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Abstract: The increasing rate at which IoT technologies are being developed has enabled smarter
and innovative solutions in the sectors of health, energy, transportation, etc. Unfortunately, some
inherent characteristics of these technologies are compromised to attack. Naturally, risk analysis
emerges, as it is one of many steps to provide a reliable security strategy. However, the methodologies
of any risk analysis must first adapt to the dynamics of the IoT system. This article seeks to shed
light on whatever factors are part of an IoT system and thus contribute to security risks, IoT device
vulnerabilities, susceptibility due to the application domain, attack surfaces, and interdependence
as a product of the interconnection between IoT devices. Consequently, the importance of these
factors in any risk evaluation is highlighted, especially the interdependence generated by IoT systems,
which can cause the generation of an uncontrollable cascade of effects that can occur under certain
conditions of any systematic risk event.
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1. Introduction

Security attacks have seen significant growth in recent years, generating considerable
economic impacts for a variety of organizations. For example, in December 2021, Bitmart, a
cryptocurrency trading platform, suffered a security breach, losing nearly USD 150 million
in stolen tokens (BBC 2022). In a similar case, carried out in June 2021, gas pipelines
in the United States suffered a ransomware attack, forcing the Colonial Pipeline to pay
USD 5 million to retrieve its operations (New York Times 2022). A study developed by
NetDiligence (NetDiligence 2022) set out the economic costs generated by security incidents;
according to this study, the top five security incidents are the following: bank transfer
found, erroneous data collection, system failure, hackers, and malware/virus. The costs
associated with these security incidents for that study are shown in Table 1.

These costs could be relatively small for many organizations. However, a relevant
aspect of a security attack is, nonetheless, the level of impact an idiosyncratic (single)
cyber incident could have due to its capacity to propagate through networks, causing
unprecedented ripple effects on economic systems. In this sense, the risk due to cyber
attacks is considered a source of systemic risk (Kaffenberger and Kopp 2022). According
to the World Economic Forum (WEF), a systemic cyber risk is the “risk that a cyber event
(attack(s) or other adverse event(s)) on an individual component of a critical infrastructure
ecosystem will cause significant delay, denial, disruption, interruption or loss, such that
services are affected not only in the originating component, but the consequences also
cascade to related ecosystem components (logically and/or geographically), resulting in
significant adverse effects to public health or safety, economic security, or national security”
(World Economic Forum 2016).
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Table 1. Cost for security incidents according to the study by NetDiligence (NetDiligence 2022). Costs
for attacks are shown in USD.

Category Mean Medium Max

Wire transfer found 180 105 1400

Wrongful data collection 86 86 86

System glitch 1900 79 17,500

Hacker 337 74 7400

Malware/virus 308 70 9000

The WEF defines a systemic scenario as one in which the volume of successful cyber
attack events achieves the umbral to disrupt financial operations. The WEF defines three
levels (World Economic Forum 2022):

• Level 1: The pervasiveness of technology could penetrate a high number of organiza-
tions simultaneously;

• Level 2: Interdependencies between organizations are growing, and cybersecurity
failure in one organization has the potential to cascade across its dependent organiza-
tions;

• Level 3: Cybersecurity failure could be systematically catastrophic to economies and
societies, and multiple heterogeneous sectors could fail.

Two factors that contribute to the scale and intensity of cyberattacks are: (i) speed of
spread: a cyber attack event has the potential to be effective and spread throughout all
or part of an information or operational system, faster than other types of risk; (ii) scale
of spread: a major cyber attack event could have a broader impact and is not limited to
geographic boundaries. The high severity of loss could be extended to several organizations
facing systemic cyber events; these events have the capacity to reduce the operations of an
organization or entire cities. In Figure 1, we show the scale and intensity of different cyber
incidents based on the study extracted from the World Economic Forum (World Economic
Forum 2022).
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The World Economic Forum defines 11 systemic cyber attack patterns related to cyber
risk incidents (European Systemic Risk Board 2022):

1. Repeated attacks;
2. Scattershot attacks;
3. Pervasive attacks;
4. Rolling attacks;
5. Transitive attacks;
6. Cascading attacks;
7. Shared resource consumption attacks;
8. Critical function attacks;
9. Regional attacks;
10. Service dependency attacks;
11. Coordinated supply chain attacks.

