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Abstract: We construct a new age-specific mortality framework and implement an exemplar (DLGC)
that provides an excellent fit to data from various countries and across long time periods while
also providing accurate mortality forecasts by projecting parameters with ARIMA models. The
model parameters have clear and reasonable interpretations that, after fitting, show stable time
trends that react to major world mortality events. These trends are similar for countries with similar
life-expectancies and capture mortality improvement, mortality structural change, and mortality
compression over time. The parameter time plots can also be used to improve forecasting accuracy
by suggesting training data periods and appropriate stochastic assumptions for parameters over
time. We also give a quantitative analysis on what factors contribute to increased life expectancy and
gender mortality differences during different age periods.
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1. Introduction

A recent trend in mortality forecasting has been the development of models whose
forecasts are robust to structural changes in mortality patterns. These include epidemi-
ological changes, like the transition in major causes of death from infectious diseases to
chronic diseases, and the decline in death rates due to chronic and degenerative diseases.
For instance, Lin and Liu (2007) develop an insightful new type of model using a latent
variable, “physiological age”, that aims to capture the aging mechanism. It has the potential
to reveal trends in mortality and thereby allow the input of expert opinion about structural
changes to mortality patterns. Other recent models incorporate automatic approaches to
dealing with structural changes, such as by incorporating regime-switching behavior in the
model itself Gylys and Šiaulys (2020); Milidonis et al. (2011). Most of these models do not
directly incorporate the age-specific structure of mortality rates, which is known to follow
a common shape across cultures and time periods Burger et al. (2012).

We introduce a framework for building parametric mortality models that captures
the age-specific structure while using parameters with clear interpretations. We then
demonstrate these aspects using a new parametric model as an exemplar of the framework:
the Differential Logistic model with Growth rate and Controlling factor (DLGC). We show
that the DLGC gives excellent and stable forecasts of future mortality, while at the same
time revealing transient and structural changes in mortality patterns through the time plots
of its parameters. Those patterns can then be used to fine-tune the forecasting method to
give even better accuracy.

Most of the DLGC parameters reveal long-term trends, which, depending on the pop-
ulation being modeled, manifest either mortality improvement or mortality compression
that arises naturally in tandem with mortality improvement at younger ages. The claimed
interpretability of the parameters is justified in many examples where time plots of the
fitted parameters reveal known historical mortality patterns. For instance, when fitting
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female data separately for the USA, Japan, France, and Switzerland, two of the parameters
each revealed a sudden drop around the 1950s. Those drops are attributable to the vast
and sudden decline in mortality during childbirth around that time in those countries.
Mortality trends and structural changes in mortality patterns are context specific, and when
fit, the DLGC reflects those differences. In some populations, we observe trends in specific
parameters that represent mortality improvement, while in other populations, the trends in
those same parameters are flattened or even reversed (always interpretable in those cases
as “mortality compression” at higher ages). We also observed structural changes in one
parameter in the mid-1990s in data only from Russia and Ukraine, but not from the other
four (lower mortality) countries mentioned above.

DLGC is only one instance of the general framework introduced in Section 2 below.
The advantages offered by the framework are:

1. Familiarity and ease of implementation that comes with parametric models;
2. Excellent fit; the exemplar of the framework, the DLGC, provides MSEs and AICs that

are smaller than the Heligman–Pollard model Heligman and Pollard (1980);
3. Good accuracy and stability in forecasting; projecting with the DLGC has comparable

or better test MSEs in forecasting than the logit-binomial version of the Lee–Carter
model, especially for 10-year-ahead forecasts. The forecasting accuracy is also more
stable for DLGC than the logit-binomial Lee–Carter model, especially for those coun-
tries we examined with only intermediate overall life expectancy: Russia, Ukraine,
and the USA.

4. The structural changes in mortality revealed by DLGC provide insights that are
useful for analyzing historical mortality and for improving forecasting. For example,
parameter time plots not only give clues about historical structural changing times, but
also help to select an appropriate historical data period to train the forecasting model,
which is one of the main difficulties in mortality forecasting. Observed structural
changes can also be used to suggest proper assumptions about parameter time series.

5. Clear interpretation of each parameter: using the DLGC, trends are observed in almost
all parameters; the trends provide evidence of mortality improvement or compression
and can be used to quantify the proportion of improvement due to each parameter
(see Section 3.5);

6. Visibility of structural changes arising from the data, both transient (e.g., evident
changes in mortality among French males during the World Wars) and persistent (e.g.,
observed sudden structural change in teenage female mortality around the 1950s);
this allows objective, data-driven observation of structural changes without the need
for the subjectivity that often backs expert opinion;

7. Flexibility and interpretability of the framework: The framework is built starting with
a heuristic modification of the logistic equation as a model for mortality with two
functions a(x) and b(x) that are, respectively, interpreted as age-dependent mortality-
decelerating factors (medical advances, broadly adopted healthy behaviors, etc.) and
mortality-accelerating factors (aging, increasing pollution, etc.). The functions can
be chosen to fit the context, and the DLGC shown below is the result of just one
such choice. It shows stable and clear trends for parameters that match demographic
characteristics, and it illustrates the model’s good interpretability.

We now place our new framework in the context of past literature. Mortality data are al-
ways organized by age, and mortality functions can additionally incorporate data groupings by
period and/or cohort. From this perspective, models are grouped broadly into three categories
depending on whether they use none, one, or both of the period/cohort groupings. Models
incorporating all of age, period, and cohort as variables in the mortality function should, in princi-
ple, provide the best forecasts. However, the heavy data demands and the dependency between
cohort, year, and age limit their uses. Continuous Mortality Investigation Bureau (2006) in-
troduced a three-factor model that used p-spline regression and achieves a cohort forecast.
Most research focuses on models grouping data as age-period or as age-cohort, and our
approach considers only age-period.
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Across a wide variety of modeling frameworks, it is often observed that mortality
patterns are not purely deterministic, so forecasting models should include stochastic
components. The most well-known example of this is the Lee and Carter (1992) age-
time model, which uses many parameters and a single stochastic factor (see, for in-
stance, Lee and Miller (2001), Booth et al. (2002), Renshaw and Haberman (2006), and
He et al. (2021)). This model has several disadvantages (some shared by the many related
models). When fitting, the model has an identifiability problem in which subjective con-
straints must be imposed to ensure that a unique choice of parameters will fit the data. It
will also produce fitted mortality estimates that are not smooth functions of age.

In terms of forecasting, by including a single factor driving mortality improvement,
Lee–Carter produces plausible forecast trends and allows a changing age pattern of mor-
tality. However, its fixed-age pattern of change sometimes results in implausible age
patterns over the long term, and it lacks smoothness across ages Booth and Tickle (2008).
Callot et al. (2016) in 2016 also demonstrated that the dynamic model features of Lee–
Carter are distorted by the deterministic trend component (i.e., a very strong negative time
trend exhibited by age-specific log mortality) and suggest separating the deterministic and
stochastic time series components to improve fit and forecasting performance. Furthermore,
the Lee–Carter model assumes historical mortality patterns will hold for the future and no
structural change will occur, which is not true for observed mortality patterns over the past
century Lin and Liu (2007).

We adapt a separate established and common approach to mortality modeling and
forecasting that begins by developing a parametric function describing the age-specific
features of mortality that are observed regardless of the population being studied. For a
given population and year, mortality almost always decreases sharply at young ages,
increases quickly in teenage years or slightly later (often called an “accident hump”),
and then increases through adulthood and into old age. The well-known Heligman–Pollard
model Heligman and Pollard (1980) has three terms capturing the mortality in childhood,
young adulthood (the accident hump), and senescence; it uses eight parameters across
those terms. The five-parameter Siler model Siler (1979) also includes three independent
terms presenting mortality during immaturity, adulthood, and old ages; it assumes a
background mortality that is independent of age. Other examples of age-specific models
include Rogers and Planck (1983), Carriere (1992), Hannerz (2001) and de Beer and Janssen
(2016).

A function modeling mortality by age is by nature descriptive, but it can be con-
verted to a stochastic forecasting model by fitting the model repeatedly to many years
of data and then applying time series methods to the fitted parameters; see for exam-
ple McNown and Rogers (1989) or Njenga and Sherris (2020), which both start with the
Heligman–Pollard model for the age-specific mortality structure. These are multi-factor
forecasting models: most or all parameters in the model are viewed as driving the stochastic
mortality patterns. McNown and Rogers let each parameter be modeled by a separate
ARIMA process. Njenga and Sherris take the more sophisticated approach of using vector
error correction models (VECR), which account for cross-correlation or cointegration be-
tween these processes, as well as using a Bayesian VAR model for comparison as a way to
assess parameter risk as it contributes to overall mortality uncertainty. Incorporating these
multivariate forecasting methods significantly improved the forecast accuracy. The general
methodology of fitting a parametric age-specific function and forecasting the parameters
always leads to smooth forecasts across ages. It is usually easier to interpret the parameters
and terms than with other approaches, such as the many-parameter Lee–Carter model and
its extensions. Moreover, parameter time series often show clearer trends through time
than those when using an extension of Lee–Carter.

We began with the observation that most of the parametric age-specific models cited
above incorporate some parameters that do not have a clear connection to a variable
observable or describable in terms of the mortality context. They also lack flexibility
in the model itself: while certain features of mortality curves are universal, there are,
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of course, differences that are specific to the population and time period being considered.
The framework introduced in Section 2 is broadly an age-specific model with three terms
representing mortality in young childhood, in teenage years/early adulthood, and in
adulthood and old age, as is now standard when modeling the entire mortality distribution
(for instance, in the Heligman–Pollard model or the CODE model Bardoutsos et al. (2018);
Heligman and Pollard (1980)). As mentioned above, we designed the model so that each
parameter would have a clear interpretation in the context of mortality; we also kept the
“accident hump”, as well as a background mortality. Following standard practice, we used
simpler functional forms for infant and teenage mortality than for senescent mortality, but
allowed flexibility in choosing the latter component.

The most interesting part of the framework is the component representing mortality
in adulthood and old age. The Perks model Perks (1932) first proposed a logistic model
for the force of mortality at high ages, and many well-known later studies have made
similar assumptions Kannisto (1994). Modifying this idea and wanting to allow context-
specific model adjustment, we began with the standard logistical differential equation and
incorporated two functions of age, called a(x) and b(x), to reflect the natural intuition
that there are age-dependent factors that will accelerate mortality and others that will
decelerate mortality. The two functions describing age-dependent mortality acceleration
and deceleration can then be selected to have different functional forms depending on the
context and the goals of the modeler. Altogether, a model produced within this framework
has eight parameters plus however many are selected when specifying a(x) and b(x).

We used the modified logistic equation as a heuristic, not claiming it as a law, but pro-
pose that the solution of the differential equation is a sensible way to model the part of the
mortality distribution for old ages. Validation of this approach is provided by the points
enumerated above: not just strong interpretation evidenced by general trends in param-
eters and functional forms for a(x) and b(x) showing decreasing and increasing trends
that comport with intuition, but by the excellent fit to data, by excellent forecast accuracy,
and from evident structural changes visible in the time plots of parameters. We expect that
by examining more populations, over more time periods, with alternative choices for the
functions a(x) and b(x), a more nuanced understanding of mortality patterns will emerge.

Once the framework was developed, we created on specific age-specific mortality
model, the DLGC, by selecting functional forms for a(x) and b(x), bringing the total number
of parameters to 14. Once we observed the good behavior of the parameter time plots and
their ability to reveal structural changes, we set out to prove two points with forecasting:
that the framework itself compared well with other models in terms of forecast accuracy
and that the ability of the model to reveal structural change could be harnessed to improve
the forecast accuracy. To forecast, we let each of the 14 parameters in the DLGC be a
factor and forecasted each separately using an ARIMA model, following the approach of
McNown and Rogers (1989). This approach served to prove the points just mentioned,
but in future work, we plan to consider more carefully correlations and cointegrations
between the parameter series by using VECR or BVAR multivariate forecasting models, as
recently performed by Njenga and Sherris (2020).

To demonstrate the forecast accuracy afforded by the DLGC, we compared it with the
logit-binomial version of the Lee–Carter model, performing validation both by comparing
AICs with fits to historical data and by comparing five- and ten-year forecast accuracy, both
across a variety of populations and then through a form of rolling-window cross-validation.
The DLGC consistently outperformed the logit-binomial Lee–Carter model by each of
these measures. (See Tables 1–5; in Tables 3–5, yellow indicates DLGC outperforming
Lee-Carter and orange is the reverse. “HLE” and “ILE” refer to high-life-expectancy and
intermediate-life-expectancy countries.).
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Table 1. AIC improvement ∆AIC between the Heligman–Pollard model and DLGC.

Country Japan USA Switzerland France
Civilian

France
Total Russia Ukraine

Female Mean −406.65 −420.87 −313.41 −317.789 −310.412 −239.52 −176.95
Min −741.89 −750.52 −613.61 −737.326 −703.706 −674.01 −591.33

Male Mean −340.25 −228.55 −226.31 −216.72 −208.65 −35.18 −84.2982
Min −701.01 −712.33 −586.28 −739.29 −680.55 −552.21 −544.9558

Table 2. Comparing the fitting accuracy of DLGC and the Heligman–Pollard model for South Africa.

Population Female
1925/27

Male
1925/27

Female
2006/08

Male
2006/08

R2
w

DLGC 99.84% 99.87% 99.44% 99.62%
Heligman–Pollard 98.77% 99.29% 88.44% 99.18%

AIC DLGC −1096.79 −1118.36 −1101.22 −1177.63
Heligman–Pollard −920.81 −912.88 −997.63 −1075.69

Table 3. Comparing 5-year-ahead forecasts’ MSE[qx] of the logit-binomial Lee–Carter model and DLGC.

