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Abstract: Dependent Tail Value-at-Risk, abbreviated as DTVaR, is a copula-based extension of Tail
Value-at-Risk (TVaR). This risk measure is an expectation of a target loss once the loss and its
associated loss are above their respective quantiles but bounded above by their respective larger
quantiles. In this paper, we propose nonparametric estimators for DTVaR and establish their property
of consistency. Moreover, we also propose the variability measure around this expected value
truncated by the quantiles, called the Dependent Conditional Tail Variance (DCTV). We use this
measure for constructing confidence intervals of the DTVaR. Both parametric and nonparametric
approaches for DTVaR estimations are explored. Furthermore, we assess the performance of DTVaR
estimations using a proposed backtest based on the DCTV. As for the numerical study, we take an
application in the insurance claim amount.

Keywords: Dependent TVaR (DTVaR); Dependent Conditional Tail Variance (DCTV); insurance
claim; nonparametric estimators

1. Introduction

In actuarial science, several risk measures have been proposed; the two most well-
known are the Value-at-Risk (VaR) and the Tail Value-at-Risk (TVaR). Several authors have
proposed (or compared) nonparametric estimators for VaR and TVaR; see Chang et al.
(2003); Brazauskas et al. (2008); Kaiser and Brazauskas (2006); Methni et al. (2014); Dutta
and Biswas (2018) and Shen et al. (2019).

In particular, Chang et al. (2003) introduced three types of VaR nonparametric esti-
mation methods and their corresponding confidence intervals. Brazauskas et al. (2008)
and Kaiser and Brazauskas (2006) proposed point and interval estimators for TVaR, as
well as proved the consistency of the point estimator. Methni et al. (2014) combined non-
parametric kernel methods with extreme-value statistics to find the estimator for TVaR.
Dutta and Biswas (2018) compared the performance of nonparametric estimators of TVaR
for varying p, namely the empirical estimator, kernel-based estimator, Brazauskas et al.’s
estimator, tail-trimmed estimator by Hill, Yamai and Yoshiba’s estimator and the filtered
historical method. Shen et al. (2019) established empirical likelihood–based estimation with
high-order precision for TVaR.

Several extensions of TVaR have also been developed. Jadhav et al. (2013); Wang
and Wei (2020); Bairakdar et al. (2020) and Bernard et al. (2020) have modified TVaR
by introducing a fixed boundary, instead of infinity, for values beyond the quantile (i.e.,
VaR). In particular, Jadhav et al. (2013) named the modified risk measure as Modified
TVaR (MTVaR). Meanwhile, another extension of TVaR, called Copula TVaR (CTVaR),
was suggested by Brahim et al. (2018), in which, they estimate a target loss1 by involving
another dependent or associated loss.

Motivated by the work of Jadhav et al. (2013) and Brahim et al. (2018); Josaphat and
Syuhada (2021) proposed an alternative coherent risk measure that is not only “considering
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a fixed upper bound of loss beyond VaR” but also “taking into account an associated loss”,
called Dependent TVaR (DTVaR). Moreover, Josaphat et al. (2021) proposed an optimization
method for DTVaR by applying two metaheuristic algorithms: Spiral Optimization (SpO)
and Particle Swarm Optimization (PSO). When we calculate an MTVaR estimate, it will
subtract the number of losses beyond VaR and thus make this estimate smaller than the
corresponding TVaR. This is a good feature in risk modeling. We argue that this estimate
must also be accompanied by an associated risk since this risk scenario occurs in practice;
see, for instance, Zhang et al. (2019) and Kang et al. (2019).

The DTVaR can comprehend the connection between bivariate losses and help us to
optimally position our investments and enlarge our financial risk protection (Josaphat and
Syuhada 2021). In other words, employing the suggested risk measure will enable us to
avoid non-essential additional capital allocation while not ignoring other risks associated
with the target risk. In this paper, we propose two nonparametric estimators for the risk
measure of DTVaR by following the approaches of Brazauskas et al. (2008) and Jadhav et al.
(2013). These estimators are proven to be consistent.

Although the DTVaR serves crucial information on the tail distribution of the target
loss, the necessity for other risk measures came up in competitive and unpredictable
market environments. Principally, realizing that the DTVaR, being the tail mean, is not
able to capture the tail variability, we propose a second tail moment or variance in the
tail distribution truncated by two pair of VaRs that is called Dependent Conditional Tail
Variance (DCTV). This measure can concatenate the dissemination in the tail. Moreover, the
DCTV can be considered a generalization of Conditional Tail Variance (CTV) proposed by
Furman and Landsman (2006). Using DCTV, we are able to prove the asymptotic normality
of DTVaR and even derive confidence intervals for the DTVaR estimators. Just as Righi
and Ceretta (2015) used CTV for the backtesting of TVaR estimations using the bootstrap
method, we also use DCTV for the backtesting of DTVaR estimations.

The rest of the paper is organized as follows. In Section 2, we briefly explain the novel
risk measure of dependent tail VaR. The nonparametric estimation of DTVaR is discussed
in Section 3, whereas the truncated variance, called the dependent conditional tail variance,
is presented in Section 4. Section 5 presents the parametric estimate of DTVaR in a Pareto
case. The choice of the contraction parameters that appear in the definition of DTVaR is
considered in Section 6. Conclusions are discussed in Section 7. All mathematical proofs
are deferred to Appendix A.

2. The Dependent Tail Value-at-Risk

Let (Ω,F ,P) be an atomless probability space, and L1 be the set of real integrable
random variables (i.e., random variables with finite means) defined on (Ω,F ,P). A risk
measure is a functional ρ : L1 → R.

Consider that X and Y are two random losses that are dependent and have marginal
distribution functions FX and FY. Provided a value α ∈ (0, 1), generally close to one, the
VaR of X at a probability level α is the quantile Qα of FX for this level. Mathematically, the
VaR is defined as follows:

Qα = F−1
X (α). (1)

Based on this definition, we can note that the VaR does not consider information after
the quantile of interest, only the point itself. Moreover, despite its simplicity and ease of
implementation, VaR has the shortcoming of not being a coherent risk measure in the sense
of Artzner et al. (1999). The TVaR at probability level α is then the expectation of X once X
is above the VaR for this level, i.e., an extreme loss. Formally, Formulation (2) defines TVaR.

TVaRα(X) = E[X|X ≥ Qα(X)] =
1

1− α

∫ 1

α
Qp(X)dp. (2)

Note that 1− α in (2) is the significance level for TVaR.
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As we state in Section 1; Josaphat and Syuhada (2021) proposed another risk measure
as a generalization of TVaR that not only considers the information about the potential size
of the loss X between two quantiles but also takes into account the excess of another loss Y
that is associated with X. Formally, Formulation (3) defines DTVaR.

DTVaR(δ,d)
(α,a)(X|Y) = E[X|Qα ≤ X ≤ Qα1 , Qδ ≤ Y ≤ Qδ1 ], (3)

where Y is another loss that is associated with X (or X depends on Y), α1 = α + (1− α)1+a,
δ1 = δ + (1− δ)1+d and a, d ≥ 0. Here, α and δ denote the probability level and excess
level, respectively. Moreover, X is called the target loss, whereas Y is called the associated
loss. In the sequel, two lemmas related to the DTVaR are given.

Lemma 1 (Josaphat and Syuhada 2021). Let X and Y be two random losses with a joint proba-
bility function fX,Y. Let α, δ ∈ (0, 1) and a, d ≥ 0 be specified numbers. The Dependent Tail VaR
(DTVaR) of X given values beyond its VaR up to a fixed value of losses and a random loss Y is
given by

DTVaR(δ,d)
(α,a)(X |Y) =

Qδ1∫
Qδ

Qα1∫
Qα

x fX,Y(x, y)dx dy

Qδ1∫
Qδ

Qα1∫
Qα

fX,Y(x, y)dx dy

, (4)

where Qα = Qα(X), Qδ = Qδ(Y), α1 = α + (1− α)a+1 and δ1 = δ + (1− δ)d+1.

In practice, a joint probability function is difficult to find unless a bivariate normal
distribution is assumed. For the case of joint exponential distribution, we may refer to
Kang et al. (2019) for Sarmanov’s bivariate exponential distribution. In most cases, two
or more dependent losses rely on a copula in order to have an explicit formula of its joint
distribution.

Lemma 2 (Josaphat and Syuhada 2021). Let X and Y be two random losses with a joint distribu-
tion function represented by a copula C. Let α, δ ∈ (0, 1) and a, d ≥ 0 be specified numbers. The
Dependent Tail VaR (DTVaR) of X given values beyond its VaR up to a fixed value of losses and a
random loss Y is given by

DTVaR(δ,d)
(α,a)(X|Y; C) =

α1∫
α

δ1∫
δ

F−1
X (u) c(u, v; θ)dv du

C(α1, δ1; θ)− C(α, δ1; θ)− C(α1, δ; θ) + C(α, δ; θ)
, (5)

where F−1
X denotes the quantile function of X, u = FX(x), v = FY(y), α1 = α + (1− α)a+1 and

δ1 = δ + (1− δ)d+1.

The following property applies to DTVaR. The property states that the DTVaR is a
law-invariant convex risk measure.

Property 1. The Dependent Tail VaR (DTVaR) is a law-invariant risk measure.

3. The Estimation of DTVaR

When dealing with real data, it is not always easy for us to know the distribution of
the data, even if we use software for fitting distribution. As a result, estimating DTVaR is
also not easy. To avoid the difficulty of the parametric estimation of DTVaR, we propose a
nonparametric one.

