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Abstract: In this study, we consider the pricing of energy derivatives when the evolution of spot
prices follows a tempered stable or a CGMY-driven Ornstein–Uhlenbeck process. To this end, we
first calculate the characteristic function of the transition law of such processes in closed form. This
result is instrumental for the derivation of nonarbitrage conditions such that the spot dynamics is
consistent with the forward curve. Moreover, we also conceive efficient algorithms for the exact
simulation of the skeleton of such processes and propose a novel procedure when they coincide
with compound Poisson processes of Ornstein–Uhlenbeck type. We illustrate the applicability of
the theoretical findings and the simulation algorithms in the context of pricing different contracts,
namely strips of daily call options, Asian options with European style and swing options.

Keywords: Lévy-driven Ornstein–Uhlenbeck processes; CGMY process; tempered stable distributions;
exact simulation; energy markets; derivative pricing

1. Introduction

Most energy and commodity markets exhibit seasonality, mean-reversion high volatili-
ties and occasional distinctive price spikes, which results in demand for derivative products
which protect the holder against high prices. In equity markets, there is clear evidence
that asset returns are not Gaussian and it is common practice to rely on Lévy processes,
other than the Brownian motion, in order to capture heavy-tails and jumps of the log-
prices. Several empirical studies (see for instance Carr and Crosby 2010) have shown that
the CGMY Lévy processes introduced by Carr et al. (2002), named after its authors, are
a valuable alternative. Moreover, the class of such processes is quite flexible and also
encompasses variance gamma processes introduced in Madan and Seneta (1990) and is,
on the other hand, a special case of the wider class of bilateral tempered stable processes
(see Küchler and Tappe 2013), which in turn represent an alternative to normal inverse
Gaussian models (see Barndorff-Nielsen 1998 and Cont and Tankov 2004)

Commodity and energy markets, however, exhibit mean reversion which cannot be
described by plain Lévy processes but rather by Lévy-driven Ornstein–Uhlenbeck (OU)
processes. In a series of papers, Sabino (2020a) and Sabino and Cufaro Petroni (2021a, 2022)
study the analogous of variance gamma and tempered stable processes of OU type. In
particular in this latter case, Sabino and Cufaro Petroni (2022) details the exact simulation
of tempered stable subordinators only. Following this route, in this study, we consider the
pricing of energy derivatives assuming that the spot price is driven by CGMY and tempered
stable processes of OU type. The first novel contribution consists in the derivation of the
closed formula of the characteristic function of the transition law of these processes that is
instrumental to find nonarbitrage conditions. It also gives the fundamental ingredient to
calculate the price of financial derivatives with FFT-based methods.
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The second contribution is the extension of the exact methods for the simulation of
the skeleton of tempered stable processes of OU type to the case of finite activity, hence
compound Poisson processes of OU type, but also to the bilateral and the CGMY cases.

We then illustrate the applicability of our findings and the proposed simulation algo-
rithms to the pricing of a few energy derivative contracts. As a first application, we consider
the pricing of a daily strip of call options on the day-ahead spot price driven by tempered
stable OU processes using the FFT technique of Carr and Madan (1999). Secondly, we
consider the pricing of Asian options depending on the day-ahead spot price described by a
CGMY-driven OU process via Monte Carlo simulations. In this case, we calibrate the model
parameters to realistic data, namely to the historical gas spot prices in Italy (PSV) and we
also highlight the differences between our exact simulation schemes and two approximate
procedures. The last example consists in pricing swing options with the modified version of
the Least-Squares Monte Carlo method detailed in Boogert and de Jong (2008, 2011) using
market models based on a CGMY-driven OU process that coincides with compound Poisson
processes of OU type.

The paper is organized as follows. Section 2 introduces tempered stable and CGMY
processes and the general results relative to Lévy-driven OU processes. In Section 3, we
focus on the classical tempered stable and CGMY processes of OU type with finite variation
and derive the characteristic function of their transition law. In Section 4, we present
the algorithms for the simulation of the skeleton of the processes under study and we
focus on the case of compound Poisson processes of OU type. We also present numerical
experiments demonstrating their efficiency. The application of these results is illustrated in
Section 5 in the context of the pricing of energy derivative contracts, namely daily strips
of call options, Asian options with European exercise and swing options written on the
day-ahead spot price. Finally, Section 6 concludes the paper with an overview of future
inquiries and possible further applications.

Notation

Before proceeding, we introduce some notation and shortcuts that are used throughout
the paper. We write Γ(α, β) to denote the gamma distribution with shape parameter α > 0
and rate parameter β > 0. Moreover, we write U ([0, 1]) to denote the uniform distribution
in [0, 1] and P(λ) to denote the Poisson distribution with parameter λ > 0. We use the
shortcuts id and sd for infinitely divisible and self-decomposable distributions, respectively. We
use the shortcut rv for random variable and iid for independently and identically distributed,
whereas we use chf, lch cgf and pdf as shortcuts for characteristic function, logarithmic
characteristic, cumulant generating function and density function, respectively.

2. Preliminaries

Take a Lévy process L(·) of classic tempered stable type, namely with the Lévy measure
having density

ν(x) = νp(x) + νx(x) = cp
e−βp x

x1+αp
1x≥0 + cn

eβn x

|x|1+αn
1x<0 (1)

where cp, cn, βp and βn are all positive numbers, αp < 2 and αn < 2. Hereafter, we denote
with BCT S(αp, αn, βp, βn, cp t, cn t) the law of L(t).

Different applications of such a process can be found among others in Koponen (1995),
Carr et al. (2002), Poirot and Tankov (2006) and Ballotta and Kyriakou (2014). In particular,
the model introduced in Carr et al. is named CGMY and assumes C = cp = cn, Y =
αp = αn, G = βn and M = βp from the names of the authors. It can also be proven that a
classic tempered stable process is a time-changed Brownian motion provided cp = cn and
αp = αn = α > −1 (see Proposition 4.1 of Cont and Tankov 2004). For sake of completeness,
it is worthwhile mentioning that we are referring to classic tempered stable processes
because different processes can be constructed applying an alternative tempering function
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rather than the exponential function used in (1) (see Rosinski 2007). An overview of such
processes, named general tempered stable processes, can be found in Grabchak (2016).

In the following, we consider the subset of classic tempered stable processes with
no drift and with finite variation for which it holds αp < 1 and αn < 1, and in particular
when αp < 0 and αn < 0, the subset consists of Poisson processes (see Cont and Tankov
2004). Due to the fact that any process of finite variation can be seen as the difference of two
independent subordinators, the process L(·) can be written as L(t) = Lp(t)− Ln(t), where
Lp(·) and Ln(·) are two classic tempered stable subordinators with Lévy densities νp(x)
and νn(−x), respectively. In the following, we dub classic tempered stable subordinators
with CTS, whereas the full bilateral case is denoted with BCTS. Moreover, we denote the
marginal law of a CTS subordinator at time t with CT S(α, β, c t).

Consider now an Ornstein–Uhlenbeck (OU) process X(·) solution of the stochastic
differential equation

dX(t) = −bX(t)dt + dL(t), X(0) = X0 P-a.s. b > 0 (2)

namely,

X(t) = X0 e−bt + Z(t), Z(t) =
∫ t

0
e−b (t−s)dL(s), (3)

Z(t) = Zp(t)− Zn(t), Zd(t) =
∫ t

0
e−b (t−s)dLd(s), d ∈ {p, n}. (4)

Following the convention in Barndorff-Nielsen and Shephard (2001), X(·) is then named
OU-BCTS process or, if the above parameter constrain holds, OU-CGMY process.

