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Abstract: We introduce here a diffusion-type approximation of the ruin probability both in finite
and infinite time for a two-dimensional risk process, where claims and premiums are shared with
a predetermined proportion. This type of process is often called the insurer–reinsurer model. We
assume that the flow of claims is governed by a general renewal process. A simple ruin probability
formula for the model is known only in infinite time for the special case of the Poisson process and
exponentially distributed claims. Therefore, there is a need for simple analytical approximations.
In the literature, in the infinite-time case, for the Poisson process, a De Vylder-type approximation
has already been introduced. The idea of the diffusion approximation presented here is based on
the weak convergence of stochastic processes, which enables one to replace the original risk process
with a Brownian motion with drift. By applying this idea to the insurer–reinsurer model, we obtain
simple ruin probability approximations for both finite and infinite time. We check the usefulness
of the approximations by studying several claim amount distributions and comparing the results
with the De Vylder-type approximation and Monte Carlo simulations. All the results show that the
proposed approximations are promising and often yield small relative errors.

Keywords: ruin probability; insurer–reinsurer model; diffusion approximation; De Vylder approxi-
mation; weak convergence

1. Introduction

Risk theory in general and ruin probabilities in particular have been an active area of
research since the classical Cramér–Lundberg model introduced in 1903 by the Swedish
actuary Filip Lundberg (Asmussen and Albrecher 2010). The Cramér–Lundberg model
describes the situation of an insurance company that experiences two opposing cash flows:
incoming premiums and outgoing claims. The traditional approach in risk theory is to
study the probability of ruin, i.e., the probability that the risk process will ever go below
zero. The model is described in terms of the classical risk process U, which is defined by

U(t) = u + ct−
N(t)

∑
k=1

Xk, (1)

where u ≥ 0 denotes the initial capital, c is a positive premium rate, N = (N(t))t≥0 de-
scribing a claim flow is a Poisson process with intensity λ independent of (Xk) and claim
amounts (Xk)

∞
k=1 form a sequence of positive independent identically distributed (i.i.d.) ran-

dom variables, with mean value µ and variance σ2. The constant c can be written as c = (1+
θ)µλ, where θ > 0 is called the relative safety loading (Grandell 1991; Rolski et al. 1999).

One of the key issues of the collective risk theory concerns calculating the ruin proba-
bility, i.e., the probability that the risk process becomes negative. We distinguish between
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two types of ruin probability. The ruin probability ψ(u, t) in finite time t (or within a finite
horizon) of a company described by the risk process (1) is given by

ψ(u, t) = P(U(s) < 0 for some s ≤ t), 0 < t < ∞, u ≥ 0.

The ruin probability ψ(u) in infinite time can be defined as ψ(u) = ψ(u, ∞).
Ruin theory is believed to be important for modern risk management. For solvency

purposes, the ruin probability can be used as a rough approximation of the insolvency.
Moreover, fixing it at an acceptably low level, the needed capital and the rate of the flow of
premiums can be estimated. It can also serve as a useful tool in long-range planning for the
use of insurer’s funds. In addition, ruin theory has fruitful methodological links and appli-
cations to other fields of applied probability, such as queueing theory and mathematical
finance (Asmussen and Albrecher 2010).

The ruin probabilities in infinite and finite time, even for the classical risk process,
can only be calculated for a few special cases of the claim amount distribution. For the
infinite horizon case, there are well-known elementary results for zero initial capital, and
the exponential and mixture of two exponential claim amount distributions, see Grandell
(1991); Panjer and Willmot (1992). For the results for general phase-type distributions, in
particular for mixture of n exponential distributions, see Asmussen and Albrecher (2010).
For the finite horizon case, the only convenient “semi-elementary” formula (involving only
a simple integral) exists for the exponential distribution (Grandell 1991; Rolski et al. 1999).
However, this case can always be approximated by the Monte Carlo method. Therefore,
finding a reliable approximation, especially in the ultimate case, is really important from
a practical point of view. Various approximations both in finite and infinite time have
already been discussed in the literature, let us just mention a few: the classical Cramér–
Lundberg approximation (with time-dependent version being Segerdahl’s), saddlepoint
approximations (for example Arfwedson’s), De Vylder (often regarded as the best among
“simple” approximations), diffusion approximations, and large claim approximations,
see Arfwedson (1955); Asmussen and Albrecher (2010); Barndorff-Nielsen and Schmidli
(1995); De Vylder (1978); Grandell (2000). For a review and numerical comparison of
approximations, see, e.g., Burnecki et al. (2005); Grandell (1991).