We propose two nonparametric estimators of the DTVaR. The first empirical estimator
of DTVaR(δ,d)

(α,a)(X|Y; C) is defined as follows. Let (X1, Y1), · · · , (Xm, Ym) be a collection of
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random vectors with size m, where X1, · · · , Xm and Y1, · · · , Ym are independently and
identically distributed (iid) random losses, respectively. Suppose that Fm,m

X,Y denotes the
corresponding empirical joint distribution function, which is given by

Fm,m
X,Y (x, y) =

1
m

m

∑
j=1

I(Xj ≤ x, Yj ≤ y),

where I(·, ·) denotes the indicator function. In addition, suppose that Fm
X and Fm

Y denote
the empirical marginal distribution functions of iid X1, · · · , Xm and iid Y1, · · · , Ym,, which
are given by

Fm
X (x) =

1
m

m

∑
j=1

I(Xj ≤ x), Fm
Y (y) =

1
m

m

∑
l=1

I(Yl ≤ y).

Suppose that FX and FY denote the unknown distribution functions of X and Y.
If the vectors (X1, Y1), · · · , (Xm, Ym) are rearranged by considering the ascending or-

der of Xj, j = 1, · · · , m, then we obtain new vectors (Xm(1), Y′m(1)), · · · , (Xm(m), Y′m(m)). It
is obvious that Xm(1) ≤ Xm(2) ≤ · · · ≤ Xm(m) are order statistics of X1, · · · , Xm. However,
the statistics Y′m(j), j = 1, · · · , m, are not necessarily order statistics of Y1, · · · , Ym. Further-

more, the quantiles F−1
X (α), F−1

X (α1), F−1
Y (δ) and F−1

Y (δ1), respectively, can be consistently
estimated by

Fm(−1)
X (α) = Xm(j), α ∈

( j− 1
m

,
j

m

]
,

Fm(−1)
X (α1) = Xm(j1), α1 ∈

( j1 − 1
m

,
j1
m

]
,

Fm(−1)
Y (δ) = Ym(l), δ ∈

( l − 1
m

,
l
m

]
,

Fm(−1)
Y (δ1) = Ym(l1), δ1 ∈

( l1 − 1
m

,
l1
m

]
,

where j, l = 1, · · · , m, and j1 > j, l1 > l. Hence, for i = j, · · · , j1, the estimator

D̂TVaR
(δ,d)(1)
(α,a) (X|Y; C) is given by

D̂TVaR
(δ,d)(1)
(α,a) (X|Y; C)

=

δ1∫
δ

α1∫
α

Fm(−1)
X (u) c(u, v)du dv

P(Fm(−1)
X (α) ≤ Xm(i) ≤ Fm(−1)

X (α1), Fm(−1)
Y (δ) ≤ Y′m(i) ≤ Fm(−1)

Y (δ1))
(6)

=
1

P(Fm(−1)
X (α) ≤ Xm(i) ≤ Fm(−1)

X (α1), Fm(−1)
Y (δ) ≤ Y′m(i) ≤ Fm(−1)

Y (δ1))

×
∫∫

(
Fm(−1)
X (α)≤Xm(i)≤Fm(−1)

X (α1)
)

×
(

Fm(−1)
Y (δ)≤Y′m(i)≤Fm(−1)

Y (δ1)
)

x dFm,m
X,Y (x, y).

Consider a square (0, 1]2 originating from two intervals (0, 1]. Subdivide each of both
intervals (0, 1] into m subintervals ( j−1

m , j
m ] and m subintervals ( l−1

m , l
m ], j, l = 1, · · · , m,

so that we obtain m2 small squares ( j−1
m , j

m ] × ( l−1
m , l

m ]. When α ∈ ( j−1
m , j

m ] and α1 =

α + (1− α)1+a ∈ ( j1−1
m , j

m ], then we have that Fm(−1)
X (α) = Xm(j) and Fm(−1)

X (α1) = Xm(j1).
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Similarly, when δ ∈ ( l−1
m , l

m ] and δ1 = δ + (1 − δ)1+d ∈ ( l1−1
m , l

m ], then we have that

Fm(−1)
Y (δ) = Ym(l) and Fm(−1)

Y (δ1) = Ym(l1). Clearly, Fm
X (Fm(−1)

X (α)) = j
m , Fm

X (Fm(−1)
X (α1)) =

j1
m , Fm

Y (Fm(−1)
Y (δ)) = l

m and Fm
Y (Fm(−1)

Y (δ1)) =
l1
m . Hence,∫∫

(
Fm(−1)
X (α)≤Xm(i)≤Fm(−1)

X (α1)
)

×
(

Fm(−1)
Y (δ)≤Y′m(i)≤Fm(−1)

Y (δ1)
)

x dFm,m
X,Y (x, y)

=
1

m2

l1

∑
k=l

j1

∑
i=j

Xm(i)

{
I(Fm

Y (Y′m(i)) ≤ Fm
Y (ym(k)))− I(Fm

Y (Y′m(i−1)) ≤ Fm
Y (ym(k))) (7)

− I(Fm
Y (Y′m(i)) ≤ Fm

Y (ym(k−1))) + I(Fm
Y (Y′m(i−1)) ≤ Fm

Y (ym(k−1)))
}

.

Note that, in (7), we do not sum Y′m(i) but Xm(i) paired with Y′m(i). To simplify the notation
and computation, we sum Xm(i) by applying the indicator function I(ym(l) ≤ Y′m(i) ≤
ym(l1)); thus, we obtain

∫∫
(

Fm(−1)
X (α)≤Xm(i)≤Fm(−1)

X (α1)
)

×
(

Fm(−1)
Y (δ)≤Y′m(i)≤Fm(−1)

Y (δ1)
)

x dFm,m
X,Y (x, y) =

1
m

j1

∑
i=j

Xm(i) I(ym(l) ≤ Y′m(i) ≤ ym(l1)). (8)

Next, note that

P(Fm(−1)
X (α) ≤ Xm(i) ≤ Fm(−1)

X (α1), Fm(−1)
Y (δ) ≤ Y′m(i) ≤ Fm(−1)

Y (δ1))

= P(xm(j) ≤ Xm(i) ≤ xm(j1), ym(l) ≤ Y′m(j) ≤ ym(l1)) =
j1 − j + 1− r

m
, (9)

where xm(j) and ym(l), respectively, denote the realizations of Xm(j) and Ym(l), whilst,

r =
j1

∑
i=j

[
I(xm(j) ≤ Xm(i) ≤ xm(j1), Y′m(i) < ym(l))

+ I(xm(j) ≤ Xm(i) ≤ xm(j1), Y′m(i) > ym(l1))
]
.

From (8) and (9), we obtain

D̂TVaR
(δ,d)(1)
(α,a) (X|Y; C) =

j1
∑
i=j

Xm(i) I(ym(l) ≤ Y′m(i) ≤ ym(l1))

j1 − j + 1− r
, (10)

for all α ∈ ( j−1
m , j

m ], α1 = α+ (1− α)1+a ∈ ( j1−1
m , j

m ], δ ∈ ( l−1
m , l

m ] and δ1 = δ+ (1− δ)1+d ∈
( l1−1

m , l1
m ].

Note that, in a similar and simpler way, it can be shown that an estimator of MTVaR
(proposed by Jadhav et al. 2013) is given by

M̂TVaR(α,a)(X) =

∫ α1
α Fm(−1)

X (u)du
(1− α)1+a =

1
j1 − j + 1

j1

∑
i=j

Xm(i), (11)
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for all α ∈ ( j−1
m , j

m ] and α1 = α + (1− α)1+a ∈ ( j1−1
m , j

m ]. Note that j1 − j = dm(1− α)1+ae.
If we adjust the index i in (11) to index q, then M̂TVaR(α,a)(X) can be rewritten as (see
Jadhav et al. 2013)

M̂TVaR
(1)
(α,a)(X) =

∑
dm(1−α)1+ae
q=0 X(k(q))⌈
m(1− α)1+a

⌉
+ 1

, (12)

where k(q) =
⌈
mα′(q)e, α′(q) = α + q(1−α)

dm(1−α)e , q = 0, 1, · · · ,
⌈
(1− α)1+a⌉ and dxe denotes

the smallest integer that is larger than x.

Following the derivation method of the estimator M̂TVaR
(1)
(α,a)(X) in (12), we obtain

D̂TVaR
(δ,d)(1)
(α,a) (X|Y; C) =

1⌈
m(1− α)1+ae+ 1− r

×∑dm(1−α)1+ae
q=0 X(k(q)) I(ym(l) ≤ Y′(k(q)) ≤ ym(l1)), (13)

where k(q) =
⌈
mα′(q)

⌉
, α′(q) = α + q(1−α)

dm(1−α)e , q = 0, 1, · · · ,
⌈
(1− α)1+a⌉,

ym(l) = F̂m(−1)
Y (δ), δ ∈

( l − 1
m

,
l
m

]
,

ym(l1) = F̂m(−1)
Y (δ1), δ1 ∈

( l1 − 1
m

,
l1
m

]
,

δ1 = δ + (1− δ)1+d,

r is the number of X(k(q))s paired with Y′(k(q)) that does not satisfy ym(l) ≤ Y′(k(q)) ≤ ym(l1).
The estimator given in (13) may be improved by considering a smoothed version, which is
the second estimator, as follows:

D̂TVaR
(δ,d)(2)
(α,a) (X|Y; C) =

1⌈
m(1− α)1+a

⌉
+ 1− r

×∑dm(1−α)1+ae
q=0 {(1− hk(q))X(k(q)) + hk(q)X(k(q)+1)} I(ym(l) ≤ Y′(k(q)) ≤ ym(l1)), (14)

where k(q) =
⌈
mα′(q)

⌉
, hk(q) =

⌈
mα′(q)

⌉
−mα′(q).