There is a close relation between the concept of self-decomposability and the theory
of Lévydriven OU processes, indeed as observed in Barndorff-Nielsen et al. (1998), the
solution process (3) is stationary if and only if its chf ϕX(u, t) is constant in time and steadily
coincides with the chf ϕX(u) of the sd invariant initial distribution that turns out to be
decomposable according to

ϕX(u) = ϕX(u e−b t)ϕZ(u, t)

where now, at every given t, ϕZ(u, t) = eψZ(u,t) denotes the id chf of the rv Z(t) in (3) and
ψZ(u, t) its lch. We remark that the process Z(·) is neither a Lévy process nor an additive
process, however, as we clarify in the following, the law of the rv Z(t) is id.

We recall here that a law with chf η(u) is said to be sd (see Sato 1999; Cufaro Petroni 2008)
when for every 0 < a < 1 we can find another law with chf χa(u) such that

η(u) = η(au)χa(u). (5)

Of course a rv X with chf η(u) is also said to be sd when its law is sd, and looking at the
definitions, this means that for every 0 < a < 1 we can always find two independent rv’s—a
Y with the same law of X and a Za with chf χa(u)—such that in distribution

X d
= aY + Za. (6)

Hereafter, the rv Za is called the a-remainder of X, and in general it has an id distribution
(see Sato 1999).

This last statement apparently means that the law of Z(t) in the solution (3) coincides
with that of the a-remainder of the sd, stationary law ϕX , provided that a = e−b t. Therefore,
one can rely on the results relative to id laws to study the properties of the rv Z(t).



Risks 2022, 10, 148 4 of 23

It is easy indeed to see from (3) that the chf of the time homogeneous transition law
with a degenerate initial condition X(0) = x0, P-a.s. is

ϕX(u, t|x0) = e ix0ue−bt
ϕZ(u, t) =

ϕX(u) e ix0ue−bt

ϕX(u e−b t)
(7)

moreover, we have
ψZ(u, t) = ψZp(u) + ψZn(−u), (8)

and
ψX(u, t|x0) = iux0e−bt + ψZ(u, t) = iux0e−bt + ψZp(u, t) + ψZn(−u, t) (9)

where ψZd(u, t) = ln ϕZd(u, t), d ∈ {p, n} is the lch of Zd(t), d ∈ {p, n}. Moreover, the
transition lch of a OU process can also be written in terms of the corresponding ψL(u) in
the form

ψX(u, t|x0) = iux0e−bt + ψZ(u, t) = iux0e−b t +
∫ t

0
ψL

(
ue−b s

)
ds. (10)

Finally, in virtue of the results of Sabino and Cufaro Petroni (2022), one can relate the Lévy
density νZ(x, t) of Z(t) to that of the BDLP L(·) at t = 1 denoted with νL(x)

νZ(x, t) =
1

b |x|


∫ x

x/a
νL(y)dy x < 0

∫ x/a
x νL(y)dy x > 0

a = e−bt. (11)

3. OU-BCTS and OU-CGMY Processes

In this section, we study OU-BCTS and OU-CGMY processes with finite variation and
distinguish the case where the BDLP is of infinite activity, 0 < αp < 1 and 0 < αn < 1, to
that of finite activity, namely when Z(·) is a compound Poisson process. We do not discuss
the setting αp = αn = 0 because it is already covered in Sabino (2020a) and corresponds to
a variance gamma-driven OU process, therefore of infinite activity and finite variation.

3.1. Infinite Activity

Apparently, the study of the transition law of a OU-BCTS process X(·) coincides with
the study of the process Z(·), and in particular of the processes Zp(·) and Zn(·), defined
in (4). One of course can rely on these last two processes to build OU-BCTS processes.

Sabino and Cufaro Petroni (2022) and Qu et al. (2021) designed an exact decomposition
of the transition law of OU-CTS processes as the convolution of two independent rv’s plus
a degenerate term. For simplicity, we report this result here below in addition because such
a OU process is driven by a CTS subordinator, and we consider only Zp(·).

Proposition 1. For 0 < αp < 1, and at every t > 0, the solution of an OU-CTS Equation (3) with
X(0) = X0, P-a.s. is in distribution the sum of three independent rv’s

X(t) = aX0 + Zp(t)
d
= aX0 + X1 + X2 a = e−b t (12)

where X1 is distributed according to the law CT S
(

αp, βp
a , cp

1−aα
p

αp b

)
, whereas

X2 =
Na

∑
k=1

Jk
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is a compound Poisson rv where Na is an independent Poisson rv with parameter

Λa =
cp β

αp
p Γ(1− αp)

b α2
paαp

(1− aαp + aαp log aαp) (13)

and Jk, k > 0 are iid rv’s with density

f J(x) =
αp aαp

1− aα
p + aαp log aαp

∫ 1
a

1

x−αp
(

βp v
)1−αp e−βpv x

Γ(1− αp)

vαp − 1
v

dv (14)

namely, a mixture of a gamma law and a distribution with density

fV(v) =
αp aα

p

1− aαp + aαp log aαp

vαp − 1
v

1 ≤ v ≤ 1/a. (15)

The extension to the bilateral OU-BCTS process is straightforward, for instance, the
simulation algorithms consist of repeating the procedure for an OU-CTS process two times.

The main contribution of this subsection is the derivation of the lch and hence the chf
and the moment-generating function of Z(t) that is instrumental to find the risk neutral
conditions for market models based on OU-BCTS processes and to the pricing of derivative
contracts using FFT methods.

Proposition 2. The lch ψZp(u, t), u ∈ R with 0 < αp < 1 can be represented as:

ψZp(u, t) = −
cp β

αp
p Γ(1− αp)

αp b

[
I
(

u, αp, βp,
βp

a

)
+ log a

]
, a = e−b t (16)

with

I(u, α, β1, β2) =
∫ β2

β1

z−1−α(z− iu)αdz

= − 1
α

[(
u

i β2

)α

2F1

(
−α,−α, 1− α,− i β2

u

)
−(

u
i β1

)α

2F1

(
−α,−α, 1− α,− i β1

u

)]
(17)

where 2F1(a, b, c, x) is the hypergeometric function, 0 < α < 1, β1 > 0 and β2 > 0.

Proof. From (11) it also results

νZp(x, t) =
cp

b x

∫ x
a

x

e−βpy

yαp+1 dy =
cp

b

∫ 1
a

1

e−βpwx

xαp+1 wαp+1 dw

therefore, because of the Lévy-Khintchin theorem

ψZp(u, t) =
1
b

∫ 1
a

1
w−αp−1dw

∫ ∞

0
cp

(
ei u x − 1

) e−βpwx

xαp+1 dx
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The second integral is the lch of a CT S(αp, βp, cp) law with 0 < αp < 1, and from Lemma 2.5
of Küchler and Tappe (2013) we have

ψZp(u, t) =
cp Γ(−αp)

b

∫ 1
a

1

(
βp w− i u

)αp − (βp w)αp

wαp+1 dw

=
cp Γ(−αp)

b

[∫ 1
a

1

(
βp w− i u

)αp

wαp+1 dw− β
αp
p

∫ 1
a

1

dw
w

]

= −
cp βα

p Γ(1− αp)

α b

[∫ βp
a

βp
z−1−αp(z− iu)αp dz + log a

]

where, of course, −αpΓ(−αp) = Γ(1− αp), and in the last step we used the change in
variables βp w = z. In order to conclude the proof, we first observe that under the special
case γ = α + 1 the derivative of the hypergeometric function is

d
d z 2F1(α, β, α + 1, z) =

d
d z 2F1(β, α, α + 1, z) = −

α
(
(1− z)β − 2F1(α, β, α + 1, z

)
)

z

then, with some algebra, we obtain

d
d z

(
z−α

2F1

(
−α,−α, 1− α,− i z

u

))
= α

(
i
u

)α

zα+1 (z− i u),

therefore, we can write the integral

I
(

u, α, βp,
βp

a

)
= − 1

α

[(
a u
i βp

)α

2F1

(
−α,−α, 1− α,− i β2

a u

)
−(

u
i βp

)α

2F1

(
−α,−α, 1− α,−

i βp

u

)]
as claimed.