For the finite horizon ruin probabilities, crude Monte Carlo method can be always
applied. However, if the considered ruin probabilities values are very small, such as
less than 1/1000 (a rare type event), it is expensive in terms of computer time to obtain
reasonably precise estimates of the ruin probability. Variance reduction techniques can
improve this situation. In this context, we mention importance sampling techniques, where
the idea is to sample after an exponential tilt of the probability measure Blanchet and Lam
(2011); Collamore (2002).

Andersen (1957) in a paper to the 1957 International Congress of actuaries in New
York proposed a generalization of the classical risk process. Instead of assuming just
exponentially distributed independent interoccurrence (waiting) times, he introduced a
more general distribution function but retained the assumption of independence. The
Sparre Andersen model assumes that the interoccurrence times are i.i.d. random variables,
hence the counting process becomes a renewal process. The ruin problem for an infinite
time was already considered by Sparre Andersen himself. For the classical finite time
ruin probability treatment within the model, see, e.g., Grandell (1991); Thorin (1971). The
renewal process model brings much more flexibility in modelling the flow of claims than
the Poisson process, see, e.g., Burnecki and Weron (2005), where the renewal process with
log-normal waiting times was found superior to the Poisson process in modelling losses
from the Property Claim Services dataset.

The first modern treatment of diffusion approximation in risk theory, based on weak
convergence, was presented by Iglehart (1969), who already discussed it in the renewal
claim counting process framework; see also Bohman (1972); Gluckman (1970); Grandell
(1972). The idea is to let the number of claims grow in a unit time interval and at the same
time make the claim sizes smaller in such a way that the risk process converges weakly to a
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Brownian diffusion. It was later extended to the weak convergence of compound renewal
processes subject to discounting, with deterministic or stochastic interest rate, see Braun
(1986); Garrido (1988); Harrison (1977). Apart from the weak convergence, another common
alternate motivation for diffusion claim models was to see them as solutions of stochas-
tic differential equations; see the results of Abikhalil (1986); Ruohonen (1980); Garrido
(1988, 1989).

This idea of the Brownian diffusion approximation was later extended to the stable
diffusion approximation which accounts for heavy-tailed claims belonging to the domain
of attraction of the α-stable law (1 < α < 2), see Furrer et al. (1997). In Burnecki (2000)
it was proved that only self-similar processes with stationary increments appear as weak
limits of the risk processes and, conversely, every finite mean H-self-similar process with
stationary increments, can result as a weak approximation. We also note that in queuing
theory the diffusion approximation is known as the “heavy traffic approximation”, see
Asmussen and Albrecher (2010).

Recently, multidimensional risk processes have been introduced in the literature to
account for multiple lines of business of an insurance company and collaborating insurance
companies. The ruin probability can now be defined in several ways, e.g., when all lines
or all companies are ruined or at least one. Collamore (1996) was among the first to
introduce the multidimensional ruin problem for light-tailed claims and general ruin sets.
Multidimensional heavy-tailed processes were first studied by Hult et al. (2005). They
mainly concentrated on multivariate regularly varying random walks and calculated sharp
boundaries for the asymptotic ruin probability.

Since different risks usually have an effect on a few lines of business at the same time,
the statistical dependence among claims in these lines should be taken into account. The
multidimensional risk process was specialized to the two-dimensional case with claims
shared with a predetermined proportion in (Avram et al. 2008a, 2008b). This case is usually
referred to as the insurer–reinsurer model, as it well describes the quota share proportional
treaty. It can also be used to model two branches of the same insurance company. The
ruin occurs here if one or both companies go bankrupt. The former case, which is more
interesting from a practical point of view, is usually analyzed, and the latter can be obtained
from the former in a straightforward way. To the best of the authors’ knowledge, the
only simple ruin probability formulas for the insurer–reinsurer model were provided for
exponentially distributed claims in Avram et al. (2008a) (by explicitly inverting the Laplace
transform) and later in Burnecki et al. (2021) (by means of a change-of-measure technique).
Based on the latter result, a De Vylder-type approximation of the ruin probability for
the insurer–reinsurer model was introduced in Burnecki et al. (2019) for general claim
amount distributions with a finite third moment. Another type of dependence was studied
in Behme et al. (2020), where the link was established by a random bipartite network.
Badescu et al. (2011) introduced an extension to a system of two insurers, where the first
insurer is experiences claims arising from two independent compound Poisson processes
and the second insurer covers a proportion of the claims. In Michna (2020), a model driven
by a general spectrally positive or negative Lévy process was investigated, see also Avram
et al. (2008b).

