates extracted clusters in younger females. Cluster 4 represents upward
trending causes, while clusters 1 and 5 are declining. Cluster 2, 5, 6, 7, 8, 9, 10, 11, 12, 13,
and 14 are outliers. Cluster 3 represents the insignificant causes. Figure 8 displays the
average death rates of the causes of death in cluster 1 among females aged 20 to 60 years
partitioned in 2000, 2010, and 2019. The average death rates are generally declining
over time. HIV/AIDS is shown to experience the most significant reduction in causing
deaths compared to other causes. Maternal conditions, tetanus, stroke, meningitis, lower
respiratory infections, diarrheal diseases, and cirrhosis of the liver are also shown to be
fairly significant.
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This result demonstrates that HIV/AIDS is a declining trend among females aged 20
to 60 years, as shown in cluster 1. Detection of the other declining causes of death that
form cluster 1 in females 20 to 60 are also achieved and can be quantified based on their
decreasing rates in the short run. Figure 9 also represents the declining trend of the average
death rates of the causes in cluster 5 among females aged 20 to 60 years. Tuberculosis,
cervix uteri cancer, stomach cancer, and larynx cancer have experienced a general decline
despite a trend break scenario, meaning that their trends did not consistently reduce from
the year 2000 to 2019, as shown. This result explains one of the shortcomings of using this
approach in monitoring one-directional trends. Figure 10 represents the average death
rates of the causes of death in cluster 4 among females aged 20 to 60 years partitioned in
2000, 2010, and 2019. Notably, all the increasing causes in this cluster are cancer. Breast
and esophagus cancers have significantly increased, while thyroid cancer has the least.
This result implies that cancers are increasingly the leading cause of death among females
aged 20 to 60. Similar studies such as (Mahase 2019) suggest that cancer will be the most
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prevalent cause of death not only in high-income countries but also globally. Furthermore,
Hamdi et al. (2021) have specifically identified esophagus cancer as the leading cancer
cause of death in Kenya and its region, as confirmed by these results.
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and 2019.

3.5.2. Females Aged over 60

Figure 11 represents clusters for older females. Cluster 2 is trending upwards while
cluster 1 is downwards. Cluster 3, 5, 6, 7, 8, 9, 10, and 11 are outliers, while cluster
4 is insignificant. Figure 12 shows the average death rates of the causes of death in
cluster 1 among females aged over 60 years partitioned in 2000, 2010, and 2019. Similar
to females aged 20 to 60, the most significant impact of the decline is seen by HIV/AIDS.
Diarrheal diseases, stroke, protein-energy malnutrition, meningitis, cirrhosis of the liver,
chronic pulmonary obstructive disease, and asthma have shown slower declines. This
result suggests that most of the causes of slower death rate are the leading reason for
increased life expectancy. These findings imply a greater longevity risk because the rate
of deaths associated with this age set is slowing. Expressly, studies have confirmed that
stroke deaths decline more among older individuals than younger ones (Aparicio et al.
2019). A notable finding of tuberculosis and stroke deaths among females aged 60 has
indicated an inconsistent decline or misclassification that needs further investigation. On
the other hand, Figure 13 shows the increasing average death rate due to cluster 2 among
those aged over 60. Compared to females aged 20 to 60, most increases are not linked to
cancer, implying that cancer is either a new cause of death among this age group or that
most surviving females recovered from or were not diagnosed with cancer in their earlier
ages. However, lower respiratory infections, ischemic heart disease, and hypertensive
heart disease associated with cardiovascular diseases (CVD) are increasing, as confirmed by
studies by Roth et al. (2015) in lower and middle-income regions. Road injury, falls, diabetes
mellitus, Alzheimer’s disease and other dementias, gall bladder and biliary diseases, breast,
cervix uteri cancer, esophagus and stomach cancer have shown steady increases. Kidney
diseases similar to CVDs have also witnessed increased prevalence.
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The implication of this finding on longevity risk will depend on the rates of the
increases and decreases of deaths due to these causes. As shown by both declining and
increasing trends, slower decline and steady expansion of the deaths will require different
approaches to be undertaken at these higher ages, for instance, to determine the inconsistent
findings of stroke and tuberculosis among older females.

3.5.3. Males Aged 20 to 60

Regarding the males aged 20 to 60, cluster 1 represents clusters trending downwards
while cluster 4 combines upward trending and recently declining trends with a trend
change observed in 2010, as shown in Figure 14. Cluster 2, 5, 6, 7, 8, 9, and 10 are outliers,
while cluster 3 causes are insignificant. Figure 15 displays the average death rates of the
causes of death in cluster 1 among males aged 20 to 60 years partitioned in 2000, 2010, and
2019. Similarly, HIV/AIDS is shown to experience the most significant reduction in causing
deaths, as observed in their female counterparts. Causes of death such as stroke, tetanus,
self-harm, ischemic heart disease, lower respiratory infections, diarrheal diseases, diabetes
mellitus, and cirrhosis of the liver have shown a significant decline. Still, they are not
comparable to HIV/AIDS. Figure 16 also shows causes of death with both increasing and
decreasing causes of death with a break around 2010. Consequently, from 2010 onwards,
the causes of death have been declining. Tuberculosis, road injury, malaria, interpersonal
violence, esophagus cancer, and mouth and oropharynx cancer belong to this group. This
age group has experienced an increased number of causes with a trend change. This result
implies additional investigation into these cases.

