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Abstract: Pooled annuity products, where the participants share systematic and idiosyncratic mor-
tality risks as well as investment returns and risk, provide an attractive and effective alternative to
traditional guaranteed life annuity products. While longevity risk sharing in pooled annuities has
received recent attention, incorporating investment risk beyond fixed interest returns is relatively
unexplored. Incorporating equity investments has the potential to increase expected annuity pay-
ments at the expense of higher variability. We propose and assess a strategy for incorporating equity
investments along with managed-volatility for pooled annuity funds. We show how the managed
volatility strategy improves investment performance, while reducing pooled annuity income volatil-
ity and downside risk, as well as an investment strategy that reduces exposure to investment risk
over time. We quantify the impact of pool size when equity investments are included, showing how
these products are viable with relatively small pool sizes.

Keywords: pooled annuity; equity investment; managed volatility; longevity risk

JEL Classification: G22; G11; J11

1. Introduction

Against the backdrop of population ageing and a general shift from defined benefit to
defined contribution retirement schemes, individuals are faced with the risk of outliving
their accumulated wealth on retirement, by either living longer than expected, or their
wealth not being sufficient to maintain future consumption needs. A traditional option
to insure against longevity risk is to purchase a life annuity product. The traditional life
annuity has low market penetration in many countries (James and Song 2001; OMeara et al.
2015), resulting in individuals self-insuring a significant amount of longevity risk especially
where there is no or limited government or public pension.

Pooled annuity funds, such as group self annuitization (GSA), are based on invest-
ments in low risk fixed income assets (Australia Government the Treasury 2020; Donnelly
2015; Milevsky and Salisbury 2015; Qiao and Sherris 2013). In a sustained low interest rate
environment, this investment approach generates retirement incomes and investment risk
exposures that are not consistent with the financial risk appetite or the income needs of
retirees (Peijnenburg et al. 2016).

In Australia, the most common post retirement strategy of individuals is to draw down
from pension savings with an account-based pension, which includes equity exposure
with no longevity insurance, at or near government-prescribed minimum drawdown rates
(Australia Government the Treasury 2020). Self-insuring against longevity risk is not
generally optimal, resulting in lower levels of retirement income. The benefits of pooling
of mortality risk and annuitization are well understood (Hainaut and Devolder 2006).
Exposure to equity is also an important element of a post retirement annuitization strategy
(Peijnenburg et al. 2016).
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Compared to traditional life annuities, pooled annuities have potential benefits (Chen
et al. 2020). Pooled annuities do not explicitly guarantee a level of payment, since they do
not guarantee future mortality or investment returns to participants. This reduces reserving
and solvency capital costs and the level of loading included in life annuity prices. In a
low interest rate environment it also beneficial to consider including equity assets in a
pooled annuity fund to improve investment returns. Managing equity risk then becomes
important in the investment strategy of the fund. There has been no rigorous assessment
of the impact of equity investment on payments for pooled annuities. We aim to fill this
gap by proposing and assessing a strategy for incorporating equity investments along with
managed-volatility for pooled annuity funds.

The rest of the paper is organized as follows. Section 2 provides an overview of the
research on pooled annuity funds including group self annuitization (GSA) and tontines,
focussing on investment risk. Section 3 describes our modelling framework, including
the operation of the pooled annuity product, the mortality model, the economic scenario
generator and interest rate models and the managed-volatility strategy. Section 4 presents
the results from the inclusion of equity with a managed volatility investment strategy
on pooled annuity payments under different scenarios, in comparison with a fixed asset
allocation strategy. In Section 5, we discuss policy and practical implications as well as
limitations and future research. Section 6 concludes the paper.

2. Pooled Annuities and Investment Risk

Risk sharing of longevity risk provides an attractive and sustainable solution to protect
individuals against longevity risk. Products that share longevity risk in a pool with differing
payment profiles are referred to as pooled annuity products. Group Self-Annuitization
(GSA) is a form of pooled annuity considered in Piggott et al. (2005) that aims to generate
a payment profile similar to a traditional life annuity. Annuity payments depend on
the mortality experience within the pool, as well as the investment performance of the
pooled fund.

Pool annuitants bear both the systematic and idiosyncratic longevity risk. As all risks
are shared by the annuitants, GSAs remove the need for the annuity provider to offer costly
guarantees, reducing capital requirement for traditional annuity providers and loadings in
annuity premiums. Adverse selection for pooled annuities is also lower than for traditional
life annuities (Valdez et al. 2006).

Stamos (2008) considers the role of pooled annuities in optimizing lifetime utility of
consumption when an individual also has equity risky. The focus is on the welfare gain
from pooling and the impact of pool size. He shows that, even with small pool sizes, pooled
annuities are preferred to fixed annuities for low and moderate risk aversions. However,
Stamos (2008) does not analyze the impact of equity risk on pooled annuity payments nor
the resulting welfare gains.

Donnelly et al. (2013) compare the pooled annuity with a mortality indexed annuity
and show how pooled annuities provide higher expected returns and that annuitants
would be willing to accept the systematic longevity risk in the pool even for relatively small
pool sizes. Donnelly et al. (2014) propose an ’overlay fund’ structure allowing participants
complete autonomy on how to invest the underlying annuity assets. They do not assess the
impact of equity investment on pooled annuity payments, although this structure allows
incorporation of equity investments in a flexible way.

Milevsky and Salisbury (2015) propose a modern tontine structure, which is a form of
pooled annuity where the payout rate as a percentage of the initial premium is optimal and
derived from optimizing individual utility. This modern tontine results in higher utility
and generates a more constant stream of payments than a traditional tontine scheme. There
is no analysis of investment risk.

Qiao and Sherris (2013) assess methods to improve pooling effectiveness in GSAs by
incorporating multiple cohorts in the pooled annuity fund. However, they only consider
fixed interest or cash investments.
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The pooled annuity in the form of a group self annuity has received recent consider-
ation in Australia (Australia Government the Treasury 2020). Although there are many
alternative payment structures for pooled annuities and tontines to group self annuitization,
they all share the pooling of both systematic an idiosyncratic mortality risk. There has been
no analysis of the incorporation of equity investment in the pooled annuity fund and the
impact on the annuity payments. Nor has there been any assessment of risk management
strategies for equity investments, such as target volatility, on the pooled annuity payments
when equity investments are included.

Managing volatility has been an important issue for variable annuities (Morrison
and Tadrowski 2013). Hocquard et al. (2013) propose a dynamic hedging strategy that
targets a pay-off distribution along with constant volatility. Recent developments in
managed-volatility strategies, motivated by the empirical evidence of heavy tail asset
returns, volatility heteroscedasticity, clustering and negative correlation of returns with
conditional volatility, have shown superior investment returns from managing portfolio
volatility.

Papageorgiou et al. (2017) introduce a univariate volatility timing strategy which is
shown to outperform the stock market index, taking into account transaction costs, while
reducing downside equity risk. Although benefits of target volatility strategies have been
demonstrated for investment strategies more generally, their impact on pooled annuities
with equity exposure has not been considered.