In this paper, we introduce a diffusion-type of approximation of the ruin probability for
the insurer–reinsurer model, where the flow of claims is controlled by natural generalization
of the Poisson process, namely for a renewal process. We calculate the ruin probability
formulas for both finite and infinite time and study the performance of the approximations.
The article is organized as follows. In Section 2, the model is presented and ruin probabilities
are defined. In Section 3 we recall the idea of the diffusion approximation, which is based
on the weak convergence of the risk process to a Brownian diffusion. The main results are
presented in Section 4. For the insurer–reinsurer model driven by the renewal process, we
derive ruin probability formulas for both finite- and infinite-time horizons. The special case
of the Poisson process is also discussed. In order to check the quality of the approximations,
in Section 5 we perform a Monte Carlo simulation study by considering mixture of two
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exponential, gamma, Weibull (light-tailed cases), lognormal, Pareto and Burr (heavy-tailed
cases) claim amount distributions. We compute relative errors of the approximations with
respect to the ruin probability values calculated by means of Monte Carlo simulations for
the infinite-time case taking sufficiently long time horizons. For the infinite-time case, we
compare also the efficiency of the approximation with the De Vylder’s-type approximation
recently introduced in the literature. Section 6 summarizes our results.

2. Insurer–Reinsurer Model

In this section, we analyse a two-dimensional model that describes capitals of insur-
ance and reinsurance companies or two business lines of the same insurance company with
proportional claim sizes in the renewal process framework. The model can be considered
as a system of two processes (U1(t), U2(t)) defined as follows:

(
U1(t)
U2(t)

)
=

(
u1
u2

)
+

(
δ(1 + θ1)

(1− δ)(1 + θ2)

)
αµt−

(
δ

1− δ

) N(t)

∑
k=1

Xk, (2)

where N(t) is a renewal process with inter-arrival times with mean 1/α and claim amount
sequence (Xk)k≥1 consists of i.i.d. random variables with mean µ and variance σ2.

In that system, the claim arrival process is common for both lines. We call it the
insurer–reinsurer model since its primary application is to describe the evolution of capital
for an insurer and a reinsurer under the quota share reinsurance, where the premiums and
claims are divided between the insurer and the reinsurer with constant proportions δ and
1− δ with δ ∈ (0, 1), respectively; see, e.g., Avram et al. (2008b); Foss et al. (2017); Michna
(2020).

For the insurer–reinsurer model, we define the probability of ruin if at least one of the
two companies is ruined, which is also called ’or’ probability in the literature Avram et al.
(2008a). The time of ruin is as follows:

τ(u1, u2) = inf{t ≥ 0 : U1(t) < 0 or U2(t) < 0}. (3)

The ruin probability in finite time t can be expressed as:

ψ(u1, u2, t) = P(τ(u1, u2) < t) (4)

and the ruin probability in infinite time is given by:

ψ(u1, u2) = P(τ(u1, u2) < ∞). (5)

In this work, we are interested in analytical approximations of the ruin probabilities
given by Equations (4) and (5) for the insurer–reinsurer model. Let us observe now that
by rescaling the two stochastic processes U1(t) and U2(t) of the insurer–reinsurer model
(2) by factors δ−1 and (1− δ)−1, respectively, we arrive at a new system of risk processes
denoted by (X1(t), X2(t)):(

X1(t)
X2(t)

)
=

(
U1(t)/δ

U2(t)/(1− δ)

)
=

(
x1
x2

)
+

(
1 + θ1
1 + θ2

)
αµt−

N(t)

∑
k=1

Xk. (6)

Please note that, due to scaling invariance, the ruin probabilities in finite and infinite
time for the normalized insurer–reinsurer risk process (X1(t), X2(t)) are exactly the same
as for the original process (U1(t), U2(t)). Moreover, due to the higher acquisition and
administration costs of the insurer, it is natural to expect that the premium rate for the
insurer is higher than for the reinsurer and therefore from now on we assume that θ1 > θ2,
see Burnecki et al. (2021).

In this paper we will also rely on the fact that due to the specific construction of the
considered two-dimensional risk process, in which we assume that premiums and claims
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are split between the insurer and the reinsurer with a fixed proportion, the two-dimensional
problem can be reduced to the one-dimensional one, see Avram et al. (2008b).