This result demonstrates that HIV/AIDS is declining among males aged 20 to 60, as
shown by cluster 1. Detection of the other declining causes of death that form cluster 1
in males 20 to 60 are shown. Self-harm is an external cause of death linked to intentional
injuries and unique to males aged 20 to 60. It shows that the clustering approach can
detect such complexities unique to gender. However, this approach has also not observed
in similar trends as compared to cluster 5 in females aged 20 to 60, probably due to the
dynamic nature of causes. This explains one of the shortcomings of this approach in
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monitoring trends. One remedy is to periodically undertake clustering to reduce the risk
of misclassification.
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3.5.4. Males Aged over 60

Males aged 60 and above have cluster 2 trending upwards while cluster 1 is declining,
as shown by Figure 17. Cluster 3, 5, and 6 are outliers, while four is insignificant. Figure 18
shows the average death rates of the causes of death in cluster 1 among males aged over
60 years partitioned in 2000, 2010, and 2019. However, the leading cause of death is stroke
at a slower rate of decline, as observed. Compared to HIV/AIDS reduction for both the
younger and older males, we note that the men over 60 experience slower reductions.
This scenario is also replicated among the other causes of death in the age groups. This
finding suggests that deaths of older men are steady and implies increased survival of
men over age 60. Contrastingly, fewer causes are increasing compared to the declining
causes of death, as shown by Figure 19. The majority of deaths in this cluster are cancer,
with the primary cause being prostate cancer. Like females, tuberculosis does not depict
a one-directional trend in males aged over 60. This shortcoming has shown a pattern for
both males and females.
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3.6. Cause of Death Classification Based on the Proposed Clustering Approach
3.6.1. Trending Upwards

Upward trending clusters imply a lower risk to longevity for older individuals. Con-
versely, among the young, upward-trending clusters signify increased mortality risk. These
clusters show the need for insurers to pay more attention to such clusters because it would
likely impact mortality profit and loss in the future.

3.6.2. Trending Downwards

On the other hand, declining trends imply a higher risk of longevity among the old
and a lower risk of mortality among the young. For example, HIV/AIDS has a declining
trend for males and females for all age groups under clusters 1. For this reason, mortality
improvements are expected and portray a higher risk in terms of longevity. This mortality
improvement led to revisions of life expectancy projections for Kenya (United Nations
and Social Affairs 2017). The United Nations uses the probabilistic approach with the
HIV/AIDS factor in forecasting life expectancy in Kenya (Raftery et al. 2013). Such models
may therefore consider this approach in advance.

3.6.3. Outliers

These clusters comprise individual causes that are highly dissimilar to the trending
causes, as shown by Table 10. Examples of outliers captured include: collective violence and
legal intervention cause for both males and females peaked in the electioneering period of
Kenya 2007/2008 when Kenya witnessed post-election violence. Additionally, breast cancer
among males has been higher in Kenya than in the East African region (Sawe et al. 2016).
According to Delgermaa et al. (2011), the mesothelioma cause of death linked to asbestos
usage should be anticipated in the immediate decades ahead, including in developing
countries. This is one of the outliers. All these instances imply that this temporal clustering
approach may also capture unnoticeable cases that result in changes in mortality and
longevity trends, including mortality shocks.

Table 10. Outlier clusters.

Males Aged 20 to 60 Males Aged over 60 Females Aged 20 to 60 Females Aged over 60

Breast cancer, mesothelioma African trypanosomiasis Collective violence and
legal intervention Ascariasis

Collective violence and legal
intervention Ischemic heart disease Drug use disorders Collective violence and legal

intervention
Dengue, echinococcosis Natural disasters Eating disorders Drowning

Eating disorders Echinococcosis Echinococcosis
Leishmaniasis Leishmaniasis Malaria

Natural disasters Malaria Natural disasters
Alzheimer disease and

other dementias Measles Poisonings

Mesothelioma African trypanosomiasis
Natural disasters

African trypanosomiasis

3.6.4. Insignificant

These clusters capture causes with insignificant deaths or those unrelated to gender or
age. For instance, maternal conditions and ovarian cancer observed in cluster 3 for young
males is insignificant, as this only affects females; they have zero death rates. However, one
drawback of this methodology is observed in cluster 4 under males aged over 60, where
several causes are misclassified together with the insignificant cases. This implies that
further studies should be conducted to understand the reason for this scenario.
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3.7. Quantifying the Detected Clusters Based on Cause–Elimination Approach

Figures 20 and 21 represents the actuarial present values of a hypothetical annuity
for males and females aged over 60, grouped by clusters as formulated in the methods
section. The lowest APV is given by cluster 1. This result represents causes of death that
have a more significant impact on longevity risk for males and females aged above 60,
that is, causes that depict declining trends as shown for each given longevity assumption
rate. Eliminating cluster 1 contracts the APV significantly because it quantifies future
expectations based on the longevity assumption. However, eliminating cluster 6 for males
and eleven for females has the least significance. Consequently, the reduction of reserves
would be underestimated. Notice that the APV is more affected by the clusters than the
longevity assumption rates shown by the slopes, implying the importance of monitoring the
causes of death. Figures 22 and 23 represent the actuarial present values of a hypothetical
assurance for males and females aged 20 to 60 grouped by clusters. The highest APV is
represented by cluster 1. This is because cluster 1 contains downward trending cluster
causes that reduce the risk of mortality in the future; hence, the removal of these cluster
for both males and females results in a higher APV. Conversely, elimination of cluster 4
for females aged 20 to 60 would result in a lower APV. This is attributable to removing
the causes with the highest risk of mortality in the future, thereby reducing APV and
consequently the reserves. From the finding, the APV is more affected by the clusters than
the mortality assumption rates.
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Figure 20. APV for males aged over 60 clusters against longevity assumption rates.

3.8. Application of Causes of Death Cluster Results in Actuarial Literature

The partition of the two age brackets of 20 to 60 years and over 60 years defines the
two demographic structures of a population (young and old) and the two age sets that are
eligible for insurance and pensions (working and retired) in the majority of jurisdictions.
Mortality and longevity risks are usually defined in the context of age and gender. Insurance
and pension firms are more concerned with the risk of mortality among the young and
the risk of longevity among the old, as mentioned by Brouhns et al. (2002). Actuaries in
life insurance and pension companies set out mortality change factors, called mortality
or longevity assumption rates, based on regulatory frameworks, for our case, the 10%
actuarial judgements and derivation from published tables. Assumptions of mortality
improvement or deterioration by the actuary are subjective based on expert opinion and
objective through extrapolating historical trends. Therefore, a complementary application
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of this methodology is sensible in narrowing these two types of analyses by using optimal
representative clusters in defining mortality trends based on these classifications.
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Figure 21. APV for females aged over 60 clusters against longevity assumption rates.
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Figure 22. APV for males aged 20 to 60 clusters against mortality assumption rates.
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Figure 23. APV for females aged over 20 to 60 clusters against mortality assumption rates.

