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Abstract: Online activity increasing spreads with the power of technological development. Many
studies reported the impact of online activities on decision making. From the statistical perspective,
decision making is related to statistical inference. In this regard, it is interesting to propose a new
method of statistical inference for online decisions. This method is built by the logarithm distribution
of the likelihood function, which allows us to determine statistics using the normal statistical test
approach iteratively. It means that the inference can be made in an online way every time new data
arrive. Compared to classical methods (commonly, chi-squared), the advantage of this method is that
it allows us to make decisions without storing large data. In particular, the novelty of this research is
expressed in the algorithm, theorem, and corollary for the statistical inference procedure. In detail,
this paper’s simulation discusses online statistical tests for multinomial cases and applies them to
transportation data for item delivery, namely traffic density. Changes in traffic density resulted in
changes to the strategy of item delivery. The goal is to obtain a minimum delivery time for the risk
of losses.

Keywords: statistics test; optimization in risk management; online decision; dynamic network

1. Introduction

This paper is a continuation of research from Yudhanegara et al. (2021a) on network
clustering using item delivery strategies and predictive distribution, as well as Yudhanegara
et al. (2021b) on the importance of network clustering, which affects the optimization of
item delivery time, and Yudhanegara et al. (2022), which proposed a new strategy in
the item delivery process. The focus of the problem presented in this paper is a unique
alternative related to statistical inference that is needed in online decision making.

The results of the statistical inference become the basis for carrying out an item delivery
strategy, which includes the network clustering process and time optimization. The method
formulated in this study provides an efficient theoretical contribution in dealing with the
challenges of extensive data and the dynamics of incoming information.

The knowledge required is the involvement of statistics and graph theory (network)
in solving research problems. This research problem is raised from the latest natural
phenomenon: the item delivery system, which involves the traffic system, time, and
distance traveled. The role of statistics in answering real-time data (online) is packaged
by utilizing the Bayesian method to determine predictive distributions and statistical
inference in decision making. In addition, the multinomial distribution, which has the
parameter Dirichlet distribution, is briefly examined. The distribution is considered the
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most representative distribution in the item delivery process in a traffic system with many
path choices. As for the construction of the network and its clustering, graph theory can be
used.

The subject of this research consists of four parts: network clustering, optimization,
predictive distribution, and new statistical inference procedures for online decision making.
The ultimate goal of integrating the four subjects is to produce an item delivery strat-
egy that can overcome dynamic network conditions. This is important because traffic
density changes over time, especially in urban areas or densely populated areas. Further-
more, optimization in item delivery can be used as risk management for goods delivery
companies.

We need a precise and efficient statistical inference method. The contribution of this
paper is to provide a new alternative for inferential statistics required to make decisions
online. Thus, we can make inferences with every arrival of further information or data. The
advantage of the method, i.e., it does not require historical data storage, which requires
low memory. We make inferences using the previous results. Unlike the classic method
(Oosterhoff and Van Zwet 1972; Owen 2018), we need historical data storage, which requires
a large memory.

The type of data distribution discussed in this paper is assumed to have a multinomial
distribution. Classically, we use chi-squared for the multinomial goodness-of-fit test (Azen
and Walker 2010; Walpole et al. 2012). This paper promotes the new method for the
multinomial goodness-of-fit test. The method uses a normal distribution as inferential
statistics for online decisions. Thus, the hypothesized assumptions for model fit use the Z
statistical test. In the future, there will be many issues regarding big data, so that the role
of statistics using classical methods is no longer efficient. The new method of inferential
statistics for online decisions in this era of big data gives statistics that are still needed.

The new method aims to help practitioners, researchers, and users solve problems in
cases of the multinomial distribution. The characteristics of the multinomial distribution,
i.e., each experiment has more than two possible events to occur; each experiment is
statistically independent so that the events resulting from one experiment do not affect
subsequent trials; and the probability of each event in each experiment does not change.
The outline of the multinomial discusses data with the number of frequencies in a data
category. These multinomial cases have been widely used by practitioners, researchers,
and users covering various disciplines, such as politics (Nownes 1992), social (Brock and
Durlauf 2003), engineering (Rith et al. 2019), transportation (Reddy et al. 2015), medicine
(Nelissen et al. 2020), and other exact sciences. For this reason, the presence of this new
method is expected to add new references.

The simulation of the number of vehicles on each road segment is assumed to have
a multinomial distribution. Suppose we represent a road map as a network—traffic con-
ditions with the number of vehicles changing every time cause network conditions to be
not static. Hence, we need a distribution to describe the dynamic situation of the network.
Thus, the predictive distribution function and the estimation of the required parameters are
of great importance. For prediction, the predictive distribution approach is used. Predictive
distribution is appropriate for cases with known data distribution (Klugman et al. 2012).

In general, the Section 1 (Introduction) of this paper describes the importance of the
methods proposed in this paper. The Section 2 (Literature Review) explains the literature
on optimization in risk management. The theoretical study of predictive distribution,
prediction accuracy, network clustering, and item delivery strategy are described in the
Section 3 (Material and Methods). The new methods, limitations, simulation, and result
optimization as risk management are discussed in the Section 4 (Result and Discussion).
The conclusions are described in the Section 5 (Conclusions).
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2. Literature Review

Mathematical optimization, or optimization, is part of operations research. Optimiza-
tion is a way to determine suitable solutions by minimizing or maximizing one or more
objective functions that satisfy all constraints. Optimization is widely used in industrial
engineering. Examples of optimization methods include traveling salesman problems,
vehicle routing problems, etc.

Optimization is also part of risk management (Aranburu et al. 2016). Risk management
is an iterative process and assists in setting strategy, achieving goals, and making informed
decisions (Degtereva et al. 2022). Decision making and optimization under uncertainty
constitute a broad and popular area of operations research and management sciences
(Krokhmal et al. 2011).

The role of risk management is essential for mathematical optimization under uncer-
tainty. Whenever uncertainty exists, there is a risk. Uncertainty is present when there is a
possibility that the outcome of a particular event will deviate from what is expected (Better
et al. 2008).