3. Classical Diffusion Approximation

In this section we present the idea of replacing the risk process with a Brownian motion
with drift. First, let us recall the definition of weak convergence of stochastic processes, see,
e.g., Grandell (1991).

Definition 1. Let D = D[0, ∞) be the space of càdlàg functions, i.e., everywhere right-continuous
and with left limits everywhere on [0, ∞). A stochastic process X = (X(t))t≥0 is said to be in D if
all its realizations are in D. A sequence (X(n))n∈N of stochastic processes in D is said to converge
weakly in the Skorokhod J1 topology to a stochastic process X if for every bounded continuous
functional f on D it follows that

lim
n→∞

E f (X(n)) = E f (X).

In this case, we write X(n) ⇒ X. The weak convergence of X(n) to X implies, for example,
convergence of the finite-dimensional distributions provided that the limit process X is continuous

in probability, and that inf0≤t≤t0 X(n)(t) d→ inf0≤t≤t0 X(t) for any t0 < ∞.

Let us now formally define a renewal process.

Definition 2. Let us assume that the inter-arrival (waiting) times (Mk)k∈N are assumed to be
independent positive random variables with mean 1/α and variance σ2

M. The renewal process N is
defined as:

N(t) = max

{
n :

n

∑
k=1

Mk ≤ t

}
.

It is well-known that for such a process,

lim
t→∞

Var(N(t))
t

= σ2
Mα3

and that
N(nt)− αnt√

n
⇒ σMα3/2W(t), as n→ ∞,

where W is a standard Brownian motion, see Furrer et al. (1997); Grandell (1991).
If

lim
n→∞

(
cn − αn

µ√
n

)
= c− αµ,

then

u + cnt− 1√
n

N(nt)

∑
k=1

Xk ⇒ u + (c− αµ)t−
√

ασ2 + µ2σ2
Mα3W(t).

For the special case of the Poisson process the diffusion approximation is equivalent to
replacing the risk process with the Brownian diffusion with drift by matching its first two
moments.

As a result, we obtain that:
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ψ(u, t) ≈

P
{

inf
0≤s≤t

(
u + θαµs−

√
ασ2 + µ2σ2

Mα3W(s)
)
< 0

}
= Φ̄

 u + θαµt√
(ασ2 + µ2σ2

Mα3)t


+ exp

{
− 2θµu

σ2 + µ2σ2
Mα2

}
Φ

 −u + θαµt√
(ασ2 + µ2σ2

Mα3)t

 (7)

and

ψ(u) ≈ P
{

inf
s≥0

(
u + θαµs−

√
ασ2 + µ2σ2

Mα3W(s)
)
< 0

}
= exp

{
− 2θµu

σ2 + µ2σ2
Mα2

}
, (8)

where Φ is the standard normal distribution and Φ̄ = 1−Φ, e.g., Asmussen and Albrecher
(2010); Grandell (1991). To conclude, the approximation is obtained as a limit of a specifically
constructed sequence of risk processes out of the original one. The limit is in the weak
convergence of the processes sense.

4. Diffusion Approximations for the Insurer–Reinsurer Model

We derive here diffusion approximations for the two-dimensional insurer–reinsurer
model, with claims belonging to the domain of attraction of Gaussian law. Let us recall
that since both the insurer and the reinsurer process are driven by the same counting
process and claims are split by a fixed proportion between the two parties, the time horizon
can be divided into intervals where one process is above the other. This allows one to
reduce the problem of two dimensions to a single dimension. In particular, if x1 > x2,
the ruin is fully controlled by the reinsurer process (it is always below the insurer since
we assumed that θ1 > θ2), hence the ruin probability for the insurer–reinsurer model is
simply the ruin probability of the one-dimensional process X2(t) describing the capital
of the reinsurer. Therefore, we concentrate here on the (non-degenerate) case x1 < x2
and by T we denote the transition time point before which the ruin is controlled by
the insurer and after which the ruin is triggered by the reinsurer. The transition time
T = T(x1, x2) = (x2 − x1)/(µα(θ1 − θ2)), for details, see Avram et al. (2008b); Burnecki
et al. (2021). When considering the ruin probability in finite time t we will also assume that
t > T. Otherwise, the two-dimensional ruin probability problem is simply reduced to the
finite-time ruin probability of the insurer for t being the time horizon.