3.9. Limitations of the Study

One of the study’s main limitations is using the assumption of independence of the
causes of death (Arnold and Glushko 2021; Chiang 1968). In practice, causes of death
are correlated and exhibit co-integration tendencies. This study may be extended by
incorporating approaches that consider the relaxation of this assumption before clustering.

4. Conclusions

A temporal clustering approach explored causes of death for 20 years based on age,
sex, and period. The study aimed to obtain key clusters in the context of these three features.
The hierarchical agglomerative clustering approach was applied using a Dynamic Time
Warping distance criterion with a barycenter averaging modification. Objectively, 11 and
14 clusters were obtained amongst older and younger females, respectively, while ten and
six were detected in males, the younger and the older, respectively. The clustering quality
was assessed by applying the internal validity index measurement of the seven CVI indices.

Regarding age, period, and sex, the causes of death were classified based on the trend-
ing clusters; upward, downward, outlier, and insignificant were achieved. In combination
with other mortality models, this approach may be incorporated in identifying trends
in causes of death features and monitoring future evolution of mortality and longevity
assumption rates for pricing and valuations in insurance and pension offices.

Due to the dynamism and nature of the causes of death over time, it is essential that
clustering be undertaken periodically to update the changes of classifications. As a further
study, risk factors that result in these causes of death may be incorporated into the causes of
deaths, such as alcohol use, smoking status, obesity, etc., to understand the patterns of these
causes of death. Furthermore, the trend increase or decline rate has not been established
and could be an area of further study.
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Appendix A

Table A1. GHE Cause Categories and ICD-10 Codes.

GHE Code Cause Name ICD-10 Codes

10 I. Communicable, maternal, perinatal,
and nutritional conditions

A00—B99, D50—D53, D64.9, E00—E02,
E40—E46, E50—E64, G00—G04, G14,
H65—H66, J00—J22, N70—N73,
O00—O99, P00—P96, U04

20 A. Infectious and parasitic diseases A00—B99, G00—G04, G14, N70—N73,
P37.3, P37.4

30 1. Tuberculosis A15—A19, B90
40 2. STDs excluding HIV A50—A64, N70—N73
50 a. Syphilis A50—A53
60 b. Chlamydia A55—A56
70 c. Gonorrhoea A54
80 d. Trichomoniasis A59
85 e. Genital herpes A60
90 f. Other STDs A57—A58, A63—A64, N70—N73
100 3. HIV/AIDS B20—B24
101 a. HIV resulting in TB B20.0
102 b. HIV resulting in other diseases B20—B24 (minus B20.0)
110 4. Diarrheal diseases A00, A01, A03, A04, A06—A09
120 5. Childhood-cluster diseases A33—A37, B05
130 a. Whooping cough A37
140 b. Diphtheria A36
150 c. Measles B05
160 d. Tetanus A33—A35
170 6. Meningitis A39, G00, G03
180 7. Encephalitis A83—A86, B94.1, G04
185 8. Hepatitis B15—B19 (minus B17.8)
186 a. Acute hepatitis A B15
190 b. Acute hepatitis B B16—B19 (minus B17.1, B17.2, B18.2,

B18.8)
200 c. Acute hepatitis C B17.1, B18.2
205 d. Acute hepatitis E B17.2, B18.8
210 9. Parasitic and vector diseases A71, A82, A90—A91, A95, B50—B57,

B65, B67, B69, B73, B74.0—B74.2,
P37.3—P37.4

220 a. Malaria B50—B54, P37.3, P37.4
230 b. Trypanosomiasis B56
240 c. Chagas disease B57
250 d. Schistosomiasis B65
260 e. Leishmaniasis B55
270 f. Lymphatic filariasis B74.0—B74.2
280 g. Onchocerciasis B73
285 h. Cysticercosis B69
295 i. Echinococcosis B67
300 j. Dengue A90—A91
310 k. Trachoma A71

https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates/ghe-leading-causes-of-death
https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates/ghe-leading-causes-of-death
https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates/ghe-leading-causes-of-death
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Table A1. Cont.

GHE Code Cause Name ICD-10 Codes

315 l. Yellow fever A95
320 m. Rabies A82
330 10. Intestinal nematode infections B76—B81
340 a. Ascariasis B77
350 b. Trichuriasis B79
360 c. Hookworm disease B76
362 d. Food-bourne trematodes B78, B80, B81
365 11. Leprosy A30
370 12. Other infectious diseases A02, A05, A20—A28, A31, A32, A38,

A40—A49, A65—A70, A74—A79,
A80—A81, A87—A89, A92—A99,
B00—B04, B06—B09, B17.8, B25—B49,
B58—B60, B64, B66, B68, B70—B72,
B74.3—B74.9, B75, B82—B89, B91—B99
(minus B94.1), G14

380 B. Respiratory infectious H65—H66, J00—J22, P23, U04
390 1. Lower respiratory infections J09—J22, P23, U04
400 2. Upper respiratory infections J00—J06
410 3. Otitis media H65—H66
420 C. Maternal conditions O00—O99
490 D. Neonatal conditions P00—P96 (minus P23, P37.3, P37.4)
500 1. Preterm birth complications P05, P07, P22, P27—P28
510 2. Birth asphyxia and birth trauma P03, P10—P15, P20—P21, P24—P26,

P29
520 3. Neonatal sepsis and infections P35—P39 (minus P37.3, P37.4)
530 4. Other neonatal conditions P00—P02, P04, P08, P50—P96
540 E. Nutritional deficiencies D50—D53, D64.9, E00—E02, E40—E46,

E50—E64
550 1. Protein-energy malnutrition E40—E46
560 2. Iodine deficiency E00—E02
570 3. Vitamin A deficiency E50
580 4. Iron-deficiency anemia D50, D64.9
590 5. Other nutritional deficiencies D51—D53, E51—E64
600 II. Non-communicable diseases C00—C97, D00—D48, D55—D64