In the following theorem, we prove the consistency of DTVaR estimators.

Theorem 1. The estimators D̂TVaR
(δ,0)(n)
(α,0) (X|Y; C), n = 1, 2, given in (13) and (14) are consis-

tent for every finite a, d ≥ 0.

4. The Dependent Conditional Tail Variance and Confidence Intervals

In addition to the TVaR, some authors also consider the variability of the loss in the
tail of the distribution. The notion is that, in spite of its practicality and desired properties,
the TVaR only picks up the average loss in the tail and forsakes its variability, and thus it
makes sense to concatenate the second tail moment or the variance in the tail distribution.
In this regards, Furman and Landsman (2006) put forward the Tail Variance Premiun (TVP)
that contains Conditional Tail Variance (CTV),

TVPα(X) = TVaRα(X) + E[(X− TVaRα(X))2|X ≥ Qα],

where the last term E[(X − TVaRα(X))2|X ≥ Qα] is called the CTV. Moreover, Righi
and Ceretta (2015) used the square root of the CTV, instead of ordinary variance, for the
backtesting of TVaR estimation using the bootstrap method.
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Motivated by the CTV proposed by Furman and Landsman (2006), we propose a
Dependent Conditional Tail Variance (DCTV) of target loss X associated with another
loss Y,

DCTV(δ,d)
(α,a)(X|Y; C) = E

[
(X−DTVaR(δ,d)

(α,a)(X|Y; C))2|Qα ≤ X ≤ Qα1 , Qδ ≤ Y ≤ Qδ1

]
. (15)

Thus, DCTV is a variability or dispersion measure around DTVaR truncated by the VaRs of
target loss and associated loss. In addition, since DTVaR is a generalization of TVaR, then
DCTV is also a generalization of CTV.

The DCTV of the target loss X computed under a fixed conditional probability
C(α1, δ1; θ) − C(α, δ1; θ) − C(α1, δ; θ) + C(α, δ; θ) with respect to the associated loss Y is
given in the following lemma.

Lemma 3. Let X and Y be two random losses with a joint distribution function represented by a
copula C. Let α, δ ∈ (0, 1) and a, d ≥ 0 be specified numbers. The Dependent Conditional Tail
Variance (DCTV) of X given values beyond its VaR up to a fixed value of losses and a random loss
Y is given by

DCTV(δ,d)
(α,a)(X|Y; C) =

α1∫
α

δ1∫
δ

(F−1
X (u))2 c(u, v; θ)dv du

C(α1, δ1; θ)− C(α, δ1; θ)− C(α1, δ; θ) + C(α, δ; θ)

−
(

DTVaR(δ,d)
(α,a)(X|Y; C)

)2
, (16)

where DTVaR(δ,d)
(α,a)(X|Y; C) is given in (5).

4.1. The Estimation of DCTV

Following the derivation method of the estimators D̂TVaR
(δ,d)(1)
(α,a) (X|Y; C) and

D̂TVaR
(δ,d)(2)
(α,a) (X|Y; C) in (13) and (14), we obtain two estimators for DCTV(δ,d)

(α,a)(X|Y; C),
namely,

D̂CTV
(δ,d)(1)
(α,a) (X|Y; C) =

1
dm(1− α)1+ae+ 1− r ∑d

m(1−α)1+ae
q=0 X2

(k(q))

× I(ym(l) ≤ Y′(k(q)) ≤ ym(l1))−
(

D̂TVaR
(δ,d)(1)
(α,a) (X|Y; C)

)2
, (17)

and

D̂CTV
(δ,d)(2)
(α,a) (X|Y; C) =

1

dm(1− α)1+ae+ 1− r
∑dm(1−α)1+ae

q=0

{
(1− hk(q))X(k(q))

+ hk(q)X(k(q)+1)
}2 I(ym(l) ≤ Y′(k(q)) ≤ ym(l1))−

(
D̂TVaR

(δ,d)(2)
(α,a) (X|Y; C)

)2
, (18)

where k(q) =
⌈
mα′(q)

⌉
, hk(q) =

⌈
mα′(q)

⌉
−mα′(q).

In the following theorem, we prove the consistency of DCTV estimators.

Theorem 2. The estimators D̂CTV
(δ,0)(n)
(α,0) (X|Y; C), n = 1, 2, given in (17) and (18) are consistent

for every finite a, d ≥ 0.

4.2. Confidence Intervals for DTVaR

It is obvious that the estimators in (13) and (14) are point estimators for DTVaR. The
next step is to construct point-wise confidence intervals for DTVaR. We derive the (point-
wise) confidence intervals, whose construction is based on the following asymptotic result.



Risks 2022, 10, 113 8 of 26

Theorem 3. Let α, δ ∈ [0, 1] and contraction parameters a and d be fixed. Let the distribution
function FX be continuous at the points F−1

X (α) and F−1
X (α1). Then, for n = 1, 2, we have

√
m(D̂TVaR

(δ,d)(n)
(α,a) (X|Y; C)−DTVaR(δ,d)

(α,a)(X|Y; C))→d N (0, DCTV(δ,d)
(α,a)(X|Y; C)), (19)

where DTVaR(δ,d)
(α,a)(X|Y; C) and DCTV(δ,d)

(α,a)(X|Y; C) are given in (5) and (16). In particular,
statement (19) holds for any finite contraction parameters a, d ≥ 0 if the distribution function FX
is continuous everywhere on the real line.

Using (19), we derive the following (1− γ)100% level asymptotic confidence intervals
for the DTVaR,

D̂TVaR
(δ,d)(n)
(α,a) (X|Y; C)± zγ/2

√√√√DCTV(δ,d)
(α,a)(X|Y; C)

m
,

where zγ/2 is the (1− γ/2) × 100% percentile of the standard normal distribution. The
truncated variance DCTV is unknown but has been estimated empirically from DCTV esti-
mators given in (17) and (18). Hence, we have the following (1− γ)100% level asymptotic
confidence intervals for the DTVaR,

D̂TVaR
(δ,d)(n)
(α,a) (X|Y; C)± zγ/2

√√√√ D̂CTV
(δ,d)(n)
(α,a) (X|Y; C)

m
. (20)

Remark 1. We apply the confidence intervals (20) for DTVaR backtesting using the bootstrap
method in Section 6.2.

5. Parametric Estimation under FGM Copula

In this section, we find parametric estimates for the DTVaR at any given α, δ ∈ (0, 1)
and specified contraction parameters a, d ≥ 0 under a Pareto distribution by using the
Maximum Likelihood Estimation (MLE) method of Pham et al. (2019). However, before
calculating the estimates, we take the following steps:

1. Derive the expression of the DTVaR for the Pareto distribution;
2. Calculate the parametric estimates of the distribution parameters of random samples

X1, · · · , Xm and Y1, · · · , Ym, each of which is assumed to be a Pareto distribution.

Moreover, we show that the DTVaR, when we consider the correlation (or dependence)
between positive quadrant dependent (PQD) losses, is larger than the TVaR. That means,
for α, δ ∈ (0, 1), then

DTVaR(δ,0)
(α,0)(X|Y; C) ≥ TVaRα(X). (21)

Note that, in the Negative-Quadrant-Dependent (NQD) losses, we have the reverse of
Inequality (21). In particular, also note that 1− α− δ + C(α, δ; θ) is the joint significance
level (j.s.l.) for the DTVaR in (21). We use the j.s.l. for assessing the performance of DTVaR
estimation.

Now, we derive the expression for the DTVaR for a Pareto distributed loss associated
with another loss joined by a Farlie–Gumbel–Morgenstern (FGM) copula that is defined
as CFGM(u, v; θ) = u v + θ u v (1 − u) (1 − v), for u, v ∈ [0, 1] and θ ∈ [−1, 1]. We are
aware that the FGM copula introduces only light dependence. However, it admits positive
as well as negative dependence between a set of random variables. The FGM copula is
often used in applications to describe dependence structures due to its tractability and
simplicity (see, for instance, Bargès et al. 2009; Chadjiconstantinidis and Vrontos 2014; and
Jiang and Yang 2016).
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Suppose that X is a Pareto random loss with parameter (γ1, β1). Suppose also that
our dependent (associated) random loss Y is following Pareto distribution with parameter
(γ2, β2). The distribution function of X and Y are, respectively, FX(x) = 1− (β1/(x+ β1))

γ1

for x ≥ 0, and FY(y) = 1− (β2/(y + β2))
γ2 for y ≥ 0. Their inverses are easy to find

and thus their VaRs are as well, which are Qα(X) = β1
[
(1− α)−1/γ1 − 1

]
and Qδ(Y) =

β2
[
(1− δ)−1/γ2 − 1

]
.

The risk measure DTVaR formula for X given Y, under the FGM copula, may be found
by using Lemma 2.

Lemma 4. Let X and Y be two Pareto distributed random variables with parameters (γ1, β1) and
with parameter (γ2, β2). Suppose that the joint distribution of X and Y are defined by a bivariate
FGM copula as follows:

FX,Y(x, y) = CFGM(FX(x), FY(y); θ),

with θ ∈ [−1, 1]. Then, the DTVaR of X given Y at levels α and δ, 0 < α, δ < 1, is

DTVaR(δ,d)
(α,a)(X|Y; C) =

β1(A + 2θB− D)

C(α1, δ1; θ)− C(α, δ1; θ)− C(α1, δ; θ) + C(α, δ; θ)
. (22)

where θ denotes the dependence (or Copula) parameter between X and Y, the copula C(p, q; θ) =
pq + θ pq(1− p)(1− q),

A =
γ1

γ1 − 1

[
(1− α)

γ1−1
γ1 − (1− α1)

γ1−1
γ1

][
(θ + 1)(1− δ)d+1 − θ

(
δ2

1 − δ2)],
B =

γi
γ1 − 1

[
δ2

1 − δ2 − (1− δ)d+1
]{

α(1− α)
γ1−1

γ1 − α1(1− α1)
γ1−1

γ1 +
γ1

2γ1 − 1

×
[
(1− α)

2γ1−1
γ1 − (1− α1)

2γ1−1
γ1

]}
,

D = (1− δ)d+1
[
(1 + θ)(1− α)a+1 − θ(α2

1 − α2)
]
− θ
(

δ2
1 − δ2

)[
(1− α)a+1 − α2

1 + α2
]
.