In this paper, for the first time, we propose and assess an investment strategy that
incorporates risky equity assets and a managed-volatility strategy for pooled annuity
products. We compare the managed-volatility strategy with a fixed allocation strategy,
showing how this improves investment returns and limits downside risks. We quantify
the out-performance for funds with different initial asset allocations and levels of target
volatility. We also assess how reducing exposure to investment risk as the fund develops
does not have a significant impact on expected pool annuity payments. We assess the
impact of the number of participants in the pool on the payment pattern as the fund
ages and membership is reduced by deaths. Moreover, a rigorous assessment of all these
factors on pooled annuity payments for cohort of participants has not been quantified and
assessed previously.

3. Pooled Annuity Income Modelling Methodology

In this section we outline the methodology we use to generate payments in the
pooled annuity fund. To assess the impact of equity investments on a pooled annuity
we use an economic scenario generator with a vector-autoregressive model, an interest rate
term structure generated from a single-factor Cox–Ingersoll–Ross model (Cox et al. 1985),
systematic mortality scenarios generated from a two-factor affine mortality model from
Blackburn and Sherris (2013) and an autoregressive equity volatility forecast model. We
compare the performance of the investment strategies using a wide range of different risk
measures for the pooled annuity payments. These measures reflect those proposed by the
Retirement Income Disclosure Consultation Paper of the Australian government (Australia
Government the Treasury 2018).

3.1. Pooled Annuity Product Features

We base our analysis on the GSA structure introduced by Piggott et al. (2005) whereby
the pool shares investment risk as well as both idiosyncratic and systematic longevity risk.
At time 0, there is a pool of lx homogeneous annuitants all aged x, each contributing the
same amount to the pool. They expect a level annual payment of B0 in the future. The
starting total fund F0 is:

F0 = lxB0 äx. (1)
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Here äx is a standard actuarial notation for a whole life annuity-due, calculated as

äx =
∞

∑
t=0

1
(1 + R)t

lx+t

lx
(2)

where lx+t is the expected number of annuitants to survive to age x + t, and R represents
the interest rate assumed in pricing. The pricing rate R changes how much capital each
individuals needs to contribute to the pool’s initial funding. The higher the R, the less
expensive it is to participate in the pool. However, a higher pricing interest rate also
increases the probability of lower future pooled annuity payments.

The annuity payment at time t is determined as:

B∗t = B∗t−1 ×MEAt × IRAt (3)

where B∗t is the benefit payment at period t after adjustments, with MEAt and IRAt
denoting, respectively, the mortality experience adjustment and the interest rate adjustment
for the period from year t− 1 to t.

When the realized mortality of the pool is lower than the expected mortality, the MEAt
will be less than one. Similarly, when the realized investment return is lower than the
expected return, the IRAt is less than one. The scheme allows the annuitants to participate
in returns from both the up- and down-side. Benefit payouts are recomputed periodically,
usually annually, reflecting the most recent mortality and investment experience in the
adjustment factors.

Let l∗x+t denote the actual number of pool survivors at time t. With this, the mortality
adjustment is given by:

MEAt =
px+t−1

p∗x+t−1
(4)

where px+t−1 = lx+t/lx+t−1 is the expected one-year survival probability at time t − 1
with entry age x assumed at pricing, and p∗x+t−1 = l∗x+t/l∗x+t−1 is the matching realized
probability. Similarly, the interest rate adjustment is given by:

IRAt =
1 + R∗t
1 + R

(5)

where R∗t is the realized one-year investment return during year t− 1.
Based on the above and the initial annuity payment B0, we can calculate the annuity

payment cash flows given a simulated realization of mortality and investment experience.
Future mortality and economic scenarios are generated based on the models described

in Sections 3.2 and 3.3. Section 3.4 describes the calibration of the volatility forecast model
as a part of the proposed strategy. Section 3.5 presents the steps to implement the managed-
volatility framework.

3.2. Mortality Model

The evolution of the mortality of the pool is going to be determined by both systematic
and idiosyncratic longevity risks. We use the two-factor mortality model proposed by
Blackburn and Sherris (2013) to account for systematic mortality risk, while for idiosyncratic
mortality risks we employ a Poisson approximation. Ungolo et al. (2021) provide more
evidence on the performance of the model and show the stability of affine mortality model
factor loadings in the Blackburn and Sherris (2013) model.

3.2.1. Systematic Longevity Risk

The Blackburn and Sherris model is based on a filtered probability space (Ω,F ,F,P),
where P is the real-world probability space and F is the filtration giving the information at
time t. Under P, we define the mortality hazard process at time t as µP(t; x) for a person
aged x at time zero. Under an equivalent risk-neutral measure Q, we define a risk-neutral
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hazard process µQ(t; x) as µQ(t; x) = (1 + φ(t))µP(t; x), where φ(t) ≥ −1 is related to
unsystematic risk. We set φ(t) = 0 so that we assume µP(t; x) = µQ(t; x). Since we pool
mortality and use historical mortality experience in our modelling, we do not include any
impact from a mortality risk premium.

Denote S(t, T; x) as the risk-neutral survival probability from time t to T for a cohort
of age x at time 0. Then

S(t, T; x) = EQ
t

[
e−
∫ T

t µ(s;x)ds | F (t)
]

(6)

where µ(s; x) = µP(s; x) = µQ(s; x) with µP(s; x) and µQ(s; x) denoting the instantaneous
mortality intensities under the real world (P) and risk neutral (Q) measures respectively.
In the two-factor version of this model, the instantaneous mortality intensity can be ex-
pressed as

µ(t; x) = ζ1(t; x) + ζ2(t; x), (7)

with ζ1(t; x) and ζ2(t; x) given by

dζ1(t; x) = −δ1ζ1(t; x)dt + ρ1dZQ
1 (t) (8)

dζ2(t; x) = −δ2ζ2(t; x)dt + ρ2dZQ
2 (t) (9)

where ZQ
1 and ZQ

2 are independent Brownian motions under the risk neutral measure,
and δ1, δ2, ρ1 and ρ2 are fitted parameters. Then the survival curves can be computed
analytically as:

S(t, T; x) = e−C1(t,T;x)ζ1(t;x)−C2(t,T)ζ2(t;x)+D(t,T;x) (10)

where

C1(t, T; x) =
1− e−δ1(T−t)

δ1
(11)

C2(t, T; x) =
1− e−δ2(T−t)

δ2
(12)

and

D(t, T; x) =
1
2

2

∑
j=1

ρ2
j

δ3
j

[
1
2
(1− e−2δj(T−t))− 2(1− e−δj(T−t)) + δj(T − t)

]
. (13)

In this paper, we employ the two-factor model calibrated with the Kalman filter by
Ignatieva et al. (2016) to the Australian male population at age 50, with data from 1965 to
2011. Table A1 in Appendix A shows the estimated parameters. The simulated force of
mortality and survival function are represented in Figures A1 and A2, in Appendix A.

3.2.2. Idiosyncratic Longevity Risk

As for idiosyncratic risk, the number of deaths in each period t to t + 1 is generated by
Poisson approximation. The number of deaths over the period t to t + 1 is generated as a
random draw from the distribution

Poisson(Ex+t, µ(t; x)) (14)

where Ex+t is the exposure at time t and age x + t, and µ(t; x) is the force of mortality
generated from the systematic mortality model for the period t to t + 1 and age x + t.