(minus D 64.9), D65—D89, E03—E07,
E10—E34, E65—E88, F01—F99,
G06—G98 (minus G14), H00—H61,
H68—H93, I00—I99, J30—J98,
K00—K92, L00—L98, M00—M99,
N00—N64, N75—N98, Q00—Q99,
X41—X42, X44, X45, R95

610 A. Malignant neoplasms c C00—C97
620 1. Mouth and oropharynx cancers C00—C14
621 a. Lip and oral cavity C00—C08
622 b. Nasopharynx C11
623 c. Other pharynx C09—C10, C12—C14
630 2. Esophagus cancer C15
640 3. Stomach cancer C16
650 4. Colon and rectum cancers C18—C21
660 5. Liver cancer C22
670 6. Pancreas cancer C25
680 7. Trachea, bronchus, lung cancers C33—C34
690 8. Melanoma and other skin cancers C43—C44
691 a. Malignant skin melanoma C43
692 b. Non-melanoma skin cancer C44
700 9. Breast cancer C50
710 10. Cervix uteri cancer C53
720 11. Corpus uteri cancer C54
730 12. Ovary cancer C56
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Table A1. Cont.

GHE Code Cause Name ICD-10 Codes

740 13. Prostate cancer C61
742 14. Testicular cancer C62
745 15. Kidney, renal pelvis, and ureter

cancer
C64—C66

750 16. Bladder cancer C67
751 17. Brain and nervous system cancers C70—C72
752 18. Gallbladder and biliary tract

cancer
C23—C24

753 19. Larynx cancer C32
754 20. Thyroid cancer C73
755 21. Mesothelioma C45
760 22. Lymphomas, multiple myeloma C81—C90, C96
761 a. Hodgkin lymphoma C81
762 b. Non-Hodgkin lymphoma C82—C86, C96
763 c. Multiple myeloma C88, C90
770 23. Leukemia C91—C95
780 24. Other malignant neoplasms C17, C26—C31, C37—C41, C46—C49,

C51, C52, C57—C60, C63, C68, C69,
C74—C75, C77—C79

790 B. Other neoplasms D00—D48
800 C. Diabetes mellitus E10—E14 (minus E10.2, E11.2, E12.2,

E13.2, E14.2)
810 D. Endocrine, blood, immune disorders D55—D64 (minus D64.9), D65—D89,

E03—E07, E15—E34, E65—E88
811 1. Thalassemias D56
812 2. Sickle cell disorders and trait D57
813 3. Other hemoglobinopathies and

hemolytic anemias
D55, D58—D59

814 4. Other endocrine, blood, and
immune disorders

D60—D64 (minus D64.9), D65—D89,
E03—E07, E15—E34, E65—E88

820 E. Mental and substance use disorders F04—F99, G72.1, Q86.0, X41—X42, X44,
X45

830 1. Depressive disorders F32—F33, F34.1
831 a. Major depressive disorder F32—F33
832 b. Dysthymia F34.1
840 2. Bipolar disorder F30—F31
850 3. Schizophrenia F20—F29
860 4. Alcohol-use disorders F10, G72.1, Q86.0, X45
870 5. Drug-use disorders F11—F16, F18—F19d, X41—X42, X44d
871 a. Opioid use disorders F11, X42
872 b. Cocaine use disorders F14
873 c. Amphetamine use disorders F15
874 d. Cannabis use disorders F12
875 e. Other drug use disorders F13, F16, F18, X41
880 6. Anxiety disorders F40—F44
890 7. Eating disorders F50
900 8. Autism and Asperger syndrome F84
910 9. Childhood behavioral disorders F90—F92
911 a. Attention deficit/hyperactivity

syndrome
F90

912 b. Conduct disorder F91—F92
920 10. Idiopathic intellectual disability F70—F79
930 11. Other mental and behavioral

disorders
F04—F09, F17, F34—F39 (minus F34.1),
F45—F48, F51—F69, F80—F83,
F88—F89, F93—F99

940 F. Neurological conditions F01—F03, G06—G98 (minus G14,
G72.1)

950 1. Alzheimer disease and other
dementias

F01—F03, G30—G31
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GHE Code Cause Name ICD-10 Codes

960 2. Parkinson disease G20—G21
970 3. Epilepsy G40—G41
980 4. Multiple sclerosis G35
990 5. Migraine G43
1000 6. Non-migraine headache G44
1010 7. Other neurological conditions G06—G12, G23—G25, G36—G37,

G45—G98 (minus G72.1)
1020 G. Sense organ diseases H00—H61, H68—H93
1030 1. Glaucoma H40
1040 2. Cataracts H25—H26
1050 3. Uncorrected refractive errors H49—H52
1060 4. Macular degeneration H35.3
1070 5. Other vision loss H30—H35 (minus H35.3), H53—H54
1080 6. Other hearing loss H90—H91
1090 7. Other sense organ disorders H00—H21, H27, H43—H47, H55—H61,

H68—H83, H92—H93
1100 H. Cardiovascular diseases I00—I99
1110 1. Rheumatic heart disease I01—I09
1120 2. Hypertensive heart disease I11—I15
1130 3. Ischemic heart disease I20—I25
1140 4. Stroke I60—I69
1150 5. Cardiomyopathy, myocarditis,

endocarditis
I30—I33, I38, I40, I42

1160 6. Other circulatory diseases I00, I26—I28, I34—I37, I44—I51,
I70—I99

1170 I. Respiratory diseases J30—J98
1180 1. Chronic obstructive pulmonary

disease
J40—J44

1190 2. Asthma J45—J46
1200 3. Other respiratory diseases J30—J39, J47—J98
1210 J. Digestive diseases K20—K92
1220 1. Peptic ulcer disease K25—K27
1230 2. Cirrhosis of the liver K70, K74
1240 3. Appendicitis K35—K37
1241 4. Gastritis and duodenitis K29
1242 5. Paralytic ileus and intestinal

obstruction
K56

1244 6. Inflammatory bowel disease K50—K52, K58.0
1246 7. Gallbladder and biliary diseases K80—K83
1248 8. Pancreatitis K85—K86
1250 9. Other digestive diseases K20—K22, K28, K30—K31, K38,