Gender Female Male

Forecasting Year 2016 2017 2018 2019 2020 2016 2017 2018 2019 2020
France Total 5.381 1.246 2.694 2.273 1.251 1.572
France Civil 2.349 1.487 0.905 3.799 2.124 3.820
Switzerland 41.88 17.58 31.10 28.35 7.395 36.33 17.99 33.45 59.03 61.26

Japan 0.502 1.943 2.225 3.353 2.526 6.038 12.75 8.896 5.062 3.279

HLE
countries

USA 14.39 14.99 32.46 71.17 13.09 20.02 50.92 109.0
Forecasting Year 2010 2011 2012 2013 2014 2010 2011 2012 2013 2014

Russia 10.76 34.09 31.59 41.60 44.77 9.417 61.32 57.18 108.3 126.7

DLGC
MSE[qx]

in 1× 10−6

ILE
countries Ukraine 13.90 14.96 38.09 58.87 10.20 67.62 124.8 136.1

Forecasting Year 2016 2017 2018 2019 2020 2016 2017 2018 2019 2020
France Total 1.561 6.746 2.652 2.395 1.774 2.077
France Civil 1.560 6.746 2.651 2.395 1.774 2.077
Switzerland 13.03 11.03 10.75 12.48 50.44 17.76 4.834 15.38 30.25 84.35

Japan 2.701 5.968 5.819 6.649 0.981 2.686 6.516 3.021 1.018 10.36

HLE
countries

USA 27.78 26.17 45.45 87.17 106.4 130.9 206.8 321.0
Forecasting Year 2010 2011 2012 2013 2014 2010 2011 2012 2013 2014

Russia 204.4 126.9 139.7 151.0 174.6 64.32 173.9 171.4 251.7 287.0

logit-binomial
Lee–Carter

MSE[qx]
in 1× 10−6

ILE
countries Ukraine 208.3 113.2 102.9 95.86 27.72 117.0 182.6 200.8
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Table 4. Comparing 10-year-ahead forecasts’ MSE[qx] of the logit-binomial Lee–Carter model
and DLGC.

DLGC MSE[qx] in 1 × 10−6

HLE Countries ILE Countries

Gender Year France

Total

France

Civil

Switz-

erland
Japan USA

Year
Russia Ukraine

2011 3.403 6.564 3.784 5.352 0.868 2005 8.306 5.229

2012 8.578 8.121 5.179 13.85 0.766 2006 5.155 5.734

2013 3.081 4.232 9.332 15.44 0.963 2007 14.46 22.39

2014 4.208 12.33 3.107 10.34 8.706 2008 13.50 35.17

2015 12.58 11.14 25.28 17.40 3.864 2009 36.29 62.45

2016 4.422 8.271 5.051 19.68 21.19 2010 24.90 35.75

2017 16.16 16.92 3.568 31.99 19.99 2011 136.1 158.9

2018 9.705 17.93 2.783 35.81 37.23 2012 124.7 227.8

2019 1.805 42.45 75.72 2013 142.7 283.5

Female

2020 52.82 18.41 2014 139.2

2011 11.75 1.861 9.813 3.483 1.336 2005 30.53 33.13

2012 6.386 18.53 6.912 5.293 1.409 2006 36.51 21.31

2013 3.502 11.55 8.328 2.654 4.150 2007 59.87 19.31

2014 19.33 10.72 5.661 1.945 14.33 2008 72.78 35.34

2015 5.135 16.73 15.25 2.426 16.87 2009 95.73 31.43

2016 5.155 22.07 9.030 3.305 47.92 2010 81.89 36.12

2017 7.510 29.60 2.707 8.845 62.26 2011 231.9 140.4

2018 6.715 30.36 7.305 6.557 111.7 2012 211.9 218.8

2019 15.84 3.847 191.2 2013 277.6 241.3

Male

2020 123.1 4.302 2014 275.9

LC MSE[qx] in 1 × 10−6

HLE Countries ILE Countries

Gender Year France

Total

France

Civil

Switz-

erland
Japan USA

Year
Russia Ukraine

2011 2.987 2.987 6.821 23.95 7.003 2005 60.48 62.01

2012 14.77 14.76 17.31 38.51 14.08 2006 69.59 55.57

2013 6.704 6.704 20.77 39.23 18.24 2007 99.34 62.03

2014 3.615 3.615 9.626 29.11 43.05 2008 109.3 72.10

2015 17.60 17.60 43.69 38.59 32.93 2009 163.3 94.28

2016 7.613 7.613 8.567 40.14 73.86 2010 152.7 85.08

2017 20.98 20.98 11.17 54.81 74.35 2011 345.4 175.7

2018 13.28 13.28 8.859 57.79 108.8 2012 355.8 232.5

2019 10.27 63.76 174.4 2013 418.3 281.3

Female

2020 68.02 31.35 2014 457.7
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Table 4. Cont.

LC MSE[qx] in 1 × 10−6

HLE Countries ILE Countries

Gender Year France

Total

France

Civil

Switz-

erland
Japan USA

Year
Russia Ukraine

2011 11.03 11.03 16.82 21.70 29.75 2005 81.73 77.33

2012 8.394 8.394 13.32 30.61 41.19 2006 136.0 130.0

2013 5.731 5.732 17.62 16.28 59.59 2007 212.4 171.5

2014 22.01 22.01 14.97 11.79 103.0 2008 247.7 251.6

2015 7.547 7.547 23.68 16.67 117.1 2009 324.2 243.7

2016 9.418 9.419 19.41 20.09 202.7 2010 323.1 242.2

2017 11.02 11.02 12.40 31.45 243.5 2011 666.8 559.5

2018 10.92 10.92 19.18 23.93 352.7 2012 675.4 733.3

2019 33.32 15.68 507.5 2013 856.4 789.4

Male

2020 106.2 1.772 2014 935.9

Table 5. Five-year-ahead rolling-window cross-validation using USA male data.

Training Period Testing Year DLGC MSE[qx] LC MSE[qx] Training Period Testing Year DLGC MSE[qx] LC MSE[qx]

1975–2000 2005 30.28 13.38 1975–2008 2013 10.18 78.34

1975–2001 2006 45.12 40.27 1975–2009 2014 3.324 86.22

1975–2002 2007 63.80 66.16 1975–2010 2015 1.654 60.94

1975–2003 2008 25.05 57.60 1975–2011 2016 6.429 83.95

1975–2004 2009 52.94 113.8 1975–2012 2017 6.205 73.69

1975–2005 2010 35.50 97.85 1975–2013 2018 15.33 95.36

1975–2006 2011 32.95 96.22 1975–2014 2019 15.08 130.0

1975–2007 2012 6.573 84.26

More interesting, perhaps, is the second point: improving forecast accuracy by using
the knowledge of structural changes revealed by parameter time plots. Some Lee–Carter
modelers, such as Renshaw and Haberman (2003), have dealt with the problem of fore-
casting in the presence of changing mortality trends by including a second-order term in
the singular-value decomposition underlying model, and while the forecast accuracy can
be improved, the higher-order parameters were difficult to predict. Others have made
a more fundamental shift by incorporating the potential for structural change into the
model design, such as the regime-switching models employed by Milidonis et al. (2011)
and Gylys and Šiaulys (2020). Originally used and well-developed in financial pricing,
another advantage of regime-switching models is that they tend to be pricing friendly
for mortality-based securities; many of them derive semi-closed or closed-form solutions
for the concerned prices; see Gao (2015), Ignatieva et al. (2016) and Shen and Siu (2013).
Like regime-switching mortality models, the methods underlying affine mortality mod-
els are borrowed from finance and are applicable to the pricing and risk management of
mortality rates, e.g., Schrager (2006). Some recent mortality models combine affine and
regime-changing characteristics, e.g., Blackburn and Sherris (2013).

We followed instead a simple approach to forecasting in the presence of structural
changes taken by authors such as Tuljapulkar et al. (2000), Lee and Miller (2001) and
Gylys and Šiaulys (2019): choosing to fit the model only to a shortened interval of years
during which mortality patterns appear to be relatively stable. This allowed us to leverage
the interpretability of the model parameters, which reveal changes in mortality patterns.
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As a case study, we identified two such structural changes and achieved considerably
improved forecasting accuracy by choosing a significantly shorter time interval of training
data that uses only data from after the changes revealed by the parameter plots from the
fitted model. One could argue that this is only evidence that when forecasting with our
method, older data quickly lose credibility. Therefore, we also tested this method over
a time period with no observed structural changes and found that omitting older data
instead decreased the forecast accuracy. In the future, we hope to run similar experiments
with other models, i.e., we want to test whether we can improve other models’ forecasting
performance by using training intervals suggested by DLGC.

This paper is organized as follows. Section 2 describes the construction of our frame-
work, as well as the DLGC considered in this study. Section 3 shows the main results: good-
ness of fit and forecasting (Section 3.1); captured mortality improvement (Section 3.2); struc-
tural changes (Sections 3.3 and 3.4); quantitative analysis on life expectancy (Section 3.5).
Section 4 concludes.

2. Model Construction
2.1. Model Foundations

We begin by constructing an age-specific mortality model that predicts annual death
probabilities; the target function we model is q(x), the probability that a person age x dies
before age x + 1.

We separate the probability q(x) into three components:

q(x) = qI(x) + qT(x) + qAO(x), x ≥ 0. (1)

We interpreted qI(x) as the contribution to mortality of factors arising during the
youngest ages. In all contexts, this function starts from a high mortality rate near birth and
decreases rapidly to 0 in a few years. We used the functional form for qI(x) arising from

the well-known Heligman–Pollard model Heligman and Pollard (1980):
qx

1− qx
= A(B+x)C

.

This leads us to define qI(x) as:

qI(x) = [1 + A−(B+x)C
]−1, x ≥ 0. (2)

Sharrow et al. (2013) give a table describing the parameters in this model. The parame-
ter A reflects the level of child mortality; it is approximately equal to q(1), the probability
of dying between age 1 and age 2. Since qT(1) and qAO(1) are nearly zero, which can be
derived from the definitions of qT(x) and qAO(x) in Equations (3) and (6), respectively,
A is also approximately equal to qI(1). The parameter B is the difference between age
0 and age 1 mortality probabilities, i.e., q(0) − q(1) or qI(0) − qI(1); C is the decline in
mortality during childhood. All of A, B, and C are between 0 and 1. During fitting, we set
the upper bound and lower bounds of A, B, and C to be A ∈ [10−5, 0.1], B ∈ [10−10, 0.99],
C ∈ [10−10, 0.8], following the fitting results in Sharrow et al. (2013). Our testing confirms
that those bounds do not lead to loss of generality.

We interpreted the term qT(x) (3) as the contribution to mortality of factors arising
during teenage years. We assumed that the factors influencing infant mortality have
dissipated, while those factors leading to mortality in adulthood have not yet taken effect,
so qT(x) dominates and the other terms qI(x) and qAO(x) in the model (1) are very near
0. During the teenage years, mortality increases, but is bounded, so as people move into
adulthood, the mortality accumulated from qT factors is assumed to approach a limiting
value, which then serves as background mortality in adulthood and old age. In this period,
mortality data in almost all contexts show a relatively strong increasing pattern, especially
at and near the “accident hump”. The model of Heligman and Pollard (1980) catches the
sudden increasing pattern, but not a background mortality. The Siler model Siler (1979)
includes a background mortality, but not the hump.
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The logistic model has the desirable properties mentioned above, so we define qT(x) as:

qT(x) =
Tm

1 + exp(−k(x− z))
, x ≥ 0. (3)

This arises in the usual way from the differential equation and initial condition:
dqT(x)

dx
= kqT(x)− kqT(x)2

Tm
, x > 0,

qT(z) =
1
2

Tm.
(4)

The parameter Tm ∈ (0, 1) is the limiting contribution to mortality from factors arising
during the teenage years and the parameter k > 0 is its growth rate. The age z represents
the age at which this function grows fastest, so is interpreted as the age of the “accident
hump”—from the functional form, qT(x) = 1

2 Tm at the age x = z. When fitting, we bound
Tm, k, and z by assuming Tm ∈ [10−10, 0.05], k ∈ [10−10, 25], z ∈ [12, 30], where the upper
bounds of Tm and k are checked by experiments to be appropriate.

In the model (1), we interpreted the term qAO(x) as the contribution to mortality from
factors arising during adulthood and old age. During those ages, we assumed that the
contribution factors influencing infant mortality are negligible and background mortality
coming out of the teenage years is stable at Tm, so the increase in q(x) is dominated by the
change in the term qAO(x). We assumed that qAO(x) also has a limiting value. A logistic
function would again have the requisite properties and has been commonly used in earlier
work as the model for the component associated with old age.

We adopted instead a framework for creating a generalized form of logistic function
to model qAO(x). It still assumes a limiting mortality in the oldest ages, and besides
effects counted in this value, the framework incorporates two types of age-dependent
factors affecting mortality in adulthood: those with an accelerative effect on mortality
and beneficial factors with a decelerative effect. For example, we would regard beneficial
factors to include medical improvements, improved access to food and resources, avoiding
risky activities, taking beneficial supplements, preventative medical care, and similar
human actions, which would decelerate mortality, but often with contributions that depend
on age.

We represent the cumulative effect of beneficial, mortality-controlling factors by a(x)
and the cumulative effects of factors accelerating mortality by b(x). Our generalized logistic
model begins with the underlying logistic differential equation, modified to include b(x) as
an accelerative factor and a(x) as a decelerative factor:

dqAO(x)
dx

= b(x)qAO(x)− 1
g

b(x)qAO(x)2a(x), x ≥ 0,

qAO(M1) =
1
2 g.

(5)

The parameters involved all have simple interpretations, as follows:

1. g ∈ (0, 1): the maximum value of the contribution to one-year mortality from factors
arising during adulthood and old ages. At extreme old age x, we have limx→∞ q(x) =
Tm + g, which is the overall asymptotic mortality.