The corresponding parametric estimate of DTVaR in (22) is then found by replacing
unknown parameters γ1, β1 and θ with their respective estimates. That is, we have

D̂TVaR
(δ,d)(p)
(α,a) (X|Y; C) =

β̂1
(

Â + 2θ̂B̂− D̂
)

C
(
α1, δ1; θ̂

)
− C(α, δ1; θ̂)− C(α1, δ; θ̂) + C(α, δ; θ̂)

. (23)

Example 1. Let Xi, i = 1, 2, 3 have a Pareto distribution with parameters γi = 3 and β1 = 2500,
i.e., Pa(3, 2, 500). Let Y be another Pareto random loss that also has a Pareto distribution and
associates with Xi. Both Figures 1 and 2 present the DTVaR(δ,0)

(0.9,0) estimates for various FGM
copula parameters and δ ∈ (0.1, 1), along with the TVaR0.9 estimates. Consider the bivariate losses
(Xi, Y), i = 1, 2, 3. For each couple (Xi, Y), we set θ1 = 1, θ2 = 0.5 and θ3 = 0.01, respectively
(see Figure 1a). The selection of parameters θi, i = 1, 2, 3 corresponds, respectively, to the strong,
medium and weak dependences. In Figure 1a, the comparison of the riskiness of X1, X2 and X3
is presented. Notice that the risk measures of the TVaR of Xi at level α are the same in the three
cases. Furthermore, note that DTVaR coincides with TVaR in the independence case (θ = 0),
whereas DTVaR is exactly the same as CTVaR when a = d = 0. The DTVaR of the loss X1 is
higher than those of X2 and X3, respectively, i.e., X1 is riskier than X2 and X3. In Figure 1b, it is
shown that both DTVaR and TVaR of X1 are located above the VaR of X1 for the same probability
level α. We can see that the DTVaR estimates are always larger than the TVaR estimates when the
copula parameters are positive, whereas the DTVaR estimates are always smaller than the TVaR
estimates when the opposite occurs (see Figure 2). Therefore, these results are in accordance with the
statement (21) and its reverse.
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(a) (b)

Figure 1. (a) DTVaR of the target loss X with associated loss Y for positive values of FGM copula
parameter and a = d = 0 along with (b) its comparison with TVaR and VaR of X. Both X and Y are
Pareto distributed (γ1 = 3 , β1 = 2500).

(a) (b)

Figure 2. (a) DTVaR of the target loss X with associated loss Y for negative values of FGM copula
parameter and a = d = 0 along with (b) its comparison with TVaR and VaR of X. Both X and Y are
Pareto distributed (γ1 = 3 , β1 = 2500).

6. Data Analysis

We have used the data of one-year vehicle insurance policies from Macquarie Univer-
sity (2005). This data set is based on one-year vehicle insurance policies taken out in 2004
or 2005. There are 67,856 policies, of which, 4624 (6.8%) had at least one claim. To be clear,
the vehicle values written in the source (data set) are values in USD 10,000 s. Out of 4624
policies, there are six observations whose vehicle value is 0. We do not include these six
observations in the calculation of DTVaR estimations. Therefore, the data size is m = 4618.
Suppose that the target loss X is the insurance claim amount and the associated loss Y is
the vehicle value.

Table 1 provides summary statistics on the claim amount and vehicle value. We can
find that both the claim amount and vehicle value have positive skewness, namely 5.0470
and 1.8614, respectively. Moreover, the respective kurtosis of the claim amount and vehicle
value is significant when higher than 3. Kurtosis values above 3 (43.3102 and 9.9344)
indicate that, relative to a normal distribution, more probability tends to be at points away
from the mean than at points near the mean. This is confirmed by Figure 3. Moreover,
Figure 3c shows the box plot of the data of the claim amount, depicting that there are
758 outliers in the right tail.
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Table 1. Descriptive statistics.

Statistics Claim Amount (X) Vehicle Value (Y)

Sample number 4618 4618
Mean 2.0131× 103 1.8616

Standard deviation 3.5480× 103 1.1584
Skewness 5.0470 1.8614
Kurtosis 43.3102 9.9344

(a) (b)

(c)

Figure 3. (a) Histogram of insurance claim amount; (b) histogram of vehicle value; (c) box plot of
insurance claim amount.

In this section, we compute the parametric estimates of DTVaR. Before comparing the
parametric and nonparametric (empirical) estimates of DTVaR, we compute the estimators
of DTVaR suggested in Section 3.

Our empirical analysis supports the claim that the suggested risk measure does not
underestimate or overestimate the actual risk for a = 0 and various δ. Thus, DTVaR is quite
meaningful. However, the DTVaR does not necessarily estimate the actual risk properly
when the contraction parameters a > 0 and d > 0. This is not surprising, because of the
presence of the excess level δ (other than the probability level α), together with contraction
parameter d, which also contributes to the DTVaR estimation. We employ the hypothesis
testing procedure (backtesting) to verify this claim empirically. In the future, we need
to concurrently estimate a > 0 and d > 0, which can optimize DTVaR using numerical
optimization so that DTVaR estimates the actual risk properly.

6.1. Parametric Preliminary Results

By using the MLE method, we obtain the results that X and Y are both Pareto dis-
tributed with parameter estimates that are γ̂1 = 2.0468, β̂1 = 2203.9 for X, and γ̂a = 295.12,
β̂1 = 563.44 for Y. In particular, for X, the estimation of parameters is very likely to be
influenced by the large number of outliers in the claim amount. Again, by using the MLE
method, we obtain the estimate of FGM copula parameter θ̂FGM = 0.0221.
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Consider the bivariate loss (X, Y). For (X, Y), we have θ̂FGM = 0.0221. Furthermore,
note again that DTVaR coincides with CTVaR when a = d = 0. In Figure 4a, it is evident
that both DTVaR(δ,0)

(0.9,0) and DTVaR(δ,0)
(0.9,0.01) estimates are located between the estimates of

VaR with different probability levels. It is interesting to note that DTVaR(δ,0)
(0.9,0.01) is smaller

than both DTVaR(δ,0)
(0.9,0) and TVaR0.9 (see Figure 4a–c). This fact indicates that DTVaR is

much more flexible than TVaR and CTVaR, i.e., DTVaR can be set as equal to or less
than CTVaR, or even less than TVaR, by carefully determining the parameters a and d.
Furthermore, the results in Figure 4b,c show the same pattern as the results in Figure 1, i.e.,
the estimates of DTVaR are larger than those of TVaR, which is due to the positive copula
parameter estimate.

(a) (b)

(c)

Figure 4. DTVaR of the target loss X with associated loss Y and its comparison with (a) VaR of X and
(b–c) TVaR of X. Both X and Y are Pareto distributed with γ̂1 = 2.0468 , β̂1 = 2203.9, whilst FGM
copula parameter estimate is θ̂ = 0.0221.

6.2. Backtesting

In the backtesting for the DTVaR, we are interested in the size of the discrepancy
between the claims above the VaR estimate and the estimate of the DTVaR when VaRs
violation occurs. A VaRs violation occurs when the actual loss is larger than the estimated
figures at specified probability and excess levels. These discrepancies can be positive,
negative or zero. We assume that these discrepancies (also called residuals) are iid, con-
ditioned on claims that are larger than the VaRs estimates. We propose an adaptation
(generalization) of the Righi and Ceretta (2015) procedure. This approach is based on series
r, which represents the residual exceedances over the VaR, i.e., the violations standardized
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by the DTVaR estimate and the DCTV estimate of claim X. Given a probability level α and
an excess level δ, we can formally represent r by formulation

r =


X− D̂TVaR

(δ,d)
(α,a)√

D̂CTV
(δ,d)
(α,a)

, if X ∈
{

X|I(X ≥ Qα, Y ≥ Qδ) = 1
}

,

0, otherwise.

(24)

It is clear that we consider the standard deviation truncated by the VaRs, which is the
square root of the presented measure DCTV. Similar to Righi and Ceretta (2015), under the
null hypothesis, r has a zero mean, against the alternative that the mean of r is positive or
negative. This alternative hypothesis represents the real danger, which is underestimating
or overestimating loss. Once there is a violation, we take into consideration the information
regarding the quantile that the VaR is calculated rather than all of the distribution. Instead
of using the p-value for the hypothesis, we use the confidence interval (CI) at a confidence
level 1− γ, which is calculated based on 1000 bootstrap samples (see Righi and Ceretta
2015 and Jadhav et al. 2013). We reject the null hypothesis when the resulting bootstrap CI
contains 0.