K40—K46, K55, K57, K58.9, K59—K66,
K71—K73, K75—K76, K90—K92

1260 K. Genitourinary diseases E10.2—E10.29, E11.2—E11.29, E12.2,
E13.2—E13.29, E14.2, N00—N64,
N75—N76, N80—N98

1270 1. Kidney diseases N00—N19, E10.2, E11.2, E12.2, E13.2,
E14.2

1271 a. Acute glomerulonephritis N00—N01
1272 b. Chronic kidney disease due to

diabetes
E10.2, E11.2, E12.2, E13.2, E14.2

1273 c. Other chronic kidney disease N02—N19
1280 2. Benign prostatic hyperplasia N40
1290 3. Urolithiasis N20—N23
1300 4. Other urinary diseases N25—N39, N41—N45, N47—N51
1310 5. Infertility N46, N97
1320 6. Gynecological diseases N60—N64, N75—N76, N80—N96, N98
1330 L. Skin diseases L00—L98
1340 M. Musculoskeletal diseases M00—M99
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1350 1. Rheumatoid arthritis M05—M06
1360 2. Osteoarthritis M15—M19
1370 3. Gout M10
1380 4. Back and neck pain M45—M48, M50—M54
1390 5. Other musculoskeletal disorders M00, M02, M08, M11—M13,

M20—M43, M60—M99
1400 N. Congenital anomalies Q00—Q99 (minus Q86.0)
1410 1. Neural tube defects Q00, Q05
1420 2. Cleft lip and cleft palate Q35—Q37
1430 3. Down syndrome Q90
1440 4. Congenital heart anomalies Q20—Q28
1450 5. Other chromosomal anomalies Q91—Q99
1460 6. Other congenital anomalies Q01—Q04, Q06—Q18, Q30—Q34,

Q38—Q89 (excluding Q86.0)
1470 O. Oral conditions K00—K14
1480 1. Dental caries K02
1490 2. Periodontal disease K05
1500 3. Edentulism —
1502 4. Other oral disorders K00, K01, K03, K04, K06—K14
1505 P. Sudden infant death syndrome R95
1510 III. Injuries V01—Y89 (minus X41—X42, X44, X45)
1520 A. Unintentional injuries V01—X40, X43, X46—59, Y40—Y86,

Y88, Y89
1530 1. Road injury V01—V04, V06, V09—V80, V87, V89,

V99
1540 2. Poisonings X40, X43, X46—X48, X49
1550 3. Falls W00—W19
1560 4. Fire, heat, and hot substances X00—X19
1570 5. Drowning W65—W74
1575 6. Exposure to mechanical forces W20—W38, W40—W43, W45, W46,

W49—W52, W75, W76
1580 7. Natural disasters X33—X39
1590 8. Other unintentional injuries Rest of V, W39, W44, W53—W64,

W77—W99, X20—X32, X50—X59,
Y40—Y86, Y88, Y89

1600 B. Intentional injuries X60—Y09, Y35—Y36, Y870, Y871
1610 1. Self—harm X60—X84, Y870
1620 2. Interpersonal violence X85—Y09, Y871
1630 3. Collective violence and legal

intervention
Y35—Y36

Table A2. Cluster members for males aged over 60.

Cluster Cause (Males Aged over 60)

1

Acute hepatitis A, Acute hepatitis C, Appendicitis, Ascariasis, Asthma, Chronic obstructive pulmonary disease,
Cirrhosis of the liver, Cysticercosis, Diarrheal diseases, and Drowning
Drug use disorders, Epilepsy, Exposure to mechanical forces, Fire heat and hot substances, astritis and duodenitis,
Gonorrhea, HIV AIDS, Hypertensive heart disease, Leukemia, Liver cancer, Lower respiratory infections, Malaria,
Meningitis, Otitis media, Peptic ulcer disease, Poisonings, Protein energy malnutrition, Rabies, Rheumatic heart disease,
Rheumatoid arthritis, Road injury, Schistosomiasis, Self-harm, Stomach cancer, Stroke, Syphilis, Tetanus, Trachea
bronchus lung cancers, Tuberculosis, Upper respiratory infections, Urolithiasis, and Yellow fever

2

Acute hepatitis B, Acute hepatitis E, Bladder cancer, Brain and nervous system cancers, Colon and rectum cancers,
Gallbladder and biliary tract cancer, Interpersonal violence, Kidney cancer, Larynx cancer, Lymphomas multiple
myeloma, Melanoma, and other skin cancers, Mesothelioma, Mouth and oropharynx cancers, Esophagus cancer,
Pancreas cancer, Parkinson disease, Prostate cancer, Sickle cell disorders and trait, Testicular cancer, and Thyroid cancer



Risks 2022, 10, 99 30 of 34

Table A2. Cont.

Cluster Cause (Males Aged over 60)

3 African trypanosomiasis

4

Alcohol-use disorders, Alzheimer disease, and other dementias, Anxiety disorders, Autism and Asperger syndrome,
Back and neck pain, Benign prostatic hyperplasia, Bipolar disorder, Breast cancer, Cardiomyopathy myocarditis
endocarditis, Cataracts, Cervix uteri cancer, Chagas disease, Childhood behavioral disorders, Chlamydia, Collective
violence, and legal intervention
Congenital anomalies, Corpus uteri cancer, Dengue, Depressive disorders, Diabetes mellitus, Diphtheria, Eating
disorders, Echinococcosis, Encephalitis, Falls, Food bourne trematodes, Gallbladder and biliary diseases, Genital herpes,
Glaucoma, Gout, Gynecological diseases, and Hookworm disease
Idiopathic intellectual disability, Infertility, Inflammatory bowel disease, Iodine deficiency, Iron deficiency anaemia,
Kidney diseases, Leishmaniasis, Leprosy, Lymphatic filariasis, Macular degeneration, Maternal conditions, Measles,
Migraine, Multiple sclerosis, Neonatal conditions, Non migraine headache, Onchocerciasis, Oral conditions,
Osteoarthritis, Other hearing loss, Other vision loss, Ovary cancer, Pancreatitis, Paralytic ileus and intestinal
obstruction, Schizophrenia, Skin diseases, Sudden infant death syndrome, Thalassemias, Trachoma, Trichomoniasis,
Trichuriasis, Uncorrected refractive errors, Vitamin A deficiency, and Whooping cough

5 Ischemic heart disease

6 Natural disasters

Table A3. Cluster members for males aged 20 to 60.