3.3. Economic Scenario Generator (ESG) Models

Each economic scenario consists of a projection of four economic series, namely, the
Consumer Price Index (CPI), Gross Domestic Product (GDP), equity index and interest rate
term structure over the projection period. The ESG produces the first three series along
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with the projection of short term interest rate. The interest rate model then takes the short
term interest rate as input and produces the term structure.

3.3.1. Economic Scenario Generator

An ESG is a model to produce simulations of the joint behaviour of financial and
economic variables (Pedersen et al. 2016). Harris (1997, 1999) propose a regime-switching
vector auto-regressive (VAR) model using Australian data that shows improvement over
ARCH and GARCH processes in accounting for volatility. Sherris and Zhang (2009) extends
these models by proposing a multivariate regime-switching VAR model.

We construct a multivariate autoregressive model VAR(1) as the ESG. The first differ-
ences for the series of CPI, equity index, GDP and short term interest rate, are modeled as
the stationary variables in the VAR model. The VAR(1) model is specified as

yt = a + A1yt−1 + εt (15)

where yt is the vector of first difference log scale series of CPI, equity index, GDP and
short term interest rate respectively; a is a vector of constants; A1 is a 4-by-4 matrix of
autoregression coefficients; εt is a column vector of conditionally multivariate random
errors, with correlation matrix Q.

In order to calibrate our ESG we obtained GDP, CPI and short term interest rate data
from the Reserve Bank of Australia (RBA) for the period between 30 September 1993 and
30 September 2015. In particular, we use the 3-month zero coupon as a proxy for the ‘short
term interest rate’ or ‘instantaneous interest rate’. We concentrate on data from the second
half of 1993 since that is when the RBA’s inflation targeting strategy unofficially started. We
use quarterly data in our calibration as data of higher frequency is not available for GDP
and CPI.

We use Equity returns from the stock index ASX All Ordinaries, whose monthly data
is available since 1980. The All Ordinaries (XAO) contains the five hundred (500) largest
Australian Securities Exchange (ASX) listed companies by way of market capitalization.
The All Ordinaries Accumulated (XAOA) includes all cash dividends reinvested on the
ex-dividend date. The XAOA index is typically used as a comparison tool for longer-
term investments. We use the XAOA equity index to take into account reinvestment of
dividends.

We performed the usual statistical tests to check for cointegration and to determine the
optimal number of lags before estimation of the VAR model parameters. Appendices B.1–B.3
show the details of these tests.

The model calibration is performed with the MATLAB function vgxvarx, which utilizes
the maximum likelihood method. The fitted parameters are given in Appendix B.4 and
simulation results from the fitted model are shown in Appendix B.5.

3.3.2. Interest Rate Model

We use short term interest rates generated from the ESG to generate the interest rate
term structure from a single factor Cox–Ingersoll–Ross (CIR) model (Cox et al. 1985). We
choose the CIR model for its analytical simplicity and its ability to produce closed form
solution for the entire term structure.

Under the risk-neutral measure Q, the short term interest rate r(t) is generated from

drt = κ(θ − rt)dt + σ
√

rtdzt (16)

where zt is a standard Brownian motion, κ is the speed of adjustment, θ is the long-term
average rate, and σ

√
rt is the implied volatility. The condition 2κθ ≥ σ2 needs to be satisfied

so that the process is positive.
However, as the interest rates are observed in the real world and the real world

measure is needed for forecasting, we estimate the term structure under the real-world
measure, where the market risk premium is included.
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In order to estimate the CIR model we follow the Kalman filter method in Duan and
Simonato (1999). Under this method, it is assumed that the yields for different maturities
are observed with errors of unknown magnitudes. Hence, the yield to maturity, with the
addition of a measurement error, is given by:

Rt(Xt; Ψ, τ) = − 1
τ

ln(A(Ψ, τ)) +
1
τ

B(Ψ, τ)Xt + εt (17)

where εt is a normally distributed error term with zero mean and standard deviation σε, Ψ
is the vector of the parameters in the model, and τ denotes the maturities.

The closed form solutions to A(Ψ, τ) and B(Ψ, τ) are given as:

A(Ψ, τ) = [
2γe(κ+λ+γ)τ/2

(κ + λ + γ)(eγτ − 1) + 2γ
]2κθ/σ2

(18)

B(Ψ, τ) =
2(eγτ − 1)

(κ + λ + γ)(eγτ − 1) + 2γ
(19)

and
γ =

√
(κ + λ)2 + 2σ2 (20)

where λ is the risk premium parameter.
To calibrate the term structure model, we obtained yield to maturity interest rate data

from the Reserve Bank of Australia (RBA). Specifically, we estimate the CIR model using
the daily zero coupon bond data for maturities 3, 12, 60 and 120 months for the period
between 30 September 1993 and 30 September 2015. As discussed before, we also use the
3-month zero coupon rate as a proxy for the ’short term interest rate’ or ’instantaneous
interest rate’ in the VAR and interest rate term structure models.

Table 1 summarizes the estimated parameters for the CIR model. In reading this table
we note that interest rates are expressed in decimal form and not in percentages.

Table 1. CIR Parameters.

θ κ σ λ σ1 σ2 σ3 σ4

0.0345 0.0532 0.0542 −0.0580 0.0088 0.0041 0.0000 0.0025

We assumed a diagonal covariance structure for the measurement errors, with ele-
ments denoted by σi where i = 1, 2, 3, 4 represent 3-month, 1-year, 5-year and 10-year terms,
respectively. The long term average-rate θ is estimated to be 0.0345, which is considered
reasonable given the RBA controls its target annual inflation rate at 2 to 3 percent.

3.4. Equity Volatility Forecast Model

Our proposed investment strategy takes advantage of the predictability of equity
return volatility. There are many models proposed to forecast volatility (see Engle and Ng
(1993)). These include the Autoregressive Conditional Heteroscedasticity (ARCH) model
(Engle 1982), Generalized Autoregressive Conditional Heteroscedasticity (GARCH) model
(Bollerslev 1986) and the exponential form of ARCH model (EGARCH, Nelson (1991)). We
use an autoregressive model of ’realized volatility’. This model provides a good prediction
of volatility and is commonly used in the managed-volatility framework. The realized
volatility is calculated using the following steps:

1. To generate the series of residuals, subtract the path of realized equity returns by the
mean simulated path, then take the square of each difference. Denote the residual at
time t as Rest, then

Rest = (r̂t
E − µ̂t

E)2 (21)
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where r̂t
E is the realized equity return at time t, and µ̂t

E is the mean equity return at
time t.

2. Assume an averaging period of n quarters, calculate the ’realized variance’ by taking
the moving average of residuals for the past n quarters. That is, the first realized
variance is the average of the residuals from quarter 1 to quarter n; the second realized
variance is the average of the residuals from quarter 2 to quarter n + 1, and so on.
Denote the k-th realized variance as RVark, then

RVark =
1
n

k+n−1

∑
t=k

Rest (22)

3. Take the square root of the realized variance to get the realized volatility. Denote the
k-th realized volatility as RVolk, then

RVolk =
√

RVark. (23)

4. Fit an AR(1) model to the series of realized volatility and test the significance of
autoregression for prediction.

In step 2, the larger n is chosen, the more ’sticky’ the realized volatilities are, so n
needs to be chosen to ensure the predictability of volatility. Based on the data we have, we
choose n in step 2 to be 18.