Theorem 1. Let (X1(t), X2(t)) be the insurer–reinsurer model given by Equation (6) and
T = T(x1, x2) = (x2 − x1)/(µα(θ1 − θ2)), where x1 < x2. For the probability of ruin in
finite time t, we also assume t > T. Then,

ψ(x1, x2, t) ≈ (9)

= 1−
∫ ∞

0

{
Φ

(
z + γ2(t− T)√

ζ(t− T)

)
− exp

{
−2γ2z

ζ

}
Φ

(
−z + γ2(t− T)√

γ2(t− T)

)}
·

·
{

1√
ζT

Φ′
(

z− (x1 + γ1T)√
ζT

)
− g(x1, 0, z, γ1/ζ, ζT)

}
dz

and
ψ(x1, x2) ≈ (10)

= 1−
∫ ∞

0

(
1− exp

{
−2γ2z

ζ

}){
1√
ζT

Φ′
(

z− (x1 + γ1T)√
ζT

)
− g(x1, 0, z, γ1/ζ, ζT)

}
dz,

where γi = θiαµ (i = 1, 2) and ζ = ασ2 + µ2σ2
Mα3.
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Proof. First, let us now focus on the ruin probability in finite time t > T. By rewriting the
general formula for the infinite-time ruin probability ψ(x1, x2) for the insurer–reinsurer
model given in Proposition 1 in Avram et al. (2008b), we obtain for the finite horizon
case that:

ψ(x1, x2, t)=1−
∫ ∞

0
P
(

inf
0≤s≤t−T

X2(s)− x2 + z > 0
)

P
(

inf
0≤s≤T

X1(s) > 0, X1(T) ∈ dz
)

. (11)

The first probability under the integral can be approximated by using the diffusion
approximation presented in Section 3:

P
(

inf
0≤s≤t−T

X2(s)− x2 + z > 0
)
≈ Φ

 z + θ2αµ(t− T)√
(ασ2 + µ2σ2

Mα3)(t− T)


− exp

{
− 2θ2µz

σ2 + µ2σ2
Mα2

}
Φ

 −z + θ2αµ(t− T)√
(ασ2 + µ2σ2

Mα3)(t− T)

. (12)

To approximate the second probability under the integral, we will apply the follow-
ing result for the Brownian motion with drift presented in Borodin and Salminen (2002)
(Equation (1.1.8), p. 257)):

P
(

inf
0≤s≤T

x +γs+W(s) ≤ y, x+γT+W(T) ∈ dz
)

=
1√

2πT
exp

{
γ(z− x)−γ2T

2
− (|z− y|+ x− y)2

2T

}
dz =: g(x, y, z, γ, T)dz. (13)

To simplify the presentation of subsequent calculations, we introduce the following
notation: γi = θiαµ (i = 1, 2) and ζ = ασ2 + µ2σ2

Mα3. It is easy to check that:

P
(

inf
0≤s≤T

X1(s) ≤ 0, X1(T) ∈ dz
)
≈

≈ P
(

inf
0≤s≤T

x + γ1s−
√

ζW(s) ≤ y, x + γ1T −
√

ζW(T) ∈ dz
)
=

= P
(

inf
0≤s≤T

x + γ1s +
√

ζW(s) ≤ y, x + γ1T +
√

ζW(T) ∈ dz
)
|ζs=s′ |
=

= P
(

inf
0≤s′/ζ≤T

x +
γ1s′

ζ
+ W(s′) ≤ y, x +

γ1ζT
ζ

+ W(ζT) ∈ dz
)
=

= P
(

inf
0≤s′≤ζT

x +
γ1s′

ζ
+ W(s′) ≤ y, x +

γ1ζT
ζ

+ W(ζT) ∈ dz
)
|ζT=T′ |
=

= P
(

inf
0≤s′≤T′

x +
γ1s′

ζ
+ W(s′) ≤ y, x +

γ1T′

ζ
+ W(T′) ∈ dz

)
=

=
1√

2πT′
exp

{
γ1

ζ
(z− x)−

γ2
1T′

2ζ2 −
(|z− y|+ x− y)2

2T′

}
dz

=
1√

2πζT
exp

{
γ1

ζ
(z− x)−

γ2
1T

2ζ
− (|z− y|+ x− y)2

2ζT

}
dz

= g(x, y, z, γ1/ζ, ζT)dz. (14)
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Therefore, we can rewrite the second probability under the integral in Equation (11) as:

P
(

inf
0≤s≤T

X1(s) > 0, X1(T) ∈ dz
)
≈

≈ P
(

inf
0≤s≤T

x1 + γ1s−
√

ζW(s) > 0, x1 + γ1T −
√

ζW(T) ∈ dz
)
=

= P
(

x1 + γ1T −
√

ζW(T) ∈ dz
)
− (15)