Cluster Cause (Males Aged 20 to 60)

1

Acute hepatitis A, Acute hepatitis B, Acute hepatitis C, Acute hepatitis E, African trypanosomiasis, Alcohol-use
disorders, Appendicitis, Ascariasis, Asthma, Cardiomyopathy myocarditis endocarditis, Chronic obstructive
pulmonary disease, Cirrhosis of the liver, Congenital anomalies, Cysticercosis, Diabetes mellitus, Diarrheal diseases,
Diphtheria, Drowning, Drug use disorders, Encephalitis, Epilepsy, Exposure to mechanical forces, Falls, Fire heat and
hot substances, Gallbladder and biliary diseases, Gastritis and duodenitis, Gonorrhea, HIV AIDS, Hypertensive heart
disease, Inflammatory bowel disease, Ischemic heart disease, Kidney diseases, Liver cancer, Lower respiratory
infections, Measles, Meningitis, Multiple sclerosis, Otitis media, Pancreatitis, Paralytic ileus and intestinal obstruction,
Parkinson disease, Peptic ulcer disease, Poisonings, Protein energy malnutrition, Rabies, Rheumatic heart disease,
Rheumatoid arthritis, Schistosomiasis, Self-harm, Sickle cell disorders and trait, Skin diseases, Stroke, Syphilis, Tetanus,
Upper respiratory infections, Urolithiasis, Whooping cough, and Yellow fever

2 Alzheimer disease and other dementias

3

Anxiety disorders, Autism and Asperger syndrome, Back and neck pain, Benign prostatic hyperplasia, Bipolar disorder,
Cataracts, Cervix uteri cancer, Chagas disease, Childhood behavioral disorders, Chlamydia, Corpus uteri cancer,
Depressive disorders, Food-bourne trematodes, Genital herpes, Glaucoma, Gout, Gynecological diseases, Hookworm
disease, Idiopathic intellectual disability, Infertility, Iodine deficiency, Iron deficiency anemia, Leprosy, Lymphatic
filariasis, Macular degeneration, Maternal conditions, Migraine, Neonatal conditions, Non migraine headache,
Onchocerciasis, Oral conditions, Osteoarthritis, Other hearing loss, Other vision loss, Ovary cancer, Schizophrenia,
Sudden infant death syndrome, Thalassemias, Trachoma, Trichomoniasis, Trichuriasis, Uncorrected refractive errors,
and Vitamin A deficiency

4

Bladder cancer, Brain and nervous system cancers, Colon and rectum cancers, Gallbladder and biliary tract cancer,
Interpersonal violence, Kidney cancer, Larynx cancer, Leukemia, Lymphomas multiple myeloma, Malaria, Melanoma
and other skin cancers, Mouth and oropharynx cancers, Esophagus cancer, Pancreas cancer, Prostate cancer, Road injury,
Stomach cancer, Testicular cancer, Thyroid cancer, Trachea bronchus lung cancers, and Tuberculosis

5 Breast cancer, Mesothelioma

6 Collective violence and legal intervention

7 Dengue, Echinococcosis

8 Eating disorders

9 Leishmaniasis

10 Natural disasters



Risks 2022, 10, 99 31 of 34

Table A4. Cluster members for females aged over 60.

Cluster Cause (Females Aged over 60)

1

Acute hepatitis A, Acute hepatitis C, Appendicitis, Asthma, Chlamydia, Chronic obstructive pulmonary disease,
Cirrhosis of the liver, Congenital anomalies, Cysticercosis, Diarrheal diseases, Exposure to mechanical forces, Gastritis
and duodenitis, Gonorrhea, Gynecological diseases, HIV AIDS, Meningitis, Otitis media, Peptic ulcer disease, Protein
energy malnutrition, Rabies, Rheumatic heart disease, Schistosomiasis, Self-harm, Stroke, Syphilis, Tetanus,
Tuberculosis, Upper respiratory infections, and Yellow fever

2

Acute hepatitis B, Acute hepatitis E, Alcohol-use disorders, Alzheimer disease and other dementias, Bladder cancer,
Brain and nervous system cancers, Breast cancer, Cardiomyopathy myocarditis endocarditis, Cervix uteri cancer, Colon
and rectum cancers, Corpus uteri cancer, Diabetes mellitus, Drug use disorders, Encephalitis, Epilepsy, Falls, Fire heat
and hot substances, Gallbladder and biliary diseases, Gallbladder and biliary tract cancer, Hypertensive heart disease,
Inflammatory bowel disease, Interpersonal violence, Ischemic heart disease, Kidney cancer, Kidney diseases, Larynx
cancer, Leishmaniasis, Leukemia, Liver cancer, Lower respiratory infections, Lymphomas multiple myeloma, Melanoma
and other skin cancers, Mouth and oropharynx cancers, Multiple sclerosis, Esophagus cancer, Ovary cancer, Pancreas
cancer, Pancreatitis, Paralytic ileus and intestinal obstruction, Parkinson disease, Rheumatoid arthritis, Road injury,
Sickle cell disorders and trait, Skin diseases, Stomach cancer, Thyroid cancer, Trachea bronchus lung cancers, and
Urolithiasis

3 African trypanosomiasis

4

Anxiety disorders, Autism and Asperger syndrome, Back and neck pain, Benign prostatic hyperplasia, Bipolar disorder,
Cataracts, Chagas disease, Childhood behavioral disorders, Dengue, Depressive disorders, Diphtheri, Eating disorders,
Food borne trematodes, Genital herpes, Glaucoma, Gout, Hookworm disease, Idiopathic intellectual disability,
Infertility, Iodine deficiency, Iron deficiency anemia, Leprosy, Lymphatic filariasis, Macular degeneration, Maternal
conditions, Measles, Mesothelioma, Migraine, Neonatal conditions, Non migraine headache, Onchocerciasis, Oral
conditions, Osteoarthritis, Other hearing loss, Other vision loss, Prostate cancer, Schizophrenia, Sudden infant death
syndrome, Testicular cancer, Thalassemias, Trachoma, Trichomoniasis, Trichuriasis, Uncorrected refractive errors,
Vitamin A deficiency, and Whooping cough

5 Ascariasis

6 Collective violence and legal intervention

7 Drowning

8 Echinococcosis

9 Malaria

10 Natural disasters

11 Poisonings

Table A5. Cluster members for females aged 20 to 60.