2. M1 > 0: the age at which the function qAO(x) is half of its maximum. The main
process causing qAO(x) to increase is happening fastest near M1.

3. An increasing function of age b(x) with range (0, 1): this represents the effect of
natural factors cumulatively accelerating the mortality probability qAO(x) during
adulthood and old ages. Such factors include biological aging processes and lifestyle
patterns with a harmful effect. This adds nuance not found in the teenage term
qT(x), which adopts the same model, but with a constant growth factor k. We view
this as sensible because the increasing process during teenage years happens in a
much shorter time period than that during old ages. The aging effect on mortality
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is obviously stronger at older ages. Therefore, we assumeed b(x) is increasing over
age during this period. Without any beneficial factors decelerating mortality, qAO(x)
would satisfy the special case of (5) with a(x) = 1.

4. A function of age a(x) ≥ 1 with range [1, ∞): this represents the effects of beneficial
factors decelerating mortality probabilities. We require that 1− qAO(x)a(x)/g > 0
for any age x, in order to keep dqAO(x)

dx positive always. Furthermore, we require
a(x) ≥ 1, since if a(x) < 1, the function no longer represents a decelerative effect
in the model (5). During ages with a(x) > 1, beneficial factors and human actions
controlling mortality are contributing to slow the mortality growing. During the
ages with a(x) = 1, these beneficial factors and actions have no extra beneficial
effect on mortality compared to the asymptotic effect counted in g and the processes
contributing to b(x).

The parameter g is the major age-independent contribution to mortality at the oldest
ages, and a(x) and b(x) can be viewed as age-dependent adjustments to g that can be
chosen based on context. For g to have this interpretation, the differential Equation (5)
imposes the additional constraint that a(x) is approximately 1 in the oldest ages.

After solving the differential equation system (5), we derive the function form of qAO(x):

qAO(x) =
g · exp(b̄(x)(x−M1))∫ x

M1
exp(b̄(u)(u−M1)) · b(u)a(u)du + 2

, (6)

where b̄(x) denotes the average value of b(x) on [M1, x], i.e., b̄(x) =
∫ x

M1

b(u)du/(x−M1).

When fitting, we assumed that M1 values are in [35, 100] and that g ∈ [0.3, 1], following
the CODE model Bardoutsos et al. (2018), which assumes that g ∈ [0.4, 1].

2.2. The General Framework for Modeling Mortality

To summarize the full framework: q(x) is the one-year mortality probability for a life
aged x. Based on (1), (2), (3), and (6), we can have the general model formula for q(x).

q(x) = [1 + A−(B+x)C
]−1 +

Tm

1 + exp(−k(x− z))
+

g · exp(b̄(x)(x−M1))∫ x
M1

exp(b̄(u)(u−M1)) · b(u)a(u)du + 2
, (7)

This model includes eight constant parameters and two functions a(x) and b(x) chosen
for one’s convenience and needs. This framework is not only flexible: it can give highly
accurate fits as well, as will be shown in later sections.

Here is a table recording a brief description of all parameters and functions involved
in the general form of the model.

2.3. DLGC: Death Probability Model Q(X) with Chosen A(X) and B(X)

We now specialize to a model with particular choices for parametric forms of a(x)
and b(x) that we call the DLGC, for “Differential Logistic model with Growth rate and
Controlling factor”. We will fit the DLGC to mortality data in later sections.

As b(x) is naturally expected to be an increasing function, the DLGC applies an
increasing logistic function for b(x):

b(x) = β1 + (β3− β1) · [1 + exp(−β2(x−M2))]
−1. (8)

With this definition, we introduced four new parameters. At the younger ages of
adulthood, we are assuming that the mortality acceleration factor b(x) keeps at or near the
lower level β1. As the natural accelerating factors such as biological aging processes show
relatively more and more obvious effects on mortality in older ages, we assumed that the
acceleration factors increase toward a higher level β3 at older ages. The fastest period of
growth in b(x) happens at and near the age M2, and near this age, the accelerating factors
would show the largest effect over a short time. The rate of increase of b(x) around this
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age is controlled by β2. With a larger value of β2, the main increase in b(x) occurs more
drastically and over a shorter time. At ages well past M2, the function b(x) approaches
a value near the higher level β3 and levels off, so we are assuming the effects of these
accelerative factors are not unlimited

For the function a(x) describing beneficial, decelerative factors, we chose the function:

a(x) =
a1 − a2

1 + exp(x− 65)
+

a2 − 1
1 + exp(x− 85)

+ 1, (9)

introducing two more parameters to the model and satisfying the stipulations in Table 6
as well. In a(x), we partitioned the ages of adulthood into three parts: before age 65,
between age 65 and 85, and after age 85. The parameter a1 represents the approximate
average level of the decelerative factor a(x) for the lowest age group, while a2 represents the
approximate average level in the middle age group. We assumed that a(x) is approximately
1 at very old ages, i.e., that beneficial factors, especially those arising from human activity,
have a limited effect at the oldest ages.

We assumed that the changes between levels follow the logistic form. The location of
the changes between levels were fixed at 65 and 85, rather than included as parameters,
because we already obtained good fits and see no obvious benefit from including two
additional parameters.

After choosing above a(x) and b(x), we derived the model for q(x) as

q(x) = [1 + A−(B+x)C
]−1 +

Tm

1 + exp(−k(x− z))
+

g · exp(b̄(x)(x−M1)∫ x
M1

exp(b̄(u)(u−M1)) · b(u)a(u)du + 2
, (10)

where a(x) satisfies (9), b(x) satisfies (8), and b̄(x) (the average value of b(x) on [M1, x])
satisfies the following:

b̄(x) = β3 +
β3 − β1

β2(x−M1)
· ln

[ 1 + exp(−β2(x−M2))

1 + exp(−β2(M1 −M2))

]
, (11)

exp(b̄(x)(x−M1)) = exp(β3(x−M1)) ·
[ 1 + exp(−β2(x−M2))

1 + exp(−β2(M1 −M2))

] β3−β1
β2 . (12)

Table 6. Parameters and functions assigned in the general model of q(x).

Pars Meaning Range Other Constraints

Youngest
age

A the level of child mortality,
approximate to q(1) (0,1)

B the mortality probabilities’ difference
between age 0 and 1, i.e., q(0)− q(1) (0,1)

C the decline in mortality during childhood (0,1)

Teenage
years

k the growth rate of death probability
only caused by teenage years factors > 0

z the “accident hump” age > 0 qT(z) = 1
2 Tm

Tm
the maximum death probability
only caused by teenage years factors (0,1)

Adulthood
and

old ages

M1
the main increasing process of
qAO(x) happens near M1

> 0 qAO(M1) =
1
2 g

g the maximum death probability only
caused by adulthood and old ages factors (0,1)

b(x) growth rate of qAO(x) considering
only natural and basic factors (0,1) continuously increasing

a(x) a controlling factor on the
increasing of death probability [1, ∞)

continuous;
satisfying a(x) = 1,
for x after a certain old age
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The above is the precise description of the DLGC, which includes 14 constant parame-
ters to model the death probability q(x). Below is a table describing all the parameters.

When fitting, we bound β1, β2, β3, M2, a1, and a2 by assuming β1 ∈ [0, 0.5], β2 ∈
[0, 0.9], β3 ∈ [0, 0.5], M2 ∈ [50, 100], a1 ∈ [1, 100], a2 ∈ [1, 10]. The bounds for β1, β2, and β3
were suggested by the CODE model Bardoutsos et al. (2018), and the upper bounds of a1,
a2 were checked by experiments to be appropriate.

2.4. MSE Minimization

We used a weighted MSE to fit the model and to measure goodness of fit. Bardoutsos
et al. (2018) state that the mean-squared error (MSE) of log q(x) gives a relatively large
amount of weight to errors at young ages, the MSE of q(x) gives more weight to errors at
old ages, and the MSE of d(x), i.e., death rate at age x, gives more weight to errors around
the modal age. As a result, we minimized the weighted MSE, denoted as MSEw, satisfying

MSEw =
1
3

[ MSE[log q(x)]
Var[log qx]

+
MSE[q(x)]

Var[qx]
+

MSE[d(x)]
Var[dx]

]
to estimate our parameters, using the reciprocals of the data variances as weights. Here, qx
are the measured mortality probabilities taken from period life tables in the Human Mor-
tality Database (HMD) Wilmoth et al. (2007). The value dx is the death rate at age x
derived from our fitted q(x) using the same life table calculations used in the HMD. We
also calculated the R2 from the weighted MSE, so that our model was fit by maximizing
R2

w = 1−MSEw. We used values of R2
w near 100% as evidence of a good fit to the data.

2.5. Modal Age M Fitting

Once we have fit q(x) for non-negative integer x, we estimated the modal age of death
as well, denoted as M. We assumed the force of mortality at age x, µ(x), is piecewise
constant, satisfying

µ(x) = µi, x ∈ [i, i + 1), (13)

with constants µi. Since 1 − q(i) = 1 pi = Si(1) = exp(−
∫ i+1

i µidr) = e−µi , we have
µi = − log(1− q(i)) for i = 0, 1, 2, 3, . . . Therefore, we are able to fit the modal age M by

M = argmax
x

µ(x)S(x) = argmax
x

µ(x) exp[−
∫ x

0
µ(t)dt].

2.6. Mortality Forecasting with DLGC

We can extend the DLGC to forecast future mortality. For each calendar year, t, assume
that the death rate, qx, follows the DLGC Equation (10), and denote the fourteen embedded
parameters as At, Bt, Ct, kt, zt, (Tm)t, (M1)t, gt, (β1)t, (β2)t, (β3)t, (M2)t, (a1)t, (a2)t.
Since the parameter values change for each year, they naturally form time series: {At},
{Bt}, {Ct}, {kt}, {zt}, {(Tm)t}, {(M1)t}, {gt}, {(β1)t}, {(β2)t}, {(β3)t}, {(M2)t}, {(a1)t},
{(a2)t}. To use those series for forecasting, assume:

• {At}, {Bt}, {Ct}, {(Tm)t}, {gt} have values whose logs form random walks with drift,
e.g., {At} satisfies log(At) = αA

0 + log(At−1) + εA
t , where αA

0 is the drift term and εA
t

are normally distributed i.i.d. error terms;
• {kt}, {zt}, {(M1)t}, {(β1)t}, {(β2)t}, {(β3)t}, {(M2)t}, {(a1)t}, {(a2)t} have values

that form random walks with drift, e.g., {(M1)t} satisfies (M1)t = αM1
0 + (M1)t−1 +

εM1
t , where αM1

0 is the drift and εM1
t are normally distributed i.i.d. error terms.

This simple approach using univariate ARIMA models for each parameter, pioneered
by McNown and Rogers (1989), provides accurate forecasts in our context (see Section 3.1.2).
Moreover, in Section 3.4, we significantly improve forecast accuracy by choosing a window
of training data suggested by observed structural changes.
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To project future values of qx, apply Equation (10) using the projected values of the
time series. The MSE of the forecast test results and the stable tendency of the majority
of the parameters (analyzed in Section 3.2) support the assumptions used in the mortal-
ity forecasting.

3. Main Results of DLGC

In this section, we analyze 1× 1 by age and year mortality data drawn from the Human
Mortality Database (Human Mortality Database n.d.). We performed all data analysis using
the statistical software R (R Core Team 2021). We used data for six countries, which we
split into a group of four and a group of two based on average life expectancy at birth.
For the ease of exposition, we give names to these groups:

HLE countries France, Japan, Switzerland, and the USA have relatively high life ex-
pectancy at birth;

ILE countries Russia and Ukraine have intermediate life expectancy at birth.

We focused primarily on the years 1959 to 2013, when the data for all six countries are
available, although occasionally, we examined earlier years.

For each year of available data, we fit the DLGC to observed values of qx from the HMD
using all ages x from 0 to 100. We truncated at age 100 because the data on supercentenarians
in the HMD has been smoothed. In yearly data fitting, we used the R package DEoptim
Mullen et al. (2011), which performs global optimization by differential evolution.

After fitting yearly data for all years with data available for all six countries, fitting
each gender separately, we forecast mortality for each population using the R package
forecast Hyndman and Khandakar (2008). Viewing each parameter as a time series, we
modeled either the parameter or its log as a random walk with drift, as this seemed
appropriate. We used 26 years of fit parameters and forecast each parameter out 5 years
or 10 years, from which we obtained forecast mortality curves. Using data for these same
years from the HMD as a validation set, we compared the test error of our forecast with
that from a logit-binomial version of the Lee–Carter model in the R package StMoMo
Villegas et al. (2018) by using the function lc.

In Section 3.1, we show that DLGC gives an excellent fit for every dataset—for each
country and gender, the mean R2

w across the years is always bigger than 99%. It also
provides a good forecast accuracy for each population, especially in ILE countries. We
examine the variation of the fitted parameters through time in Sections 3.2 and 3.3, inter-
preting trends and some mortality structural changes, including the influence of major
wars. Section 3.4 shows the structural changes observed help improve forecasting accuracy.
In Section 3.5, we give a quantitative analysis of parameter influence on life expectancy
improvement and the gender gap.

3.1. Goodness of Fit for DLGC
3.1.1. Fits across Age

For each of the four HLE countries France, Japan, Switzerland, and the USA and
each of the two ILE countries, Russia and Ukraine, we fit the DLGC to female, male, and
total (both female and male) datasets in all data available years.1 The summary of the fit,
measured by R2

w described in Section 2.4, is recorded in Table 7:

1. Overall, the DLGC gives an excellent fit. For all datasets, we averaged the R2
w values

across all fitted years for a given country and gender. All means were above 99%.
The lowest was 99.55%, occurring for Russian males, and the highest mean was 99.94%
for Japanese females.
We also fit the Heligman–Pollard model Heligman and Pollard (1980) to the six
countries’ data for all available years by maximizing the R2

w, to compare the goodness
of fit with the DLGC model. (The year period for each country is the same as Table 7.)
Table 8 summarizes the fit.
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Table 7. R2
w of the DLGC fitting results.