According to the International Monetary Fund (IMF), certain conditions must be
present so that these attack patterns can be developed (International Monetary Fund 2022):

• Risk concentration and lack of substitutability: Systemic risk arises from technical
and IT systems, such as operating systems, program applications, cloud servers, and
network equipment. These systems could be single points of failure, affecting the
normal operations of organizations and generating financial/economic losses;

• Complex interdependency: Interconnections among systems increase the level of
complexity, allowing cyber attacks to spread throughout a system. Impacts on one part
of the system may affect another; for example, attacks on a central financial system are
through indirect interconnections in remote areas. The accumulation of local volatility
added to systemic risks is derived from the other networks;

• Risk correlation: Idiosyncratic cyber shocks can cause a loss of confidence that gener-
ates market liquidity shocks, market risk, and solvency risk.

Additionality, a cyber event could grow into a systemic event that generates a signifi-
cant impact on the economy due to the following three factors (McKinsey 2022):

• Small or idiosyncratic cyber events that, due to linkages and dependencies among
affected organizations, generate cascade effects;

• Timing affects the response to events that, due to the resources of the organization,
allow the mitigation of financial losses and control the damage to reputation;

• Focus on critical functions, increasing the impact related to the loss or disruption.

Based on these possible conditions that allow the generation of a systemic risk, inter-
dependence is a factor of interest. Our motive is based on the fact that, in the context of
the digital transformation that has been experienced in different verticals, such as health,
education, and transportation, among others, the interconnection between heterogeneous
networks and organizations has allowed the development of efficient electronic services.
Within the process of digital transformation, the incorporation of technologies such as IoT
has allowed the abstraction of the physical world to the digital world, generating data
that allow the improvement of decision-making processes. IoT has strengthened digital
transformation processes, and its operation is based on the interconnection and interdepen-
dence of elements that were not previously connected to the Internet. However, under the
previously exposed context, interdependence could allow the possibility of generating a
systemic risk event. From this arises our research question: How could IoT contribute to
the generation of security risk events? In particular, could the interdependence generated
by IoT in the connection of physical elements be considered an enabling factor for a higher
security risk?
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To address this question, security risk modeling in IoT systems is proposed to evaluate
the contribution of interdependence in IoT systems to the final value of risk. Therefore,
this manuscript is structured as follows: Section 2 addresses the concepts related to risk
modeling. Section 3 establishes the proposal of IoT factors that can be considered in risk
modeling. Section 4 establishes the risk assessment process in IoT systems. Finally, Section 5
presents a discussion on interdependency and its consideration within risk models.

2. Background
2.1. Risk Analysis in IoT

IoT systems present characteristics that trigger the adaption of risk analysis method-
ologies used in traditional IT systems. Nurse et al. (2017) mention four aspects that must
be considered by the risk analysis methodologies for applied risks in IoT:

• Shortcomings of period assessment;
• Changing of system boundaries;
• Failure to consider assets as an attack platform;
• The challenge of understanding connections.

In this context, various proposals have come to adopt IoT risk methodologies. To
understand these proposals in more detail, we have made a literary revision of the following
scientific bases: Scopus, ACM, IEEE Xplorer, Science Direct, and Springer, in function of
the following key words:

• “Risk assessment AND IoT”;
• “Risk Security AND IoT”;
• “Risk analysis AND IoT”.