Remark 1. Several transformation and recursion formulas are applicable to the hypergeometric
functions. Using 9.131.1 in Gradshteyn and Ryzhik (2007), we have

2F1(−α,−α, 1− α, x) = (1− x)α+1
2F1(1, 1, 1− α, x)

and accordingly, (17) becomes

I(u, α, β1, β2) = − i
α u

[
β−α

2 (β2 − i u)α+1
2F1

(
1, 1, 1− α,− i β2

u

)
−

β−α
1 (β1 − i u)α+1

2F1

(
1, 1, 1− α,− i β1

u

)]
. (18)

Corollary 1. The cgf mZp(s, t) = ln E
[
es Zp(t)

]
of Zp(t) with 0 < αp < 1 exists for s < βp

and is:

mZp(s, t) = −
c β

αp
p Γ(1− αp)

αp b

[
Ĩ
(

s, αp, βp,
βp

a

)
+ log a

]
s < βp (19)
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where

Ĩ(s, α, β1, β2) =
∫ β2

β1

z−1−α(z− s)αdz =

1
α s

[
β−α

2 (β2 − s)α+1
2F1

(
1, 1, 1− α,

β2

s

)
−

β−α
1 (β1 − s)α+1

2F1

(
1, 1, 1− α,

β1

s

)]
. (20)

Note that setting ψZp(−i s, t) = mZp(s, t) in (17), one may claim that the cgf assumes
complex values, which is obviously wrong, and it explains why we have preferred to rely
on (18) to write (20).

In virtue of (8), Proposition 2 and Corollary 1 can be easily extended to cope with Z(t)
defined for OU-BCTS processes.

Corollary 2. For a OU-BCTS process, the lch ψZ(u, t), u ∈ R can be represented as:

ψZ(u, t) = −
cp β

αp
p Γ(1− αp)

αp b

[
I
(

u, αp, βp,
βp

a

)
+ log a

]
−

c βαn
n Γ(1− αn)

αn b

[
I
(
−u, αn, βn,

βn

a

)
+ log a

]
. (21)

Accordingly,

Corollary 3. The cgf at time t exists for −βn < s < βp and is:

mZ(s, t) = −
c β

αp
p Γ(1− αp)

αp b

[
Ĩ
(

s, αp, βp,
βp

a

)
+ log a

]
−

c βαn
n Γ(1− αn)

αn b

[
Ĩ
(
−s, αn, βn,

βn

a

)
+ log a

]
. (22)

Remark 2. In contrast to Proposition 1 that is valid under the condition 0 < αp < 1, we show in
the next subsection that Proposition 2 and consequently all corollaries are also valid for αp < 0 and
αn < 0 as well.

3.2. Finite Activity

When αp < 0, the BDLP of a CTS process turns out to be a compound Poisson process;
indeed, the integral of the Lévy density is convergent. In more detail, we have:∫ ∞

0
νLp(x)dx = cp

∫ ∞

0
x−αp−1e−βp xdx = cp Γ(−αp) β

−αp
p = λp (23)

where now −α is positive. It results then that

Lp(t) =
Np(t)

∑
k=0

Jk, J0 = 0, P-a.s., (24)

where Np(t) is a Poisson process with the intensity λp defined in (23) and jumps sizes Jk
independent of Np(t) distributed according to a gamma law with shape parameter −αp
and rate parameter βp; indeed, the pdf of each copy of Jk is

f J(x) =
νL(x)

λ
=

β
−αp
p x−αp−1 e−βp x

Γ(−αp)
, x > 0.
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This last representation is consistent with Jørgensen (1997), who observed that a compound
Poisson process with gamma-distributed jumps follows a Tweedie distribution that is
actually a CTS law.

Proposition 3. For αp < 0, and at every t > 0, the solution of an OU-CTS Equation (3) with
X(0) = X0, P-a.s. is in distribution the sum of two independent rv’s

X(t) = aX0 + Zp(t)
d
= aX0 + X1 a = e−b t (25)

where X1 can be written as ∑
Np(t)
k=0 J̃k. Np(t) is a Poisson process with intensity λp given by

Equation (23), and J̃k, k > 0 are iid jumps distributed according to a mixture of gamma law and a
uniform distribution with pdf

∫ 1

0

(
βp eb v t

)−αp
x−αp−1e−βp eb v t x

Γ(−αp)
dv (26)

or equivalently J̃k ∼ Γ(−αp, βp eb Ukt), k > 0 where Uk ∼ U (0, 1).

Proof. According to the definition of the OU-CTS process for αp < 0 and the representa-
tion (24), we can write

X(t) = a X0 +
Np(t)

∑
k=0

Jk e−b(t−τk)

where τk are the jump times of the Poisson process Np(t) with intensity λp. On the other
hand, as observed by Lawrance (1980) in the context of Poisson point processes, for every
t > 0, we have

Np(t)

∑
k=0

Jke−b(t−τk) d
=

Np(t)

∑
k=0

Jke−b t Uk , U0 = 0, P-a.s.

irrespective of the law of Jk, where Uk ∼ U ([0, 1]), k > 0 form a sequence of iid uni-
formly distributed rv’s in [0, 1], also independent of Jk. Knowing that for any gamma-
distributed random variable Y ∼ Γ(α, β), and A > 0, A Y ∼ Γ

(
α, β

A

)
, it results that

J̃k ∼ Γ(−αp, βp eb Uk ), k > 0, which concludes the proof.

Because with αp < 0, Zp(t) is distributed according to a compound Poisson rv its lch
is

ψZp(u, t) = λp t

∫ 1

0

(
βp eb v t

βp eb v t − i u

)−αp

dv− 1


=

λp

b

(∫ βp eb t

βp
z−αp−1(z− i u)αp dz− b t

)

where in the last step we used the change in variables z = βp eb v t. Replacing a = e−b t and
λp in (23), we obtain the same representation of ψZp(u, t) as that in Proposition 2; of course,
all corollaries of Section 3.1 follow accordingly.

4. Simulation Algorithms

The sequential generation of the skeleton of an OU-BCTS or an OU-CGMY process on
a time grid t0, t1, . . . , tI simply consists in implementing the following recursive procedure
with initial condition X(t0) = x0 taking ai = e−b(ti−ti−1), i = 1, . . . , I:

X(ti) = aiX(ti−1) + Zai , i = 1, . . . , I. (27)
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Sabino and Cufaro Petroni (2022) have already discussed algorithms tailored for
OU-CTS processes of infinite activity; the extension to bilateral OU-BCTS or OU-CGMY
processes is straightforward.

In this section, we illustrate the simulation procedure when these processes are of
finite activity, which to our knowledge has not been investigated so far. To this end, the
simulation steps to generate the skeleton of a OU-CTS process with parameters b, αp, βp
and cp is summarized in Algorithm 1.