In step 4, the AR(1) model for the realized volatility at time t is specified as follows

vt = a + bvt−1 + εt (24)

where a is a constant, b is the autoregression term, and εt is the random error with variance
σ2. If the autoregression term is found to be significant, then this means that the predictabil-
ity of equity return volatility is also significant and the fitted AR(1) model can be used to
forecast equity volatility.

The fitted parameters from step 4 are summarized in Table 2.

Table 2. Realized Volatility AR(1).

Parameter Value Std Error t-Statistic

a 0.0028 0.0030 0.9436
b 0.9627 0.0390 24.6907
σ2 2.77× 10−5 2.97× 10−6 9.3195

The t-statistic of the autoregression term is larger than 1.96, which is the 97.5% per-
centile in the standard normal distribution, corresponding to a significance level of α = 5%
and indicating that the AR term is significant.

3.5. The Managed-Volatility Framework

The Managed-Volatility Framework takes advantage of volatility heteroscedasticity
and clustering, and negative correlation of returns and conditional volatility. The trading
strategy for the equity assets we adopt follows the steps in Papageorgiou et al. (2017). The
equity portfolio consists of diversified direct investments in the stock market and stock
index futures contracts. The weight wt invested in the equity market, also referred to as the
participation ratio, is given as:

wt =
target volatility

σ̂t
(25)
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where σ̂t is the volatility forecast for date t. Therefore, when the volatility forecast is higher
than the target volatility, the participation ratio is less than one, which requires reducing
exposure to the equity market, and vice versa.

In practice, the investment strategy is implemented using futures to adjust the expo-
sure to equity assets. If wt ≥ 1, then the strategy is to buy the nearest maturing futures
contracts for a dollar amount of |wt − 1| times the current equity market portfolio value
at the close of trade day t− 1. This amount is capped by the total available assets in the
overall portfolio. That means leverage is not allowed to achieve the target level of volatility.
Conversely, if wt ≤ 1, then then the strategy is to sell the nearest maturing futures contracts
for a dollar amount of |wt− 1| times the current equity market portfolio value at the close of
trade day t− 1. In our implementation we adjust the exposure to equity assets by varying
the percentage directly based on the volatility forecast.

The overall performance of the investment portfolio depends on the initial asset
allocation, the level of target volatility and the size of the pool.

3.6. Risk Measures

To assess the performance of the managed volatility investment strategy we use
risk measures commonly used for this purpose. The Australia Government the Treasury
(2018) recommended that the disclosure of retirement income products should include the
following aspects:

1. Expected retirement income;
2. Income variation;
3. Access to underlying capital;
4. Death benefit and reversionary benefits.

In our product assessment we focus on aspects 1. and 2. from the above list. In
particular, we use the mean individual annuity payments to capture expected income and
use the corresponding 2.5% and 97.5% percentiles to capture income variation. We present
the mean and the percentiles both on a nominal and on an inflation adjusted basis. The
inflation adjusted amounts are calculated based on the nominal amounts and the inflation
projection generated from the corresponding economic scenario.

We also compare the Present Values (PV) of the annuity payments discounted by a
hurdle rate assumed to be the same as the pricing rate. By taking the present values of
the payments, the comparison takes into account the payment patterns throughout the
projection period, as well as their time value.

We report the break even year (BEY), calculated as the minimum number of years taken
for the accumulated annuity payments without interest to exceed the initial investment
amount. BEYs are calculated based on the nominal payment amounts.

To compare the trade-off between risk and return, we calculate the Coefficient-of-
Variation (CV) of the annuity payment through time. The CV at time t is simply calcu-
lated as:

CVt =
σ̂B

t
µ̂B

t
. (26)

where σ̂B
t is the standard deviation of the simulated annuity payment amounts at time

t, and µ̂B
t is the average of the simulated annuity payment amounts at time t. A lower

CV implies lower volatility for the same level of mean returns. Therefore, lower CVs are
preferred to higher CVs in terms of the trade-off between risk and return.

In addition, we are particularly interested in the downside volatility of the investment
strategy. We define a Coefficient-of-Downside Deviation (CDD) where Downside Deviation
(DD), often used in calculation of Sortino Ratio, is based on the volatility of the downside
of the returns. We define DD at time t as:

DDt =
∑N

i=1 min(Bit − µ̂B
t , 0)2

N
(27)
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where Bit, i = 1, . . . , N, is the i-th simulation of annuity payment at time t and N is the
total number of simulations. For the DD calculation in the standard Sortino Ratio, the
risky return is reduced by the risk-free return, not the mean of risky returns. Here we are
interested in the downside deviation compared to the expected mean benefits of a given
strategy so that subtracting the average of the benefits is more meaningful.

The CDD at time t is defined as:

CDDt =

√
DDt

µ̂B
t

. (28)

A lower CDD indicates lower downside volatility given the same level of mean returns.
Lower CDDs are therefore preferred to higher CDDs.

4. Investment Strategy Results

In this section we present the results of the analysis applying the methodology in the
previous section. We assess the managed volatility investment strategy using simulation
of returns and deaths in the pool with stochastic mortality. Our analysis considers a base
case with a typical balanced fund and a higher volatility target than historical volatility,
to highlight the impact of the managed volatility strategy. The target historical volatility
assumed is 14% p.a. The pool size assumed in the base case is 1000 lives. We also consider
different allocations to equity assets in the fund along with different levels of target volatility.
Finally we consider a range of pool sizes.

4.1. Simulation of Annuity Payments in the Pool

We simulate the mortality and economic scenarios with a ’simulation case’ generating
the annuity payment distribution based on a set of initial assumptions and an investment
strategy. Each path of annuity payments in a ’simulation case’ is a ’simulation scenario’.

Each simulation case uses 100 systematic mortality paths. For each of the systematic
mortality paths, there are 100 idiosyncratic mortality paths giving 10,000 mortality scenarios
per simulation case. For each mortality scenario, 1000 economic scenarios are generated to
simulate the pooled fund annuity payments. The mortality risks and investment returns
are assumed to be independent. Therefore, there are 10 million simulation paths created to
attain the results in each simulation case. The projection period is 50 years, from entry age
50 until the cohort reaches age 100.

The pricing rate R as described in Section 3.1 is 3.5%, based on the estimated long
term instantaneous rate level in the CIR model. Based on Equation (2), the actuarial
annuity factor ä50 is 17.7. The initial annuity payment B0 is AUD 10,000. We assume equal
participation from each pool member so that the fund contribution per participant is B0 ä50,
which is AUD 177,000. The 10-year zero coupon bond return is used for the long-term
fixed-income (FI) asset. Inflation is based on the growth of the CPI in the model.