Cluster Cause (Females Age 20 to 60)

1

Acute hepatitis A, Acute hepatitis B, Acute hepatitis C, Acute hepatitis E, Alcohol-use disorders, Alzheimer disease and
other dementias, Appendicitis, Ascariasis, Asthma, Cardiomyopathy myocarditis endocarditis, Chlamydia, and
Chronic obstructive pulmonary disease
Cirrhosis of the liver, Congenital anomalies, Cysticercosis, Diabetes mellitus, Diarrheal diseases, Diphtheria, Drowning,
Encephalitis, Epilepsy, Exposure to mechanical forces, Falls, Fire heat and hot substances, Gallbladder and biliary
diseases, Gastritis and duodenitis, Gonorrhea, Gynecological diseases, HIV AIDS, Hypertensive heart disease,
Inflammatory bowel disease, Ischemic heart disease, Kidney diseases, Lower respiratory infections, Maternal
conditions, Meningitis, Multiple sclerosis, Otitis media, Pancreatitis, Paralytic ileus and intestinal obstruction,
Parkinson disease, Peptic ulcer disease, Poisonings, Protein energy malnutrition, Rabies, Rheumatic heart disease,
Rheumatoid arthritis, Road injury, Schistosomiasis, Self-harm, Sickle cell disorders and trait, Skin diseases, Stroke,
Syphilis, Tetanus, Upper respiratory infections, Urolithiasis, Whooping cough, and Yellow fever

2 African trypanosomiasis
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Table A5. Cont.

Cluster Cause (Females Age 20 to 60)

3

Anxiety disorders, Autism and Asperger syndrome, Back and neck pain, Benign prostatic hyperplasia, Bipolar disorder,
Cataracts, Chagas disease, Childhood behavioral disorders, Dengue, Depressive disorders, Food borne trematodes,
Genital herpes, Glaucoma, Gout, Hookworm disease, Idiopathic intellectual disability, Infertility, Iodine deficiency, Iron
deficiency anaemia, Leprosy, Lymphatic filariasis, Macular degeneration, Migraine, Neonatal conditions, Non migraine
headache, Onchocerciasis, Oral conditions, Osteoarthritis, Other hearing loss, Other vision loss, Prostate cancer,
Schizophrenia, Sudden infant death syndrome, Testicular cancer, Thalassemias, Trachoma, Trichomoniasis, Trichuriasis,
Uncorrected refractive errors, and Vitamin A deficiency

4

Bladder cancer, Brain and nervous system cancers, Breast cancer, Colon and rectum cancers, Corpus uteri cancer,
Gallbladder and biliary tract cancer, Interpersonal violence, Kidney cancer, Leukemia, Liver cancer, Lymphomas
multiple myeloma, Melanoma and other skin cancers, Mouth and oropharynx cancers, Esophagus cancer, Ovary cancer,
Pancreas cancer, Thyroid cancer, and Trachea bronchus lung cancers

5 Cervix uteri cancer, Larynx cancer, Stomach cancer, and Tuberculosis

6 Collective violence and legal intervention

7 Drug-use disorders

8 Eating disorders

9 Echinococcosis

10 Leishmaniasis

11 Malaria

12 Measles

13 Mesothelioma

14 Natural disasters
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for All Countries. Demography 50: 777–801. [CrossRef]

Richman, Ronald. 2018. AI in Actuarial Science. Available online: https://ssrn.com/abstract=3218082 (accessed on 4 January 2022).
[CrossRef]

Robertson, Tony, G. David Batty, Geoff Der, Candida Fenton, Paul G. Shiels, and Michaela Benzeval. 2013. Is Socioeconomic Status
Associated with Biological Aging as Measured by Telomere Length? Epidemiologic Reviews 35: 98–111. [CrossRef] [PubMed]

Roser, Max, Esteban Ortiz-Ospina, and Hannah Ritchie. 2013. Life Expectancy. Our World in Data. Available online: https://
ourworldindata.org/life-expectancy (accessed on 4 January 2022).

Roth, Gregory A., Mark D. Huffman, Andrew E. Moran, Valery Feigin, George A. Mensah, Mohsen Naghavi, and Christopher J. L.
Murray. 2015. Global and Regional Patterns in Cardiovascular Mortality from 1990 to 2013. Circulation 132: 1667–78. [CrossRef]
[PubMed]

Saitta, Sandro, Benny Raphael, and Ian F. C. Smith. 2007. A Bounded Index for Cluster Validity. In International Workshop on Machine
Learning and Data Mining in Pattern Recognition. Berlin: Springer, pp. 174–87.

Sakoe, Hiroaki. 1971. Dynamic-Programming Approach to Continuous Speech Recognition. Paper presented at 7th International
Congress on Acoustics, Budapest, Hungary, August 18–26.

Sard, Alexis. 2019. Comparing Time-Series Clustering Algorithms in R Using the Dtwclust Package. pp. 1–45. Available on-
line: https://www.semanticscholar.org/paper/Comparing-Time-Series-Clustering-Algorithms-in-R-Sarda-Espinosa/a46ec8
63bbf3e179de4e7ccedd205a96ab1ca64f#extracted (accessed on 4 January 2022).