Algorithm 1 The simulation steps to generate the skeleton of a OU-CTS process with
parameters b, αp, βp and cp

1 X0 ← x
2 for i = 1, . . . , I do
3 ∆ti = ti − ti−1, a← e−b∆ti

4 n← N ∼ P(λp ∆ti), . Generate an independent Poisson rv with λ in (23)
5 um ← Um ∼ U (0, 1), m = 1, . . . , n . Generate n iid uniform rv’s
6 β̃m ← βp eb um , m = 1, . . . , n
7 ˜jm ← ˜Jm ∼ G(1− α, β̃m), m = 1, . . . , n . Generate n independent gamma rv’s with

scale −αp and random rates β̃m

8 x1 ← ∑n
m=1

˜jm
9 X(ti)← a X(ti−1) + x1.

10 end for

We remark that when −αp = 1, the BDLP of the OU-CTS process is a compound
Poisson process with exponential jumps that corresponds to an OU process with a gamma
stationary law. For this configuration, it is preferable to use the faster and more efficient
algorithm detailed in Sabino and Cufaro Petroni (2021a, 2021b).

Finally, the procedure to generate the skeleton of OU-BCTS and OU-CGMY processes
simply entails repeating steps 5 to 8 two times and adding their outcome to step 9.

Numerical Experiments

In this section, we assess the performance and the effectiveness of the algorithms
for the simulation of an OU-BCTS process. All the simulation experiments in the present
paper were conducted using Python with a 64-bit Intel Core i5-6300U CPU, 8 GB RAM. The
performance of the algorithms is ranked in terms of the percentage error relative to the first
four cumulants denoted err % and defined as

err % =
true value− estimated value

true value

Taking advantage of (10), one can calculate the cumulants cX,k(x0, t), k = 1, 2, . . . of X(t)
for X0 = x0 from the cumulants cL,k of the BCTS law according to

cX,1(x0, t) = E[X(t)|X0 = x0] = x0e−b t +
cL,1

b

(
1− e−b t

)
, k = 1 (28)

cX,k(x0, t) =
cL,k

k b

(
1− e−k b t

)
, k = 2, 3, . . . (29)

where

cL,k =
∫ +∞

−∞
xkνL(x) dx = cp β

αp−k
p Γ(k− αp) + (−1)kcn βαn−k

n Γ(k− αn). (30)

In our numerical experiments, we consider an OU-CTS process with parameters
(
b, βp, cp

)
=

(0.5, 1.5, 0.3) and an OU-CGMY process with (b, C, G, M) = (0.5, 0.3, 0.5, 1.5) with αp =
Y ∈ {−0.5,−1.5,−2.5,−3.5}.

The Tables 1 and 2 compare the true values of the first four cumulants cX,k(0, ∆t) with
their corresponding estimates from 106 Monte Carlo (MC) simulations, respectively, for
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the OU-CTS process with ∆t = 1/12 and for the OU-CGMY process with ∆t = 1/2, each
of the two with the aforementioned parameters. In addition, Tables 3 and 4 show the
computational times of the previous numerical experiments along with the times with
∆t = 1/360. We can conclude that the proposed Algorithm 1 and its adaptation to the
bilateral case produce unbiased cumulants that are very close to their theoretical values and
that they are fast. For instance, in the worst case (CGMY Y = −3.5), it will not take longer
than roughly two minutes to generate 106 trajectories on a time grid with 360 points. For the
sake of brevity, we do not report the additional results obtained with different parameter
settings that anyhow bring us to the same findings. Overall, from the numerical results
reported in this section, it is evident that the Algorithm 1 proposed above can achieve a
very high level of accuracy as well as a conspicuous efficiency.

Table 1. Comparison of the first four true cumulants with their corresponding MC-estimated values
(multiplied by 100) obtained with 106 simulations and ∆t = 1/12, (b, βp, cp) = (0.5, 1.5, 0.3).

cX,1(0, ∆t) cX,2(0, ∆t) cX,3(0, ∆t) cX,4(0, ∆t)

αp True MC err % True MC err % True MC err % True MC err %

−0.5 1.181 1.199 −1.5 1.157 1.182 −2.2 1.889 1.910 −1.1 4.320 4.504 −4.3
−1.5 1.181 1.205 −2.0 1.929 2.020 −4.7 4.409 4.616 −4.7 12.960 13.422 −3.6
−2.5 1.969 1.929 2.0 4.500 4.378 2.7 13.226 12.636 4.5 47.520 45.830 3.6
−3.5 4.594 4.539 1.2 13.500 13.335 1.2 48.496 48.099 0.8 205.921 206.598 −0.3

Table 2. Comparison of the first four true cumulants with their corresponding MC-estimated values
obtained with 106 simulations and ∆t = 1/2, (b, C, G, M) = (0.5, 0.3, 0.5, 1.5).

cX,1(0, ∆t) cX,2(0, ∆t) cX,3(0, ∆t) cX,4(0, ∆t)

Y True MC err % True MC err % True MC err % True MC err %

−0.5 −0.269 −0.270 −0.4 0.945 0.953 −0.9 −3.883 −3.936 −1.4 25.13 25.59 −1.8
−1.5 −0.934 −0.935 −0.1 4.533 4.526 0.2 −27.58 −27.41 0.6 225.1 221.1 1.8
−2.5 −4.883 −4.890 −0.1 31.29 31.35 −0.2 −249.4 −249.3 0.0 2473 2463 0.4
−3.5 −34.68 −34.65 0.1 280.3 280.2 0.0 −2747 −2746 0.1 32,127 31,636 1.5

Table 3. Computational times in seconds with ∆t = 1/360 and ∆t = 1/12, (b, βp, cp) = (0.5, 1.5, 0.3).

∆t = 1/360 ∆t = 1/12

αp

Simulations
104 105 106 104 105 106

−0.5 0.0010 0.0108 0.1186 0.0015 0.0162 0.1777
−1.5 0.0012 0.0123 0.1261 0.0017 0.0177 0.1816
−2.5 0.0019 0.0169 0.1747 0.0026 0.0239 0.2464
−3.5 0.0024 0.0238 0.2350 0.0033 0.0330 0.3254

Table 4. Computational times with ∆t = 1/360 and ∆t = 1/2, (b, C, G, M) = (0.5, 0.3, 0.5, 1.5).

∆t = 1/360 ∆t = 1/12

Y
Simulations

104 105 106 104 105 106

−0.5 0.0023 0.0251 0.2758 0.0064 0.0696 0.7645
−1.5 0.0031 0.0322 0.3292 0.0090 0.0939 0.9611
−2.5 0.0038 0.0350 0.3615 0.0125 0.1144 1.1799
−3.5 0.0039 0.0389 0.3841 0.0182 0.1802 1.7782
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5. Financial Applications

In the following subsections, we illustrate the application of the results shown in Section 3
and of the simulation algorithm of Section 4 to the pricing of derivative contracts in energy mar-
kets using models driven by OU-BCTS and OU-CGMY processes. Energy markets and wider
commodities markets exhibit mean reversion, seasonality and spikes; this last feature is particu-
larly difficult to capture with a pure Gaussian framework and motivates the use of Lévy process.
To this end, the literature is very rich in alternatives, for instance, Cartea and Figueroa (2005)
and Cufaro Petroni and Sabino (2020) assume that the evolution of the spot prices follows a
jump-diffusion OU process, whereas Kallsen and Tankov (2006) investigate the use of general-
ized OU processes.