Gender Country Code Years Mean SD Range Portion of R2 > 0.98

Female

Japan 1947–2019 0.9994 0.00032 [0.9980,0.9998] All
USA 1933–2019 0.9993 0.00029 [0.9986,0.9998] All
Switzerland 1876–2018 0.9972 0.00086 [0.9936,0.9984] All
France Civilian 1816–2018 0.9984 0.00109 [0.9948,0.9996] All
France Total 1816–2018 0.9983 0.00138 [0.9893,0.9996] All
Russia 1959–2014 0.9961 0.00559 [0.9704,0.9995] 55 out of 56
Ukraine 1959–2013 0.9957 0.00552 [0.9717,0.9992] 53 out of 55

Male

Japan 1947–2019 0.9991 0.00046 [0.9973,0.9996] All
USA 1933–2019 0.9983 0.00082 [0.9957,0.9994] All
Switzerland 1876–2018 0.9970 0.00090 [0.9926,0.9989] All
France Civilian 1816–2018 0.9973 0.00306 [0.9642,0.9995] 202 out of 203
France Total 1816–2018 0.9959 0.00922 [0.9190,0.9994] 196 out of 203
Russia 1959–2014 0.9955 0.00408 [0.9769,0.9987] 55 out of 56
Ukraine 1959–2013 0.9956 0.00430 [0.9767,0.9988] 54 out of 55

Total

Japan 1947–2019 0.9993 0.00033 [0.9983,0.9997] All
USA 1933–2019 0.9989 0.00045 [0.9978,0.9996] All
Switzerland 1876–2018 0.9982 0.00058 [0.9946,0.9992] All
France Civilian 1816–2018 0.9982 0.00118 [0.9940,0.9997] All
France Total 1816–2018 0.9974 0.00496 [0.9543,0.9996] 199 out of 203

Table 8. R2
w of the Heligman–Pollard model fitting results.

Country Japan USA Switzerland France
Civilian

France
Total Russia Ukraine

Female
Mean 0.9348 0.9318 0.9495 0.9570 0.9590 0.9431 0.9560
Min 0.8604 0.8281 0.8535 0.8419 0.8412 0.8518 0.8613

Male
Mean 0.9422 0.9455 0.9537 0.9601 0.9560 0.9668 0.9571
Min 0.8453 0.8019 0.8318 0.7936 0.7174 0.7683 0.7643

The means of R2
w for the fitted Heligman–Pollard model were between 93.18% and

96.68% for the six countries, while for DLGC, they were all above 99%. Overall,
the DLGC shows much better accuracy than the Heligman–Pollard model does across
countries and gender. Several particularly poor fits of the Heligman–Pollard have R2

w
71.74% for French male total population in 1915, 76.83% for Russian males in 1994,
and 76.43% for Ukrainian males in 2005, while DLGC’s results are all above 91.90%.
DLGC fits better than the Heligman–Pollard model on data from both recent years
and from those over a century ago.
Since our model has more parameters than some others, we also compared it against
other models based on the AIC, defined as

AIC = 2k + n ln
RSS

n
,

where k is the number of parameters in the model under consideration and n is the
number of observations.
The DLGC also performs better than the Heligman–Pollard model with respect to
the AIC. This is observed universally among the six countries, for both female and
male populations, both recent years and older years. For example, as one HLE
country, the fitting results of Switzerland female have an AIC −1240.87 (DLGC)
compared with−741.88 (Heligman–Pollard) in 2018,−1134.83 (DLGC) compared with
−702.34 (Heligman–Pollard) in 1886; in 2013, as one ILE country, the fitting results of
Russia have an AIC −1228.57 (DLGC) compared with −962.35 (Heligman–Pollard)
for female and−1139.05 (DLGC) compared with−984.77 (Heligman Pollard) for male.
We recorded the AIC improvement, i.e., ∆AIC = AIC(DLGC)− AIC(Heligman−
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−Pollard), in each year’s data fitting for both genders in all six countries. Table 1
summarizes the ∆AIC’s mean among years with available data shown in Table 7. One
can notice that, by including 14 parameters, 6 more parameters than the Heligman–
Pollard model with 8 parameters, the DLGC obtains great improvement in its fitting
accuracy and is not overfitting.

2. The DLGC sometimes gives a noticeably worse fit during a year that a country was
at war. This is especially evident for French males during the World Wars. The eight
years for which the R2

w for French total male population was less than 98.5% were
1914–1918 (exactly the span of World War I) and 1940, 1943, and 1944 (during World
War II). By contrast, Switzerland maintained neutrality during the World Wars, and the
fit to Swiss male data is not noticeably worse during the war years. Overall, the French
civilian male population is fit better than the French total male population in the R2

w
mean, SD, and range. Excluding the eight war years mentioned above, the fitting
results for French total male population in all the remaining years have a mean R2

w
of 99.75% and SD 0.00185, with a range of 98.94% to 99.94%. These are in line with
the French civilian male data, especially if we remove 1919, the single year for which
the model produced R2

w under 98% (at 96.17%) when fitting French civilian males.
Excluding 1919, the French civilian males in all other available years have a R2

w mean
of 99.75% and SD of 0.00198, with a range of 98.84% to 99.95%, almost identical to the
values for French total males with the war years excluded. It is possible that the poorer
fit for French civilian males in 1919 compared with other years is a continuation of
the anomalous fit seen for total male population during war years: there was likely
a number of soldiers who transitioned to civilian life immediately after the war and
then died some months later in 1919, from wounds or other factors incurred during
service.

3. Excluding war years, the DLGC is observed to fit data from HLE countries better
than ILE countries. Among the six countries, DLGC gives the best fit for for Japan
and the USA, where the R2

w is at least 99.57% for all female, male, and total datasets
over all available years of data. For Switzerland, over 144 years, the minimum R2

w
is 99.26%. As mentioned above, for French data over the last 200 years, excluding
the war years mentioned above, the minimum R2

w is 98.94%. Compared with these
high-life-expectancy-at-birth countries, Russia and Ukraine show lower R2

w means,
higher R2

w SDs, and lower minimum R2
w (still higher than 97.6%).

4. For the four HLE countries, France, Japan, Switzerland, and the USA, the DLGC tends
to fit better for female datasets than male datasets. For these countries, the R2

w mean
for females is higher than that for males during the same time period, and the minimal
R2

w appears with a male dataset, such as 91.90% for French total male population
in 1915 and 96.42% for French civilian male population in 1919. The minimum R2

for female data is at least 98% for all HLE countries and all years. For the two ILE
countries, Russia and Ukraine, there is no clear distinction between R2

w for females
and males.

5. The fit is better in more recent years for all countries with data extending into the
Nineteenth Century. For French civilian males over the period 1816–1917, the mean
R2

w is 99.64%, and for females, the mean is 99.77%. For the period 1918–2018, the mean
for French civilian males is 99.82%, and for females, the mean is 99.92%.

We now briefly consider how DLGC models mortality from South Africa, a low life
expectancy country. Because of the limited availability of online mortality data for South
Africa, we only tested a more recent period (1× 3 by age and year life tables in 2006–2008)
and an older period (1 × 3 by age and year life tables in 1925–1927) for both genders,
using data drawn from the Human Life Table Database Human Life Table Database (n.d.).
Table 2 summarizes the DLGC fitting accuracy by R2

w and the AIC and compares it to the
Heligman–Pollard model, showing that the DLGC fits South Africa well.
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3.1.2. Forecasting over Years

To examine the forecasting accuracy of DLGC, we compared it to the logit-binomial
version of the Lee–Carter model (in the R package StMoMo Villegas et al. (2018)). For every
population, we used the same training data to fit the two models and then compared their
MSE[qx] (mean-squared error of death rate) for forecasts of the following 5-year or 10-year
period using available mortality data.

For the four HLE countries, we used data from years 1990 to 2015 and ages 0 to 100
to train the two models and forecast the following 5-year period (i.e., 2016 to 2020) as a
shorter-term forecast. For longer-term forecasts, we trained the models on data for years
1985 to 2010 and ages 0 to 100 and forecast the following 10-year period (i.e., 2011 to 2020).

Since data for the two ILE countries are only available until 2014, we trained the
models on data from years 1984 to 2009 and ages 0 to 100 and forecast from 2010 to 2014 as
the shorter-term forecasting. For the longer-term forecast, we trained the models on data
from years 1979 to 2004 and ages 0 to 100 and forecast from 2005 to 2014.

Tables 3 and 4 summarize the test forecasting MSE[qx] in six countries for both genders
for the recent 5-year-ahead and 10-year-ahead forecasts, respectively. Blocks where DLGC
has a better test MSE[qx] than the logit-binomial Lee–Carter model are marked as yellow,
while blocks where DLGC performs worse are marked as orange. The grey blocks indicate
that qx data are unavailable for those years:

1. In summary, DLGC has better forecasting accuracy than the logit-binomial Lee–Carter
model. For the 186 years of death rate data, DLGC performs better on 81.18% of
them (151 out of 186). For all test samples, DLGC’s MSE[qx] is below 2.835× 10−4,
while 9.14% (17 out of 186) of the logit-binomial Lee–Carter’s MSE[qx] are bigger than
2.835× 10−4 (and its largest MSE[qx] is 9.359× 10−4).

2. Tables 3 and 4 show that DLGC’s superiority to the logit-binomial Lee–Carter model is
more pronounced for the longer forecasting period. In 5-year-ahead forecasts, DLGC
performs better on 67.24% of test samples (39 out of 58), but in 10-year-ahead forecasts,
the proportion rises to 87.50% (112 out of 128). Results for Switzerland and Japan
repeat that pattern. For Switzerland, DLGC performs worse in the 5-year-ahead
forecasts (2 yellow vs. 8 orange), but forecasts better on almost all 10-year-ahead
tests (19 yellow vs. 1 orange). For Japan, DLGC and the logit-binomial Lee–Carter tie
(5 yellow vs. 5 orange) for the 5-year-ahead forecasts, but DLGC is much better in the
10-year-ahead tests (19 yellow vs. 1 orange).

3. For HLE countries, both models provide very accurate forecasts, but for ILE countries
and the USA (which has the lowest life expectancy among the four HLE countries),
DLGC’s forecasts are more stable, i.e., the total growth of MSE[qx] over time is much
smaller for DLGC than for the logit-binomial Lee–Carter, except for Ukraine females,
where the comparison is distorted because the latter model has a much worse forecast
in the first year.

4. DLGC’s superiority to the logit-binomial Lee–Carter model is more pronounced for
ILE countries. In both 5-year-ahead and 10-year-ahead forecasts, DLGC forecasts are
almost always better (and stabler) for the two ILE countries and the USA. Comparing
HLE and ILE countries, there are 21 yellow blocks out of 40 (52.5%) in 5-year-ahead
forecasts and 75 yellow blocks out of 90 (83.33%) in 10-year-ahead forecasts for HLE
countries, while for all test samples in ILE countries, there are 18 yellow blocks out
of 18 (100%) in 5-year-ahead forecasts and 37 yellow blocks out of 38 (97.27%) in
10-year-ahead forecasts.

5. DLGC forecasts better than the logit-binomial Lee–Carter model for both males and
females, but the superiority appears similar for each gender. In 5-year-ahead forecasts
with 29 test samples in each gender, 21 are yellow for female and 17 are yellow for
male; in 10-year-ahead forecasts with 64 test samples in each gender, 57 are yellow for
female and 55 are yellow for male.



Risks 2022, 10, 161 17 of 38

Figure 1 plots the Russia male 2014 death rate forecasting of DLGC and the logit-
binomial Lee–Carter model by fitting data from 1979 to 2004.

Figure 2 plots the USA male 2019 death rate forecasting log value of DLGC and the
logit-binomial Lee–Carter model by fitting data from 1985 to 2010.

Figure 1. RUS male 2014 death rate forecasting of DLGC and the logit-binomial Lee–Carter model.

Figure 2. USA male 2019 death rate forecasting log value of DLGC and the logit-binomial Lee-
Carter model.

The above data were all from one time period. To further validate the DLGC, we
performed a form of rolling-window cross-validation as in, for instance, SriDaran et al.
(2022). The MSEs of 5-year-ahead forecasts of the two models were compared after training
the models on data for USA males with time intervals starting with 1975–2000 and rolling
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forward one year at a time. The results are presented in Table 5 and show that DLGC
outperformed the logit binomial Lee–Carter model. (Blocks are marked yellow if DLGC
outperforms and marked orange if the logit-binomial Lee–Carter model outperforms.)

3.2. Variation of Parameters through Time

This section examines the trends of the fitted parameters through time, focusing
specifically on parameters that show a relationship with mortality improvement, as well as
differences in parameter levels and trends between countries and between genders. We
primarily focus on the years 1959 to 2013, when the data for all six countries are available.2

The greatest mortality improvement is observed in HLE countries, as may be ex-
pected. This pattern is manifest in parameters from all three age groups—children,
teenagers/young adults, and older adults. Indeed, the countries within the HLE and
ILE groups show surprising consistency across a number of measures, such as the the
change in parameter level or variance over time. By contrast, for some parameters, there
are obvious differences between the two groups.

Mortality improvement at younger ages is evident simply in a decrease in the value of
q(x), but mortality improvement in older ages is generally observed to lead to compression
and increased mortality at the oldest ages, because delaying the age at death increases
the number of people at the highest ages and the proportion of people dying at those
ages. We must therefore be more careful in describing the relationship between mortality
improvement and the model parameters associated with old ages.