4.2. Balanced Fund with Target Volatility of 1.25 Historical Volatility

We assume that a typical ‘balanced’ investment fund has an asset allocation of 65%
in long-term fixed-income asset and 35% in equity. We initially use a target volatility of
1.25 times the historical average volatility in order to emphasize the impact of the managed
volatility strategy. We will consider alternative target volatilities later, including a target
equal to the historical volatility.

Figures 1 and 2 compare the projected annuity payments for the balanced fund and the
target volatility strategy in nominal and real terms showing the mean and 95% confidence
interval of annuity payment amounts. To show the likely range of annuity payments,
Figures 3 and 4 show the more likely outcomes of 50% confidence intervals along with
the medians. Although the range of possible annuity payments are quite large in nominal
terms, the likely range of annuity payments in real terms is much more narrow.
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Figure 1. The 95% confidence interval of annuity payments. Managed-Volatility vs. Fixed Allocation
(65%/35%)—Nominal.
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Figure 2. The 95% confidence interval of annuity payments. Managed-Volatility vs. Fixed Allocation
(65%/35%)—Real.
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Figure 3. The 50% confidence interval of annuity payments. Managed-Volatility vs. Fixed Allocation
(65%/35%)—Nominal.
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Figure 4. The 50% confidence interval of annuity payments. Managed-Volatility vs. Fixed Allocation
(65%/35%)—Real.
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The managed-volatility strategy outperforms the fixed allocation strategy having a
higher mean payment as well as higher upside. There is little visible difference in terms of
downside for annuity payments. In real terms, the mean annuity payments show a slow
trend downwards, reaching a minimum amount of AUD 7590 after 39 years at age 89.

Table 3 shows the annuity payments at the older ages of 80 and 90. The managed-
volatility strategy consistently generates a higher mean annuity payment, as well as higher
annuity payment amounts at the 2.5% and 97.5% percentiles compared to the fixed balanced
asset allocation strategy.

Table 3. Base Case: Annuity Payments at Age 80 and 90—Nominal.

Annuity Payment Mean 2.5% 25% 50% 75% 97.5%

Age 80

Managed-Volatility 17,076 1979 6833 11,946 21,308 64,504
Fixed Allocation 12,741 1284 4472 8537 15,775 50,797

Age 90

Managed-Volatility 21,732 790 4472 10,247 24,330 113,346
Fixed Allocation 15,574 364 2416 6149 15,849 85,344

Table 4 shows the present value of annuity payments at the pricing interest rate for
comparison. These amounts are not risk-adjusted, but quantify the higher amount of
expected annuity payments from the managed-volatility strategy. In nominal terms, the
mean of the PV of annuity payments of the managed-volatility strategy is 22.7% higher
than the fixed asset allocation, while in real terms, the mean of the managed-volatility
strategy is 18.3% higher than the fixed allocation. On the upside, for the 97.5% percentile,
the target volatility strategy is 25.7% higher in nominal values and 20.8% in real values.
On the downside, for the 2.5% percentile, the target volatility strategy is 9.6% higher in
nominal values and 5.2% in real values.

Table 4. Base Case: PV Annuity Payments—Nominal vs. Real.

PV Annuity Payments Mean 2.5% 25% 50% 75% 97.5%

Nominal

Managed-Volatility 362,034 122,504 204,108 278,783 411,766 1,118,248
Fixed Allocation 295,151 111,769 170,489 229,722 324,410 889,271

Real

Managed-Volatility 213,224 93,966 141,926 181,039 243,751 515,499
Fixed Allocation 180,308 89,340 124,175 155,512 199,716 426,634

Table 5 shows that on average it takes 15 years for a participant in the managed-
volatility strategy to break even, while it takes 17 years for a participant in the fixed
allocation strategy to break even. Neither strategy breaks even at the lower bound of the
95% confidence interval, hence the ’NA’ at the 2.5% percentile, and it takes one more year
for the fixed allocation strategy to break even on the higher end of the confidence interval.

Table 5. Base Case: Break Even Year—Nominal.

Nominal

Break Even Year Mean 2.5% 25% 50% 75% 97.5%

Managed-Volatility 15 NA 19 16 14 11
Fixed Allocation 17 NA 21 17 15 12
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Tables 6 and 7 show the values for the CV and CDD of the two strategies over time.
There is little difference between the managed-volatility strategy and the fixed allocation
strategy. Early on the managed-volatility has slightly lower CV and CDD, whereas the
fixed allocation strategy is lower than the managed-volatility strategy at the older ages. The
higher managed-volatility CV reflects the impact of the higher target volatility at older ages.

Table 6. Coefficient-of-Variation of Annuity Payments.

t 1 5 10 15 20 25 30 35 40 45 50

Managed-Volatility 0.053 0.147 0.262 0.400 0.580 0.812 1.108 1.506 2.098 3.013 5.406
Fixed Allocation 0.077 0.198 0.307 0.432 0.587 0.784 1.005 1.289 1.704 2.349 4.160

Table 7. Coefficient-of-Downside Deviation of Annuity Payments.

t 1 5 10 15 20 25 30 35 40 45 50

Managed-Volatility 0.036 0.096 0.168 0.241 0.319 0.397 0.474 0.549 0.622 0.693 0.775
Fixed Allocation 0.052 0.128 0.194 0.256 0.322 0.387 0.450 0.516 0.582 0.650 0.736

4.3. Equity Asset Allocation

The asset allocation in practice will reflect the risk appetite of the pooled annuity fund.
We first consider the strategies without volatility management. These strategies are most
similar to the standard asset management practice for life annuities. The three strategies
chosen to compare the investment returns at different levels of risks are:

1. 100% 3-month fixed-income;
2. 100% 10-year fixed-income;
3. 80% fixed-income, 20% equity, without volatility management.

Figure 5 and Table 8 show the comparison of annuity payments among these three
asset allocations.

Table 8. Annuity Payment at Age 80 and 90 without volatility management—Nominal.

Age 80 Age 90

Annuity Payment Mean 2.5% 97.5% Mean 2.5% 97.5%

All 3-mth FI 4649 164 24,175 5571 15 34,202
All 10-year FI 5882 239 29,299 7340 26 44,811

80/20 10-year FI/Equity 9045 638 37,899 10,885 121 62,853

The asset portfolio consisting only of the 3-month fixed-income, which is the least risky,
produces the lowest mean payments along with the narrowest confidence interval. On
the other hand, the portfolio with 20% equity and 80% long term fixed-income, produces
the highest mean return along with the widest confidence interval. As expected, as the
allocation to equity increases, the mean annuity payment increases and the confidence
interval widens.
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Figure 5. Annuity Payment Comparison—Without Volatility Management.

We then consider different asset allocations including a more aggressive and a more
defensive equity strategies under the managed-volatility framework. In particular, we
consider and compare three sets of equity asset allocations:

4. 80% fixed-income, 20% equity;
5. 65% fixed-income, 35% equity;
6. 50% fixed-income, 50% equity.

Allocation 4 represents a conservative strategy for those with lower risk tolerance.
Allocation 5 represents the balanced fund. Allocation 6 represents an aggressive strategy
for those with a higher risk appetite. The mean annuity payments and the 95% confidence
intervals for ages 80 and 90 are shown in Table 9.