Our approach is based on the reduced-models approach, which consists of choosing
a specific stochastic process for the price evolution from a parameterized family of pro-
cesses. Its main goal is derivative pricing and hedging using the toolkit of risk-neutral
valuation and has less focus on price forecasting or structural analysis, whose tasks are
better accomplished by fundamental or hybrid models.

Our model is similar to that of Benth et al. (2007); Benth and Šaltyté Benth (2004) and
Hambly et al. (2009), where instead of NIG or jump-diffusion processes, we consider BCTS
or CGMY processes as BDLP’s. Our main goal is to give the basis for the pricing of energy
derivatives and to provide an efficient and exact simulation procedure; of course, such
models can also find application in other financial contexts.

We consider the pricing of a strip of call options with an FFT-based approach, the
evaluation of a forward start Asian option with MC simulations and finally the pricing
of a swing option using a modified version of the Least-Squares Monte Carlo (LSMC),
introduced in Longstaff and Schwartz (2001), detailed in Boogert and de Jong (2008, 2011).

As carried out in Hambly et al. (2009), from now on, we assume that the model is
specified in the risk-neutral measure and that the spot price is driven by the following
one-factor process:

S(t) = F(0, t) eh(t)+X(t) (31)

where h(t) is a deterministic function, F(0, t) is the forward curve derived from quoted
products and X(t) is an OU-BCTS process. This market can easily be turned into a mul-
tifactor one, for instance by adding a second CTS process obtaining a tempered stable
version of the two factor Gaussian model of Schwartz and Smith (2000). We neverthe-
less focus on the model (31) to better highlight the results obtained for the OU-BCTS and
OU-CGMY processes.

Using Lemma 3.1 in Hambly et al. (2009), the risk-neutral conditions are met when the
deterministic function h(t) is consistent with forward curve such that

h(t) = −mX(1, t) (32)

where mX(s, t) is the cgf mX(s, t) = s e−bt + mZ(s, t) and mZ(s, t) is given by (22), therefore

h(t) =
c β

αp
p Γ(1− αp)

αp b

[
Ĩ
(

1, αp, βp,
βp

a

)
+ log a

]
+

c βαn
n Γ(1− αn)

αn b

[
Ĩ
(
−1, αn, βn,

βn

a

)
+ log a

]
(33)

with βp > 1 and βn > 0.
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When αp = αn = 1/2, the integrals in (33) can be written in terms of the logarithmic
function as follows:

Ĩ
(

1,
1
2

, β1, β2

)
=

∫ β2

β1

z−
3
2 (z− 1)

1
2 dz

= 2

(
log
(√

β2 +
√

β2 − 1
)
−
√

β2 − 1
β2

)
−

2

(
log
(√

β1 +
√

β1 − 1
)
−
√

β1 − 1
β1

)
, (34)

Ĩ
(
−1,

1
2

, β1, β2

)
=

∫ β2

β1

z−
3
2 (z + 1)

1
2 dz

= 2

(
log
(√

β2 +
√

β2 + 1
)
−
√

β2 + 1
β2

)
−

2

(
log
(√

β1 +
√

β1 + 1
)
−
√

β1 + 1
β1

)
. (35)

5.1. Call Options

We consider a daily strip of M call options with maturity T and strike K, namely a
contract with payoff

C(K, T) =
M

∑
m=1

(S(tm)− K)+ =
M

∑
m=1

cm(K, tm), t1, t2, . . . tM = T.

Such a contract is commonly used for hedging purposes or for the parameters’ calibration.
It normally encompasses monthly, quarterly and yearly maturities but is not very liquid
and is generally offered by brokers.

We assume that the market model (31) is driven by a full seven-parameter OU-BCTS
process with infinite activity and finite variation. The literature is rich in efficient numerical
methods that one could employ to price European options under this market assumptions
other than the Monte Carlo method. Among others, for instance, the CONV approach
in Lord et al. (2007) consists of reformulating the risk-neutral valuation as a convolution,
which is then accomplished numerically via FFT. Alternatively, one adopts wavelet-based
pricing methods such as those presented in Ortiz-Gracia and Oosterlee (2013, 2016), which
are applicable to a wide range of contracts.

We price the strip of calls using the FFT-based technique of Carr and Madan (1999)
given the chf φ(u, t) of the of log S(t) = log F(0, t) + h(t) + X(t)

φ(u, t) = F(0, t)ei u h(t)ϕX(u, t) = F(0, t)ei u (h(t)+aX(0))+ψZ(u,t), a = e−b t

where h(t) is given by (33) and ψZ(u, t) by (21). Briefly, each call option price cm(K, tm) can
be written as (we set the interest rate to zero and drop m for simplicity)

c(k, t) =
∫ +∞

k
(es − ek)q(s, t)ds

where k = log K and q(s, t) is the risk-neutral density of the log-prices. c(k, t) is not
square-integrable and its Fourier transform cannot be computed in contrast to the function
c̃(k, t) = eα k c(k, t), α > 0, which is now square-integrable. Consider now the Fourier
transform of c̃(k, t)

ψ(u, t) =
∫ +∞

−∞
ei u kc(t, k)dk,
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the initial problem can be recast as

c(k, t) =
e−α k

π

∫ +∞

0
e−i u kψ(u, t)du.

Carr and Madan (1999) found an analytical formula for ψ(u, t), namely

ψ(u, t) =
φ(u, t)

α2 + α− u2 + i(2α + 1)u
.

Accordingly, call values are determined by combining the equations above and performing
the required integration with FFT. We refer the reader to Carr and Madan (1999) for the
details on the method and in particular to the choice of α.

The calibration and the parameters estimation is not the focus of this numerical
experiment, and we rather take parameters sets available in the literature. In this exam-
ple, we take those of Poirot and Tankov (2006) (plus b and cn) and let αp and αn vary:
(b, βp, βn, cp, cn) = (0.1, 2.5, 3.5, 0.5, 1); for simplicity, we consider a flat forward curve with
F(0, t) = 20, t > 0.

Table 5 shows the values relative to a strip of M = 30 daily at-the-money call options
with maturity T = 1/12 with different pairs of αp, αn. We observe that fixing one of αp or
αn, the value of the option is increasing when the other one increases. Moreover, Figure 1a
illustrates the variability of the option price with respect to the strike price K, where the
dotted lines represent the values obtained with N = 105 MC simulations plus and minus
three times the estimation error (the root-mean squared error divided by

√
N). In addition,

Figure 1b compares the price of at-the-money options Cm = cm(K, tm), m = 1, . . . , M,
K = 20 obtained with the FFT method with those estimated once again with N = 105 MC
simulations. In these last two examples, we selected αp = αn = 0.5.

Table 5. Strip of M = 30 daily call options calculated with FFT, T = 1/12 (b, βp, cp) = (0.1, 1.5, 0.3).

αn

αp
0.1 0.3 0.5 0.7 0.9

0.1 3.504 3.540 3.609 4.262 5.770
0.3 4.865 4.917 5.008 5.205 6.290
0.5 6.690 6.757 6.869 7.073 7.560
0.7 9.058 9.136 9.261 9.474 9.879
0.9 12.108 12.192 12.322 12.535 12.907

As far as the MC method is concerned, the simulation of the skeleton of the process is
accomplished running the procedure explained in Sabino and Cufaro Petroni (2022) based
on Proposition 4 two times because of the bilateral OU-BCTS; the acceptance rejection step
to draw from the law of V in (15) assumes a piecewise approximation of the dominating
functions into L = 1000 terms. The results calculated with the FFT method and with the MC
method are totally consistent. On the other hand, it is well-known that the FFT approach
is faster. Indeed, they can price vectors of strike prices, thus accelerating the process a lot.
Nevertheless, a side product of the MC approach are percentiles or other statistics, which
are widely used by practitioners for risk-management purposes.
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Figure 1. Call option values calculated with FFT and MC with N = 105, (b, βp, βn, cp, cn) =

(0.1, 2.5, 3.5, 0.5, 1), αp = αn = 0.5, K = 20. (a) Effect on the strike; (b) cm(K, tm), m = 1, . . . , 30.