Based on the literature review we can emphasize the following comments: Matheu-
García et al. (2019) present a security assessment based on the identification of goods
according to ISO standards, STRIDE, and a control evaluation based on NIST. In a similar
way, Rak et al. (2018) refer to the same identification process, but this time, they define IoT
assets not only as devices, but as gateways, networks, IoT devices, and services as well. In
the same focus of categorizing IoT assets, Randaliev et al. (2018) propose the following
categorization:

• IoT core value assets (IoTCA) where digital assets are categorized as (1a) IoT digitized
assets (IoTDA) and services are digitized from traditional services, or (1b), in which IoT
assets are born digital, representing things and services that are intrinsically digital;

• IoT operational assets (IoTOA), representing assets that support the creation, con-
sumption, and distribution of services.

Additionally, Randaliev evaluates the risk value using MicroMort (MM) and Value-at-
Risk (VaR).

Thibaud et al. (2018) take into consideration that, to undertake a risk evaluation,
vulnerability and IoT threat mappings are factors to be considered and categorized as the
following: IoT device 1–vulnerability 1–threat type 1; IoT device 1–vulnerability 2–threat
type 2; and IoT device 2–vulnerability 1–threat type 2. Lee proposes two dimensions
to evaluate the risk; the first one is related to the frequency of attacks of each IoT asset–
vulnerability–threat, and the other dimension is the expected financial loss per attack.
Shivraj et al. (Lee 2020) mention that not only are security risks important, but privacy
risks are as well, followed by the proposition of the use of the LINDDUN method. Accord-
ing to Shivraj, this method reduces the limitation of existing risk assessments based on
STRIDE/DREAD to address privacy risks.

Huang and Sun (2018) propose an AHP-based risk assessment based on analyzing
security risk function (confidentiality, integrity, availability) followed by the analysis of a
set of attacks, such as DoS, Sybil attacks, and key cracking. Afterwards, the traffic, CPU,
memory, and IoT device port impact are evaluated.
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Park et al. (2019) propose a risk evaluation based on threat analysis as a cause of
vulnerability and impact, for which they also define threats such as Threat Event Frequency
(TEF) for IoT devices in relation to the device’s contact valorization and the action per-
formed against it. In relation to the vulnerabilities (VUL) of IoT devices, VUL is measured
as a combination of threat capability (TCap) and control strength (CS), and indicates the
difficulty of successful attacks based on the common vulnerability scoring system (CVSS).

Kieras et al. (2021) is focused on the major details of IoT devices, and for the risk
evaluation he defines four related components that are: security attributes, dependencies,
security logical functions, and security risks. Their analysis is based on the graph’s concepts.

These proposals, in almost their entirety, focus on a risk analysis based on goods,
considering threats and vulnerabilities as factors to establish risk values. It is important
to highlight Randaliev’s, Thibaud’s and Shivraj’s proposals, for they add methods that
establish an additional quantitative value of risk analysis, and represent the economic loss
value due to security risks. In Table 2, an IoT security risk summary is presented.

Table 2. Risk proposals to evaluate risk in IoT Systems.

Focus on Based on Contrasted with Economic Impact Evaluated by Reference

Gateway, Network, IoT
device, Service

The ISO 31000, ISO
29119, STRIDE

NIST Security Control
Framework Does not apply Sara

IoT digital assets Business Impact
Analysis Does not apply MicroMort y VaR Randaliev

IoT assets CKC framework Center for Internet
Security (CIS) Expected financial loss Thibaud

IoT nodes LINDDUN Does not consider Cumulative business impact Shivraj
IoT devices AHP-based %CPU y traffic-rate Does not apply Huang

IoT devices Product threat,
vulnerability, impact CVSS Does not apply Park

IoT devices Security graph

Security attributes,
dependencies, security
logical functions and

security risk.

Does not apply Kieras

Asset Threat
Identification ISO, STRIDE NIST Security Control

Framework Does not apply Rak

2.2. Risk Modeling

Risk models are the mathematical representations of future states in terms of risk
factors and the projection of loss events. Risk factor is a general term denoting a particular
attribute, characteristic, variable, or other determinant element that influences the risk
profile of a system, entity, or organization. The identification of risk factors is an essential
aspect of formal risk management, and the following aspects should be considered (Bank
of England 2022):

• Identifying the association degree of risk factors with specific data;
• Understanding that risk factors change over time;
• Identifying the association of risk factors with single or multiple systems.