6.3. Result Analysis

We have estimated the DTVaR and DCTV based on data of one-year vehicle insurance
policies. Figures 5–7 and Tables 2–5 present estimates of the DTVaR and DCTV of the
respective probability levels and excess levels for various values of a and d. In Tables 3–5,
the abbreviations LCL and UCL denote the lower confidence level and upper confidence
level of a CI at confidence level γ = 0.95. Note that, according to CIs (20), we have

LCL(n) = D̂TVaR
(δ,d)(n)
(α,a) (X|Y; C)− zγ/2

√√√√ D̂CTV
(δ,d)(n)
(α,a) (X|Y; C)

m
, (25)

UCL(n) = D̂TVaR
(δ,d)(n)
(α,a) (X|Y; C) + zγ/2

√√√√ D̂CTV
(δ,d)(n)
(α,a) (X|Y; C)

m
, (26)

where D̂TVaR
(δ,d)(n)
(α,a) (X|Y; C) are given in (13) and (14), and D̂CTV

(δ,d)(n)
(α,a) (X|Y; C) are given

in (17) and (18).
In particular, Table 2 shows the number as well as the percentage of violations of

DTVaR estimations, i.e., the assessment of accuracy for the DTVaR estimates. The assess-
ment is carried out by first observing the joint significance level. For example, in Table 2
(first row, first column), a 0.95% joint significance level (j.s.l.) is lower than 10%. This
means that the DTVaR estimates are quite accurate. In the second place, by calculating

the number of violations against the D̂TVaR
(0.9,0)(1)
(0.9,0) (X|Y; C), D̂TVaR

(0.9,0)(2)
(0.9,0) (X|Y; C) and

D̂TVaR
(0.9,0)(p)
(0.9,0) (X|Y; C), we obtain the percentages of violations of 1.34%, 1.41% and 2.81%,

respectively. The number 1.34% is obtained from the division between 62 and 4618, where
62 is the number of violations and 4618 is the total number of observations. Essentially, the
number of violations is the number of observations located outside of the critical value,
i.e., greater than the DTVaR estimate. These computations are shown for different α and δ.
Note that, for various α and δ, the differences between j.s.l. and the percentage of violations
for the parametric estimates are always greater than those for the two nonparametric ones.
This result implies that we should look for another distribution that is more fit for the
variable of the claim amount. We also obtain the fact that the smaller the excess level δ, the
smaller the differences between j.s.l. and the percentage of violations. This implies that
both nonparametric estimators accurately estimate the DTVaR at an excess level of δ = 0.9.
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In Figure 5, we can see that the estimates of DTVaR are relatively larger than those
of TVaR. Those relatively large DTVaR estimates are highly probably influenced by the
number of outliers (758 observations). In Figure 6a, it can be seen that both first and second
estimates of DTVaR relatively nearly coincide. Furthermore, we can see in Figure 6b,c
that both first and second estimates of DTVaR are larger than the corresponding estimates
of DCTV.

(a) (b)

Figure 5. The estimates of DTVaR(δ,0.02)(n)
(0.96,0.02) of claim amount associated with vehicle value, along with

the estimates of DTVaR(δ,0)(n)
(0.96,0) and TVaR0.96 for (a) n = 1 and (b) n = 2.

(a)

(b) (c)

Figure 6. (a) The estimates of DTVaR(δ,d)(n)
(α,a) , n = 1, 2, of claim value associated with vehicle value,

along with their comparison with the estimates of DCTV(δ,d)(n)
(α,a) for (b) n = 1 and (c) n = 2.
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From Table 3, we can see that, for a = d = 0, all bootstrap CIs contain 0. We can see
similar results from Table 4, where, for a = 0, d 6= 0, all bootstrap CIs also contain 0. These
results indicate that the null hypothesis cannot be rejected, which supports the suggested
estimation method for DTVaR(δ,0)

(α,0)(X|Y; C) and DTVaR(δ,d)
(α,0)(SN |Y; C), that is, there is no

underestimation or overestimation of the target loss (claim amount). From both tables, as
the values of probability and excess levels increase, estimates of the DTVaR also increase,
which is quite obvious. It is interesting to note that, in Table 4, when δ = 0.92, estimates of
DTVaR are greater at d = 0.025 than at d = 0.015, but when δ = 0.98, estimates of DTVaR
are smaller at d = 0.025 than at d = 0.015.

Table 5 shows different results from Tables 3 and 4. Although we can see that the
larger the values of probability and excess levels, the larger the estimates of the DTVaR,
it is interesting to note that, for several pairs (a, d), estimates of DTVaR fail the backtest.
These results indicate that DTVaR estimation is complicated. To overcome this problem, we
suggest in the future that the contraction parameters a and d be determined by performing
DTVaR optimization so that DTVaR can properly estimate risk. Note that LCL(1), LCL(2),
UCL(1) and UCL(2) in Tables 2–5 are calculated using Formulas (25) and (26).

Figure 7 presents two different results regarding the difference between the parametric
estimates of the DTVaR(0.96,d)

(0.96,a) and its nonparametric estimates. When the contraction
parameter a = d = 0.01, we can see in Figure 7a that the differences between the two are
relatively large, and even very large for δ values approaching 1. However, for a = d = 0.1,
the differences between the two estimates are relatively small (see Figure 7b).

(a) (b)

Figure 7. Parametric estimates of DTVaR(0.96,d)
(0.96,a) of claim amount associated with vehicle value, in

comparison with nonparametric estimates for (a) a = d = 0.01 and (b) a = d = 0.1.
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Table 2. Joint significance level and number of violations of nonparametric estimates of DTVaR(δ,0)
(α,0) and parametric estimates through FGM copula with

θ̂FGM = −0.0645.

Method of Estimators α = 0.9 No. viol. 1
Estimators α = 0.92 No. viol. Estimators α = 0.94 No. viol. Estimators α = 0.96 No. viol.

Estimations j.s.l. 2 (%) (%) j.s.l. (%) (%) j.s.l. (%) (%) j.s.l. (%) (%)

δ = 0.9

Nonparametric

DTVaR(1)

0.95

62 DTVaR(1)

0.76

44 DTVaR(1)

0.57

29 DTVaR(1)

0.38

19
(15,601) (1.34) (18,216) 3 (0.95) (20,880) (0.63) (23,693) (0.41)

DTVaR(2) 65 DTVaR(2) 49 DTVaR(2) 33 DTVaR(2) 20
(14,890) (1.41) (17,420) (1.06) (20,002) (0.71) (22,785) (0.43)

Parametric
(Pareto, DTVaR(p) 130 DTVaR(p) 103 DTVaR(p) 65 DTVaR(p) 41
FGM Copula) (10,557) (2.81) (12,132) (2.23) (14,423) (1.41) (18,229) (0.89)

δ = 0.92

Nonparametric

DTVaR(1)

0.76

59 DTVaR(1)

0.61

40 DTVaR(1)

0.45

26 DTVaR(1)

0.30

18
(15,920) (1.28) (18,744) (0.87) (21,468) (0.56) (24,143) (0.39)

DTVaR(2) 65 DTVaR(2) 47 DTVaR(2) 33 DTVaR(2) 20
(15,029) (0.76) (17,741) (1.02) (20,366) (0.69) (23,011) (0.43)

Parametric
(Pareto, DTVaR(p) 130 DTVaR(p) 103 DTVaR(p) 65 DTVaR(p) 41
FGM Copula) (11,052) (2.81) (12,586) (2.23) (14,825) (1.41) (18,565) (0.89)

δ = 0.94

Nonparametric

DTVaR(1)

0.57

52 DTVaR(1)

0.45

36 DTVaR(1)

0.34

20 DTVaR(1)

0.23

17
(16,715) (1.12) (19,184) (0.78) (22,811) (0.43) (25,298) (0.37)

DTVaR(2) 63 DTVaR(2) 47 DTVaR(2) 27 DTVaR(2) 18
(15,554) (1.36) (17,902) (1.02) (21,391) (0.58) (23,864) (0.39)

Parametric
(Pareto, DTVaR(p) 130 DTVaR(p) 103 DTVaR(p) 65 DTVaR(p) 41
FGM Copula) (11,052) (2.81) (12,585) (2.23) (14,824) (1.41) (18,564) (0.89)
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Table 2. Cont.

Method of Estimators α = 0.9 No. viol. 1
Estimators α = 0.92 No. viol. Estimators α = 0.94 No. viol. Estimators α = 0.96 No. viol.

Estimations j.s.l. 2 (%) (%) j.s.l. (%) (%) j.s.l. (%) (%) j.s.l. (%) (%)

δ = 0.96

Nonparametric

DTVaR(1)

0.38

51 DTVaR(1)

0.30

34 DTVaR(1)

0.23

17 DTVaR(1)

0.15

15
(17,159) (1.10) (19,622) (0.74) (24,876) (0.37) (26,802) (0.32)

DTVaR(2) 63 DTVaR(2) 47 DTVaR(2) 20 DTVaR(2) 18
(15,472) (1.36) (17,744) (1.02) (22,720) (0.43) (24,638) (0.39)

Parametric
(Pareto, DTVaR(p) 130 DTVaR(p) 103 DTVaR(p) 65 DTVaR(p) 41
FGM Copula) (11,051) (2.81) (12,584) (2.23) (14,824) (1.41) (18,564) (0.89)

δ = 0.98

Nonparametric

DTVaR(1)

0.19

93 DTVaR(1)

0.15

74 DTVaR(1)

0.11

53 DTVaR(1)

0.08

41
(13,143) (2.01) (14,053) (1.60) (16,639) (1.15) (18,459) (0.89)

DTVaR(2) 92 DTVaR(2) 74 DTVaR(2) 52 DTVaR(2) 40
(13,253) (1.99) (14,184) (1.60) (16,790) (1.12) (18,656) (0.87)

Parametric
(Pareto, DTVaR(p) 130 DTVaR(p) 103 DTVaR(p) 65 DTVaR(p) 41
FGM Copula) (11,050) (2.81) (12,584) (2.23) (14,823) (1.41) (18,564) (0.89)

1 No. viol. states the number of violations. 2 j.s.l. states the joint significance level expressed in percent. 3 The numbers in parentheses in columns 4, 6, 8, 10 and 12 indicate the
percentages of violations to the data size (m = 4618).
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Table 3. DTVaR(δ,0)
(α,0)(X|Y; C) estimates and bootstrap confidence intervals.