There are not many studies that examine optimization in risk management until now.
One of the old studies that examine optimization in risk management is in civil engineering
conducted by Cooke and Pinter (1989). The information that can be obtained from this
research, i.e., the optimization concept and technique can be combined with probabilistic
analysis to structure and solve risk management problems. Other research on optimization
in risk management can be seen in the study of Better et al. (2008); Krokhmal et al. (2011);
Aranburu et al. (2016); and Lam (2016).

Based on the literature study, optimization in Item Delivery as Risk Management has
not been found. For this reason, this study is one part of the contents of this paper. This
research resulted in how to make online decisions on item delivery strategies to reduce the
risk of loss. These losses can be identified through changes in optimizing the delivery time
obtained based on the dynamic network.

3. Material and Methods
3.1. Predictive Distribution

Another term for the predictive distribution is the posterior predictive distribution
(Klugman et al. 2012). In general, the predictive distribution is the distribution of the
possible unobserved values conditional on the observed value. In this case, we will discuss
the predictive distribution of the multinomial case. Of course, it involves the Dirichlet
distribution because it is prior for the multinomial. The multinomial distribution is denoted
Mult(θ1, θ2, . . . , θm; n), with the probability mass function as follows:

p(x;θ) =
n!

∏m
i=1 xi!

m

∏
i=1

θ
xi
i , (1)

where x = [x1 x2 . . . xm]
T , ∑m

i=1 xi = n, n ∈ N, θ = [θ1 θ2 . . . θm]
T , ∑m

i=1 θi = 1, θi > 0
and θ1, θ2, . . . , θm is the probability parameter. The expected value of the multinomial
distribution, namely:

E[X] = [E[X1], E[X2], . . . , E[Xm]]
T = [nθ1, nθ2, . . . , nθm]

T . (2)

Then, the Dirichlet distribution is denoted Dir(α1, α2, . . . , αm), with the probability
density function as follows:

f (θ;α) =
Γ(∑m

i=1 αi)

∏m
i=1 Γ(αi)

m

∏
i=1

θ
αi−1
i , (3)



Risks 2022, 10, 122 4 of 20

where α = [α1 α2 . . . αm]
T , Γ(α) =

∫ ∞
0 θα−1e−θdθ, m ≥ 2, and α1, α2, . . . , αm is the concen-

tration parameter, αi > 0. The expected value of the Dirichlet distribution, namely:

E[Θ] = [E[θ1], E[θ2], . . . , E[θm]]
T =

[
α1

∑m
i=1 αi

,
α2

∑m
i=1 αi

, . . . ,
αm

∑m
i=1 αi

]T
. (4)

Let Xt = [X1,t X2,t . . . Xm,t]
T be a random vector that stating the number of events

at tth time, where Xi,t is a random variable stating the number of events at category i
at tth time. Then, assume Xt follows a multinomial distribution with the parameter θ.
Next, we will find the conditional probability distribution for the xt+k observation if given
D = (x1, x2, . . . , xt+(k−1):

p
(

xt+k

∣∣∣Dt+(k−1)

)
=
∫

p(xt+k|θ) f (θ|D)dθ. (5)

Thus, we obtain Equation (6) (Yudhanegara et al. 2021a):

p
(

xt+k

∣∣∣Dt+(k−1)

)
=

n!Γ
(
∑m

i=1 α′i
)

Γ
(
n + ∑m

i=1 α′i
) m

∏
i=1

Γ
(
xi + α′i

)
xi!Γ

(
α′i
) . (6)

Equation (6) is a predictive distribution probability function which is a probability
mass function of the Dirichlet-multinomial (Avetisyan and Fox 2012). The expected value
of Equation (6) can be found by utilizing the multinomial expected value and Theorem 1.

Theorem 1. (Hogg et al. 2005). Let Y and X be random variables, then E[Y] = E[E[Y|X]].

Based on Theorem 1, we can find E[Xt+k] = E[E[Xt+k|Θ]]. In the other, we have
(Xt+k|Θ) ∼ Mult(θ1, θ2, . . . , θm, n); thus:

E[Xt+k] = nE[Θ] = n
[

α1

α0
,

α2

α0
, . . . ,

αm

α0

]T
. (7)

In the Dirichlet-multinomial case, we can take the value α0 = ∑m
i=1 αi dan θi =

αi
∑m

i=1 αi
= αi

α0
(Johnson et al. 1996), so that the following relationship can be seen:

E[Xi,t+k] = n θi = n
αi
α0

. (8)

Thus, we can find θi from the multinomial estimated parameter, namely:

θ̂i =
∑l

t=1 xi,t

l n
, i = 1, 2, . . . , m, (9)

where ∑m
i=1 xi = n, n ∈ N.

3.2. Prediction Accuracy

There are several calculations for prediction errors, one of which is the mean absolute
percentage error (MAPE), which is the absolute average percentage error. MAPE is a
statistical measure of predictive accuracy in predictive models that provides information
on how much prediction error is compared to the observed value based on the sequence
(Swamidas 2000). According to Lewis (1982), MAPE scores can be interpreted into four
criteria. There are predetermined criteria as described in Table 1.
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Table 1. Criteria for the MAPE score.

Percentage Criteria

MAPE < 10% Very accurate
10% ≤ MAPE < 20% Good
20% ≤ MAPE < 50% Fair

MAPE ≥ 50% Not accurate

The smaller the MAPE score, the smaller the error of the prediction results, and the
greater the MAPE score, the greater the error of the prediction results. The results of a
predictive model have an excellent predictive ability if the MAPE score is below 10% and
they have a good predictive ability if the MAPE score is between 10% and 20%. Table 1
shows the meaning of the error percentage score in MAPE, where the MAPE score can
still be used if it does not exceed 50%; if the MAPE score is above 50%, then the prediction
model cannot be used. The MAPE formula is:

MAPE =
1
m

m

∑
i=1

∣∣∣∣( xi,t − x̂i

xi,t

)∣∣∣∣× 100%, (10)

where x̂i = n αi
α0

, α0 = ∑m
i=1 αi,

αi
∑m

i=1 αi
= θi, and ∑m

i=1 θi = 1, θi > 0.