Summary of observations: We observed mortality improvement associated with
lower infant mortality through downward trends in the parameters A and C. Mortality
improvement among teenagers was observed just in one parameter, a decrease in the
limiting teenage mortality Tm, and only in HLE countries. Mortality improvement at old
ages was observed in HLE countries through a modest decline in the limiting mortality g
(except remaining flat in the USA) and an increase in the age M1 at which fastest growth
occurs in the model. Among the parameters of the associated functions b(x) and a(x),
which represent age-dependent mortality acceleration and mortality deceleration factors,
respectively, we observed mortality improvement in all countries evident in a delay in
the age M2 of fastest growth of the function b(x), as well as in increasing trends in the
levels a1 and a2 of the function a(x) at younger old ages. Finally, we observed mortality
improvement through an increase in the modal age at death M computed from our fitted
model in all countries.

Compression was evident in ILE countries through a combination of an increase in
the age M1 of fastest increase in the component of mortality for the oldest ages occurring
together with an increase in the limiting mortality g at the oldest ages. Compression
was observed in all countries through an increasing trend in the age M2 at which the
mortality acceleration factor b(x) increases fastest, combined with an increasing trend in
β3, the approximate level of the morality acceleration factor b(x) above the age M2.

3.2.1. Mortality Improvement in the Earliest Ages

The three parameters in the DLGC related to childhood mortality are A, B, and C
appearing in the function qI(x) (see Table 9). For fixed x, the value qI(x) decreases when
any of A, B, or C decreases, so a decrease in these parameters is evidence of infant mortal-
ity improvement.

Parameter A shows a similar time variation whether comparing different countries
or genders. For all six countries, both HLE and ILE, from 1959 to 2013, the parameter
A decreases over time, leading to a decrease in qI(x) for all ages x. Thus, A contributes
to infant mortality improvement in all cases. Moreover, log A decreases approximately
linearly, implying that A has a nearly stable decay rate over this period.

The parameter A exhibits well the consistency within country groups and contrast
between groups, as the time plots of log A were very similar for each country within each
group. Figure 3 shows plots of log A from 1959–2013 when female data were fit to DLGC
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for each country and year, i.e., female infant mortality log(1q1). The left plot is for the four
HLE countries; the right is the ILE countries; we see the approximately linear decrease
from similar levels in both plots in 1959 to much lower levels in the HLE plot by 2013.
While all countries have shown improvement in infant mortality over this time period,
the improvement has been more dramatic in HLE countries during this period. Thus,
the parameter A was seemingly not contributing much to a difference in mortality between
HLE and ILE countries in 1959, but has since been responsible for some of the greater
mortality improvement in HLE countries.

Table 9. Parameters in DLGC.

Pars Meaning Range Other Constraints

Youngest
age

A the level of child mortality,
approximately equal to q(1) (0,1)

B approximately the difference in mortalities
between age 0 and 1, i.e., q(0)− q(1) (0,1)

C the decline in mortality during childhood (0,1)

Teenage
years

k the growth rate of the mortality contribution
from factors arising during teenage years > 0

z the “accident hump” age > 0 qT(z) = 1
2 Tm

Tm
the limiting mortality contribution
from factors arising during teenage years (0,1)

Adulthood
and

old ages

M1
the main increase in the mortality contribution from
factors arising during adulthood happens near M1

> 0 qAO(M1) =
1
2 g

g the limiting mortality contribution
from factors arising during adulthood and old age (0,1)

β1
the lower bound of the accelerative factor
(i.e., b(x)) incorporated into qAO(x) (0,1)

β3
the upper bound of the accelerative factor
incorporated into qAO(x) (0,1)

β2
the rate of growth of the accelerative factor
in qAO(x) between its two levels > 0

M2
the main increasing process of the
accelerative factor b(x) happens near M2

> 0 b(M2) =
1
2 (β1 + β3)

a1
the main level of the controlling factor a(x)
before age 65 [1,∞)

a2
the main level of the controlling factor a(x)
between ages 65 and 85 [1,∞)

Comparing the plot of log A for males and females from a single country shows either
no substantial difference or else a slightly lower curve for females than males. It is known
that infant mortality is a little higher for males than females in most parts of the world,
with several reasons being put forward Pongou (2013), so the curves produced by the
DLGC are in line with the expectations.

While Figure 3 shows generally linear trends in log A for all six countries, examining
all of the data from countries with older available data, France and Switzerland, shows
that the trend has changed over time. Figure 4 shows the trend of log A for 203 years of
fitted data for France and 142 years of fitted data from Switzerland. For both countries,
infant mortality shows a relatively slow decline until the early 1900s, then a quicker decline,
and France also shows slowing again in recent years, which is hard to see in the limited
version in Figure 3.
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(a) (b)

Figure 3. (a) The log of infant mortality A for females from 1959 to 2013 across HLE countries.
(b) The log of infant mortality A for females from 1959 to 2013 across ILE countries.

(a) (b)

Figure 4. (a) The log of infant mortality A in France, male vs. female. (b) The log of infant mortality
A in Switzerland, male vs. female.

The parameter B shows no consistent trend, staying relatively flat for each country
over time. There are differences between countries, however. Among the HLE countries,
the largest contrast is between Japan and the USA. Figure 5 depicts the value of B for
these countries over all years of available data. The value B is consistently higher for
Japan than for the USA. Japan is the only one of the six countries exhibiting anything
other than essentially flat behavior. It seems there was a sharp decline in the part of infant
mortality attributed to B before 1960, and it is notable that in 1959, Japan had the lowest life
expectancy at birth of 67.44 among all six countries, while in 2013, Japan had the highest
life expectancy at birth of 83.47. It is not clear why B may have increased again in Japan
since that time.

The value for the ILE countries was generally higher than that for HLE countries.
Interpreting B as a drop in q(x) between ages 0 and 1, this could be just a reflection of a
higher probability q(0) for the ILE countries.
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Figure 5. Comparison of B between Japan and the USA.

As shown in Figure 6, parameter C experienced a small decline between 1959 and
2013 for all countries except the USA, for which it remained essentially flat. The decline in
C results from the infant mortality q(1) decreasing. Once again, C is somewhat larger for
ILE countries than for HLE countries, suggesting that childhood mortality decreases faster
in ILE countries than HLE countries, but that may be because there is a birth mortality gap
between these two groups of countries. In Figure 6c, in France civilian population, C stays
at a higher level before 1950s, decreases rapidly during 1950–60s, and then, levels off at a
lower level after that.

(a) (b)

(c)

Figure 6. (a) Decline in mortality during childhood, i.e., C, across HLE countries. (b) Decline in
mortality during childhood, i.e., C, across ILE countries. (c) Decline in mortality during childhood,
i.e., C, for France civilian population, male vs. female.
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3.2.2. Mortality Improvement in Teenagers

The three parameters in the DLGC related to teenage/twenty-something mortality
are k, z, and Tm appearing in the function qT(x) (see Table 9). For fixed x, the value qT(x)
decreases when Tm or k decreases and when z increases, so these changes would indicate
mortality improvement. This is intuitive for Tm and z, since Tm is the upper bound and
limiting value for mortality caused by factors during teenage years, while an increase in z
is a shift of the “accident hump” to a later age.

The parameter k was observed to be stable for all six countries, with occasional spikes
above the stable level, seemingly random. More interesting behavior is exhibited by the
other parameters.

We expect z to fall in a relatively small range of ages since it represents the age of the
“accident hump”. It should not be able to trend up or down indefinitely; yet, there is also
no particular limiting value that should be expected through biological mechanisms. It is
not surprising, then, that over long time periods, the fitted z value is observed to wander
up and down within the range of ages when it is typically observed.

Since 1960, the fitted z for HLE countries has mostly between 13.5 and 18, while the
value for ILE countries has remained higher between about 16 and 21 until 2000 and has
increased from 20 up to the low 20s for Russia and the mid-20s for Ukraine since the year
2000. In all countries, the fitted z for males is only rarely observed to be lower than females.
The gap is generally observed to be smaller in HLE countries and to be negligible some
of the time. In the ILE countries over all available data since 1959, the z for male data has
almost always been 1–3 years higher than the z for female data, except in the growth period
since 2000, when both datasets experienced comparable levels.

Figure 7 gives an example plot of log Tm for Switzerland for the long period 1876–2018
and for Ukraine for 1959–2013. All six countries were at fairly comparable levels in 1959.
Comparing just the period from 1959–2013, the HLE countries all experienced a decline in
log Tm, with each country except the USA showing continual improvement. For the USA,
log Tm has remained flat since around 1970. By contrast, the ILE countries have experienced
a moderate increase, as seen for Ukraine in the panel on the right. Since 1959, it seems
the limiting mortality Tm has been a factor in teenage mortality improvement for HLE
countries, but not in ILE countries. For Russia and Ukraine, the combined effect of the
recent trends in z and Tm is that the average accident hump is occurring at a later age,
and after the hump, the mortality climbs to a higher background level.

(a) (b)

Figure 7. (a) The log of the limiting teenage mortality Tm for Switzerland, male vs. female. (b) The
log of the limiting teenage mortality Tm for Ukraine, male vs. female.

A striking feature of the above plot of log Tm is the sudden transition of the female
mortality in Switzerland around 1950. While both curves generally trend down and are
relatively close together until that year, the female curve exhibits essentially a discontinuity
with a sudden improvement in the value log Tm. This seems to be a permanent change,
and females have continued to have a drastically better value of log Tm than males ever
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since. All four of the HLE countries show this transition sometime during the 1950s. We
see no transition in the plot of Ukrainian data on the right, but since the curves are separate
with females below males for essentially the whole period, we assume that if data existed
extending back through the 1950s, we may very well have seen this transition in the ILE
countries as well. We will discuss the transition in more detail in Section 3.3.

The final feature to note here is the small spike in log Tm in Switzerland in the year
1918, a spike that is more evident in the plot of Tm itself. French total population exhibits
three periods of spikes in Tm: the years 1870–1871, the years 1914–1918, and the years
1940–1943. We will return to consider these spikes in more detail in Section 3.3.

3.2.3. Mortality Improvement in Adulthood and Old Age

There are eight parameters in the version of the DLGC we implemented (recall that
other versions can be produced by using different functions a(x) and b(x))—M1 and g are
in the function qAO(x) regardless of how the framework is implemented, while a1, a2, M2,
β1, β2, and β3 were parameters in the particular functions a(x) and b(x) we chose when
implementing the model (see Table 9).

Mortality improvement is generally observed to lead to compression and increased
mortality at the oldest ages, so the oldest people will experience higher mortality even as
the younger population is considered to be undergoing mortality improvement. We must
then be more careful in specifying the relationship between these parameters and mortality
improvement than we were in the previous sections. For instance, the parameter g is the
limiting mortality for the component related to factors arising during adulthood and old
age, and the parameter M1 is the age at which qAO(x) has risen to half of that limiting
value. An increase in g could be viewed as mortality getting worse, but if simultaneously
accompanied by a large increase in M1, it could instead just be an indication of an increase
in the age at which mortality increases fastest followed by a higher limiting value in the
region of mortality compression. Regardless, we view either an increase in M1 or a decrease
in g as direct evidence of mortality improvement.

The model (5) incorporates a(x) as a factor causing mortality deceleration and b(x) as
causing mortality acceleration. Thus, increases in the values of a1 and a2, the approximate
heights of a(x) below age 65 and between ages 65 and 85, should be viewed as mortality
improvement. Similarly, we view decreases in the values of β1, β2, and β3 as mortality
improvement, as well as an increase in the age M2. We note that a second instance of
mortality compression can be manifest in an increase in β3 occurring simultaneously with
an increase in M2, analogous to the situation with g and M1 described above. We could
then still view this as a form of morality improvement.

Finally, while the modal age at death is not a parameter in the model, we computed
it from the fitted model as described in Section 2.5. We naturally view an increase in the
modal age as mortality improvement.

Summary: Overall, we find that in all six countries, mortality improvement is sub-
stantially impacted by parameters associated with mortality in adulthood and old age.
For these countries, almost all of the above-mentioned parameters in qAO(x) have trends
that either show mortality improvement or else give evidence for compression.

For the four high-life-expectancy-at-birth countries, a decline in maximum mortality g
(except in the USA, where it remained flat), an increase in the age M1 at which the main
increasing process in qAO(x) is occurring, and increases in the overall level of the mortality
deceleration function a(x) all indicate mortality improvement coming from factors arising
during adulthood and old ages. For the ILE countries, we observed increasing levels of
g combined with a delay in the age M1, which, together, are evidence of compression,
as well as increases in the overall level of the mortality deceleration function a(x). For all
countries, we observed evidence for compression in the form of an increase in the level of
the mortality acceleration function b(x) at the oldest ages, as well as a delay in the age at
which the increase to this level is occurring.
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Limiting mortality g and the age of fastest growth M1

Figure 8 shows how g, the limiting mortality caused by factors arising in adulthood
and old age, changes over time for the six countries over the period when all countries have
data. The HLE countries each experienced a modest decline, except the USA, for which g
has remained essentially flat. The other countries caught up to the USA, reaching levels at
the end of the time interval comparable with what the USA had experienced for decades.
By contrast, the trend in g has been remarkably consistent in the ILE countries, with both
curves staying close together through periods of slow growth, then faster growth, and then
slow growth again—drastically different behavior than the gradual decline among the
HLE countries.

(a) (b)

Figure 8. (a) Limiting old age mortality g across HLE countries. (b) Limiting old age mortality g
across ILE countries.

By comparison, the age M1 at which the sharpest increase in qAO(x) occurs, also the
point at which half of the limiting value is obtained, is observed to increase steadily among
all six countries, although at different levels and rates (see Figure 9). Japan experienced the
most drastic growth, from the lowest value among HLE countries of 92 in 1959 up to the
highest observed value of 98 in 2013. By contrast, the value M1 for the USA experienced an
increase of just 1 year or so through the same period. The value of M1 for ILE countries was
lower than that of HLE countries over this period, but showed an increase almost as large
as that of Japan, so that by 2013, the value was comparable to the lowest values among the
HLE countries.