On the other hand, the projection of loss events does not always have enough data
for efficient estimation, and the use of simulation techniques may be needed. One of the
techniques to be used is stress testing. Stress testing is a set of actual or hypothetical tests
to probe a system’s behavior and its response under extreme, unusual conditions. Stress
testing involves the following elements (Bank of England 2022):

• The risk factors;
• The stress scenario which prescribes a range of scenarios related with the risk factors;
• The monitored outcomes which represent subsequent actions and recommendations.
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In designing risk assessment methodologies, the two approaches that can be addressed
are: assets and goals. Risk methodologies are widely used in the field of computer science,
such as MAGERIT, which is based on the assessment of assets, and its process consists of
identifying critical assets for the continuity of an organization’s operations (García and
Moreta 2018). MAGERIT also evaluates complementary assets that are used by critical
assets to operate or have connectivity, such as switches or routers. In this sense, this
methodology presents strengths such as having an inventory of critical assets that could be
affected by a security attack; another relevant aspect of MAGERIT is that it considers the
relationships between assets to evaluate the possible value of an impact in case of an attack.
However, the methodology also presents weaknesses; without historical information such
as the type of attack or the correct identification of assets, the risk estimation value can vary
significantly. Another aspect is that the process of identifying critical assets can require
a great deal of effort and time. At this point, let us assume that the target of the attack is
not the critical assets: the target of attack is for those assets that are supplementary, and
given that the work focuses on the inventory process of critical assets, we could lose the
general vision (situation awareness) of how a possible attack on these assets could affect
the operations of organizations. In this proposed scenario we can consider the IoT devices
which are not considered critical assets, such as a database or a frontend server, where
their contributions are more focused on the process of obtaining data and generating an
intelligent feedback process for the execution of a specific action. However, the affectation
of a security attack could generate a considerable impact. One of the reasons that drives
the importance of security in IoT devices is that a connection between humans and IT or
OT systems has been created. Today, it is common to find the inclusion of IoT systems in
different domains such as health, education, agriculture, transportation, energy, among
others, and to have devices that were traditionally isolated that are now connected to
the Internet. For example, from the smart home perspective, light bulbs, refrigerators,
stoves, and most domestic electronic devices, now have Internet connection and can be
controlled remotely.

Under this premise, an attack on IoT devices could have an impact just as relevant as
attacks on critical assets. If we consider this premise as true, a possible strategy would be
to include these devices in the MAGERIT asset survey process. The problem arises when
analyzing the number of IoT devices, for this has considerably grown in recent years, with
projections for continuous growth rates for the future years to come. Reports from Cisco,
Gartner, and Forbes estimate that the number of IoT devices in several verticals will exceed
50 billion by 2030 (Al-Sarawi et al. 2020). Organizations include new IoT devices in order
to drive the digital transformation of their processes, and in some cases, the number of
devices or their interrelationships can change within just a couple of days. For example,
a hospital may consider implementing smart light bulbs as a strategy to optimize energy
resource consumption, setting up a plan to perform this implementation across the floors of
its building while changing its connectivity topology between devices continuously. Even
if the implementation process is completed, the hospital could consider integrating smart
light bulbs with voice assistance systems, changing the entire topology once again.

At this point, we can see some possible limitations of the asset-based approach used by
MAGERIT, prompting some adaptations of the methodology for this new security model
generated by IoT systems.

3. Risk Modeling in IoT Systems

IoT systems have shown great growth due to their contribution to the development of
smart solutions (Al-Sarawi et al. 2020). IoT systems are based on a multi-layer architecture
with different technologies, protocols and devices converging. One of the architectures
is defined by the following layers: perception, network, and application (see Figure 2).
Each of these layers could be attacked; we display some attacks for each layer of the IoT
architecture in Table 3.
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Table 3. Attacks to layers of IoT systems (Randaliev et al. 2018).