3.3. Network Clustering

In the item delivery strategy, the purpose of network clustering is to determine delivery
zones (Yudhanegara et al. 2021a, 2021b, 2022). In graph theory, network clustering is a
graph partition that divides a graph into more than one subgraph (Elsner 1997; Newman
and Girvan 2004). The clustering used in this paper is a recursive spectral bisection
(Yudhanegara et al. 2021a, 2022). The network is constructed from the map of Bandung
City-Indonesia, in Figure 1, see Yudhanegara et al. (2021a, 2022).
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In this study, the map is represented as a dynamic network. Dynamic networks
experience changes in structure and weight from time to time (Casteigts et al. 2011). The
dynamic network concept in this study is defined as a network structure with a change in
weight, not a change in the network structure. This dynamic network condition is obtained
based on the observation process in alternating periods accompanied by changes in weight.
The weight of the network is a random vector with a specific distribution. Unlike the static
network, the weights have no distribution.

In Figure 1, the number in the orange circles is the area or location of the destination
for the delivery of items, and the blue symbol is the depot. Based on Figure 1, we have the
network in Figure 2.
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Figure 2. Item delivery network from the map.

In Figure 2, the number in the orange circles is the area or location (node) of the
destination for the delivery of items, except for the orange circle with zeros; it’s a depot
(starting node). Furthermore, Figure 3 is an example of a network clustering into four
clusters using a recursive spectral bisection method used in this study (Yudhanegara et al.
2021a).
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Figure 3. Network clustering with four zones/clusters.

The network in Figure 3 consists of four zones, namely the green zone, gray zone,
yellow zone, and purple zone. Green nodes are locations in the green zone, gray nodes in
the gray zone, yellow nodes in the yellow zone, and purple nodes in the purple zone.
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3.4. Optimization

In this study, the optimization procedure in item delivery uses the Vehicle Routing
Problem model, which has been relaxed. This relaxation allows more than one vehicle
to pass each road segment. The network is divided into several zones and consists of
only one depot. The definition of a delivery zone is a subnet resulting from the clustering
of the spectral bisection method. As described previously, the objective function of time
optimization in this research problem is used to analyze the structure of the item delivery
problem.

Referring to Dror and Trudeau (1990), Reinelt (2012), and Bernardino and Paias (2018),
the flow problems with the smallest delivery time used in this study are as follows:

1. One unit of vehicle delivers items to several locations (nodes), but each node is visited
only once;

2. The vehicle must return to the depot;
3. The goal is to find the path with the shortest delivery time.

They are adjusted to traffic conditions with changing road density and delivery time
limits. The focus of this item delivery process is to get the minimum total time for each
zone. The existing data is in the form of the number of vehicles as edge weights. Therefore,
it is necessary to convert the edge weights. The conversion is a change from the number of
vehicle features to each road segment’s travel time feature. The time weight between nodes
is obtained by paying attention to traffic parameters, namely speed and traffic density,
which refers to the Direktorat Jenderal Bina Marga or Department of Highways (Yudhanegara
et al. 2022).

The variables used in the objective function are:

η
(q)
i,j :

{
1, if vehicle q to node vj from node vi
0, elsewhere.

Next, we have variable ti,j, it is the delivery time from vi to vj. The goal is to minimize
the following function:

Z =
n

∑
i=0

n

∑
j=0

h

∑
q=1

ti,jη
(q)
i,j , (11)

subject to
n

∑
i=0

h

∑
q=1

η
(q)
i,j = 1, j = 1, 2, · · · , n, i 6= j, (12)

and
n

∑
j=0

h

∑
q=1

η
(q)
j,k = 1, k = 1, 2, · · · ,n, j 6= k, (13)

Equation (12) guarantees that the vehicle that will deliver items to a node originates
from the previous node. Equation (13) guarantees that a vehicle that has delivered items
from one node must deliver items to the next node. Equations (12) and (13) also indicate
that each node can only be stopped precisely once by one vehicle. The other constraints
used are:

n

∑
j=1

η
(q)
0,j = 1, q = 1, 2, · · · , h, (14)

and
n

∑
j=1

η
(q)
j,0 = 1, q = 1, 2, · · · , h, (15)

where 0 is the depot. Equation (14) indicates that every vehicle’s travel route begins at the
depot, while Equation (15) indicates that every vehicle’s travel route ends at the depot.
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Let y = {y1, y2, · · · , yn} be a vector set consisting ofn items with y yj =
[
yj,1 yj,2 · · · yj,a

]T ,
j = 1, 2, · · · , n and a are features of the item. Suppose we take a where yj,a = τj, which is
the delivery time feature. When operating, each vehicle has a different total delivery time,
namely T. Suppose that vehicle q has a delivery time capacity of T(q). Each object j to be
sent to node vj, j = 1, 2, · · · ,n, has the delivery time of τj ≤ maks

q

{
T(q)

}
, and each edge(

vi, vj
)
, i 6= j; there is a weight of delivery time between nodes, namely ti,j. Thus, the time

constraint for model Z is:

n

∑
j=1

τ
(q)
j ≤ T(q) , q = 1, 2, · · · , h, (16)

where

τ
(q)
j =

n

∑
i=0

n

∑
j=0

ti,j, (17)

and τ
(q)
j is the delivery time of object j to node vj by vehicle q. Equation (17) guarantees

that the delivery time for each vehicle may not exceed the delivery time capacity.

3.5. Item Delivery Strategy

Network clustering aims to divide the network into several delivery zones. The
distribution of delivery zones will simplify the delivery process to produce a minimum
delivery time according to the available vehicles. In theory, this process avoids deliveries
between points that are too far apart, which ensures the route of connected vehicles in the
same cluster, and obtains an effective delivery route.