(a) (b)

Figure 9. (a) Age M1 of fastest increase in senescent mortality across HLE countries. (b) Age M1 of
fastest increase in senescent mortality across ILE countries.
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It is clear then that both parameters g and M1 have contributed to mortality im-
provement for the HLE countries, with a lower limiting value approached at a later age.
The situation with the ILE countries is more complicated—as mentioned above, the ob-
served increase in g is not necessarily mortality getting worse because it was accompanied
by a simultaneous delay in the age at which the growth toward that limiting value occurred,
which we view as indicative of compression.

Figure 10 also shows how the parameter g changed over the last two centuries for
French females. The limiting old age mortality g was increasing from 1816 to the early 20th
Century and then started to decline after that. By contrast, the parameter M1 increased from
an average level around the high 80s in the early 19th Century up to the high 90s by the
21st Century. Thus, it appears that mortality improvement occurred over this entire period,
but in the form of compression until the 20th Century and then more direct improvement
since then.

Figure 10. Limiting old age mortality g for France civilian females during 1816 to 2018.

Mortality acceleration factor b(x) with parameters M2, β1, β2, β3

The mortality caused only by factors during adulthood and old age, qAO(x), involves
the mortality acceleration function b(x). For the DLGC, we chose the particular form of
b(x) in Equation (8), a function that increases from a level β1 to level β3, with M2 the age of
fastest growth and β2 a growth rate.

For HLE countries, the plot of M2 in Figure 11 shows large variance until around the
1950s, followed by a gradual decrease in the variance. The upper limit of M2 is around 90
for the entire plot, but the lowest observed values gradually increase over time until values
for all four countries stabilize between about 75 and 90 around 2000. ILE countries exhibit
the inverse behavior, starting with low variance from 1959 until the 1980s, with values of
M2 from the low-50s to the low-60s. Starting in the 1980s, the largest observed values of
M2 increased rapidly, in some years exceeding 90, while the lower bound has increased
perhaps just a little, with several years since 2000 still experiencing values in the low-60s.

In both cases, the overall tendency is toward larger values, suggesting that M2 con-
tributed somewhat to mortality improvement in all countries.

The parameter β1 is essentially flat, staying around the value 0.1 with occasionally
spikes below this level, for all six countries over years when they all have data. The param-
eter β3 is observed to stay flat or trend slightly upward for all six countries, with occasional
spikes above the gradual trend (see Figure 12). The value of β3 is consistently above β1
for all six countries, although still usually less than 0.2. Intuitively, it is reasonable that
age-dependent factors that accelerate mortality would have a lesser effect at younger ages
and a stronger effect at old ages. Looking at older data, the flat nature of β1 is observed
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in France all the way back to 1816, while in Switzerland, the value increased significantly
between 1876 and 1960.

(a) (b)

Figure 11. (a) The age of fastest growth of the mortality acceleration factor across HLE countries.
(b) The age of fastest growth of the mortality acceleration factor across ILE countries.

(a) (b)

Figure 12. (a) Level β3 of the mortality acceleration factor at old ages across HLE countries. (b) Level
β3 of the mortality acceleration factor at old ages across ILE countries.

A plot of β2 does not show a trend for any country/gender combination, except a
trend downward for Ukrainian female data. An augmented Dickey–Fuller test provides the
same conclusions—only the Ukrainian female dataset shows evidence of non-stationarity.
However, an examination of the sample autocorrelations for the other datasets indicates
positive autocorrelations at most lags, except for Japanese males and females. For France
and Russia, there is enough data that the first few autocorrelations are significantly different
from 0.

In summary, after 1950, for all the six countries, the growth rate function b(x) for the
mortality caused by factors during adulthood and old ages has a stable mortality growth
rate in young adulthood β1, a gradually increasing mortality growth rate in very old
adulthood β3, and a gradual delay in the age of fastest increase M2, while the growth rate
at that age is seen to remain stable, except for a decrease observed for Ukrainian females.

Mortality deceleration factor a(x) with parameters a1 and a2

The mortality caused only by factors during adulthood and old age, qAO(x), involves
the mortality deceleration function a(x). This would intuitively include the effect of
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technological advancements and other improvements in personal health and healthcare
systems. For the DLGC, we chose the particular form of a(x) in Equation (9). This function
takes on three main approximate levels: a1 before age 65, a2 between 65 and 85, and 1 above
age 85. The change between two adjoining levels is logistic, the two changes occurring at
ages 65 and 85, and beyond 85, the model assumes that a(x) = 1, so that the parameter g
will represent the limiting mortality from factors arising during old age. We intuitively
view increases in a1 or a2 as mortality improvement, since such changes indicate a greater
decelerating effect on mortality.

The value of a1 was generally seen to trend upward for all countries for the complete
period of available data, indicating that it consistently contributes to mortality improve-
ment, as seen in the top panels of Figure 13. The bottom panel shows a1 for French males
and females. For both datasets, a1 stays between 1 and 3.7 for the first century of data.
Then, there is a gradual increase for both datasets, whose values still continue to stay close
together. Starting in 1956, there is a sustained upward trend in the value of a1 for females.
While the value for males has also generally trended up since, with a couple of periods of
retreat, starting with the 1950s, there is a marked difference between males and females,
with a1 seeming to contribute much more to mortality improvement for females than for
males. This separation of the female and male curves occurs in all of the HLE countries at
around the same time and will be discussed further in Section 3.3.

(a) (b)

(c)

Figure 13. (a) Mortality deceleration level a1 before age 65 across HLE countries. (b) Mortality
deceleration level a1 before age 65 across ILE countries. (c) Mortality deceleration level a1 before age
65 for France, male vs. female.

Plots of a2 for HLE countries reveal either a trend upward or else an increase in
variance, with the lowest values remaining near 1 in some years, but the maximum observed
values increasing over time. Either situation is evidence that a2 is contributing to mortality
improvement. In ILE countries, there is another transition point after which the male and
female values show sustained separation. In 1993 in Russia and 1995 in Ukraine, we see
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a2 for the male data jump up to significantly higher levels and remain above the value for
female data ever since, as depicted in Figure 14.

(a) (b)

Figure 14. (a) Mortality deceleration factor between ages 65 and 85 for Russia, male vs. female.
(b) Mortality deceleration factor between ages 65 and 85 for Ukraine, male vs. female.

Comparing the levels of a1 and a2, in all contexts, it is observed that a1 is much greater
than a2, so the beneficial factors that decelerate mortality have more of an effect at younger
ages than older ages. This justifies the assumption that at very old ages, a(x) will be
approximately 1.

Modal age at death M calculated from fitted q(x)

After fitting the DLGC, we used the method described in Section 2.5 to calculate the
modal age at death M from the fitted values of q(x). Figure 15 shows the derived modal
age at death M changing over years in each country, with HLE countries on the left and
ILE countries on the right. An increasing M indicates mortality improvement, a result of
synthesizing the improvement of the mortality from the youngest ages qI(x), the mortality
from the teenage years qT(x), and the mortality from adulthood and old age qAO(x).

(a) (b)

Figure 15. (a) The modal age M for females in HLE countries. (b) The modal age M for females in
ILE countries.

The HLE countries show increasing modal age at death, while the ILE countries have
essentially stable values of M, except for a small increase starting in 2010. All countries
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had comparable values in 1959, but HLE countries now have considerably higher M than
ILE countries. Separating by gender shows generally the expected gender gap, with modal
age at death for females higher than that for males in the same country. The modal age
at death for females was stable in Ukraine and increased in Russia, while the value has
steadily decreased for Ukrainian males. In Russia, the value for males was stable at around
75 years until 1993, after which it dropped by several years, finally returning to stabilize
around 75 years again in 2011.

3.3. Events and Inventions—Effects on Parameters

Some world events and developments have such an impact on mortality that their
effects can be observed in time plots of the fitted parameters of the DLGC. These were
mentioned in several places in previous sections:

1. The effect of World Wars both on the goodness of fit of the model and on the value of
log Tm, the limiting teenage mortality.

2. The spike in log Tm in Switzerland in 1918, larger for males than females.
3. The sudden and sustained drop in log Tm for females in all HLE countries, starting

in 1949 in France, 1952 in the USA, 1953 in Switzerland, and less sudden in Japan,
but trending down sharply beginning around 1950.

4. The sudden and sustained increase for females of a1, the mortality deceleration factor
for adults under 65, staring in 1950 in Switzerland and the USA, 1952 in France,
and 1958 in Japan.

5. The sudden and sustained increase for males of a2, the mortality deceleration factor
for adults between 65 and 85, starting in 1993 in Russia and 1995 in Ukraine.

Our attribution of causes to these patterns is speculative and not scientific. Never-
theless, we think it is clear that Observation (1) is because of the World Wars. The spike
is most evident in France, which saw many deadly battles in both wars; it is far larger in
males than in females; it is far larger in the dataset of all males than just the dataset of
civilian males. Examining all years of data for the total male population, the spikes are
present in 1870–1871, 1914–1918, and 1940, 1943, and 1944. The first spike coincided with
the Franco-Prussian War, and the others cover almost completely the periods of the World
Wars. Switzerland stayed neutral through these wars, and we see no corresponding spike
in the Swiss values of Tm (see Figure 16).

(a) (b)

Figure 16. (a) The limiting teenage mortality Tm for Switzerland, male vs. female. (b) The limiting
teenage mortality Tm for France total population, male vs. female.

Item 2 above concerns the spike evidenced in the above graph of Tm for Switzerland
in 1918. A spike in this year is also observed in both male and female datasets in France,
the only countries in our study with data going back that far. We speculate that this is
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because of the “Spanish Flu” pandemic, which was introduced to Europe by American
soldiers in the spring of 1918. Two waves of the flu swept through Switzerland in 1918,
infecting as much as 50% of the population and killing 6.2%. Part of the reason for the
wide transmission is that the flu corresponded with the general strike. This involved
250,000 workers and also 90,000 soldiers mobilized to put down the strike. It is thought
that this particular event contributed greatly to the spread of the virus around Switzerland,
occurring as it did in the midst of the most deadly wave to spread through the country.

Items 3–5, by contrast, indicate a sustained improvement in mortality to one particular
gender, occurring in multiple countries at approximately the same time. Both 4 and
5 indicate a significant improvement for females occurring mostly through the 1950s.
Because log Tm is the limiting mortality caused by factors occurring in teenage years, while
a1 is the mortality deceleration factor in adults under age 65, there is an overlap in the
age ranges involved with these parameters. In particular, we speculate that both of these
developments indicate a sustained drop in mortality due to childbirth, which was the most
common cause of death in teenage and young adult females before the advent of modern
medicine (and is still the most common cause today in some developing countries).

Rather than a single factor, it is probable that several medical developments that oc-
curred around the same time together led to the great decrease in mortality due to childbirth:

1. The introduction of penicillin, which came into wide production in the mid-1940s and
reduced death in many circumstances Sewell (1993). Deaths due to abortion in the
USA dropped by 1950 to a fraction of their level in 1940 Gold (2003), perhaps due to
the use of antibiotics to prevent infection after the procedure;

2. Improvements in the healthcare environment during labor, including a huge increase
in the percentage of births occurring in hospitals. In the USA in 1938, about half
of births were occurring in hospitals, while by 1955, this had risen to 99 percent
Sewell (1993);

3. The widespread introduction of birth control pills starting in 1960.

Figure 17 shows the graph of log Tm for each of the HLE countries. (For the ILE
countries, data begin in 1959, by which time, the separation between the male and female
graphs is already evident.) Figure 18 shows the graph of a1 for each of the countries. In each
case, it is striking how similar the timing is of the separation between the curves, as well as
the sustained nature of the separation.

(a) (b)

(c) (d)

Figure 17. Cont.
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(e) (f)

Figure 17. (a) The log of limiting teenage mortality Tm in France. (b) The log of limiting teenage
mortality Tm in Japan. (c) The log of limiting teenage mortality Tm in Switzerland. (d) The log of
limiting teenage mortality Tm in the USA. (e) The log of limiting teenage mortality Tm in Russia.
(f) The log of limiting teenage mortality Tm in Ukraine.

(a) (b)

(c) (d)

(e) (f)

Figure 18. (a) The log of mortality deceleration factor a1 before age 65 in in France. (b) The log of
mortality deceleration factor a1 before age 65 in in Japan. (c) The log of mortality deceleration factor
a1 before age 65 in in Switzerland. (d) The log of mortality deceleration factor a1 before age 65 in
in the USA. (e) The log of mortality deceleration factor a1 before age 65 in in Russia. (f) The log of
mortality deceleration factor a1 before age 65 in in Ukraine.
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Finally, Item 5 indicates a significant improvement in the mortality deceleration factor
between ages 65 and 85 for males in Russia and Ukraine, starting in the early 1990s (see
Figure 14). We speculate here that this is related to the dissolution of the USSR and the end
of the communist economic model in these countries a few years prior.

3.4. Use Observed Structure Change in Mortality to Choose Fitting Data in Forecasting

Section 3.3 demonstrated that the parameter interpretability of DLGC can reveal sys-
tematic structural changes in mortality patterns over time. When forecasting, the existence
of such a change during the time interval of the training data casts doubt on the credibility
of the data from before the change.

To test whether this idea had practical import for forecasting using DLGC, we noted
the structural change in the limiting log teenage mortality around 1950 or a little after for
females in Switzerland, the USA, France, and Japan, as described in Section 3.3, and we
chose a training interval that placed the time of the change during the first 10 years of the
training interval. We then cut the first ten years out of the training interval and fit the model
a second time. Although the amount of training data was significantly reduced, we guessed
we might see nonetheless an improvement in forecast accuracy because the period with
the structural change had been removed. We performed the same experiment with Russia
since the diagrams in Section 3.3 reveal that the log of teenage mortality in Russian females
exhibited some spikes a little before 1980, and the spikes marked a transition from a trend
that had been steadily decreasing to one that was steadily increasing. The training and
forecast years for these data were several decades later than those used for the experiment
on the four HLE countries.