Estimators α = 0.90 α = 0.92 α = 0.94 α = 0.96 α = 0.98

δ = 0.9

DTVaR(1) 15,601 18,216 20,880 23,693 28,982√
DCTV(1) 12,826 13,189 13,233 13,057 11,630
LCL(1) −0.3261 −0.3585 −0.3877 −0.4408 −0.5043
UCL(1) 0.3567 0.3937 0.4476 0.4860 0.5720

DTVaR(2) 14,890 17,420 20,002 22,785 28,059√
DCTV(2) 11,908 12,250 12,270 12,079 10,468
LCL(2) −0.2784 −0.3119 −0.3598 −0.4069 −0.4719
UCL(2) 0.4462 0.4820 0.5410 0.5867 0.7214

δ = 0.92

DTVaR(1) 15,920 18,744 21,468 24,143 29,369√
DCTV(1) 13,366 13,789 13,841 13,672 12,346
LCL(1) −0.3435 −0.3869 −0.4406 −0.4784 −0.5490
UCL(1) 0.3895 0.4422 0.4776 0.5228 0.6402

DTVaR(2) 15,029 17,741 20,366 23,011 28,218√
DCTV(2) 12,278 12,691 12,732 12,565 11,103
LCL(2) −0.3017 −0.3428 −0.3844 −0.4296 −0.4988
UCL(2) 0.5095 0.5619 0.6233 0.6564 0.7848

δ = 0.94

DTVaR(1) 16,715 19,184 22,811 25,298 30,409√
DCTV(1) 14,148 14,530 14,567 14,291 12,954
LCL(1) −0.3840 −0.4233 −0.4862 −0.5222 −0.6004
UCL(1) 0.4388 0.4971 0.5523 0.5970 0.6761

DTVaR(2) 15,554 17,902 21,391 23,864 28,987√
DCTV(2) 12,881 13,280 13,346 13,098 11,684
LCL(2) −0.3358 −0.3568 −0.4303 −0.4519 −0.5566
UCL(2) 0.5700 0.6423 0.7151 0.7514 0.8861

δ = 0.96

DTVaR(1) 17,159 19,622 24,876 26,802 31,595√
DCTV(1) 15,074 15,541 15,540 15,205 13,923
LCL(1) −0.4296 −0.4775 −0.5689 −0.6046 −0.6908
UCL(1) 0.5107 0.5495 0.6413 0.6918 0.8115

DTVaR(2) 15,472 17,744 22,720 24,638 29,412√
DCTV(2) 13,337 13,848 13,987 13,708 12,490
LCL(2) −0.3640 −0.4029 −0.4832 −0.5196 −0.5904
UCL(2) 0.6988 0.7635 0.9066 0.9198 1.0359

δ = 0.98

DTVaR(1) 13,143 14,053 16,639 18,459 20,468√
DCTV(1) 6773.1 6644.3 5665.9 4318.5 1769.9
LCL(1) −0.6585 −0.6870 −0.8201 −0.9703 −0.9887
UCL(1) 0.6671 0.6957 0.7464 0.7341 0.8679

DTVaR(2) 13,253 14,184 16,790 18,656 20,637√
DCTV(2) 6849.2 6,16.6 5715.9 4316.7 1711.9
LCL(2) −0.6502 −0.7013 −0.8250 −1.0162 −1.1208
UCL(2) 0.6390 0.6518 0.7331 0.6889 0.7987
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Table 4. DTVaR(δ,d)
(α,0)(X|Y; C) estimates and bootstrap confidence intervals.

Estimators
α

0.90 0.92 0.94 0.96 0.98

δ = 0.92

d = 0.015

DTVaR(1) 15,910 19,014 22,145 25,388 30,139√
DCTV(1) 13,783 14,325 14,403 14,114 12,694
LCL(1) −0.3248 −0.3862 −0.4613 −0.5435 −0.5979
UCL(1) 0.3840 0.4108 0.4380 0.4291 0.5628

DTVaR(2) 14,939 17,907 20,928 24,151 28,936√
DCTV(2) 12,657 13,207 13,297 13,033 11,482
LCL(2) −0.2875 −0.3471 −0.4074 −0.5003 −0.5566
UCL(2) 0.4912 0.5206 0.5557 0.5757 0.7132

d = 0.025

DTVaR(1) 16,242 19,801 22,439 26,026 31,517√
DCTV(1) 14,197 14,767 14,829 14,509 12,651
LCL(1) −0.3512 −0.4359 −0.4773 −0.5801 −0.6906
UCL(1) 0.3453 0.3377 0.4072 0.3706 0.4660

DTVaR(2) 15,189 18,594 21,139 24,711 30,312√
DCTV(2) 13,049 13,649 13,739 13,474 11,457
LCL(2) −0.2909 −0.3844 −0.4107 −0.5234 −0.6754
UCL(2) 0.4593 0.4547 0.5226 0.5022 0.5964

δ = 0.96

d = 0.015

DTVaR(1) 17,580 20,330 26,482 28,849 31,595√
DCTV(1) 15,440 15,908 15,573 14,912 13,923
LCL(1) −0.4515 −0.5125 −0.6770 −0.7624 −0.6662
UCL(1) 0.4726 0.4952 0.5424 0.5672 0.7846

DTVaR(2) 15,801 18,342 24,243 26,648 29,412√
DCTV(2) 13,712 14,252 14,113 13,507 12,490
LCL(2) −0.3748 −0.4290 −0.5916 −0.6701 −0.5855
UCL(2) 0.6643 0.7088 0.7794 0.8211 1.0668

d = 0.025

DTVaR(1) 17,308 20,218 27,083 29,875 33,249√
DCTV(1) 15,909 16,553 16,419 15,676 14,387
LCL(1) −0.4237 −0.4849 −0.6829 −0.7833 −0.7663
UCL(1) 0.4719 0.4938 0.4801 0.4499 0.6182

DTVaR(2) 15,375 18,031 24,598 27,461 30,994√
DCTV(2) 14,097 14,846 15,054 14,430 13,158
LCL(2) −0.3363 −0.3979 −0.5754 −0.6828 −0.6794
UCL(2) 0.6686 0.7002 0.6862 0.6770 0.8527
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Table 5. DTVaR(δ,d)
(α,a)(X|Y; C) estimates and bootstrap confidence intervals.

Estimators
α = 0.92 α = 0.96 α = 0.98

a = 0.015 a = 0.020 a = 0.025 a = 0.015 a = 0.020 a = 0.025 a = 0.015 a = 0.020 a = 0.025

δ = 0.96

d = 0.015

DTVaR(1)√
DCTV(1)

LCL(1)

UCL(1)

DTVaR(2)√
DCTV(2)

LCL(2)

UCL(2)

12,500
6665.3
−0.0647
2.3908
12,595
6748.8
−0.0804
2.3226

12,500
6665.3
−0.0719
2.3684
12,595
6748.8
−0.0469
2.3294

11,406
6116.2
0.1294
2.7870
11,505
6223.1
0.1060
2.6779

18,301
4615.1
−0.1676
4.0913
18,476
4654.9
−0.1869
4.0551

18,301
4615.1
−0.1319
4.1357
18,476
4654.9
−0.1846
4.0480

18,301
4615.1
−0.1520
4.0711
18,476
4654.9
−0.1944
4.0487

20,468
1769.9
0.8529

12.3001
20,637
1711.9
0.8545

12.6727

20,468
1769.9
0.9921

12.6703
20,637
1711.9
0.7986

12.7271

20,468
1769.9
0.9070

12.5987
20,637
1711.9
0.7832

12.6842

d = 0.020

DTVaR(1)√
DCTV(1)

LCL(1)

UCL(1)

DTVaR(2)√
DCTV(2)

LCL(2)

UCL(2)

11,481
6243.5
0.1043
2.6871
11,576
6341.7
0.0759
2.6477

11,481
6243.5
0.1172
2.7063
11,576
6341.7
0.1068
2.6221

10,123
5222.3
0.3885
10,222
5362.1
0.3889
3.3928

17,459
4804.0
0.0013
4.1230
17,653
4867.9
−0.0120
4.0887

17,459
4804.0
−0.0240
4.1619
17,653
4867.9
−0.0516
4.0430

17,459
4804.0
−0.0054
4.1322
17,653
4867.9
−0.0019
4.0177

20,068
1880.4
10,297

118,503
20,264
1830.7
1.0705

12.2409

20,068
1880.4
1.1467

12.0218
20,264
1830.7
0.8565

12.0540

20,068
1880.4
1.1327

11.8399
20,264
1830.7
0.9883

12.0647

d = 0.025

DTVaR(1)√
DCTV(1)

LCL(1)

UCL(1)

DTVaR(2)√
DCTV(2)

LCL(2)

UCL(2)

11,481
6243.5
0.0971
2.6883
11,576
6341.7
0.1104
2.6320

11,481
6243.5
0.0969
2.7121
11,576
6341.7
0.1038
2.6449

10,123
5222.3
0.3918
3.4545
10,222
5362.1
0.3510
3.4162

17,459
4804.0
−0.0014
4.0688
17,653
4867.9
−0.0625
4.0382

17,459
4804.0
−0.0212
4.0664
17,653
4867.9
−0.0243
3.9866

17,459
4804.0
−0.0049
4.1201
17,653
4867.9
−0.0441
4.0767

20,068
1880.4
1.1327

11.8503
20,264
1830.7
0.9883

12.2752

20,068
1880.4
1.0817
11.8451
20,264
1830.7
0.9955

11.9624

20,068
1880.4
1.0736
11.8207
20,264
1830.7
1.0935
11.9624

δ = 0.98

d = 0.015

DTVaR(1)√
DCTV(1)