In practice, the item delivery process is influenced by traffic conditions. This condition
consists of various factors, one of which is changes in road density, which tend to change
or are dynamic, making it difficult to control or predict. These dynamic conditions can be
anticipated through a predictive distribution approach. This approach involves statistical
inference that predicts delivery zones, as presented in Figure 4.
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Figure 4. Item delivery strategy.

Figure 4 shows that predictive distribution plays a role in predicting delivery zones,
while statistical inference is used to test new data distribution.
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4. Result and Discussion
4.1. New Method

To get the distribution of the logarithm of the multinomial likelihood function, we can
use Theorem 2.

Theorem 2. (Central Limited Theorem) (Athreya and Lahiri 2006). Let X1, X2, . . . , Xm be i.i.d.
random samples with mean µ and variance σ2 > 0. When m is large, the sample mean Xm = ∑m

t=1 Xt
m

can be approximated by the normal distribution N
(

µ, σ2

m

)
.

Based on Theorem 2, for the multinomial case, we have Theorem 3. It is the distribution
of the logarithm of the multinomial likelihood function.

Theorem 3. Let Ll(θ) = ∏l
t=1

(
n!

∏m
i=1 xi,t!

∏m
i=1 θ

xi,t
i

)
be a multinomial likelihood function, for

n, m, l � 1, then random variable log Ll(θ) has a normal distribution with mean:

..
µ =

l

∑
t=1

m

∑
i=1

xi,t log θi −
l

∑
t=1

m

∑
i=1

log xi,t! +
l

∑
t=1

log n! (18)

and variance:

..
σ

2
=

m
(m− 1)

l

∑
t=1

m

∑
i=1

(
xi,t log θi −

∑m
i=1 xi,t log θi

m

)2

−
l

∑
t=1

m

∑
i=1

(
log xi,t!−

∑m
i=1 log xi,t!

m

)2

. (19)

Proof of Theorem 3. We can find:

log Ll(θ) = log
(

l
∏

t=1

(
n!

∏m
i=1 xi,t!

m
∏
i=1

θ
xi,t
i

))
=

l
∑

t=1
log
(

n!
∏m

i=1 xi,t!

m
∏
i=1

θ
xi,t
i

)
=

l
∑

t=1

(
log n!−

m
∑

i=1
log xi,t! +

m
∑

i=1
xi,t log θi

)
=

l
∑

t=1

(
log n!−

m
∑

i=1
log xi,t! +

m
∑

i=1
xi,t log θi

)
=

l
∑

t=1

(
log n!−m ∑m

i=1 log xi,t!
m + m ∑m

i=1 xi,t log θi
m

)
.

Let Ht =
∑m

i=1 log Xi,t!
m = log Xi,t! and Ot =

∑m
i=1 Xi,t log θi

m = Xi,t log θi be random variables
that represent the mean, called the sample mean. Since the sampling is assumed to be a
random variable, it has a distribution. The sample mean distribution is the distribution of
the means obtained from all possible samples of a population, where the sample size is the
same.

The center limit theorem applies to the average sampling distribution. When sampling
with a simple random sample size m from a population that comes from any distribution,
the distribution of the sample mean can be approximated by a normal distribution provided
that the sample size is large—thus, based on the central limit theorem, Ht ∼ N

(
µHt , σ2

Ht

)
,

where the mean µHt ≈ k = ∑m
i=1 log xi,t!

m , and variance σ2
Ht
≈ s2

m =
∑m

i=1(hi−h)
2

(m2−m)
, hi = log xi,t!.

Thus, we obtained mHt ∼ N
(

mµHt , m2σ2
Ht

)
. Next, based on the center limit theorem,
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Ot ∼ N
(

µOt , σ2
Ot

)
, where the mean µOt ≈ o = ∑m

i=1 Xi,t log θi
m , and variance σ2

Ot
≈ s2

m =

∑m
i=1(oi−o)2

(m2−m)
, oi = xi,t log θi. Thus, we have mOt ∼ N

(
mµOt , m2σ2

Ot

)
.

Let X1, X2, . . . , Xl be i.i.d. random samples, where Xt ∼ N
(

µXt , σ2
Xt

)
, t = 1, 2, . . . , l. We

can find distribution ∑l
t=1 Xt through moment generator function (Hogg et al. 2005; Walpole

et al. 2012), so ∑l
t=1 Xt ∼ N

(
∑l

t=1 µXt , ∑l
t=1 σ2

Xt

)
. Then, we get (mHt + mOt) ∼

N
(

mµHt + mµOt , m2σ2
Ht

+ m2σ2
Ot

)
, so we have:

(−mHt + mOt) ∼ N
(

m(µOt − µHt), m2
(

σ2
Ot
− σ2

Ht

))
. (20)

Next, for (log n!−mHt + mOt) ∼ N
(

m(µOt − µHt) + log n!, m2
(

σ2
Ot
− uσ2

Ht

))
, we

find:
l

∑
t=1

(log n!−mHt + mOt) ∼ N
( ..

µ,
..
σ

2
)

, (21)

where
..
µ =

l
∑

t=1
(m(µOt − µHt) + log n!)

=
l

∑
t=1

(
m
(

∑m
i=1 Xi,t log θi

m − ∑m
i=1 log xi,t!

m

)
+ log n!

)
=

l
∑

t=1

m
∑

i=1
Xi,t log θi −

l
∑

t=1

m
∑

i=1
log xi,t! +

l
∑

t=1
log n!,

and

..
σ

2
=

l
∑

t=1
m2
(

σ2
Ot
− σ2

Ht

)
=

l
∑

t=1
m2
(

∑m
i=1(oi−o)2

l(m−1) − ∑m
i=1(hi−h)

2

l(m−1)

)

=
l

∑
t=1

m2

∑m
i=1

(
xi,t log θi−

∑m
i=1 xi,t log θi

m

)2

(m2−m)
−

∑m
i=1

(
log xi,t!−

∑m
i=1 log xi,t !

m

)2

(m2−m)


..
σ

2
= m

(m−1)

(
l

∑
t=1

m
∑

i=1

(
xi,t log θi − ∑m

i=1 xi,t log θi
m

)2
−

l
∑

t=1

m
∑

i=1

(
log xi,t!− ∑m

i=1 log xi,t!
m

)2
)

.