Table 9. Annuity Payments at Different Initial Allocations at Age 80 and 90.

Annuity Payment Age 80 Age 90

FI/Equity Asset Allocation Mean 2.5% 97.5% Mean 2.5% 97.5%

80%/20% Managed-Volatility 10,596 894 42,687 12,806 199 71,993
Fixed Allocation 9045 638 37,899 10,885 121 62,853

65%/35% Managed-Volatility 17,076 1979 64,504 21,732 790 113,346
Fixed Allocation 12,741 1284 50,797 15,574 364 85,344

50%/50% Managed-Volatility 28,266 3822 100,717 40,403 2692 176,100
Fixed Allocation 18,244 2272 66,516 23,501 1044 120,537

We see that in all cases the managed-volatility strategy produces higher mean annuity
payments at these older ages. The higher the equity exposure is the larger is the difference
between the managed-volatility strategy and the fixed allocation strategy. The managed-
volatility strategy has a higher downside as well as a higher upside.

The PV annuity payment amounts are shown in Table 10.
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Table 10. PV Annuity Payments at Different Initial Allocations.

PV Annuity Payments Nominal Real

FI/Equity Asset Allocation Mean 2.5% 97.5% Mean 2.5% 97.5%

80%/20% Managed-volatility 264,253 104,840 774,528 165,073 85,286 376,239
Fixed Allocation 239,543 100,366 682,581 152,110 82,250 336,479

65%/35% Managed-volatility 362,034 122,504 1,118,248 213,224 93,966 515,499
Fixed Allocation 295,151 111,769 889,271 180,308 89,340 426,634

50%/50% Managed-volatility 535,537 149,816 1,647,287 292,319 105,250 748,161
Fixed Allocation 377,269 128,044 1,161,115 219,743 96,991 535,033

The benefits of higher equity exposure are shown in the PV of annuity payments. Even
though the values are not risk adjusted, the higher mean PVs for the managed-volatility
strategy, along with the reduced downside, shows that the managed-volatility strategy
adds value over and above the fixed allocation strategy.

The BEYs are shown in Table 11. Portfolios with a higher allocation in equity require on
average a shorter time to break even with a slightly shorter time required for the managed-
volatility strategy. However, it is worth highlighting the higher risk of the strategies with
higher allocation in equity which have a chance of not breaking even as indicated by the
’NAs’ at the 2.5% percentile for the 80%/20% and the 65%/35% strategies.

Table 11. Break Even Years at Different Initial Allocations.

Break Even Year Nominal

FI/Equity Asset Allocation Mean 2.5% 97.5%

80%/20% Managed-Volatility 18 NA 13
Fixed Allocation 19 NA 14

65%/35% Managed-Volatility 15 NA 11
Fixed Allocation 17 NA 12

50%/50% Managed-Volatility 14 31 9
Fixed Allocation 15 41 11

4.4. Varying the Level of Target Volatility

The level of target volatility should reflect the risk appetite of the fund. The higher
the target volatility, the higher the overall exposure to the equity market, and therefore the
higher the overall investment risk. We consider two target volatility strategies:

1. Constant target volatility;
2. Target volatility that decreases over time.

The constant target volatility aims to ensure the equity investment strategy is not
exposed to varying volatility and hence varying levels of equity market risk. In the later
ages we observe an increase in the mean annuity payment in the pooled fund reflecting
the smaller pool size and the benefit of larger mortality credits. This allows a strategy
to decrease the target volatility over time while maintaining the mean level of annuity
payment.

Tables 12 and 13 show the annuity payments at age 80 and 90 as well as the PV of the
annuity payments at the pricing interest rate for differing target volatilities. This includes a
level of target volatility equal to the historical volatility. Even in this case, the managed-
volatility strategy produces a higher mean annuity payment as well as higher downside
and upside annuity payments. The PVs of the annuity payments are also higher for the
managed-volatility strategy. In all cases in this section and in Section 4.5, we assume an
initial asset allocation of 65% in long-term fixed-income asset and 35% in equity.
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Table 12. Annuity Payments at Different Fixed Target Volatilities at Age 80 and 90.

Age 80 Age 90

Mean 2.5% 97.5% Mean 2.5% 97.5%

Fixed Allocation 12,741 1284 50,797 15,574 364 85,344
1 historical vol 13,633 1415 53,270 16,798 422 91,590

1.25 historical vol 17,076 1979 64,504 21,732 790 113,346
1.5 historical vol 21,520 2733 77,124 28,697 1441 138,148

For increased levels of target volatility, the mean annuity payments increase as do the
downside and upside values.

Table 13. PV Annuity Payments at Different Fixed Target Volatilities.

Nominal Real

Mean 2.5% 97.5% Mean 2.5% 97.5%

Fixed Allocation 295,151 111,769 889,271 180,308 89,340 426,634
1 historical vol 310,310 113,091 945,729 188,229 89,956 447,627

1.25 historical vol 362,034 122,504 1,118,248 213,224 93,966 515,499
1.5 historical vol 429,562 133,505 1,319,962 244,708 98,498 604,932

Table 14 shows that the fixed allocation strategy takes longer until break even, although
there are only small differences with the target volatility strategies.

Table 14. Break Even Years at Different Fixed Target Volatilities.

Nominal

Mean 2.5% 97.5%

Fixed Allocation 17 NA 12
1 historical vol 16 NA 12

1.25 historical vol 15 NA 11
1.5 historical vol 15 36 10

Figure 6 shows the mean of MEAt as age increases to illustrate the average mortality
gain. The mean mortality experience gain is most significant in the last 10 years at ages of
90 and above.

We consider two strategies to lower the target volatility after age 90. The first strategy
linearly “trends down” from the initial target level to zero in the last 40 quarters. The
second strategy “steps down” from the initial target level. For the last 40 to 20 quarters, the
target volatility is reduced to 50% of the initial target level and for the last 20 quarters it is
reduced to zero. These are based on the 1.25 historical volatility target.

The comparison of these strategies and the fixed target volatility strategy are given in
Figures 7 and 8. Both of these strategies produce lower mean annuity payments with little
change in the downside and upside annuity payments. The decreasing target volatility
lowers the expected payment outcomes in the last 10 years, or 40 quarters. The more drastic
the decrease, the more significant the impact. The impact is asymmetric on the upside and
downside. The lower bound of the 95% confidence interval suffers less impact than the
higher bound.
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Figure 6. Mortality experience adjustment, MEA.
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Figure 7. Fixed Volatility vs. “Trend Down” Volatility—Real.
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Figure 8. Fixed Volatility vs. “Step Down” Volatility—Real.

The PV annuity payments comparison is shown in Table 15. There is limited difference
from the fixed target-volatility strategy.

Table 15. PV Annuity Payments at Different Target Volatilities.

Nominal Real

Mean 2.5% 97.5% Mean 2.5% 97.5%

Fixed Target Vol 362,034 122,504 1,118,248 213,224 93,966 515,499
Trend Down Vol 358,390 122,142 1,101,347 212,132 93,835 511,014

Step Down Vol 355,997 121,905 1,090,013 211,391 93,731 507,902

Table 16 shows that the BEYs for the three strategies are the same. The decreasing
target volatility strategies do not impact break even levels reflecting the limited differences
arising from mitigating equity volatility risk at older ages.