5.2. Asian Options

As a second financial application, we consider the pricing of Asian options. In contrast
to the previous example, we assume that the market dynamic is driven by an OU-CGMY
process with infinite activity and finite variation with C = cp = cn, G = βn, M = βp and
Y = αp = αn that we estimate from real data. We consider historical day-ahead prices of the
Italian gas market PSV in the four-year time window from 1 January 2016 to 31 December
2019 for a total of 1461 values, see Figure 2.

Figure 2. Day-ahead PSV prices.

PSV is the main meeting point between supply and demand of the gas market in Italy.
Here, the wholesale gas price is defined, and on the basis of this value, the gas suppliers
evaluate the price of the gas raw material to be applied to end customers. There are two
main types of contracts between market operators: take or pay and spot, and we focus on
the latter type. Spot contracts are signed in the hubs, that is the hubs between the natural
gas pipelines, usually located on the border between two states. The gas prices in Europe
are strongly interdependent; therefore, the PSV price is affected by the evolution of the
main gas prices in Europe, e.g., the Dutch TTF and the German THE and, of course, their
values are also influenced by LNG and oil prices as well as from gas imports, e.g., from
Algeria and Russia.

As mentioned, in this paper we rely on the reduced-form process approach which consists
of specifying a stochastic process for the price evolution from a parameterized family of
mean-reverting processes (see Eydeland and Wolyniek 2002). Similar examples including
different commodity types can be traced back to Schwartz (1997), who studied oil prices,
and after to Benth and Šaltyté Benth (2004), with applications to UK spot gas and Brent
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crude oil spot prices, or to Geman (2007) for natural gas and oil prices. Alternatively, one
could adopt the different point of view of fundamental and hybrid models with a stronger
focus on price forecasting rather that on risk-neutral pricing and hedging. To this end,
the recent study by Berrisch and Ziel (2002) gives a rigorous data analysis of European
gas prices, including the impact of autocorrelation, seasonality, risk premia, temperature,
storage levels and the price of European Emission Allowances and the related fuel prices of
oil, coal and electricity.

Coming back to the calibration problem, firstly, we check if the time- eries of the
logarithm of the day-head prices is nonstationary using the augmented Dickey–Fuller
test. On the selected dataset, it turns out that the ADF Statistic is −1.791886 with p-value
equal to 0.384497 and with critical values −3.435, −2.864 and −2.568 relative to 1%, 5%
and 10%, respectively. Hence, we have to accept the null hypothesis that the time series is
nonstationary and does have a time-dependent structure.

Consequently, we remove the seasonality component from the logarithm of the day-
ahead time series using a decomposition with a double cosine plus a linear trend, see
Figure 3. Secondly, we assume that the residuals of the deseasonalized time series, denoted
sk, k = 1, . . . , 1461, follow an autoregressive model AR(1)

sk+1 = a sk + εk+1, a = e−b ∆t, (36)

where ∆t = 1/365 (one day) and εk, k = 1, . . . is distributed according to the law of
Z(∆t) = Zp(∆t)− Zn(∆t) in (4) of an OU-CGMY process. The mean reversion rate b can
be estimated using the standard least-squares method, however, according to Proposition 1,
the pdf of Z(∆t) is not known in closed form; therefore, one has to resort to MC-based
techniques or to a generalized method of moments. On the other hand, before performing
the parameter estimation, we Taylor expand Λa in Proposition 1

Λa =
cΓ(1− α)b βα

2
∆ t2 + o

(
∆ t2)

and observe that for ∆t small, X2 in Proposition 1 can be neglected (accordingly for the bilat-
eral case), which is reasonable for ∆t = 1/365. It turns our that under this approximation,
labeled Approximation 1, Z(∆ t) ∼ BCT S

(
Y, Y, M

a , G
a , C 1−aY

Y b , C 1−aY

Y b

)
, and we estimate the

model parameters adapting the generalized method of moments to match the first four
cumulants in (28) and (29), namely, we perform the constrained optimization

(Ĉ, Ĝ, M̂, Ŷ) = arg min
4

∑
i
(ci(Y, G, M, Y)− ĉi)

2, 0 < Y < 1, G > 0, M > 1, C > 0.

Figure 3. Detrending.

Table 6 shows the estimated parameters, whereas Table 7 reports the sample cumulants
ĉi, i = 1, . . . , 4 and the fitted cumulants c̄i = ci(Ĉ, Ĝ, M̂, Ŷ), i = 1, . . . , 4. The fit is in



Risks 2022, 10, 148 16 of 23

agreement with the sample cumulants, taking into account that the first and the fourth ones
are very much close to zero.

Table 6. Calibrated parameters.

b̂ Ĉ Ĝ M̂ Ŷ

75.26 4.401 3.282 3.300 0.730

Table 7. Estimated Cumulants times 103.

ĉ1 ĉ2 ĉ3 ĉ4 c̄1 c̄2 c̄3 c̄4

0.0409 3.985 0.0007 0.8821 −0.0435 3.848 0.0018 0.8374

We now come back to the initial problem of the pricing of Asian options with MC
simulation. MC methods are known to be much slower than FFT techniques that can also
be tailored to the pricing of Asian options (see Zhang and Oosterlee 2013b). Nevertheless,
the former approach provides a view on the distribution of the potential cash flows of
derivative contracts, giving precious information to risk managers or to trading units.

We recall that the payoff at maturity T of an Asian option with European style and
strike price K is

A(K, T) =

(
∑I

i=1 S(ti)

I
− K

)+

.

Figure 4 displays a sample of four trajectories with these parameters generated using
the procedure of Sabino and Cufaro Petroni (2022), where we also let Y vary.

0 20 40 60 80 100 120 140

13

14

15

16

17
OU-CGMY, Y= 0.3

0 50 100 150 200 250 300 350

12

14

16

18

20

22

24

26

28
OU-CGMY, Y= 0.5

0 20 40 60 80 100 120 140

10.0

12.5

15.0

17.5

20.0

22.5

25.0

27.5

OU-CGMY, Y= 0.73

0 20 40 60 80 100 120 140

12

14

16

18

20

22

24

OU-CGMY, Y= 0.9

Figure 4. Sample trajectories of OU-CGMY processes with (b, C, G, M) = (75.26, 4.401, 3.382, 3.300)
and Y ∈ {0.3, 0.5, 0.73, 0.9}.
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In addition to this simulation procedure, we consider here two approximations:
the first one is Approximation 1 defined in the parameter estimation; the second one—
as also assumed in Benth et al. (2018) dealing with the normal inverse Gaussian-driven
OU processes—takes advantage of the approximation of the law of Z(∆t) with that of
a L(∆t) ∼ BCT S

(
Y, Y, M

a , G
a , C ∆ t, C ∆ t

)
, a = e−b ∆ t (Approximation 2).

In order to highlight the differences between the estimations returned by the exact
method and those with the two alternatives, we consider two Asian options, both of them
with I = 90 daily settlements. The second option, however, is a forward start contract
whose first settlement date occurs after 30 days. The MC option values, their relative errors
and computational times in seconds are reported in Tables 8 and 9 with different Y’s and
number of simulations N.