�
To find the value of log n!, we can approximate the Stirling formula in Equation (22):

n! ≈
√

2πn
(n

e

)n
. (22)

We can find Corollary 1 with a more equation from Theorem 3 with the same distribu-
tion.

Corollary 1. Let Ll(θ) = ∏l
t=1

(
n!

∏m
i=1 xi,t!

∏m
i=1 θ

xi,t
i

)
be a multinomial likelihood function, for

n, m, l � 1, then random variable
(

log Ll(θ)−∑l
t=1 log n!

)
has a normal distribution with

mean:
...
µ =

l

∑
t=1

m

∑
i=1

xi,t log θi −
l

∑
t=1

m

∑
i=1

log xi,t!, (23)

and variance
...
σ2 =

..
σ

2, Equation (19).
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Proof of Corollary 1. From log Ll(θ) we have:

log Ll(θ) =
l

∑
t=1

(
log n!−

m

∑
i=1

log xi,t! +
m

∑
i=1

xi,t log θi

)
,

and thus,

log Ll(θ)−
l

∑
t=1

log n! =
l

∑
t=1

(
−

m

∑
i=1

log xi,t! +
m

∑
i=1

xi,t log θi

)
.

Next, based on Equations (19) and (20), we have:

(−mHt + mOt) =
l

∑
t=1

(
−

m

∑
i=1

log xi,t! +
m

∑
i=1

xi,t log θi

)
.

Thus, we get:

l

∑
t=1

(
−

m

∑
i=1

log xi,t! +
m

∑
i=1

xi,t log θi

)
∼
(

m(µOt − µHt), m2
(

σ2
Ot
− σ2

Ht

))
,

suppose
...
µ = m(µOt − µHt) =

l

∑
t=1

m

∑
i=1

xi,t log θi −
l

∑
t=1

m

∑
i=1

log xi,t!

and ...
σ2 = m2

(
σ2

Ot
− σ2

Ht

)
= m

(m−1)

(
l

∑
t=1

m
∑

i=1

(
xi,t log θi − ∑m

i=1 xi,t log θi
m

)2

−
l

∑
t=1

m
∑

i=1

(
log xi,t!− ∑m

i=1 log xi,t!
m

)2
)

.

�

As an illustration, the values of log Ll(θ) where m = 38, n = 2500, l = 30, for
k = 2000 times, are shown in Figure 5.
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Figure 5. Histogram of values of log Ll(θ) for k = 2000.

Next, as an illustration, the values of log Ll(θ), where m = 260, n = 1, 738, 665, l = 30,
for k = 1000, are shown in Figure 6.
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The probability density function for histogram in Figure 5 is:

f (x) =
1

9435
√

2π
e−

1
2 (

x−311,261
9435 )

2

, (24)

and
f (x) =

1
4505
√

2π
e−

1
2 (

x−308,256
4505 )

2
(25)

for the histogram in Figure 6. Based on Figures 5 and 6, the histogram of values of log Ll(θ)
are symmetrical. They are theoretically corresponding to Theorem 3. Corollary 1 state that
(log Ll(θ)−∑l

t=1 log n!) ∼ N
(...

µ ,
...
σ2). It is the statistical form for multinomial goodness-

of-fit test. It applies the following hypothesis test:

H0: (log Ll+1(θ)−∑l+1
t=1 log n!) follows a normal distribution with the mean

...
µ and variance

...
σ2,

H1: (log Ll+1(θ)−∑l+1
t=1 log n!) does not follow a normal distribution with the mean

...
µ and

variance
...
σ2.

If we look at the logarithmic form of the likelihood function for l + 1 observations,
then Corollary 2 applies. This result illustrates that there is no need to store historical data
in online testing, but it is enough to use the last calculation.

Corollary 2. Value log Ll+1(θ) − ∑l+1
t=1 log n!,

...
µ l+1 and

...
σ2

l+1, it can be obtained iteratively
through log Ll(θ)−∑l

t=1 log n!,
...
µ l and

...
σ2

l ; thus:

log Ll+1(θ)−
l+1
∑

t=1
log n! =

(
log Ll(θ)−

l+1
∑

t=1
log n!

)
+

(
m
∑

i=1
log xi,(l+1)! +

m
∑

i=1
xi,(l+1) log θi

)
,

...
µ l+1 =

...
µ l +

(
m
∑

i=1
xi,(l+1) log θi −

m
∑

i=1
log xi,(l+1)!

)
,

and
...
σ2

l+1 =
...
σ2

l +
m

(m−1)

(
m
∑

i=1

(
xi,(l+1) log θi −

∑m
i=1 xi,(l+1) log θi

m

)2

−
m
∑

i=1

(
log xi,(l+1)!−

∑m
i=1 log xi,(l+1)!

m

)2
)

.
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Proof of Corollary 2. Consider the logarithm of the multinomial likelihood function for l
observations as follows:

log Ll(θ) =
l

∑
t=1

(
log n!−m ∑m

i=1 log xi,t!
m + m ∑m

i=1 xi,t log θi
m

)
= log Ll−1(θ) +

(
log n!−

m
∑

i=1
log xi,l! +

m
∑

i=1
xi,l log θi

)
.

Iteratively, for l + 1 observations, based on the above form, the logarithm of the
likelihood function can be written as:

log Ll+1(θ) = log Ll(θ) +

(
log n!−

m

∑
i=1

log xi,(l+1)! +
m

∑
i=1

xi,(l+1) log θi

)
.

Thus, based on the equation, we get:

log Ll+1(θ)−
l+1

∑
t=1

log n! =

(
log Ll(θ)−

l+1

∑
t=1

log n!