− P
(

inf
0≤s≤T

x1 + γ1s−
√

ζW(s) ≤ 0, x1 + γ1T −
√

ζW(T) ∈ dz
)
=

=
1√
ζT

Φ′
(

z− (x1 + γ1T)√
ζT

)
− g(x1, 0, z, γ1/ζ, ζT)dz,

where Φ′(·) is the pdf of the standard normal distribution.
Finally, we substitute approximations (12) and (15) into Equation (11) to obtain the

formula for the ruin probability in finite time t:

ψ(x1, x2, t) ≈

= 1−
∫ ∞

0

{
Φ

(
z + γ2(t− T)√

ζ(t− T)

)
− exp

{
−2γ2z

ζ

}
Φ

(
−z + γ2(t− T)√

γ2(t− T)

)}
·

·
{

1√
ζT

Φ′
(

z− (x1 + γ1T)√
ζT

)
− g(x1, 0, z, γ1/ζ, ζT)

}
dz. (16)

In the infinite-horizon case, we substitute the classical approximation Formula (8) into
Equation (11) and the first probability under the integral (or equivalently let t → ∞ in
Equation (16)) and obtain:

ψ(x1, x2) ≈ (17)

= 1−
∫ ∞

0

(
1− exp

{
−2γ2z

ζ

}){
1√
ζT

Φ′
(

z− (x1 + γ1T)√
ζT

)
− g(x1, 0, z, γ1/ζ, ζT)

}
dz.

Remark 1. For the Poisson process with intensity λ > 0, Theorem 1 holds with γi = θiλµ
(i = 1, 2) and ζ = λ(σ2 + µ2).

5. Results—Simulation Study

In this section, we present a simulation study that gives us insight into the quality of
the diffusion approximation for the probability of the ruin in the insurer–reinsurer model
that we obtained in previous parts of this work. The main idea is to compare the results of
ruin probability approximations given by Theorem 1 with the results of the Monte Carlo
simulations for both infinite and finite time horizons. Furthermore, to assess the accuracy
of the ruin probability approximation introduced in this work, we compare it with the
results of the De Vylder-type approximation proposed in a previous study Burnecki et al.
(2019).

Empirical studies prove that insurance loss data are of different nature and can be
described using light- or heavy-tailed distributions. Therefore, in our simulation study, we
investigate the quality of the proposed approximation by considering several cases of both
claim-distribution classes that were fitted to real-world data Burnecki et al. (2019); Burnecki
and Teuerle (2011); Ma and Ma (2013). We distinguish between these two classes by their tail
behaviour Burnecki and Teuerle (2011); Mikosch (2009). Namely, the distribution X is said to
be light-tailed if there exist constants a > 0 and b > 0 such that FX(x) = 1− FX(x) ≤ ae−bx,
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and is heavy-tailed if for all a > 0 and b > 0 such that FX(x) > ae−bx, where FX(x) is a
cumulative distribution function of X.

In the simulation study, we choose the following light-tailed distributions that are
defined using their probability density functions:

• mixture of two exponential distributions:

f (x) = a1β1e−β1x + a2β2e−β2x, x ≥ 0, (18)

where β1 = 9.63, β2 = 0.77 and weights a1 = 0.25 and a2 = 0.75;
• gamma distribution:

f (x) =
βα

Γ(α)
xα−1e−βx, x ≥ 0, (19)

where α = 1 and β = 1;
• and Weibull distribution:

f (x) = cτxτ−1e−cxτ
, x ≥ 0, (20)

with c = 0.929 , τ = 1.201.

Among the heavy-tailed distributions, we propose the following three distributions:

• log-normal distribution:

f (x) =
1√

2πσx
e−

(ln(x)−µ)2

2σ2 , x ≥ 0, (21)

where µ = −0.6 and σ =
√

1.2;
• generalized Pareto distribution:

f (x) =
1
σ

(
1 + k

x− θ

σ

)−1− 1
k
, x ≥ 0, (22)

where k = 0.05, σ = 0.42 and θ = 0.56;
• and Burr type XII distribution:

f (x) =
kc
α

( x
α

)c−1(
1 +

( x
α

)c
)k+1 , x ≥ 0, (23)

with α = 1.65, c = 1.85, k = 2.75.