The results of these experiments are presented in Table 10. The main body of the table
shows pairs of columns—a white column and then a column with colors. Each cell in these
columns shows the forecast error (expressed as an MSE) when forecasting a single year and
comparing with that year’s realized mortality data from the HMD. The white columns use
the full training set, while the colored columns use the truncated training set that excludes
the noted structural change. Forecasts were made for each of the first ten years immediately
following the training interval. Yellow cells indicate that the truncation idea has merit: in
those cells, the forecast error using the truncated training set had decreased compared to
the error when using the full dataset. Orange cells indicate the opposite.

Table 10. DLGC 10-year-ahead forecasts’ accuracy is improved by fitting chosen data.

Population
France Civil

Female
Switzerland

Female
USA

Female
Japan

Female
Russia
Female

Years for
Training

1950–1985 1960–1985 1940–1975 1950–1975 1945–1980 1955–1980 1950–1990 1970–1995 1975–2004 1985–2004

1st 1.048 1.017 60.74 55.03 4.985 4.378 27.41 22.36 4.200 5.003
2nd 27.42 23.83 23.22 27.97 17.60 14.94 27.18 17.56 5.239 4.022
3th 31.35 25.73 9.854 6.705 3.889 1.958 45.53 27.35 20.36 14.20
4th 10.74 7.467 11.22 8.027 4.949 1.978 14.57 3.401 15.27 11.50
5th 12.56 8.518 51.97 29.55 4.214 3.046 67.78 32.24 43.17 27.06
6th 33.04 22.89 26.93 12.70 5.575 2.996 78.17 32.96 29.80 20.35
7th 43.07 29.52 19.18 5.969 9.249 7.298 99.10 40.31 160.6 105.2
8th 25.16 14.90 73.62 34.36 15.21 16.72 76.85 21.60 151.9 92.41
9th 70.10 47.38 18.48 14.11 12.73 9.607 86.36 21.50 177.9 101.6

MSE
in 1× 10−6 for
10-year-ahead

forecasts

10th 36.95 21.21 17.10 13.67 15.49 9.649 41.88 2.235 180.6 93.11

Table 11 shows a control for this experiment. After fitting the data for males from the
same countries over the same time intervals, no major structural changes were observed
in any parameter for France, Switzerland, and the USA. It seemed reasonable to use the
male data from these countries as controls, since if older data are still reasonably credible,
we would expect shrinking the training dataset to decrease forecast accuracy. The table
supports this thinking.
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These experiments demonstrate an advantage offered by a model based on highly
interpretable parameters—the parameter plots can help the forecaster select a training set
to improve forecasting accuracy. The dominance of yellow cells in the first table is evidence
that training the model on data from before a structural change to forecast mortality for
a period after the structural change is detrimental. The dominance of orange cells in the
second table shows that otherwise cutting out the first ten years of a training dataset has a
harmful effect on forecast accuracy (so that the dominance of yellow in the first table does
not seem to be a result of just a significant lack of credibility in the data being removed
because of the time lapse since it was recorded).

Table 11. DLGC 10-year-ahead forecasts’ accuracy in males as controls to Table 10.

Population
France Civil

Male
Switzerland

Male
USA
Male

Years for
Training

1950–1985 1960–1985 1940–1975 1950–1975 1945–1980 1955–1980

1st 4.409 7.637 72.96 73.35 19.63 19.51
2nd 17.66 40.79 32.40 40.08 33.25 33.06
3th 28.94 78.20 17.33 21.81 15.49 15.17
4th 20.27 102.6 25.62 31.72 11.73 11.91
5th 9.499 140.6 25.25 32.95 10.36 10.50
6th 22.41 184.4 22.94 38.77 14.02 14.96
7th 33.26 236.9 25.42 45.28 18.70 21.41
8th 20.78 267.0 74.30 90.95 26.24 30.91
9th 38.49 329.4 19.12 65.38 32.79 41.88

MSE
in 1× 10−6 for
10-year-ahead

forecasts

10th 34.22 386.5 59.24 90.27 44.43 58.23

3.5. Life Expectancy Improvement and Gender Gap Quantitative Analysis

In this section, we use the fitted DLGC to give a quantitative analysis of life expectancy
improvement over a chosen time period, and we analyze the life expectancy gap between
genders for each country. We used the same life table techniques as used by HMD Wilmoth
et al. (2007) to derive life expectancy at age x, denoted as e(x), focusing only on e(0), the life
expectancy at birth.

We followed the same technique as used in de Beer and Janssen (2016) to decompose
the change in life expectancy. In order to quantify the contribution from each parameter
to life expectancy improvement, we began by specifying an order for the parameters
and fixing country/gender and time interval. We fit the DLGC model to the specified
country/gender for the first and final years of the time interval. Then, beginning with the
model fitted to the earlier year’s data, we proceeded through the sequence of parameters,
replacing the next parameter value by its value when the model is fit to the later year,
while keeping other parameters unchanged. As each change was made, we determined
the life expectancy estimated from the model using the updated values of the parameters.
For example, to decompose the improvement in life expectancy at birth from year 1947
to 2019 in Japan, we may start our sequence of parameters with A followed by B. We fit
the DLGC to the 1947 data for Japan and computed the life expectancy at birth e(0). We
then changed the value of A in the model to that produced by fitting DLGC instead to the
2019 data, leaving the other parameters fixed, and then recomputed e(0) using the fitted
mortalities from this updated model. Then, we moved on to parameter B, replacing the
value of B in the updated model with the value produced by fitting DLGC to 2019 data,
keeping all other parameters unchanged, and recomputed e(0). The change in e(0) after
the first update is viewed as the contribution of A to the improvement of life expectancy
at birth in this context, while the change in e(0) after the second update is viewed as the
contribution from B. We proceeded through the parameters until, after the last update,
the model being used was precisely the one obtained by fitting DLGC to the 2019 data.
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There was a difference between the overall life expectancy change from our fitted
model and the change in the life expectancy observed in the data. We label this difference
as “unexplained”.

The ordering of the parameters we will use is: A, B, C, Tm, k, z, M1, g, β1, β2, β3, M2,
a1, a2. By changing A, B, C only, we produce a contribution to the total life expectancy
improvement from improved mortality at the earliest ages. The increase in life expectancy
after changing Tm, k, z is regarded as the contribution from mortality improvement during
teenage years. Finally, we changed the remaining parameters, and the change in life
expectancy varying is regarded as the contribution from adulthood and old age. We ran
this quantitative analysis for each of the four HLE countries, in each case over the total
interval of available data. The results are summarized in Table 12. We then ran the analysis
over the largest time interval (1959–2013) for which all countries, both HLE and ILE, have
data, using data for females only. The result is summarized in Table 13. In both tables,
the incremental change in life expectancy at birth ∆e(0) is given first for the raw data, then
the parts explained and unexplained by the fitted model, and then, broken down into the
three age categories, singling out in particular the contributions from the parameters A,
Tm, g and M1.

Table 12. Life expectancy improvement quantitative analysis over all available years for 4 HLE countries.

Country Japan Switzerland France USA

Gender Female Male Female Male Female Male Female Male

Year Period 1947–2019 1947–2019 1876–2018 1876–2018 1816–2018 1816–2018 1933–2019 1933–2019

data ∆e(0) 33.80000 31.61000 43.45000 43.12000 44.37000 40.48000 18.92000 17.40000

Explained ∆e(0) 33.86071 31.73058 43.59133 43.33996 44.36348 40.29138 19.00995 17.74775

Unexplained ∆e(0) −0.06071 −0.12058 −0.14133 −0.21996 0.00652 0.18862 −0.08995 −0.34775

Earliest Ages Total 10.05750 9.92492 13.57758 15.55131 18.52742 19.78979 4.64870 5.88425
A 10.11580 10.06337 12.80801 13.75968 18.14703 18.92012 4.46785 5.68005

Teenage years Total 8.23280 8.56301 1.875668 1.09767 5.49789 8.40810 2.88721 3.23289
Tm 8.24115 8.56713 1.90180 1.12202 5.50277 8.41084 2.86904 3.20340

Adulthood
and

old ages

Total 15.57041 13.24264 28.13808 26.69097 20.33817 12.09349 11.47403 8.63061
g 1.61761 1.74418 4.52138 3.39971 −4.82562 −5.68736 −0.93074 0.19970

M1 8.49795 6.68156 8.19871 11.68489 18.55857 18.10215 9.14870 5.87759

Table 13. Female life expectancy improvement quantitative analysis during years 1959 to 2013 for
6 countries.

Country Japan F France F Switzerland F USA F Russia F Ukraine F

Year Period 1959–2013 1959–2013 1959–2013 1959–2013 1959–2013 1959–2013

data ∆e(0) 16.79000 11.74000 10.63000 8.03000 5.13000 4.00000

Explained ∆e(0) 16.90217 11.84723 10.85521 8.05072 5.12731 4.02174

Unexplained ∆e(0) −0.11217 −0.10723 −0.22521 −0.02072 0.00269 −0.02174

Earliest Ages Total 3.35330 2.20683 1.73275 1.63774 3.17531 2.43769
A 3.22393 1.70185 1.81240 1.38536 3.35867 2.39839

Teenage years Total 2.17992 0.51989 0.29626 0.07502 −0.36757 0.25968
Tm 2.19159 0.52466 0.30013 0.05499 −1.18033 0.09941

Adulthood
and

old ages

Total 11.36895 9.12050 8.82619 6.33796 2.31958 1.32437
g −0.42729 0.47768 −0.57203 0.17951 −4.22517 −8.45819

M1 9.28527 5.66350 4.96354 3.38443 3.55595 11.44060
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As is shown by the life tables, there is an overall increase in life expectancy at birth
in all countries and for both genders, with sightly less total improvement for males than
females. The detailed quantitative analysis in the table reveals more: the life expectancy
improvement contribution from the earliest ages and teenage years in males is usually
near or even higher than that of females. By contrast, the contribution to life expectancy
improvement from adulthood and old ages is higher for females than males and is a larger
effect than the contributions from the lower age groups. This dominating effect of the
contribution from improvement in adulthood and old age then leads to the overall life
expectancy improvement being larger for females than males.

The life expectancy at birth in Switzerland and France has improved by more than
40 years from the 19th Century to 2018, with most of the improvement happening in the
20th Century. From quantitative analysis (not shown), French females exhibited an increase
of 38.54 years of life expectancy between 1900 to 2018, while Swiss females exhibited an
increase of 35.44 years over the same period.

Table 13 reveals, as expected, that the four HLE countries saw much higher increases in
total life expectancy at birth than the two ILE countries. It also reveals that the contribution
gap between the four HLE countries and two ILE countries from the earliest ages and
teenage years are very small. Thus, the main reason for the HLE countries’ greater overall
improvement is their much greater improvement within adulthood and old ages.

Among the four HLE countries through 1959 to 2013, the quantitative analysis reveals
that the main contribution to improved life expectancy is from adulthood and old age.
Furthermore, for the six countries studied, the ordering of countries by overall improvement
in life expectancy matches the order when looking just at the contribution to improvement
from adulthood and old ages. Japan shows the most impressive mortality improvement in
every age category, and indeed, it had the lowest life expectancy at birth in 1959 and the
highest by 2013.

Finally, we note that it appears that for the simpler parts of the model, qI(x) and qT(x),
representing the contribution to mortality from the youngest children and from teenagers,
the improvement in life expectancy is explained mostly by changes just in the parameters
A and Tm. By contrast, the parameters M1 and g representing the main processes in the
logistic model for qAO(x) do not account for most of the increased life expectancy in most
cases. The value of g can actually contribute to decreased life expectancy, and this is
especially observed in the Russian and Ukrainian female data. However, the contribution
from the simultaneous increase in the age M1 more than compensates for the decrease in
these cases, giving a quantitative view of compression at work.

Overall, the inability of g and M1 to explain most of the life expectancy improvement
in adulthood, as well as the dominating effect of the contribution to improvement from this
age group lends further credibility to the choices made in the framework introduced in this
paper. It seems the new factors a(x) and b(x) serve a substantive role in the model and that
the particular choices for a(x) and b(x) made for DLGC were effective in capturing some
of the nuance in mortality among adults.

4. Conclusions

The DLGC introduced in this paper uses a deterministic form to describe mortality
features across ages and applies stochastic processes to model and forecast changing mor-
tality over time. We used the model to fit and forecast the mortality of France, Switzerland,
Japan, the USA, Russia, and Ukraine, for both genders.

At the age-specific level, DLGC produces smooth fits and predictions across age and
provides insights about mortality structure and development with good interpretability.
The yearly fitting results for all six countries are excellent through two centuries of data
for female and male and for both HLE countries and ILE countries. Considering future
mortality, DLGC creates accurate in-sample forecasts, especially the 10-year-ahead forecasts,
which almost always outperform the logit-binomial Lee–Carter model in the R package
StMoMo Villegas et al. (2018) for all six countries and both genders.
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The DLGC parameters have clear mortality interpretations, and their time plots show
stable tendencies that match known demographic characteristics and trends. In addition,
the plots can reveal mortality structural changes such as mortality compression at the
age-specific level and temporary or persistent changes in mortality trends caused by tran-
sitions in major causes of death (see Section 3.3). The structural change revealed by the
plots can also suggest appropriate intervals of data to train the model (see Section 3.4).
Furthermore, the plots can suggest an appropriate stochastic model for each parame-
ter. In addition, the contribution of each parameter in life expectancy improvement was
analyzed quantitatively.

The mortality framework introduced in Equation (7) depends on two age-specific
functions, one for mortality-accelerating factors and one for mortality-decelerating fac-
tors. DLGC is an exemplar of the framework created by specifying those two functions,
but the framework can be applied to different populations by changing the functions.
For example, DLGC performs better for HLE countries than ILE countries, and we suspect
that that is because we chose the functions based on the population features of HLE coun-
tries. In future research, we plan to explore other choices of the functions that better fit ILE
and also to study low life expectancy countries.