)
+

(
m

∑
i=1

log xi,(l+1)! +
m

∑
i=1

xi,(l+1) log θi

)
.

The iterative process also applies to
...
µ l+1 and

...
σ2

l+1, and is described as follows:

...
µ l =

l
∑

t=1

m
∑

i=1
xi,t log θi −

l
∑

t=1

m
∑

i=1
log xi,t!

=
l−1
∑

t=1

m
∑

i=1
xi,t log θi +

m
∑

i=1
xi,l log θi −

l−1
∑

t=1

m
∑

i=1
log xi,t!−

m
∑

i=1
log xi,l!

=
l−1
∑

t=1

m
∑

i=1
xi,t log θi −

l−1
∑

t=1

m
∑

i=1
log xi,t! +

(
m
∑

i=1
xi,l log θi −

m
∑

i=1
log xi,l!

)
=

...
µ l−1 +

(
m
∑

i=1
xi,l log θi −

m
∑

i=1
log xi,l!

)
.

Based on the description above, we have:

...
µ l+1 =

...
µ l +

(
m

∑
i=1

xi,(l+1) log θi −
m

∑
i=1

log xi,(l+1)!

)
.

For variance, we have:

...
σ l

2 = m
(m−1)

(
l

∑
t=1

m
∑

i=1

(
xi,t log θi − ∑m

i=1 xi,t log θi
m

)2
−

l
∑

t=1

m
∑

i=1

(
log xi,t!− ∑m

i=1 log xi,t!
m

)2
)

= m
(m−1)

l
∑

t=1

m
∑

i=1

(
xi,t log θi − ∑m

i=1 xi,t log θi
m

)2
−

l
∑

t=1

m
∑

i=1

(
log xi,t!− ∑m

i=1 log xi,t!
m

)2

= m
(m−1)

(
l−1
∑

t=1

m
∑

i=1

(
xi,t log θi − ∑m

i=1 xi,t log θi
m

)2
+

m
∑

i=1

(
xi,l log θi −

∑m
i=1 xi,l log θi

m

)2

−
(

l−1
∑

t=1

m
∑

i=1

(
log xi,t!− ∑m

i=1 log xi,t!
m

)2
+

m
∑

i=1

(
log xi,l!−

∑m
i=1 log xi,l !

m

)2
))

= m
(m−1)

(
l−1
∑

t=1

m
∑

i=1

(
xi,t log θi − ∑m

i=1 xi,t log θi
m

)2
−

l−1
∑

t=1

m
∑

i=1

(
log xi,t!− ∑m

i=1 log xi,t!
m

)2

+
m
∑

i=1

(
xi,l log θi −

∑m
i=1 xi,l log θi

m

)2
−

m
∑

i=1

(
log xi,l!−

∑m
i=1 log xi,l !

m

)2
)

...
σ l

2 =
(...

σ2
l−1
)
+ m

(m−1)

(
m
∑

i=1

(
xi,l log θi −

∑m
i=1 xi,l log θi

m

)2
−

m
∑

i=1

(
log xi,l!−

∑m
i=1 log xi,l !

m

)2
)

.
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Thus, we find:

...
σ2

l+1 =
...
σ2

l +
m

(m−1)

(
m
∑

i=1

(
xi,(l+1) log θi −

∑m
i=1 xi,(l+1) log θi

m

)2

−
m
∑

i=1

(
log xi,(l+1)!−

∑m
i=1 log xi,(l+1)!

m

)2
)

.

�

The hypothesis test used is the Z statistical test with the formula in Equation (26):

zstatitical =

(
log Ll+1(θ)−∑l+1

t=1 log n!
)
−

...
µ

...
σ

, (26)

where log Ll+1(θ)−∑l+1
t=1 log n! is random variable under the assumption H0. The decision-

making criteria H0 is not rejected when −z α
2
≤ zstatitical ≤ z α

2
, H0 is rejected if zstatitical <

−z α
2

or z α
2
< zstatitical . The margin of error for the confidence interval (1− α) in statistics

on Equation (26) can be determined through Theorem 4. This theorem provides a formula
for the error tolerance limit for the population average at the confidence interval (1− α).

Theorem 4. Let (log Ll+1(θ)−∑l+1
t=1 log n!) ∼ N

(...
µl,

...
σ2

l
)

be a random variable, where
...
µl = ∑l

t=1 ∑m
i=1

xi,t log θi − ∑l
t=1 ∑m

i=1 log xi,t! and
...
σ2

l = m
(m−1) ∑l

t=1 ∑m
i=1

(
xi,t log θi − ∑m

i=1 xi,t log θi
m

)2
−

∑l
t=1 ∑m

i=1

(
log xi,t!− ∑m

i=1 log xi,t!
m

)2
, then margin of error (ε) for the confidence interval (1− α)

is ε = z(1−α
2 )

...
σ l .

Proof of Theorem 4. Let ε be a margin of error for the confidence interval (1− α). Consider
the following form:

P
(∣∣∣∣(log Ll+1(θ)−

l+1
∑

t=1
log n!

)
−

...
µ l

∣∣∣∣ < ε

)
= 1− α

P
(
−ε <

((
log Ll+1(θ)−

l+1
∑

t=1
log n!

)
−

...
µ l

)
< ε

)
= 1− α

P
(
− ε...

σ l
<

((log Ll+1(θ)−∑l+1
t=1 log n!)−

...
µ l)...

σ l
< ε...

σ l

)
= 1− α

P
(
− ε...

σ l
< zstat <

ε...
σ l

)
= 1− α.

Based on the description, we have:

ε...
σ l

= z(1−α
2 )

ε = z(1− α
2 )

...
σ l .

�

The steps for testing new data based on historical data are described in Algorithm 1.
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Algorithm 1. Data testing.

1. Input
(...

µ ,
...
σ2)

2. Find the estimated parameter (θ) of the predictive distribution (based on historical data).
3. Enter the new observed value under the assumption H0.
4. Perform the Z statistical test at the significance level α. H0 is not rejected, it means that

(l + 1 ) ∼ N
(...