The parameters of the considered heavy-tailed distributions are chosen in such a way
that the variance exists. Furthermore, similarly to Burnecki et al. (2019), we choose the
parameters of all distributions to ensure that their means are approximately equal to 1.

In our numerical study, we compare the ruin probabilities in finite- and infinite-time
horizons calculated by means of the diffusion approximations from Theorem 1 with the
Monte Carlo (MC) results. It is worth clarifying that the MC results for the considered ruin
probabilities in the infinite-time horizon are obtained for a long enough time horizon and
are used as a reference ’exact’ value for the comparison.

Furthermore, we assume that the initial capital of the insurer u1 takes the values:
u1 = 0, 1, . . . , 50 and the capital of the reinsurer is equal to u2 = u1/3. We also assume that
the proportion parameter of the quota-share δ is equal 0.8, while the safety loadings for the
insurer and the reinsurer take the values θ1 = 0.3 and θ2 = 0.03, respectively. The accuracy
of the diffusion approximations of the ruin probability ψ·(·) is measured by the relative
error with respect to ψMC(·) using the following formula (ψMC(·)− ψ·(·))/ψMC(·).
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In Figures 1–4 we present the results for the simulated renewal process with inter-
arrival times being log-normal with mean 1/α = 0.1 and variance σM = 0.1. We calculate
the relative errors of the diffusion approximations for the renewal process and the diffusion
approximations for the Poisson process with λ = 10 (corresponding to parameters of the
simulated renewal process) with respect to the MC results. In Figures 1 and 2 the results
for the finite-time horizon t = 100 are depicted. We can see that the absolute relative errors
for all claim amount distributions are on average not larger than 10%, although for larger
capitals in the case of gamma, lognormal, generalized Pareto and Burr XII distributions
they reach a level of 20%. For all cases, except for the Weibull distribution, the relative error
gradually increases with the initial capital. It is worth noting that in the case of generalized
Pareto distribution the relative error for u1 ∈ {40, . . . , 50} increases when ruin probability
values are close to 0. Figures 3 and 4 depict the results for the infinite-time horizon, where
for the MC simulations we take t = 1000. In general, the obtained values of the ruin
probabilities are slightly higher compared to the finite-time horizon case. However, the
conclusions are analogous. It is worth mentioning that for both finite- and infinite-time
horizons, the accuracy of both diffusion approximations is quite similar.
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Figure 1. Ruin probabilities (top panels) for the insurer–reinsurer model in the finite-time horizon
calculated using Monte Carlo (MC) simulations with the renewal process with α = 10, σM = 0.1, the
diffusion approximation with the Poisson process (DP) with λ = 10 and the diffusion approximation
with the renewal process (DR) for selected light-tailed distributions. Respective relative errors
(bottom panels) of the approximations. In the simulations t = 100, number of MC iterations is 10,000,
parameters of claim distributions are given by Equations (18)–(20).
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Figure 2. Ruin probabilities (top panels) for the insurer–reinsurer model in the finite-time horizon
calculated using Monte Carlo (MC) simulations with the renewal process with α = 10, σM = 0.1, the
diffusion approximation with the Poisson process (DP) with λ = 10 and the diffusion approximation
with the renewal process (DR) for selected heavy-tailed distributions. Respective relative errors
(bottom panels) of the approximations. In the simulations t = 100, number of MC iterations is 10,000,
parameters of claim distributions are given by Equations (21)–(23).
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Figure 3. Ruin probabilities (top panels) for the insurer–reinsurer model in the infinite-time horizon
calculated using Monte Carlo (MC) simulations with the renewal process with α = 10, σM = 0.1, the
diffusion approximation with the Poisson process (DP) with λ = 10 and the diffusion approximation
with the renewal process (DR) for selected light-tailed distributions. Respective relative errors
(bottom panels) of the approximations. In the simulations, the number of MC iterations is 10,000,
parameters of claim distributions are given by Equations (18)–(20).
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Figure 4. Ruin probabilities (top panels) for the insurer–reinsurer model in the infinite-time horizon
calculated using Monte Carlo (MC) simulations with the renewal process with α = 10, σM = 0.1, the
diffusion approximation with the Poisson process (DP) with λ = 10 and the diffusion approximation
with the renewal process (DR) for selected heavy-tailed distributions. Respective relative errors
(bottom panels) of the approximations. In the simulations, the number of MC iterations is 10,000,
parameters of claim distributions are given by Equations (21)–(23).