Layer Attacks

Application

Social Engineering
Virus
Trojan

Injection
Unauthorized access

Exhaustion
Collision
Malware

Network

Man-in-the-middle
Wormhole
Unfairness

De-synchronization
Flooding

Physical

Selective forwarding
Spoofing

Eavesdropping
Tampering

Sybil
Jamming

A relevant feature of cyber attacks on IoT systems is that since they are a set of
interconnected nodes, the attacks could have the ability to impact other neighboring
nodes, and if the level of propagation of the infection reaches a considerable number of
nodes, they could significantly reduce the operational capacity of the entire IoT system.
Additionally, if we consider that infected IoT systems are connected to other IoT systems,
the probability of the infection spreading to these other IoT systems in a cascading effect
increases. Furthermore, we must take into consideration that the IoT system may be
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connected to IT and OT systems that are responsible for the provision of life management
services, such as health, energy, transportation, waste management, and water distribution.
The infection could generate an impact at economic, social, and environmental levels.
Therefore, if this infection comes to affect these IT and OT systems that are part of these
critical infrastructures in a considerable way, we could experience a systemic risk. Based
on the context above, the research question directing the present work is: Do cyber attacks
directed to IoT nodes have the capacity to generate a systemic risk?

To address this question, we can abstract cyber attacks by means of a model in which
the inputs are risk factors and the outputs are acceptable levels of risk, and relate this to the
risk methodology shown in Figure 3.
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The proposals that we have considered of most relevance in this study are based on
the presence of risk analysis methodologies for IoT systems and the detailed parameters,
elements or factors that are considered in the process of risk analysis. Each proposal has
an approach to evaluate risk factors, and it would be interesting to group the apported
fundaments in each approach with a visualization to a future standardization. Additionally,
some of the analyzed proposals do not indicate the orogen of the selected parameters or
factors. In this context, in a previous work, “Security Risk Analysis in IoT Systems through
Factor Identification over IoT Devices” (Andrade et al. 2022), an analysis of proposed
risk factors was planned to be executed in relation to various IoT risk methodologies
and the inherent characteristics of IoT systems in order to understand how these factors
contribute to the total risk value. This work also sought to analyze the interrelation
between the proposed cyber risk factors and the possible impact to the economic, social,
and environmental domains related to the organizations where the IoT solutions were
used. It was possible to characterize related IoT security input elements into four macro
categories given the results of the test: vulnerability, susceptibility, attack surface, and
interdependency. They could also be characterized into three macro output categories:
economic impact, social impact, and environmental impact.

Having established these macro categories, our investigation approach is based on
the following research question: What is the mathematical model required to determine a
quantitative value of the security risk of an IoT system based on these macro categories?
The following steps are required in order to define the mathematical model:

1. Define the method to quantify the risk. In this study this is performed in relation
to probability and impact, which are generic factors used in multiple risk analysis
methodologies and ISO 27,000 standards;

2. Establish the input elements for the risk analysis in relation to the probability and
impact. In this study, this is the macro categories (vulnerability, susceptibility, attack
surface, interdependency);



Risks 2022, 10, 162 9 of 21

3. Establish the output elements for the risk analysis in relation to the probability and
impact. In this study, this is the base of the economic impact, social impact, and
environmental impact;

4. Define the methodology to quantify the values in function of the interrelation between
the macro categories. We establish a set of simulations to determine a distribution
function in relationship to the inputs and outputs of the risk analysis;

5. Based on the distribution function, we select a model to quantify the risk value
from an economic perspective. We select an economic perspective in relation to the
systematic risk possibility mentioned by the global economic forum and the contents
of this study;

6. We define a risk scale to determine the level of impact on the IoT attacks in relation to
the possibility of a systematic risk event. The scale will monitor subsequent risk values.

3.1. Input Elements

To address the input elements, we propose the following question related to risk
factors: What are the risk factors that allow the possibility for a systemic risk?