µ ,
...
σ2).

5. Update the parameters (θ) and
(...

µ ,
...
σ2) if H0 is rejected.

6. Return to step 3.

4.2. Limitations

The smallest value or minimum limit of m, n, and l is determined based on the sim-
ulation of the values of log L(θ) so that Theorem 3 and Corol1ary 1 can be used. In the
next step, the values of log L(θ) are tested for model fit using chi-squared statistics under
the assumption H0, H0: data follow a normal distribution. The rejection criterion H0 is
based on a p-value, i.e., the probability value of obtaining a result is at least as extreme
as the observed result of a statistical hypothesis test, assuming that the null hypothesis is
true. The p-value is used as an alternative rejection point to provide a minor significance
level with the null hypothesis being rejected. Obtaining a smaller p-value indicates more
substantial evidence supporting the alternative hypothesis.

In the first simulation, for the value of m = 9, l = 10, and n = 115, for k = 500,
the histogram is obtained in Figure 7a. Based on the model fit test, a p-value < 0.0001 is
obtained so that at a significance level of 0.05, the value log L(θ) does not follows a normal
distribution. Then, for the values of m = 10, l = 8, and n = 115, for k = 500, the histogram
is obtained in Figure 7b. A p-value = 0.018 was obtained based on the model fit test. At
the 0.05 significance level, it can be stated that the log L(θ) value does not follow a normal
distribution, similar to the previous simulation in Figure 7a.
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From these values, based on the model fit test, the p-value = 0.066. This means that at
a significance level of 0.05, it can be concluded that the value of log L(θ) follows a normal
distribution with mean

..
µ = 2283.0220 and variance

..
σ

2
= 11.877.

Next, a simulation is carried out for the values of m = 10, l = 9, and n = 110, for
k = 500, to obtain the histogram in Figure 8b. Based on the model fit test, a p-value
< 0.0001 was obtained with these values. Thus, at a significance level of 0.05, the value of
log L(θ) does not follow a normal distribution. After that, the last simulation was carried
out for the values of m = 10, l = 9, and n = 111, for k = 500; the histogram is shown in
Figure 9.
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Based on the model fit test, the p-value = 0.363 at a significance level of 0.05 means
that the value of log L(θ) follows a normal distribution with probability density function:

f (x) =
1

1.969
√

2π
e−

1
2 (

x−2197.444
1.969 )

2
. (27)

This simulation concludes that in the case of multinomial distribution, Theorem 3 and
Corollary 1 apply to the minimum values of m = 10, l = 9, and n = 111.

4.3. Simulation

Let Xt = [X1,t X2,t . . . Xm,t]
T be a random vector that stating the number of vehicles

that might pass each road at tth day, where Xi,t is a random variable stating the number of
vehicles pass ith road at tth day. Then, assume Xt follows a multinomial distribution with
the parameter θ (probability). Furthermore, a total of 1, 738, 665 events are obtained with
260 event categories.

The network is constructed from the map of Bandung City-Indonesia, shown in
Figure 1. We applied them to transportation data, namely traffic density. In this case, a map
is presented in a dynamic network, and categories are represented as roads (Yudhanegara
et al. 2020, 2021a, 2021b). The total number of events is the total number of vehicles passing
on the road, see Figure 3 (Yudhanegara et al. 2021a).

Then, the data are generated 40 times under the assumption of a multinomial distribu-
tion with the probability mass function of Xt ∼ Mult (θ1, θ2, . . . , θ260; 1, 738, 665), namely:

p(x;θ) =
1, 738, 665!

∏260
i=1 xi,t!

260

∏
i=1

θ
xi,t
i , (28)

where ∑260
i=1 θi = 1 and ∑260

i=1 xi,t = 1, 738, 665. The parameter θ is generated randomly
from the standard uniform distribution (U(0, 1)). We have 40 generated data, where
60% (24 datas) was used as training data, and 40% (16 datas) was used as testing data.
The expected value and the estimated parameter of training data are obtained from the
predictive distribution in Equation (6).

The training data that has been used as the network weight is presented in Figure 10.
Figure 10 shows the network that has been clustered into four zones using the spectral
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bisection method. Each zone tends to change cluster members within its zone at different
times. Furthermore, the data prediction simulation is presented in Table 2.
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By using the estimated parameter (θ) of historical data, the value of Zstatitical is ob-
tained, as shown in Table 2.

Table 2. Summary of hypothesis testing with α = 0.05, and zcritical = 1.96 or zcritical = −1.96.

Parameter (θ)
and (

...
µ ,

...
σ2) Data zstatitical Decision Item Delivery

Strategy Changes
Parameter

(
...
µ l,

...
σ2

l ) Error (ε)

D1–24 D1–24 vs. D25 −0.154 H0 is not rejected No D1–24 0.23912
D1–24 D1–24 vs. D26 −0.308 H0 is not rejected No D1–25 0.22540
D1–24 D1–24 vs. D27 −0.462 H0 is not rejected No D1–26 0.21168
D1–24 D1–24 vs. D28 −0.615 H0 is not rejected No D1–27 0.23324
D1–24 D1–24 vs. D29 −0.769 H0 is not rejected No D1–28 0.21168
D1–24 D1–24 vs. D30 −0.923 H0 is not rejected No D1–29 0.24108
D1–24 D1–24 vs. D31 −1.003 H0 is not rejected No D1–30 0.25872
D1–24 D1–24 vs. D32 −1.263 H0 is not rejected No D1–31 0.24892
D1–24 D1–24 vs. D33 −1.465 H0 is not rejected No D1–32 0.23912
D1–24 D1–24 vs. D34 −1.671 H0 is not rejected No D1–33 0.23324
D1–24 D1–24 vs. D35 −1.865 H0 is not rejected No D1–34 0.22932
D1–24 D1–24 vs. D36 −2.005 H0 is rejected Yes D1–35 0.31752

D1–36 D1–36 vs. D37 −0.007 H0 is not rejected,
by updating (θ) and

(...
µ ,

...
σ2) No D1–36 0.19404

D1–36 D1–36 vs. D38 −0.271 H0 is not rejected No D1–37 0.2156
D1–36 D1–36 vs. D39 −0.429 H0 is not rejected No D1–38 0.2410
D1–36 D1–36 vs. D40 −0.533 H0 is not rejected No D1–39 0.2001

Note: D25 is the 25th data, and D1–24 is the 1st to 24th data.