In our last analyses presented in Figures 5 and 6 we simulate the Poisson process with
λ = 10) and compare the diffusion approximation for the Poisson process with the so-called
De Vylder-type approximation Burnecki et al. (2019). We can observe clearly that in all
cases, for the log-normal, mixture of exponential and gamma distributions, the diffusion
approximation leads to smaller relative errors. In the case of the Weibull distribution,
both approximations give comparable results. For larger initial capital u1 ∈ {20, . . . , 50}
and the generalized Pareto and Burr XII distributions, the De Vylder-type approximation
outperforms the diffusion approximation.

To conclude, we found that the diffusion approximation works very well for both light-
and heavy-tailed distributions that are widely used in non-life insurance mathematics. For
many cases, the error was almost negligible from a practical point of view. This is somehow
in contrast to performance analyses performed for the classical one-dimensional diffusion
approximation which found the approximation relatively poor, see Burnecki and Weron
(2005); Grandell (1991). The results were obtained for the insurer–reinsurer model which
corresponds to the situation of an insurer and a reinsurer under the quota share contact in
which the ceding insurer cedes an agreed-on percentage of every risk it insures that falls
within a class of business subject to the treaty. A quota share treaty is utilized when an
insurer wants to lower the financial risk to be able to underwrite more policies.
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Figure 5. Ruin probabilities (top panels) for the insurer–reinsurer model in the infinite-time horizon
calculated using Monte Carlo (MC) simulations with the Poisson process with λ = 10, the diffusion
approximation with the Poisson process (DP) and the De Vylder-type approximation (DV) for selected
light-tailed distributions. Respective relative errors (bottom panels) of the approximations. In the
simulations the number of MC iterations is 10,000, parameters of claim distributions are given by
Equations (18)–(20).
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Figure 6. Ruin probabilities (top panels) for the insurer–reinsurer model in the infinite-time horizon
calculated using Monte Carlo (MC) simulations with the Poisson process with λ = 10, the diffusion
approximation with the Poisson process (DP) and the De Vylder-type approximation (DV) for selected
heavy-tailed distributions. Respective relative errors (bottom panels) of the approximations. In the
simulations, the number of MC iterations is 10,000, parameters of claim distributions are given by
Equations (21)–(23).
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6. Conclusions

Ruin theory can be viewed as the theoretical foundation for modeling insolvency risk.
In this paper, we addressed the issue of efficient approximation of the ruin probability
within the insurer–reinsurer model for a general counting process, namely the renewal.
The considered two-dimensional model classically describes the situation of insurance
and reinsurance companies with a proportional quota share reinsurance contract or two
branches of the same insurance company (Avram et al. 2008a, 2008b). Since only in the
special case of the Poisson process and exponentially distributed claims, a simple ruin
probability formula is known in infinite time Avram et al. (2008b); Burnecki et al. (2021),
easy-to-use analytical approximations are needed.

In the literature, a De Vylder-type approximation for the insurer–reinsurer model was
recently introduced for the infinite-time case Burnecki et al. (2019). The approximation
requires only the first three finite moments of the claim amount distribution, and similarly
to the above-mentioned results for the exponential claims, the counting process is assumed
to be Poisson.

The idea of the diffusion approximation presented here is based on the weak con-
vergence of stochastic processes, which enables the replacement of the initial risk process
with an arithmetic Brownian motion. The counting process is more general than Poisson,
namely, it is a renewal process. The only assumption for the claim amount distributions is
that they should satisfy the central limit theorem, so their variance is finite. We applied this
idea to the insurer–reinsurer model to derive simple ruin probability approximations for
both finite and infinite time. The special case of the Poisson process was also presented.

Next, we checked the usefulness of the introduced approximations by studying sev-
eral claim amount distributions (light- and heavy-tailed) and performing a Monte Carlo
simulation study for finite and infinite time. We considered the Poisson process and re-
newal process with log-normally distributed waiting times as counting processes. To make
the results comparable, the parameters of the claim amount distributions were chosen to
make their means similar. Similarly, for the counting processes, the mean waiting times
match. For the simulation study in infinite time, we took sufficiently large time horizons.
In the infinite-time case, for the Poisson case, we also compared our results with the De
Vylder-type approximation.

We found the introduced approximations to be very accurate for both light- and heavy-
tailed distributions. The absolute relative error was quite small and gradually increased
with initial capital. The quality of the Poisson process approximation in infinite time was
usually better than the De Vylder-type especially in the light-tailed case. We also note that
the diffusion approximation works for a more general class of distributions and for a more
general counting process.
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