Although the target volatility level can impact the annuity payments, for any given
level of equity volatility the use of a managed volatility strategy will produce higher
expected annuity payments and improve the downside of the annuity payments.

Table 16. Break Even Years at Different Target Volatilities.

Nominal

Mean 2.5%-Tile 97.5%-Tile

Fixed Target Vol 15 NA 11
Trend Down Vol 15 NA 11

Step Down Vol 15 NA 11
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4.5. Pool Size with Equity Investments

Qiao and Sherris (2013) assumed a conservative investment strategy with stochastic
interest rates. Larger pool sizes produced a more constant mean annuity payment at
older ages.

Adding equity to a pooled annuity has the potential to undermine the benefits of
pooling mortality risk from increased equity volatility. We consider the impact of pool size
when using a managed-volatility strategy. Figure 9 shows the mean annuity payments,
along with confidence intervals, for initial pool sizes of 10, 50 and 100. For the smaller pool
sizes there is a decrease in the mean annuity payments at the older ages. This does not
occur for the larger pool sizes. In fact pool sizes of 100 or larger are sufficient for the mean
and confidence intervals for the annuity payments to be similar regardless of pool size.

Figure 10 shows that funds with initial sizes higher than 100 have similar and more
constant mean annuity payments at the older ages. A larger fund with 10,000 initial
participants has slightly narrower confidence intervals in the last five years compared to
a fund with 100 initial participants, but the difference is relatively small. In fact, the size
of the fund can be quite small to benefit from pooling idiosyncratic mortality risks when
equity is added to the investments in the fund.
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Figure 9. Initial Pool Size Comparison: 10 vs. 50 vs. 100—Real.
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Figure 10. Initial Pool Size Comparison: 100 vs. 1k vs. 10k—Real.

5. Discussion

Our analysis has considered, for the first time, the impact of equity investments on
pooled annuity payments using a group self annuitization payment structure, that aims
to produce relatively constant expected annuity payments, incorporating a simple target
volatility investment strategy. Pooled annuity products are attracting increasing attention
as a practical and cost effective method of annuitization compared with the traditional
fixed life annuity.

Our results and analysis have clear and important implications for product design
of pooled annuities, in particular, for defined contribution funds facing the challenge of
providing annuity income in retirement in a cost-effective and fair manner, at the same
time aiming to provide exposure to equity investments that increase expected payments
consistent with risk preferences for their members.

In Australia, this is a major focus of retirement income policy (Australia Government
the Treasury 2020). Our analysis informs this policy issue, not only for Australia but for
all countries with defined contribution funds facing the challenge of providing an annuity
that combines the benefits of mortality pooling with exposure to equity investments.

We show how it is practical to incorporate equity investments in a pooled annuity
fund combining the benefits of exposure to equity returns post retirement with the benefits
of pooling mortality. Although these benefits have been highlighted in the literature, there
has been no detailed analysis of the impact on annuity payments using a range of risk
measures compared with expected annuity payments at differing ages.

Consistent with other studies, such as Qiao and Sherris (2013) and Stamos (2008), we
confirm the effectiveness of pooled annuities even for relatively small pool sizes.

Our focus has been on a single cohort in the pooled annuity. These results extend
naturally to multiple cohorts based on Qiao and Sherris (2013) and Milevsky and Salisbury
(2016). Results can also be extended to take into account inflation by designing annuity
payment streams that increase through time (Qiao and Sherris 2013).
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6. Conclusions

The growing demand for retirement income products and recent developments in
target volatility risk management strategies for equity portfolios provides our motivation
to consider investment strategy innovations for pooled annuity products. We are the first
to assess a managed volatility equity strategy for pooled annuity products. We use models
calibrated to Australian data to assess the impact of including equity investments, along
with a managed volatility strategy, on pooled annuity payments and the present value of
pooled annuity payments.

We add to the literature by showing that equity investments can improve the value of
a pooled annuity product for those in the pool. We also show that the managed volatility
strategy improves the value of pooled annuity products in terms of higher mean annuity
payments, lower volatility and lower downside risk. We show that when equity investments
are included in the portfolio a relatively small pool size, as low as 100 lives, is all that is
required to reduce the impact of idiosyncratic mortality on the annuity payments in the
fund especially at the older ages.

Author Contributions: Conceptualization, M.S.; data curation, S.L.; formal analysis, S.L.; investiga-
tion, S.L.; supervision, H.L.H., M.S. and A.M.V.; writing—original draft preparation, S.L.; writing—
review and editing, H.L.H., M.S. and A.M.V.; funding acquisition, M.S. and A.M.V. All authors have
read and agreed to the published version of the manuscript.

Funding: The authors acknowledge financial support from the Society of Actuaries Center of Ac-
tuarial Excellence Research Grant 2017–2020: Longevity Risk: Actuarial and Predictive Models,
Retirement Product Innovation, and Risk Management Strategies as well as support from CEPAR
Australian Research Council Centre of Excellence in Population Ageing Research project number
CE170100005.

Data Availability Statement: We used publicly available data in this study. The mortality data for
Australia are available on the Human Mortality Database (https://www.mortality.org/, accessed
on 1 June 2018). The GDP, CPI and short term interest data for the economics scenario generator
are available from the Reserve Bank of Australia (https://www.rba.gov.au/statistics/, accessed on
accessed on 1 May 2018). Equity returns from the stock index ASX All Ordinaries are available
from the Wall Street Journal (https://www.wsj.com/market-data/quotes/index/AU/XASX/XAO,
accessed on accessed on 1 May 2018).

Conflicts of Interest: Michael Sherris is a Co-Founder and Director of the UNSW staff spinout
Qforesight Pty Ltd., established to commercialise Target Volatility research carried out at UNSW and
subsequently developed for commercial application.

Appendix A. Mortality Model, Estimated Parameters and Simulation

The calibrated parameters for the two-factor Blackburn Sherris model are given in
Table A1.

Table A1. Mortality Model Parameters.

δ1 δ2 ρ1 ρ2

−0.1004 −0.1347 1.4285×10−4 4.9659×10−5

In the mortality simulations, calendar year 2014 is used as t = 0, as it was the latest
calendar year available in the HMD database. We consider a single age cohort with x set
at age 50. The projected force of mortality µx(t) and the survival function of systematic
mortality from t = 0 to t = 50 are shown in Figures A1 and A2. The results are based on
1000 simulated paths, which are consistent with the results in Sections 4.2–4.5. Here the
survival function Sx(0, t) is given by:

Sx(0, t) =
t−1

∏
i=0

Sx(i, i + 1) (A1)

https://www.mortality.org/
https://www.rba.gov.au/statistics/
https://www.wsj.com/market-data/quotes/index/AU/XASX/XAO
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Figure A1. Simulated Force of Mortality From 2014.
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Appendix B. Economic Series Data, Estimation and Simulations

The economic series data used to calibrate the VAR model are shown in Figures A3–A6.
The impact of financial crisis of 2007 to 2008 is evident in Figure A5. The short term interest
rate in Figure A6 demonstrates a generally decreasing trend in this period.
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Figure A3. Real GDP (GDP).
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Figure A5. All Ordinaries Accumulated (XAOA).
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Figure A6. Short Term Yield (STY).