LCL(1)

UCL(1)

DTVaR(2)√
DCTV(2)

LCL(2)

UCL(2)

14,572
6950.0
−0.7380
0.5712
14,701
7030.0
−0.7490
0.5444

14,572
6950.0
−0.7253
0.5648
14,701
7030.0
−0.7425
0.5659

13,277
6679.9
−0.5678
0.8019
13,417
6790.9
−0.5666
0.7660

20,468
1769.9
−3.5026
0.6560
20,678
1687.6
−3.7977
0.5639

20,468
1769.9
−3.5026
0.6560
20,678
1687.6
−3.7977
0.5639

20,468
1769.9
−3.5026
0.6560
20,678
1687.6
−3.7977
0.5639

20,468
1769.9
−0.9887
0.8679
20,637
1711.9
−1.1208
0.7987

20,468
1769.9
−0.9887
0.8679
20,637
1711.9
−1.1208
0.7987

20,468
1769.9
−0.9887
0.8679
20,637
1711.9
−1.1208
0.7987

d = 0.020

DTVaR(1)√
DCTV(1)

LCL(1)

UCL(1)

DTVaR(2)√
DCTV(2)

LCL(2)

UCL(2)

14,572
6950.0
−0.7264
0.5789
14,701
7030.0
−0.7534
0.5714

14,572
6950.0
−0.7496
0.5870
14,701
7030.0
−0.7474
0.5659

13,277
6679.9
−0.5777
0.8008
13,417
6790.9
−0.5846
0.7533

20,468
1769.9
−3.5026
0.6560
20,678
1687.6
−3.7977
0.5639

20,468
1769.9
−3.5026
0.6560
20,678
1687.6
−3.7977
0.5639

20,468
1769.9
−3.5026
0.6560
20,678
1687.6
−3.7977
0.5639

20,468
1769.9
−0.9887
0.8679
20,637
1711.9
−1.1208
0.7987

20,468
1769.9
−0.9887
0.8679
20,637
1711.9
−1.1208
0.7987

20,468
1769.9
−0.9887
0.8679
20,637
1711.9
−1.1208
0.7987

d = 0.025

DTVaR(1)√
DCTV(1)

LCL(1)

UCL(1)

DTVaR(2)√
DCTV(2)

LCL(2)

UCL(2)

14,572
6950.0
−0.7504
0.5906
14,701
7030.0
−0.7474
0.5572

14,572
6950.0
−0.7370
0.6010
14,701
7030.0
−0.7294
0.5752

13,277
6679.9
−0.5672
0.8118
13,417
6790.9
−0.5914
0.7590

20,468
1769.9
−3.5026
0.5803
20,678
1687.6
−3.7977
0.5639

20,468
1769.9
−3.5026
0.6560
20,678
1687.6
−3.7977
0.5639

20,468
1769.9
−3.5026
0.6560
20,678
1687.6
−3.7977
0.5639

20,468
1769.9
−0.9887
0.8679
20,637
1711.9
−1.1208
0.7987

20,468
1769.9
−0.9887
0.8679
20,637
1711.9
−1.1208
0.7987

20,468
1769.9
−0.9887
0.8679
20,637
1711.9
−1.1208
0.7987

7. Conclusions

In this paper, we study a recent coherent risk measure called Dependent Tail Value-
at-Risk (DTVaR) initially proposed by Josaphat and Syuhada (2021), and suggest the
estimators. We have proven the consistency of the estimators. Moreover, we also derive
a parametric estimate of DTVaR for Pareto distribution under an FGM copula. For the
backtesting of DTVaR estimation, we have also suggested a novel variability measure
called Dependent Conditional Tail Variance (DCTV), instead of an ordinary variance of the
target loss, along with the estimators for DCTV. Additionally, using DCTV, we establish the
asymptotic normality of DTVaR estimators and construct confidence intervals for DTVaR.

We found that the nonparametric estimators are more accurate at estimating DTVaR
than the parametric estimator. This result implies that we should look for other distribu-
tions that are more fit for the variable of the claim amount. Moreover, we will find the
DTVaR formulas of the claim amount for exponential and lognormal distributions since the
application of both distributions covers actuarial science. Then, we will again compare the
accuracy of the DTVaR parametric estimators for exponential and lognormal distributions
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to the counterpart nonparametric estimators. In the empirical results, the bootstrap CIs
in the backtesting procedure have also confirmed that the estimates of the DTVaR do not
underestimate or overestimate the actual loss when a = d = 0 or a = 0. However, the
DTVaR does not necessarily estimate the actual risk properly when the contraction parame-
ters a > 0 and d > 0. The limitation in our research is that the data of the claim amount
contain a large number of outliers, i.e., 16.41% of all observations. This situation may be the
reason for why DTVaR(δ,0)

(α,0) estimates are relatively much larger than both DTVaR(δ,d)
(α,a) and

TVaR estimates. In this case, if the risk measure of DTVaR(δ,0)
(α,0) is employed to the insurance

company, this will push the company to prepare a very large extra fund, which is not
necessary. In the future, we will apply Archimedean copulas, such as Clayton and Gumbel,
to DTVaR. Archimedean copulas are broadly used in implementations due to their easy
form, a diversity of dependence structures and other “nice” properties (Brahim et al. 2018).
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Appendix A

Proof for Property 1. According to Cheung et al. (2014), a risk measure is called a law-
invariant convex if it satisfies all four properties, namely monotonicity, translation invari-
ance, law invariance and convexity. The first three properties are easy to verify. Now, we
prove that DTVaR satisfies convexity. Suppose that X and Z denote two different target
losses and Y denots another loss associated, respectively, with the target losses. To prove
convexity, we follow the proof of the subadditivity of DTVaR (Josaphat and Syuhada 2021).

Suppose that FλX is a distribution function of λX and define quantile-α of λX as
Qα(λX) = F−1

λX (α) for specified probability level α ∈ (0, 1), and quantile-δ of (1 −
λ)Z as Qδ((1 − λ)Z) = F−1

(1−λ)Z(δ) for arbitrary excess level δ ∈ (0, 1). Suppose that
S2 = λX + (1− λ)Z. Then,
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(1− δ)d+1 + C(α, δ)− C(α, δ1)
{

λDTVaR(δ,d)
(α,a)(X|Y; C)

+ (1− λ)DTVaR(δ,d)
(α,a)(Z|Y; C)−DTVaR(δ,d)

(α,a)(S2|Y; C)
}

= E
[
λX
(

I{Q2
α≤S2≤Q2

α1 ,Qδ≤Y≤Qδ1
} − I{Qα≤λX≤Qα1 ,Qδ≤Y≤Qδ1

}

)
+ (1− λ)Z

(
I{Q2

α≤S2≤Q2
α1 ,Qδ≤Y≤Qδ1

} − I{Qα≤λX≤Qα1 ,Qδ≤Y≤Qδ1
}

)]
≥ QαE

[
I{Q2

α≤S2≤Q2
α1 ,Qδ≤Y≤Qδ1

} − I{Qα≤λX≤Qα1 ,Qδ≤Y≤Qδ1
}

]
+ Q1

αE
[

I{Q2
α≤S2≤Q2

α1 ,Qδ≤Y≤Qδ1
} − I{Q1

α≤(1−λ)Z≤Q1
α1 ,Qδ≤Y≤Qδ1

}

]
= Qα

{
C(α1, δ1)− C(α, δ1)− C(α1, δ) + C(α, δ)− C(α1, δ1) + C(α, δ1)

+ C(α1, δ)− C(α, δ)}+ Q1
α{C(α1, δ1)− C(α, δ1)− C(α1, δ) + C(α, δ)

− C(α1, δ1) + C(α, δ1) + C(α1, δ)− C(α, δ)
}

= 0,

where C(p, q) = C(p, q; θ).
In the above inequality, we use the following fact:

(*) If λX < Qα, then

I{Q2
α≤S2≤Q2

α1 ,Qδ≤Y≤Qδ1
} − I{Qα≤λX≤Qα1 ,Qδ≤Y≤Qδ1

} ≥ 0;

(**) If Qα ≤ λX ≤ Qα1 , then

I{Q2
α≤S2≤Q2

α1 ,Qδ≤Y≤Qδ1
} − I{Qα≤λX≤Qα1 ,Qδ≤Y≤Qδ1

} ≤ 0.

This proves that DTVaR follows the law-invariant convex property.

Proof for Theorem 1. According to Property 1, DTVaR is a law-invariant convex risk mea-
sure. By the result of Theorem 2.6 of Krätschmer et al. (2014), the first nonparametric
estimator DTVaR(δ,d)(1)

(α,a) (X|Y; C) is consistent.

For the estimator D̂TVaR
(δ,d)(2)
(α,a) (X|Y; C) given in (14), we observe that α′(q) → α as

m→ ∞, and thus results in hk(q) ≈ 0 (compare Jadhav et al. 2013, p. 83). Therefore,

D̂TVaR
(δ,d)(2)
(α,a) (X|Y; C) ≈ D̂TVaR

(δ,d)(1)
(α,a) (X|Y; C),

and thus the consistency property is also followed for D̂TVaR
(δ,d)(2)
(α,a) (X|Y; C).