Risk factors, also called risk-driven factors, denote an attribute, variable, or character-
istic which influences the risk profile of an entity system. Risk factors may cause the risk or
be correlated with the risk. The following factors were considered:

1. Organization: The application domain for which the IoT system has been developed
has certain inherent characteristics due to its functionality. Among the domains
we have health, agriculture, education, and energy, among others. If we approach
the analysis of an IoT solution applied for traffic management, its location will be
in an external public area, which could imply an exposure to physical attacks, in
contrast to an IoT solution used in smart homes. This is an aspect to be considered in
security risk assessment processes. Additionally, in the organization we have the pillar
related to technological infrastructure, economic infrastructure, social infrastructure,
and governance, which may vary between organizations. Two factors related to
organizations from a security perspective are:

a. Vulnerability: The weakness in each layer of an IoT architecture, which is the
possibility of suffering attacks;

b. Susceptibility: IoT systems are made up of a set of protocols, technologies,
and devices, so depending on this set, it is possible that one device is more
susceptible to an attack than another.

2. Attack surface: The greater number of interconnected devices and systems increases
the surface to be exploited by a given threat that is likely to generate an attack.

3. Interdependence: Interdependence between IoT, OT and IT systems can increase risk
exposure as there is the possibility of an attack from external systems. How security
attacks interact with more IoT elements can also modify the level of risk.

To understand how these factors are related and contribute to risk value, the following is
a description of them in relation to risk. Starting from the concept of risk, as the probability of
success of a given threat and its impact on the strategic objectives, we can use Equation (1).

R = Pt ∗ I (1)

where R is the risk value, Pt the probability of a threat, and I the probability of impact.
Analyzing the first component of risk, the probability of the success of a threat, in the

context of IoT systems as well as computational systems, is the possibility of the presence of
threats. The presence of a threat induces a certain value of security risk. However, whether
this threat can generate an impact will depend on different factors such as the vulnerability of
the attacked device that can be exploited by this threat, the security levels of the device and
the entire IoT system, and the effectiveness of the tools and techniques used by the attacker.
In other words, although the presence of the threat already generates a possible risk value, the
probability of its success is based on the security levels of the IoT system, for this can give us a
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more accurate value. Thus, we initially propose the value of the probability of success of a
threat as the probability of its presence in the IoT system, but the final value of the probability
of success will be conditioned by the level of security of the system.

Probability o f a success f ull threat (Pt)
= Probability o f the presence o f a threat(Pt′)

(2)

Pt = Pt′ (1− δ) (3)

where δ is the security level of the IoT system.
Detailing the factors that define this security level, we will focus on the central element

of the IoT system, which is the IoT device. The threat depends on the vulnerability of the
IoT device to be successful. If we analyze the IoT device from an architectural approach it
has components distributed in layers. Each layer has a set of protocols and technologies that
may present certain vulnerabilities. At this point, we can have threats related to each layer
as well as vulnerabilities associated with each layer. The vulnerability of the IoT device
will be given by the contributions of the individual vulnerabilities existing in each layer.

Pt = vIoT; (4)

where v is the vulnerability of the IoT device.

vIoT = ∑n
l=0 vlIoT; (5)

where vl is the vulnerability in each layer.
An interesting aspect of IoT is its adaptability to be used in different verticals; we can

find in the literature that is used to develop smart homes, smart health, smart grids, and
smart cities, among others. This aspect of IoT could have an important implication from a
security aspect, because an IoT device based on certain hardware and software used for
agriculture could be modified and used for vehicle control. This adaptability is what has
made IoT so popular, and devices such as Raspberry Pi and Arduinos have been widely
used to develop smart concepts. However, it is worth asking, at this point, questions such
as: Is the required level of security of a device different for an agricultural environment than
for a vehicular control environment? Additionally, what is the factor that determines the
level of security to be applied in a given vertical? Regarding these questions, two proposals
are presented by CIS concerning the definition of a set of classes that represent a security
value of the IoT device based on confidentiality, integrity, and availability. We present
information on the different classes in Table 4. A second proposal is the one proposed by
OWASP in the ASVS methodology for IoT systems in which the security level is established
by levels L1, L2 and L3 according to the criticality of the vertical.