To forecast with DLGC, we fit parameters over a given time interval with respect to
the original (age-specific) model and assumed that their future values followed ARIMA
time series. In doing so, our primary goal was to show that parameter plots can identify
real structural changes in mortality patterns and that strategic choices in training data that
avoid such changes improve forecasting.

However, the simple approach of forecasting each parameter time series using ARIMA
does not capture correlation among the series. In future research, we plan to study in more
depth how such relationships impact forecasting fit, as well as parameter interpretations.
We also hope to use parameter time plots to revise our forecasting model to include stochas-
tic and deterministic time-varying parameters in the age-specific component. The model
would then have time-varying parameters and age-specific parameters and would have
fewer parameters than the DLGC forecasting model does.

Author Contributions: Conceptualization: W.F. and B.R.S.; methodology: W.F., B.R.S. and P.B.;
software: W.F. and S.D.; validation: S.D. and B.R.S.; formal analysis: W.F.; investigation: W.F. and
S.D.; resources: publicly available data from Human Mortality Database (HMD); data curation: HMD
data are ready-to-use; writing—original draft preparation: W.F. and B.R.S.; writing—review and
editing: W.F., B.R.S. and P.B.; supervision: W.F. and P.B.; project administration: W.F. and P.B.; funding
acquisition: P.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data available in a publicly accessible repository that does not issue
DOIs. Publicly available datasets were analyzed in this study. These data can be found here:
Human Mortality Database. University of California, Berkeley (USA), and Max Planck Institute for
Demographic Research (Germany). Available at www.mortality.org or www.humanmortality.de (data
downloaded on 15 July 2021).

Conflicts of Interest: The authors declare no conflict of interest.

Notes
1 The data are 1× 1 period life tables from Human Mortality Database (n.d.), either female, male, or total. France has both data for

the civilian population and the total population.
2 We use French civilian data instead of French total population data, since the DLGC generally provides a better fit to civilian data.

www.mortality.org
www.humanmortality.de


Risks 2022, 10, 161 37 of 38

References
Bardoutsos, Anastasios, Joop de Beer, and Fanny Janssen. 2018. Projecting delay and compression of mortality. Genus 74: 17. [CrossRef]
Blackburn, Craig, and Michael Sherris. 2013. Consistent dynamic affine mortality models for longevity risk applications. Insurance:

Mathematics and Economics 53: 64–73. [CrossRef]
Booth, Heather, and Leonie Tickle. 2008. Mortality Modelling and Forecasting: A Review of Methods. Annals of Actuarial Science 3:

3–43. [CrossRef]
Booth, Heather, John Maindonald, and Len Smith. 2002. Applying Lee–Carter under conditions of variable mortality decline. Population

Studies 56: 325–36. [CrossRef] [PubMed]
Burger, Oskar, Annette Baudisch, and James W. Vaupel. 2012. Human mortality improvement in evolutionary context. Proceedings of

the National Academy of Sciences USA 109: 18210–14. [CrossRef]
Callot, Laurent, Neils Haldrup, and Marlene Kallestrup-Lamb. 2016. Deterministic and stochastic trends in the Lee–Carter mortality

model. Applied Economics Letters 23: 486–93. [CrossRef]
Carriere, Jacques F. 1992. Parametric models for life tables. Transactions of Society of Actuaries 44: 77–99.
Continuous Mortality Investigation Bureau. 2006. Stochastic Projection Methodologies, Further Progress and p-Spline Model Features,

Example Results and Implications. Working Paper 20. London: The Faculty of Actuariaes and Institute of Actuaries.
de Beer, Joop, and Fanny Janssen. 2016. A new parametric model to assess delay and compression of mortality. Population Health

Metrics 14: 46. [CrossRef]
Gao, Huan, Rogemar Mamon, Xiaoming Liu, and Anton Tenyakov. 2015. Mortality modelling with regime-switching for the valuation

of a guaranteed annuity option. Insurance: Mathematics and Economics 63: 108–20. [CrossRef]
Gold, Rachel B. 2003. Lessons from before Roe: Will past be prologue? Guttmacher Report on Public Policy 5: 1–4.
Gylys, Rokas, and Jonas Šiaulys. 2019. Revisiting Calibration of the Solvency II Standard Formula for Mortality Risk: Does the Standard

Stress Scenario Provide and Adequate Approximation of Value-at-Risk? Risks 7: 58. [CrossRef]
Gylys, Rokas, and Jonas Šiaulys. 2020. Estimation of Uncertainty in Mortality Projections Using State-Space Lee–Carter Model.

Mathematics 8: 1053. [CrossRef]
Hannerz, Harold. 2001. Presentation and derivation of a five-parameter survival function intended to model mortality in modern

female populations. Scandinavian Actuarial Journal 176–87. [CrossRef]
He, Lingyu, Fei Huang, Jianjie Shi, and Yangrong Yang. 2021. Mortality forecasting using factor models: Time-varying or time-invariant

factor loadings? Insurance: Mathematics and Economics 98: 14–34. [CrossRef]
Heligman, Larry, and John Pollard. 1980. The age pattern of mortality. Journal of the Institute of Actuaries 107: 49–80. [CrossRef]
Human Life Table Database. n.d. Available online: Https://www.lifetable.de/cgi-bin/country.php?code=zaf (accessed on 20

March 2022).
Human Mortality Database. n.d. University of California, Berkeley (USA), and Max Planck Institute for Demographic Research

(Germany). Available online: www.mortality.org (accessed on 15 July 2021).
Hyndman, Rob J., and Yeasmin Khandakar. 2008. Automatic time series forecasting: The forecast package for R. Journal of Statistical

Software 26: 1–22.
Ignatieva, Katja, Andrew Song, and Jonathan Ziveyi. 2016. Pricing and hedging of guaranteed minimum benefits under regime-

switching and stochastic mortality. Insurance: Mathematics and Economics 70: 286–300.
Kannisto, Väinö. 1994. Development of Oldest-Old Mortality, 1950–1990: Evidence from 28 Developed Countries. Odense: Odense

University Press.
Lee, Ronald D., and Lawrence R. Carter. 1992. Modeling and Forecasting U.S. Mortality. Journal of the American Statistical Association 87:

659–71. [CrossRef]
Lee, Ronald D., and Timothy Miller. 2001. Evaluating the performance of the lee-carter method for forecasting mortality. Demography

38: 537–49. [CrossRef] [PubMed]
Lin, X. Sheldon, and Xiaoming Liu. 2007. Markov Aging Process and Phase-Type Law of Mortality. North American Actuarial Journal 11:

92–109. [CrossRef]
McNown, Robert, and Andrei Rogers. 1989. Forecasting mortality: A parameterized time series approach. Demography 26: 645–60.

[CrossRef] [PubMed]
Milidonis, Andreas, Yijia Lin, and Samuel H. Cox. 2011. Mortality Regimes and Pricing. North American Actuarial Journal 15: 266–89.

[CrossRef]
Mullen, Katherine M., David Ardia, David L. Gil, Donald Windover, and James Cline. 2011. DEoptim: An R Package for Global

Optimization by Differential Evolution. Journal of Statistical Software 40: 1–26. [CrossRef]
Njenga, Carolyn Ndigwako, and Michael Sherris. 2020. Modeling mortality with a Bayesian vector autoregression. Insurance:

Mathematics and Economics 94: 40–57. [CrossRef]
Perks, Wilfred. 1932. On some experiments in the graduation of mortality statistics. Journal of the Institute of Actuaries 63: 12–57.

[CrossRef]
Pongou, Roland. 2013. Why is infant mortality higher in boys than in girls? A new hypothesis based on preconception environment

and evidence from a large sample of twins. Demography 50: 421–44. [CrossRef]
R Core Team. 2021. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. Available

online: Https://www.R-project.org/ (accessed on 31 December 2021).

http://doi.org/10.1186/s41118-018-0039-5
http://dx.doi.org/10.1016/j.insmatheco.2013.04.007
http://dx.doi.org/10.1017/S1748499500000440
http://dx.doi.org/10.1080/00324720215935
http://www.ncbi.nlm.nih.gov/pubmed/12553330
http://dx.doi.org/10.1073/pnas.1215627109
http://dx.doi.org/10.1080/13504851.2015.1083075
http://dx.doi.org/10.1186/s12963-016-0113-1
http://dx.doi.org/10.1016/j.insmatheco.2015.03.018
http://dx.doi.org/10.3390/risks7020058
http://dx.doi.org/10.3390/math8071053
http://dx.doi.org/10.1080/03461230152592809
http://dx.doi.org/10.1016/j.insmatheco.2021.01.006
http://dx.doi.org/10.1017/S0020268100040257
Https://www.lifetable.de/cgi-bin/country.php?code=zaf
www.mortality.org
http://dx.doi.org/10.1080/01621459.1992.10475265
http://dx.doi.org/10.1353/dem.2001.0036
http://www.ncbi.nlm.nih.gov/pubmed/11723950
http://dx.doi.org/10.1080/10920277.2007.10597486
http://dx.doi.org/10.2307/2061263
http://www.ncbi.nlm.nih.gov/pubmed/2583322
http://dx.doi.org/10.1080/10920277.2011.10597621
http://dx.doi.org/10.18637/jss.v040.i06
http://dx.doi.org/10.1016/j.insmatheco.2020.05.011
http://dx.doi.org/10.1017/S0020268100046680
http://dx.doi.org/10.1007/s13524-012-0161-5
Https://www.R-project.org/


Risks 2022, 10, 161 38 of 38

Renshaw, Arthur E., and Steven Haberman. 2003. Lee–Carter mortality forecasting with age-specific enhancement. Insurance:
Mathematics and Economics 33: 255–72. [CrossRef]

Renshaw, Arthur E., and Steven Haberman. 2006. A cohort-based extension to the Lee–Carter model for mortality reduction factors.
Insurance: Mathematics and Economics 38: 556–70. [CrossRef]

Rogers, Andrei, and Friedrich Planck. 1983. MODEL: A General Program for Estimating Parametrized Model Schedules of Fertility,
Mortality, Migration, and Marital and Labor Force Status Transitions. IIASA Working Paper. Available online: https://pure.iiasa.
ac.at/id/eprint/2210/ (accessed on 31 December 2021).

Schrager, David F. 2006. Affine stochastic mortality. Insurance: Mathematics and Economics 38: 81–97. [CrossRef]
Sewell, Jane Eliot. 1993. Cesarean section—A brief history. A Brochure to Accompany an Exhibition on the History of Cesarean Section at the

National Library of Medicine Part 3, 30.
Sharrow, David, Samuel J. Clark, Mark Collinson, Kathleen Kahn, and Stephen Tollman. 2013. The Age-Pattern of Increases in Mortality

Affected by HIV: Bayesian Fit of the Heligman–Pollard Model to Data from the Agincourt HDSS Field Site in Rural Northeast
South Africa. Demographic Research 29: 1039–96. [CrossRef] [PubMed]

Shen, Yang, and Tak Siu. 2013. Longevity bond pricing under stochastic interest rate and mortality with regime-switching. Insurance:
Mathematics and Economics 52: 114–23. [CrossRef]

Siler, William. 1979. Competing-Risk Model for Animal Mortality. Ecology 60: 750–57. [CrossRef]
SriDaran, Dilan, Michael Sherris, Andrés M. Villegas, and Jonathan Ziveyi. 2022. A group regularization approach for constructing

generalized age-period-cohort mortality projection models. ASTIN Bulletin 52: 247–89. [CrossRef]
Tuljapulkar, Shripad, Nan Li, and Carl Boe. 2000. A universal pattern of mortality decline in the G7 countries. Nature 405: 789–92.

[CrossRef]
Villegas, Andrés M., Pietro Millossovich, and Vladimir K. Kaishev. 2018. StMoMo: An R Package for Stochastic Mortality Modeling.

Journal of Statistical Software 84: 1–38. [CrossRef]
Wilmoth, John R., Kirill F. Andreev, Dmitri Jdanov, and Dana A. Glei. 2007. Methods Protocol for the Human Mortality Database. Berkeley:

University of California, Berkeley, and Max Planck Institute for Demographic Research, Rostock.

http://dx.doi.org/10.1016/S0167-6687(03)00138-0
http://dx.doi.org/10.1016/j.insmatheco.2005.12.001
https://pure.iiasa.ac.at/id/eprint/2210/
https://pure.iiasa.ac.at/id/eprint/2210/
http://dx.doi.org/10.1016/j.insmatheco.2005.06.013
http://dx.doi.org/10.4054/DemRes.2013.29.39
http://www.ncbi.nlm.nih.gov/pubmed/24453696
http://dx.doi.org/10.1016/j.insmatheco.2012.11.006
http://dx.doi.org/10.2307/1936612
http://dx.doi.org/10.1017/asb.2021.29
http://dx.doi.org/10.1038/35015561
http://dx.doi.org/10.18637/jss.v084.i03

	Introduction
	Model Construction
	Model Foundations
	The General Framework for Modeling Mortality
	DLGC: Death Probability Model Q(X) with Chosen A(X) and B(X)
	MSE Minimization
	Modal Age M Fitting
	Mortality Forecasting with DLGC

	Main Results of DLGC
	Goodness of Fit for DLGC
	Fits across Age
	Forecasting over Years

	Variation of Parameters through Time
	Mortality Improvement in the Earliest Ages
	Mortality Improvement in Teenagers
	Mortality Improvement in Adulthood and Old Age

	Events and Inventions—Effects on Parameters
	Use Observed Structure Change in Mortality to Choose Fitting Data in Forecasting
	Life Expectancy Improvement and Gender Gap Quantitative Analysis

	Conclusions
	References