Next, to evaluate the prediction results of the predictive distribution model, we use
MAPE. The results of the MAPE scores calculation is described in Table 3.
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Table 3. The results of the MAPE calculation and interpretation for the prediction.

Data MAPE Score Interpretation Data MAPE Score Interpretation

E1–24 vs. D25 0.9% very accurate E1–24 vs. D33 9.8% very accurate
E1–24 vs. D26 1.4% very accurate E1–24 vs. D34 8.8% very accurate
E1–24 vs. D27 1.0% very accurate E1–24 vs. D35 7.8% very accurate
E1–24 vs. D28 1.0% very accurate E1–36 vs. D37 4.3% very accurate
E1–24 vs. D29 1.9% very accurate E1–36 vs. D38 3.2% very accurate
E1–24 vs. D30 2.8% very accurate E1–36 vs. D39 2.2% very accurate
E1–24 vs. D31 4.3% very accurate E1–36 vs. D40 2.8% very accurate
E1–24 vs. D32 5.7% very accurate

Note: D25 is the 25th data, and E1–24 is the expected value of the 1st to 24th data.

In general, based on the criteria for the MAPE scores in Table 1, the MAPE scores
between the observed value and the expected value in Table 3 indicates that the model
used is accurate because the MAPE scores are below 10%.

4.4. Optimization as Risk Management

The next goal of risk management is to provide information about potential sources of
risk in the company (Lam 2016). Risk management is an effort to reduce risk in technical im-
plementation and business decision making (Lam 2016). The purpose of risk management
is to mitigate or track sources that have the potential to threaten business productivity and
security. This tracking process can be carried out by research and procedural analysis of
every company activity, from production to asset management. When risks are found and
analyzed, it is necessary to make efforts so that risks do not occur and threaten business
continuity.

Although it has extended and successive stages, the risk management process is one
of the essential components of business management that can protect the company from
many problems. In this study, particularly the item delivery strategy, optimization is one
of the most critical components of risk management (Cooke and Pinter 1989; Better et al.
2008).

Next, we analyze the optimization of a dynamic network. Based on Table 2, for H0 is
rejected, if there is no change in the item delivery strategy (ignoring H0 is rejected), then
the optimization of delivery time in each zone will no longer be effective (Yudhanegara
et al. 2022). This happens because the routes used are not correct. The result is significant
delivery times on certain vehicles, while others are too small. The optimization of the time
in the order of cases for H0 is rejected as described in Tables 4 and 5.

Table 4. The risks when ignoring H0 is rejected (for the yellow zone and gray zone).

Yellow Zone Gray Zone

Total time on initial strategy Total time when ignoring H0 is
rejected Total time on initial strategy Total time when ignoring H0 is

rejected

Vehicle 1 Vehicle 2 Vehicle 3 Vehicle 1 Vehicle 2 Vehicle 3 Vehicle 1 Vehicle 2 Vehicle 3 Vehicle 1 Vehicle 2 Vehicle 3

86.42 min 45.878 min 58.751 min 120.42 min 170.3 min 70.5 min 73.448 min 136.21 min 152.18 min 37.6 min 50.9 min 40.41 min

Table 5. The risks when ignoring H0 is rejected (for the green zone and purple zone).

Green Zone Purple Zone

Total time on initial strategy Total time when ignoring H0 is
rejected Total time on initial strategy Total time when ignoring H0 is

rejected

Vehicle 1 Vehicle 2 Vehicle 3 Vehicle 1 Vehicle 2 Vehicle 3 Vehicle 1 Vehicle 2 Vehicle 3 Vehicle 1 Vehicle 2 Vehicle 3

56.518 min 53.063 min 58.6235 min 154.6 min 40.9 min 40.87 min 70.03 min 46.302 min 50.13 min 98.1 min 140.3 min 145.7 min

5. Conclusions

Let Xt = [X1,t X2,t . . . Xm,t]
T be a random vector, Xt ∼ Mult (θ1, θ2, . . . , θm, n), t =

1, 2, . . . , l, for n, m, l � 1, for the appropriate model fit test is used, namely the Z statistical
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test with log Ll(θ) ∼ N(
..
µ,

..
σ

2
) or (log Ll(θ)−∑l

t=1 log n!) ∼ N
(...

µ ,
...
σ2). The algorithm

presented as the method of inferential statistics for online decisions. It is suitable for
streaming data, some of which consist of traffic density data. This method can predict data
with small error values, resulting in very accurate predictions. The method does not require
large memory storage for historical data.

The case presented in this paper is suitable for controlling traffic jam in cities and
traffic jam on holidays. The solution to the problems presented in this paper can be helpful
for the transportation department to make decisions or provide information to the public.
The impact on the item delivery company by having accurate information on traffic jams
will enable them to formulate strategies for item deliveries.

For future research, we can simulate the data based on the predictive distribution of
the multivariate Poisson cases. Moreover, a case study can be used with other discrete
multivariate distributions. For example, there are cases where n is not constant, and
n→ ∞ , the probability of the occurrence of the event being considered is θ → 0 , and
n.p = ω, where ω is the rate, so that further research is related to the multivariate Poisson
distribution. Then, we can determine a new test method built based on the logarithm of
the likelihood function for the multivariate Poisson distribution.

After obtaining the predictive distribution for the multivariate Poisson case, we will
also apply it to education. Clustering for category data and decision-making methods will
be needed for analyzing the risk of failing to graduate from university. Examples of data
can be seen in a study conducted by Yudhanegara and Lestari (2019).
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