In the VAR model, we the log scale of the series, as the growth of the series are more
of interest than the absolute values. Figure A7 compares the log scale series. It is observed
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that lnCPI, lnXAOA, and lnGDP tend to trend up together, though cointegration is not
shown to be significant.
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Figure A7. Log Scale Data.

Appendix B.1. Cointegration Test for VAR Model

Appendix B.1.1. Stationarity at Level

Before applying cointegration test, we first perm a stationarity test to the series at level.
We performed the Augmented Dickey–Fuller (ADF) test on ln(CPI), ln(XAOA), ln(GDP)
and STY at significance level of 0.05. The test result fails to reject null hypothesis of no
unit root for all series. This implies that unit root exists, and that the series at level are not
stationary. KPSS test gives the same inference.

Table A2. ADF Unit Root Test at Level.

Aug D-F Test (at Level) ln CPI ln X AOA ln GDP STY

P-Value 0.9990 0.9990 0.9990 0.3199
Null Hypothesis Result not rejected not rejected not rejected not rejected

Stationarity no no no no

The four series are then tested for cointegration using Johansen test.

Appendix B.1.2. Johansen Test

With the ’Trace’ test, the Johansen test assesses the null hypothesis that cointegration
rank H(r) is less than or equal to r, against the alternative that H(r) is 4, which is the
dimension of vector yt in this case. The test is carried out at significance level of 0.05 and
lag 1. The test results are summarized in Table A3.
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Table A3. Johansen Test.

r h stat cValue pValue eigVal

0 0 46.0198 47.8564 0.0737 0.2351
1 0 24.8498 29.7976 0.1672 0.1396
2 0 12.9739 15.4948 0.1163 0.1142
3 0 3.3944 3.8415 0.0654 0.0421

The test result shows that it fails to reject the null hypothesis at r = 0 to r = 3. This
means that no significant cointegration relationship is found in the vector at significance
level of 0.05. While we acknowledge that the test result does not imply that there is no
cointegration between the series, it supports the choice for a VAR model as the ESG, which
is simpler than options such as VECM, and fits the purpose of this project.

Appendix B.2. Stationarity Test at First Difference For VAR Model

As cointegration is not significant in the vector, the model reduces to a VAR model
at first difference. To start with, we take the first difference of the log scale series and
test for stationarity, as shown in Figure A8 and Table A5. The descriptive statistics of the
differenced series are summarized in Table A4.
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Figure A8. First difference of Log Scale Data.
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Table A4. Descriptive Statistics at First Difference.

Statistic ∆ ln CPI ∆ ln X AOA ∆ ln GDP ∆ STY

Mean 0.0066 0.0223 0.0079 −0.0005
Std Dev 0.0057 0.0693 0.0055 0.0053

Skewness 1.9863 −0.8634 0.5771 −1.0974
Kurtosis 12.6015 4.6751 5.2732 14.2357

First Quantile 0.0030 −0.0108 0.0047 −0.0021
Median 0.0063 0.0273 0.0077 0.0001

Third Quantile 0.0091 0.0663 0.0112 0.0021
Min −0.0045 −0.2256 −0.0068 −0.0286
Max 0.0377 0.1952 0.0296 0.0218

The ADF test shows that the first difference series do not have unit roots, and are
hence stationary, as shown in Table A5.

Table A5. ADF Unit Root Test at First Difference.

Aug D-F Test (First Difference) ∆ ln CPI ∆ ln X AOA ∆ ln GDP ∆ STY

p-value 0.0010 0.0010 0.0010 0.0010
Null Hypothesis result rejected rejected rejected rejected

stationarity yes yes yes yes

Appendix B.3. Optimal Number of Legs for VAR Model

Four lags are tested for the VAR model. Akaike Information Criterion (AIC) of VAR(1)
to VAR(4) are calculated and summarized in Table A6. AIC of lag 1 is the lowest of the four
candidates. Therefore the VAR model is fitted at lag 1.

Table A6. VAR AIC.

VAR (1) VAR (2) VAR (3) VAR (4)

AIC −2.1280 × 103 −2.1154 × 103 −2.0959 × 103 −2.0854 × 103

Appendix B.4. Estimated Parameters for VAR Model

The parameters calibrated for the VAR model are:

a =


0.0079
0.0216
0.0105
0.0003

 (A2)

A1 =


0.0458 −0.0015 −0.1868 0.2781
−1.8974 0.1318 1.1055 −0.7039
−0.2095 0.0033 −0.1632 0.0234
−0.1275 0.0211 −0.0422 0.2784

 (A3)

and

Q =


2.78 ∗ 10−5 9.88 ∗ 10−6 −6.81 ∗ 10−6 6.80 ∗ 10−6

9.88 ∗ 10−6 450.87 ∗ 10−5 6.48 ∗ 10−5 7.74 ∗ 10−5

−6.81 ∗ 10−6 6.48 ∗ 10−5 2.73 ∗ 10−5 3.96 ∗ 10−6

6.80 ∗ 10−6 7.74 ∗ 10−5 3.96 ∗ 10−6 2.23 ∗ 10−5

 (A4)

Appendix B.5. Simulation Versus Actual Results

The VAR(1) model is used to generate 10,000 simulations from 30 September 1994
to 30 September 2015, to compare against the actual values from this period. The data
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from the four periods prior to 30 September 1994 are designated as ‘pre-sample’ to provide
lagged data for VAR model estimation. The data from the six periods after 30 September
2015 are designated as ‘out-of-sample’ data for the purpose of backtesting.

The descriptive statistics of the comparison are summarized in Table A7.

Table A7. Descriptive Statistics—Comparison.

Simulation Actual

Statistic ∆ ln CPI ∆ ln X AOA ∆ ln GDP ∆ STY ∆ ln CPI ∆ ln X AOA ∆ ln GDP ∆ STY

Mean 0.0067 0.0223 0.0080 −0.0005 0.0066 0.0223 0.0079 −0.0005
Std Dev 0.0001 0.0007 0.0001 0.0001 0.0057 0.0693 0.0055 0.0053

Skewness −0.2898 −0.4418 −0.3923 −0.0616 1.9863 −0.8634 0.5771 −1.0974
Kurtosis 2.4385 3.5483 2.9874 4.0682 12.6015 4.6751 5.2732 14.2357

First Quantile 0.0066 0.0220 0.0080 −0.0005 0.0030 −0.0108 0.0047 −0.0021
Median 0.0067 0.0224 0.0080 −0.0005 0.0063 0.0273 0.0077 0.0001

Third Quantile 0.0067 0.0228 0.0080 −0.0004 0.0091 0.0663 0.0112 0.0021
Min 0.0065 0.0203 0.0079 −0.0006 −0.0045 −0.2256 −0.0068 -0.0286
Max 0.0068 0.0242 0.0081 −0.0003 0.0377 0.1952 0.0296 0.0218
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