Sawe, Rispah T., Maggie Kerper, Sunil Badve, Jun Li, Mayra Sandoval-Cooper, Jingmeng Xie, Zonggao Shi, Kirtika Patel, David
Chumba, Ayub Ofulla, and et al. 2016. Aggressive breast cancer in western Kenya has early onset, high proliferation, and immune
cell infiltration. BMC Cancer 16: 1–15. [CrossRef] [PubMed]

Shaylika, Chauhan. 2020. Comprehensive Review of Coronavirus Disease 2019 (COVID-19). Biomedical Journal 43: 334–40.
Soheily-Khah, Saeid, Ahlame Douzal Chouakria, and Eric Gaussier. 2015. Progressive and Iterative Approaches for Time Series

Averaging. Paper presented at 1st International Conference on Advanced Analytics and Learning on Temporal Data, Porto,
Portugal, September 11; pp. 111–17.

Tabeau, Ewa, Peter Ekamper, Corina Huisman, and Alinda Bosch. 1999. Improving Overall Mortality Forecasts by Analysing
Cause-of-Death, Period and Cohort Effects in Trends. European Journal of Population/Revue Européenne de Démographie 15: 153–83.
[CrossRef]

Tsinaslanidis, Prodromos, Antonis Alexandridis, Achilleas Zapranis, and Efstratios Livanis. 2014. Dynamic Time Warping as a
Similarity Measure: Applications in Finance. Paper presented at Hellenic Finance and Accounting Association, Volos, Greece,
December 12–13.

United Nations and Social Affairs. 2017. World Population Prospects: The 2017 Revision Data Booklet (ST/ESA/SER. A/401). Available
online: https://www.un.org/development/desa/publications/world-population-prospects-the-2017-revision.html (accessed on
5 January 2022).

Wang, Weina, and Yunjie Zhang. 2007. On Fuzzy Cluster Validity Indices. Fuzzy Sets and Systems 158: 2095–117. [CrossRef]
Wang, Xiaoyue, Abdullah Mueen, Hui Ding, Goce Trajcevski, Peter Scheuermann, and Eamonn Keogh. 2013. Experimental Comparison

of Representation Methods and Distance Measures for Time Series Data. Data Mining and Knowledge Discovery 26: 275–309.
[CrossRef]

WHO. 2020. WHO Methods and Data Sources for Country-Level Causes of Death 2000–19. Global Health Estimates Technical Paper
WHO/DDI/DNA/GHE/2020.2. Geneva: World Health Organization. Available online: https://www.who.int/data/gho/data/
themes/mortality-and-global-health-estimates/ghe-leading-causes-of-death (accessed on 4 January 2022).

Yao, Ji. 2016. Clustering in General Insurance Pricing. In Predictive Modeling Applications in Actuarial Science. Edited by Edward W.
Frees, Glenn Meyers and Richard A. Derrig. Cambridge: Cambridge University Press, pp. 159–79.

Zhao, Jiaping, and Laurent Itti. 2018. Shapedtw: Shape Dynamic Time Warping. Pattern Recognition 74: 171–84. [CrossRef]

https://www.cms.gov/Medicare/Coding/ICD10/Downloads/2019-ICD10-Coding-Guidelines-.pdf
https://www.cms.gov/Medicare/Coding/ICD10/Downloads/2019-ICD10-Coding-Guidelines-.pdf
http://doi.org/10.3390/v12020138
http://www.ncbi.nlm.nih.gov/pubmed/31991671
http://doi.org/10.1080/10920277.2016.1234398
http://doi.org/10.1093/gerona/57.8.B292
http://www.ncbi.nlm.nih.gov/pubmed/12145354
http://doi.org/10.2471/BLT.11.086678
http://doi.org/10.1016/j.patcog.2010.09.013
http://doi.org/10.1007/s13524-012-0193-x
https://ssrn.com/abstract=3218082
http://doi.org/10.2139/ssrn.3218082
http://doi.org/10.1093/epirev/mxs001
http://www.ncbi.nlm.nih.gov/pubmed/23258416
https://ourworldindata.org/life-expectancy
https://ourworldindata.org/life-expectancy
http://doi.org/10.1161/CIRCULATIONAHA.114.008720
http://www.ncbi.nlm.nih.gov/pubmed/26503749
https://www.semanticscholar.org/paper/Comparing-Time-Series-Clustering-Algorithms-in-R-Sarda-Espinosa/a46ec863bbf3e179de4e7ccedd205a96ab1ca64f#extracted
https://www.semanticscholar.org/paper/Comparing-Time-Series-Clustering-Algorithms-in-R-Sarda-Espinosa/a46ec863bbf3e179de4e7ccedd205a96ab1ca64f#extracted
http://doi.org/10.1186/s12885-016-2204-6
http://www.ncbi.nlm.nih.gov/pubmed/26964534
http://doi.org/10.1023/A:1006109310764
https://www.un.org/development/desa/publications/world-population-prospects-the-2017-revision.html
http://doi.org/10.1016/j.fss.2007.03.004
http://doi.org/10.1007/s10618-012-0250-5
https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates/ghe-leading-causes-of-death
https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates/ghe-leading-causes-of-death
http://doi.org/10.1016/j.patcog.2017.09.020

	Introduction 
	Clustering 
	DTW Barycenter Averaging—DBA 

	Materials and Methods 
	Data Source 
	Notations 
	Clustering Tendency 
	Hierarchical Agglomerative Clustering 
	Distance Measures 
	Stepwise Procedure for DTW Barycenter Averaging (DBA) 
	Cluster Validity 
	Cluster Elimination Approach 

	Results and Discussions 
	Cluster Tendency 
	Optimal Clusters 
	Cluster Validity Indices 
	Comparison of the Dynamic Time Warping—DBA with the Euclidean (l1 Norm) and the Manhattan (l2 Norm) Distance Metrics 
	Centroid Cluster Extraction Results 
	Females Aged 20 to 60 
	Females Aged over 60 
	Males Aged 20 to 60 
	Males Aged over 60 

	Cause of Death Classification Based on the Proposed Clustering Approach 
	Trending Upwards 
	Trending Downwards 
	Outliers 
	Insignificant 

	Quantifying the Detected Clusters Based on Cause–Elimination Approach 
	Application of Causes of Death Cluster Results in Actuarial Literature 
	Limitations of the Study 

	Conclusions 
	Appendix A
	References