Proof for Lemma 3. We assume first that x ≤ Qp1(X). We obtain

P(X ≤ x|Qp ≤ X ≤ Qp1 , Qδ ≤ Y ≤ Qδ1) =
P(Qp ≤ X ≤ x, Qδ ≤ Y ≤ Qδ1)

P(Qp ≤ X ≤ Qp1 , Qδ ≤ Y ≤ Qδ1)
,

where the denominator may be written as follows:

P(Qp ≤ X ≤ Qp1 , Qδ ≤ Y ≤ Qδ1) = C(p1, δ1; θ)− C(p, δ1; θ)− C(p1, δ; θ) + C(p, δ; θ).

Thus,

P(X ≤ s|Qp ≤ X ≤ Qp1 , Qδ ≤ Y ≤ Qδ1)

=
1

C(p1, δ1; θ)− C(p, δ1; θ)− C(p1, δ; θ) + C(p, δ; θ)

Qδ1∫
Qδ

x∫
Qp

∂2C(FX(x), FY(y))
∂x ∂y

dx dy.
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For fixed level p = α and specified a and d, the DCTV of X associated with Y is given by

DCTV(δ,d)
(α,a)(X|Y; C) =

1
C(p1, δ1; θ)− C(p, δ1; θ)− C(p1, δ; θ) + C(p, δ; θ)

×
Qδ1∫

Qδ

Qα1∫
Qα

x ∂2C(FX(x), FY(y))
∂x2 ∂y

dx dy

−
(

DTVaR(α,d)
(α,a)(X|Y; C)

)2
.

We suppose that the densities of FX and FY are fX and fY, respectively. Thus,

DCTV(δ,d)
(α,a)(X|Y; C) =

δ1∫
δ

α1∫
α
(F−1

X (u))2 c(u, v)du dv

C(α1, δ1; θ)− C(α, δ1; θ)− C(α1, δ; θ) + C(α, δ; θ)

−
(

DTVaR(α,d)
(α,a)(X|Y; C)

)2
.

Theorem A1 (Glivenko–Cantelli Theorem). Suppose that X1, ..., Xm are i.i.d. random variables
from a distribution with distribution function FX . For each m, let Fm

X be the empirical distribution
function given by

Fm
X (u) =

1
m

m

∑
i=1

I(Xi ≤ u).

Then, we have ∥∥Fm
X − FX

∥∥
∞ = sup

X∈R

∣∣Fm
X (x)− FX(x)

∣∣→a.s. 0. (A1)

Proof for Theorem 2. Before proving the theorem, we state the Glivenko–Cantelli theorem.
The proof is similar to the proof for Theorem 1. The statement of Theorem 2 is almost surely

equivalent to the convergence of
∫ δ1

δ

∫ α1
α

(
Fm(−1)

X (u)
)2 d(u, v) to

∫ δ1
δ

∫ α1
α

(
F−1

X (u)
)2 d(u, v).

This latter convergence is followed (even uniformly over all α ∈ [0, 1]) if the statement∫ 1

0

∫ 1

0

∣∣(Fm(−1)
X (u))2 − (F−1

X (u))2∣∣d(u, v)→a.s. 0 (A2)

holds.
We now provide proof in the following steps:

• Step 1. Assuming that the random variables X1, · · · , Xm ∈ R are i.i.d. with distribu-
tion function FX , Brazauskas et al. (2008) argued that the bi-implication—the statement
(A3) below— ∫ 1

0

∣∣Fm(−1)
X (u)− F−1

X (u)
∣∣du→a.s. 0 (A3)

is true if and only if the following two statements Fm
X ⇒ FX (weak convergence)

and
∫
|x| dFm

X (x)→
∫
|x|dFX(x) hold. The first statement follows from the classical

Glivenko–Cantelli theorem, which says that the supremum distance between Fm
X and

FX converges almost surely to 0.
• Step 2. Similarly to Brazauskas et al. (2008), we argue that the statement (A2) is true

if the following two statements (Fm
X )2 ⇒ (FX)

2 and
∫
|x|2 dFm

X (x) →
∫
|x|2 dFX(x)

almost surely hold. However, previously, we know the fact that Fm
X ⇒ FX (weak
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convergence) and
∫
|x|dFm

X (x)→
∫
|x|dFX(x) almost surely hold from Step 1. Then,

we have ∥∥(Fm
X )2 − (FX)

2∥∥
∞ = sup

X∈R

∣∣(Fm
X (x)

)2 −
(

FX(x)
)2∣∣

= sup
X∈R

(
Fm

X (x) + FX(x)
)
×
∣∣Fm

X (x)− FX(x)
∣∣

≤ sup
X∈R

(
Fm

X (x) + FX(x)
)
× sup

X∈R

∣∣Fm
X (x)− FX(x)

∣∣
= 2 · sup

X∈R

∣∣Fm
X (x)− FX(x)

∣∣→a.s. 0.

Hence, the statement (A2) holds. Thus, the estimator D̂CTV
(δ,d)(1)
(α,a) is consistent for

DCTV(δ,d)(1)
(α,a) .

For the estimator D̂CTV
(δ,d)(2)
(α,a) given in (18), we observe that α′(q) → α as m→ ∞, and,

thus, results in hk(q) ≈ 0. Therefore,

D̂CTV
(δ,d)(2)
(α,a) ≈ D̂CTV

(δ,d)(1)
(α,a) ,

and thus the consistency property also follows for D̂CTV
(δ,d)(2)
(α,a) . This finishes the proof of

Theorem 2.

Proof for Theorem 3. In the sequel, we have followed the proof of the asymptotic property
of the TVaR estimator, originally given in Brazauskas et al. (2008), to prove the asymptotic
property of the DTVaR. We start the proof of Theorem 3 with the representation

D̂TVaR
(δ,d)(n)
(α,a) (X|Y; C)−DTVaR(δ,d)

(α,a)(X|Y; C) =

δ1∫
δ

α1∫
α

(
Fm(−1)

X (u)− F−1
X (u)

)
d(u, v)

P(Qα ≤ X ≤ Qα1 , Qδ ≤ Y ≤ Qδ1)
. (A4)

Our next step is to extract a sum of random variables from the right-hand side of (A4). To
understand how to perform this well, we shall now look at the integral below:

δ1∫
δ

α1∫
α

(
Fm(−1)

X (u)− F−1
X (u)

)
d(u, v). (A5)

Note that the integral (A5) can be approximated as follows (compare Brazauskas et al.
(2008)):

δ1∫
δ

α1∫
α

(Fm(−1)
X (u)− F−1

X (u)) d(u, v) ≈
F−1

Y (δ1)∫
F−1

Y (δ)

F−1
X (α1)∫

F−1
X (α)

(Fm
X (x)− FX(x)) d(x, y).
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Hence, for every fixed α, δ ∈ (0, 1), as well as a, d ≥ 0, we have that

√
m
(

D̂TVaR
(δ,d)(n)
(α,a) (X|Y; C)−DTVaR(δ,d)

(α,a)(X|Y; C)
)

≈

F−1
Y (δ1)∫

F−1
Y (δ)

F−1
X (α1)∫

F−1
X (α)

√
m(Fm

X (x)− FX(x))d(x, y)

P(Qα ≤ X ≤ Qα1 , Qδ ≤ Y ≤ Qδ1)

=
1√
m

m

∑
i=1

H(Xi, Yi; α, a, δ, d),

where

H(Xi, Yi; α, a, δ, d) = −

F−1
Y (δ1)∫

F−1
Y (δ)

F−1
X (α1)∫

F−1
X (α)

(
I(Xi ≤ x, Yi ≤ y)− FX(x)

)
d(x, y)

P(F−1
X (α) ≤ X ≤ F−1

X (α1), F−1
Y (δ) ≤ Y ≤ F−1

Y (δ1))
.

For every fixed α, δ ∈ [0, 1], as well as for a, d ≥ 0, the random variables H(Xi, Yi; α, a, δ, d),
1 ≤ i ≤ m, are centered, i.i.d., and have variances DCTV(δ,d)

(α,a)(X|Y; C). The variance

DCTV(δ,d)
(α,a)(X|Y; C) is finite for every finite a, d ≥ 0 if the second moment of X is finite. This

completes the proof of Theorem 3.

Proof for Lemma 4. To begin with the DTVaR calculation, we compute the numerator as
follows:∫ α1

α

∫ δ1

δ
F−1

X (u)c(u, v)dv du

= β1

∫ α1

α

∫ δ1

δ

[
(1− u)−1/γ1 − 1

]
(θ1 − 2uθ1 − 2vθ + 4uvθ + 1)dv du

= β1

∫ α1

α
(1− u)−1/γ1du×

∫ δ1

δ
(θ − 2vθ + 1)dv + 2β1θ

∫ α1

α
u(1− u)−1/γ1 du

×
∫ δ1

δ
(2v− 1)dv− β1

∫ α1

α

∫ δ1

δ
(θ − 2uθ − 2vθ + 4uvθ + 1)dv du

= β1(A + 2 θ1 B− C),

where A =
( α1∫

α
(1− u)−1/γ1du

)( δ1∫
δ

(θ − 2vθ + 1)dv
)

, and B and D are as follows:

B =
( α1∫

α
u(1− u)−1/γ1 du

)( δ1∫
δ

(2v− 1)dv
)

, D =
α1∫
α

δ1∫
δ

(θ− 2uθ− 2vθ + 4uvθ + 1)dv du. Thus,

we obtain

DTVaR(δ,d)
(α,a)(X|Y; C) =

β1(A + 2θB− D)

C(α1, δ1; θ)− C(α, δ1; θ)− C(α1, δ; θ) + C(α, δ; θ)
, (A6)

where the copula C(p, q; θ) = pq + θpq(1− α)(1− δ).

Note
1 In description we use the terms loss(es) and risk(s) interchangeably.
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