Irrespective to the combination of Y and N, for the option that starts settling after one
day, the exact solution and Approximation 1 return very close values, whereas Approximation
2 is slightly biased. In contrast, for the forward start contract, although the time steps for
m > 1 coincide and are very small, for the simple fact that the first time step is relatively
high, the estimated prices returned by the two non-xact simulation schemes are quite biased
and do not offer an acceptable alternative any longer. More importantly, the bias cannot
be controlled by increasing the number of simulations, as shown in Table 9. The cause
of this difference it that for forward start options the compound Poisson term cannot be
ignored, be it only for one simulation time point, and it is not computationally convenient
to simulate 30 extra points with the two approximate methods.

These observations suggest a mixed strategy for parameters estimation and exact
simulation of the OU-BCTS processes: Approximation 1 or Approximation 2 for the former
task and use the exact and unbiased strategy for the path simulation to avoid being forced
to always simulate the process on an unnecessary fine time grid.

Table 8. Asian option. K = 13.5, T = 1/4.

Exact Approx 1 Approx 2 Exact Approx 1 Approx 2

N Price
(Error) CPU Price

(Error) CPU Price
(Error) CPU Price

(Error) CPU Price
(Error) CPU Price

(Error) CPU

Y = 0.3 Y = 0.5

103 0.3293
(0.0091) 0.5 0.3771

(0.0090) 0.3 0.3671
(0.0087) 0.3 0.4439

(0.0107) 0.3 0.4461
(0.0094) 0.2 0.4865

(0.0088) 0.2

104 0.3894
(0.0030) 2.7 0.3709

(0.0027) 2.1 0.3655
(0.0028) 2.1 0.4699

(0.0034) 1.5 0.4673
(0.0031) 1.4 0.4499

(0.0029) 1.4

2× 104 0.3692
(0.0022) 5.1 0.3743

(0.0019) 4.0 0.3651
(0.0020) 4.0 0.4571

(0.0024) 2.7 0.4404
(0.0022) 2.8 0.4552

(0.0021) 2.8

5× 104 0.3808
(0.0014) 11.3 0.3814

(0.0012) 9.9 0.3718
(0.0013) 10.0 0.4634

(0.0015) 7.8 0.4594
(0.0014) 6.8 0.4545

(0.0013) 6.8

105 0.3792
(0.0010) 22.3 0.3715

(0.0009) 20.0 0.3697
(0.0009) 20.1 0.4627

(0.0011) 15.4 0.4559
(0.0010) 14.0 0.4467

(0.0009) 13.8

Y = 0.7 Y = 0.9

103 0.5446
(0.0109) 0.5 0.5317

(0.0104) 0.3 0.5298
(0.0106) 0.3 0.6910

(0.0125) 0.5 0.7031
(0.0108) 0.3 0.7246

(0.0114) 0.3

104 0.5902
(0.0035) 2.7 0.5630

(0.0032) 2.1 0.5545
(0.0032) 2.1 0.7102

(0.0038) 2.8 0.7227
(0.0035) 2.4 0.6912

(0.0037) 2.4

2× 104 0.5851
(0.0025) 5.5 0.5631

(0.0023) 4.1 0.5544
(0.0024) 4.3 0.7147

(0.0026) 5.4 0.7066
(0.0025) 4.7 0.6973

(0.0026) 4.7

5× 104 0.5647
(0.0016) 13.1 0.5631

(0.0014) 10.5 0.5413
(0.0015) 10.5 0.7209

(0.0017) 13.7 0.6933
(0.0016) 11.8 0.692

(0.0016) 11.7

105 0.5701
(0.0011) 28.0 0.5603

(0.0010) 20.5 0.5491
(0.0010) 21.1 0.7148

(0.0012) 30.3 0.7117
(0.0011) 23.1 0.6897

(0.0012) 24.2
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Table 9. Forward start Asian option. K = 13.5, T = 1/3.

Exact Approx 1 Approx 2 Exact Approx 1 Approx 2

N Price
(Error) CPU Price

(Error) CPU Price
(Error) CPU Price

(Error) CPU Price
(Error) CPU Price

(Error) CPU

Y = 0.3 Y = 0.5

103 0.1796
(0.0084) 0.5 0.1452

(0.0075) 0.3 0.1456
(0.0079) 0.3 0.1951

(0.0093) 0.3 0.1698
(0.0084) 0.0 0.1608

(0.0079) 0.2

104 0.1740
(0.0027) 2.9 0.1430

(0.0023) 2.1 0.1391
(0.0024) 2.2 0.2020

(0.0030) 1.7 0.1640
(0.0027) 0.1 0.1624

(0.0026) 1.5

2× 104 0.1777
(0.0019) 5.6 0.1394

(0.0017) 4.1 0.1448
(0.0017) 4.1 0.1995

(0.0021) 3.0 0.1629
(0.0018) 0.2 0.1588

(0.0018) 2.9

5× 104 0.1765
(0.0012) 12.6 0.1397

(0.0010) 10.4 0.1445
(0.0011) 10.3 0.2009

(0.0013) 7.7 0.1648
(0.0012) 0.5 0.1578

(0.0011) 7.1

105 0.1755
(0.0008) 24.8 0.1415

(0.0007) 20.7 0.1440
(0.0008) 20.7 0.1992

(0.0009) 15.1 0.1633
(0.0008) 1.0 0.1600

(0.0008) 14.3

Y = 0.7 Y = 0.9

103 0.2075
(0.0101) 0.5 0.1743

(0.0086) 0.3 0.1970
(0.0094) 0.3 0.2184

(0.0108) 0.5 0.2032
(0.0100) 0.3 0.1788

(0.0101) 0.3

104 0.2094
(0.0030) 3.0 0.1754

(0.0027) 2.2 0.1904
(0.0030) 2.2 0.2277

(0.0033) 3.1 0.1863
(0.0030) 2.4 0.1799

(0.0031) 2.5

2× 104 0.2068
(0.0022) 6.1 0.1712

(0.0019) 4.3 0.1778
(0.0020) 4.3 0.2319

(0.0024) 6.0 0.1844
(0.0021) 4.9 0.1849

(0.0022) 4.9

5× 104 0.2102
(0.0014) 14.6 0.1729

(0.0012) 10.8 0.1791
(0.0013) 10.7 0.2252

(0.0015) 15.2 0.1887
(0.0013) 12.0 0.1869

(0.0014) 12.0

105 0.2096
(0.0010) 31.1 0.1717

(0.0009) 20.7 0.1797
(0.0009) 21.8 0.2261

(0.0011) 33.7 0.1877
(0.0009) 23.7 0.1840

(0.0010) 24.8

5.3. Swing Options

A swing option is a type of contract used by investors in energy markets that lets the op-
tion holder buy a predetermined quantity of energy at a predetermined price (strike), while
retaining a certain degree of flexibility in both the amount purchased and the price paid.

Let the maturity date T be fixed and the payoff at time t < T be given by (S(t)−
K)+, where K denotes the strike price. In addition, we assume that only one unit of the
underlying can be exercised at any time period. Let V(n, s, t) denote the price of such a
swing option at time t given the spot price s which has n out of N exercise rights left. For
m = 1, . . . , MS, the dynamic programming principle allows us to write (see Bertsekas 2005)

V(n, s, tm) = max


E[V(n, S(tm+1), tm+1)|S(tm) = s],

E[V(n− 1, S(tm+1), tm+1)|S(tm) = s] + (s− K)+

, 0 < n < N (37)

and V(n, s, T) = (S(T)− K)+, 0 < n ≤ N and V(0, s, t) = 0. In order to solve the recursion
equation, we rely on the modified version of the LSMC, introduced in Longstaff and
Schwartz (2001) and detailed in Boogert and de Jong (2008, 2011), where the continuation
value is approximated with a linear regression with m = 1, . . . , MS

E[V(n, S(tm+1), tm+1)|S(tm) = s] ' a0 + a1S(tm) + . . . ,+aBSB(tm), n < N.

In our experiments, we used simple power polynomials with B = 3, but the regression may
be performed on a different set of basis functions as well (see Boogert and de Jong 2011 for
a comparison with other basis functions).

Several other approaches have been proposed: for instance one may solve the recur-
sion by adapting the method of Ben-Ameur et al. (2007) or one might use the quantization
technique of Bardou et al. (2009). Alternatively, one can also use the tree method of Jaillet
et al. (2004) or the Fourier cosine expansion in Zhang and Oosterlee (2013a) taking advan-
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tage of the explicit form of the chf of the OU-BCTS process. On the other hand, a swing
contract can be seen as a degenerate case of gas storage, namely with no injection and
withdrawal cost equal to the strike (see Boogert and de Jong 2008), and one then could even
adopt the recent approach of Boonstra and Oosterlee (2021) based on the COS method. In
this last example, we assume an OU-CGMY-driven market model with Y < 0, namely a
combination of mean-reverting compound Poisson processes with positive and negative
jumps. We consider a different set of parameters compared with the cases illustrated so
far, namely, we take (b, C, G, M) = (25, 80, 10.5, 15.5) and let Y vary. The parameters are
very different than the other two examples and are chosen to mimic a realistic price path
as shown in Figure 5. We also remark that, due to the fact that energy markets are very
seasonal and spikes occur in clusters due to for instance, cold spells, one could assume that
the intensity of the compound Poisson processes is a seasonal time-dependent function.
The results in Section 3.2 and the simulation algorithms in Section 4 can be easily adapted
taking a step-wise approximation of the intensity function.
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0 50 100 150 200 250 300 350
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35
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Figure 5. Sample trajectories of OU-CGMY processes with (b, C, G, M) = (10, 10, 1.75, 1.25) and
Y ∈ {−0.3,−0.5,−0.7,−0.9}.

Table 10 shows the values and MC errors relative to the pricing of a 120− 120 swing
option with maturity T = 1 and strike price K = 20, namely, the holder has N = 120 rights
and can exercise all of them. We also take a flat forward curve F(0, t) = 20, t > 0. The
computational time is now dominated by the stochastic optimization, which is independent
of the specific price dynamics. On the other hand, the time needed by the path generation
is similar to that shown in Table 4. We observe that the LSMC combined with Algorithm 1
produces unbiased results for all selected Y’s, and apparently 2 × 104 simulations are
required to attain an acceptable convergence. In contrast to the Asian option case, it does
not make sense to adopt the approximation of the law of Z(t) in (3) with that of e−k tL(t)
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(Approximation 2 in Section 5.2) because this approach returns another compound Poisson
process and therefore does not provide a computational advantage.

Table 10. 120− 120 Swing option. K = 20, T = 1.

Y = 0.3 Y = 0.5 Y = 0.7 Y = 0.9

N Price (Error) Price (Error) Price (Error) Price (Error)

103 101.965 (2.873) 80.500 (2.446) 66.634 (2.222) 51.117 (1.983)
104 99.565 (0.902) 79.848 (0.778) 63.451 (0.682) 49.801 (0.599)

2× 104 98.328 (0.633) 79.774 (0.550) 64.322 (0.489) 49.958 (0.426)
5× 104 98.187 (0.399) 79.585 (0.348) 63.686 (0.307) 50.223 (0.269)

105 98.270 (0.283) 79.284 (0.245) 63.949 (0.217) 50.487 (0.192)

6. Concluding Remarks

In this study, we investigated the pricing of energy derivatives in markets driven by
classical tempered stable and CGMY processes of OU type with finite variation. To this
end, we derived the chf of the transition law of such processes in closed form such that
we can obtain the nonarbitrage conditions and spot prices that are consistent with the
forward curve. In addition, extending the work of Sabino and Cufaro Petroni (2022), we
detailed efficient algorithms for the simulation of the skeleton of classical tempered stable
and CGMY processes of OU type with particular focus on the case when they coincide
with compound Poisson processes. We illustrated the applicability of these results to the
pricing of three common derivative contracts in energy markets, namely a strip of daily
call options, an Asian option with European style and a swing option. In our numerical
experiments, we selected a one-factor model in order to better highlight the features of our
finding; nevertheless, the extension to two-factor models in the same vein of Schwartz
and Smith (2000) is straightforward. In the first example, we made use of the explicit
knowledge of the chf to implement the pricing with the FFT-based technique of Carr and
Madan (1999) and compared the outcomes with those obtained via MC simulations. In
the second example, we priced Asian options written on the Italian day-ahead gas price
PSV with MC simulations, where we also adopted two approximate techniques. These
approximations provide reliable values if the time steps of the time grid are relatively small,
but if one considers a forward start contract the outcome is really biased. In addition,
we showed that the proposed simulation algorithm, combined with the LSMC approach
of Boogert and de Jong (2008, 2011), provides an efficient pricing of a one year 120− 120
swing option.

Furthermore, our results are not restricted to OU processes and to the modeling of
spot prices. Indeed, in the spirit of Benth et al. (2019), Latini et al. (2019) and Piccirilli et al.
(2021), they can be adapted to forward models in order to capture the Samuelson effect and
volatility smiles. For instance, Piccirilli et al. (2021) assume that the stochastic evolution
of a generic future price at time t, maturity T, t ≤ T ≤ T1 < T2 and with delivery period
[T1, T2] is described by

F(t, T1, T2) = F(0, T1, T2) +
∫ t

0
Γ1(u, T1, T2)dL1(u) + Γ2(T1, T2) X2(t)

= F(0, T1, T2) + X1(t, T1, T2) + Γ2(T1, T2) X2(t)

where L1(·) and X2(·) are two independent Lévy processes. Moreover,

Γ1(u, T1, T2) =
γ1

b (T2 − T1)

(
e−b (T1−u) − e−b (T2−u)

)
, Γ2(T1, T2) =

1
T2 − T1

∫ T2

T1

γ(u) du

are two deterministic functions that are meant to capture the Samuelson effect in option
pricing. Although Piccirilli et al. (2021) illustrate the application of their model under the
assumption that L1(·) and X2(·) are centered NIG processes, the setting can be modified
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taking two independent BCTS or CGYM processes. Of course, such models are related to
those studied in Section 3, because, after some algebra, it results that

X1(t, T1, T2) =
γ1

b (T2 − T1)

(
e−b (T1−t) − e−b (T2−t)

) ∫ t

0
e−b (t−u)dL1(u) = Γ1(t, T1, T2)Z(t).

Finally, future studies could cover the extension to a multidimensional framework,
for instance adopting the view of Luciano and Semeraro (2010), Ballotta and Bonfiglioli
(2013) or the recent approaches of Gardini et al. (2021a, 2021b, 2022) and Lu (2022). A last
topic deserving further investigation is the time-reversal simulation of the OU processes
generalizing the results of Pellegrino and Sabino (2015) and Sabino (2020b) to the case of
classical tempered stable and CGMY processes.
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