Table 4. Compliance classes for IoT systems (Echeverría et al. 2021).

Compliance
Classes Description Confidentiality Integrity Availability

Class 0 Impact could happen in
the IoT system Low Low Low

Class 1 Limited impact could
occur in the IoT system. Low Medium Medium

Class 2 Significative impact to the
availability of IoT system Medium Medium High

Class 3 Impact to sensitive data of
IoT system High Medium High

Class 4 Loss control and critical
impact of the IoT system. High High High
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Additionally, in relation to the influence of the vertical, a component related to the
susceptibility of the device to being attacked is where the IoT device is used. A device may
also have certain vulnerabilities, for example, a physical vulnerability; thus, by not having a
case that protects it, it is susceptible to an attacker connecting directly to a port JTAG. If the
IoT device is used in a smart home, this vulnerability may not be very relevant, but if the
device is in a smart traffic solution, in which the device is in a street, the vulnerability has a
greater relevance. The susceptibility of the device will be influenced by the characteristics
of the vertical where it is used.

Thus, the susceptibility of an IoT device could be affected by the characteristics of the
vertical domain where the IoT solution is implemented, increasing the value of vulnerability
of the IoT device by a factor β.

vIoT = β vIoT′; (6)

where vIoT represents the vulnerability value as a function of a Beta, and β represents the
susceptibility value. vIoT’ is the vulnerability value without considering the susceptibility.

The Beta value is obtained as a function from the relationship of the domain and
the specific vulnerability in each layer. For instance, Table 5 shows the selection of Beta
for three scenarios. Another aspect related to the security level is the attack surface. The
attack surface of a system is constituted by the elements that allow the possibility of an
attack: input and output interfaces, data, methods and channels, and attacks. From the
IoT device-based analysis approach, each IoT device is a possible entry point for an attack,
and the more vulnerabilities such a device has, the higher the probability of a successful
threat, so an increase in the number of IoT devices would increase the attack surface and
the probability of the threat’s success.

As = γ ∗ nvIoT; (7)

where
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Table 5. Relation of susceptibility β to vulnerability and domain of the application of IoT systems
(Andrade et al. 2020).

Vertical Domain Physical Vulnerability Network Vulnerability Application
Vulnerability Beta

Smart home

Within the boundaries of a
house or building.
Generally, few meters of
geographic area.

Network topology
generally is of star type.
Network topology is small.
Few devices in the
network.

Applications on mobile
devices, especially
smartphones.

Low

Smart health

Within the boundaries of a
building or medical
campus. Coverage of
geographic area of meters
or kilometers.

Network topology could
be extended-star type. The
size of the network is
medium. Network could
contain hundreds of
devices.

Applications on mobile
devices (smartphones
and tablets).

Medium

Smart traffic
Within the boundaries of a
city. Geographic coverage
in kilometers.

Mesh-type network
topology. Large network.

Applications on
computer devices
(information systems).

High

Entry points for attacks in the IoT context represent interdependencies with other IoT
systems, as well as with IT and OT systems. The number of these dependencies modifies
the attack surface. Gamma represents the number of connections between IoT devices.
An important aspect in IoT security is the level of interdependency, which is due to high
connectivity between IoT devices; this can allow cascade or dominance effects due to cyber
attacks. Although most IoT solutions propose a centralized management solution through a
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gateway, these can also allow the establishment of authentication controls for the exchange
of information. There is a tendency to implement gateway-less solutions to reduce energy
consumption due to the exchange of control messages between the gateway and the IoT
device (Pereira et al. 2018). Thus, Equation (8) intends to consider both scenarios. The value
of n can be reduced if the gateway is used. Another alternative is that it can evaluate the
impact due to increased connections in the gateway-less architecture.

γ = (n− 1)/n; (8)

where n is the number of IoT devices
The level of security of the IoT solution is related to the level of cybersecurity assurance

of the IoT attack surface. This is so the objective has a small IoT attack surface or a more
controlled IoT attack surface.

As = γ ∗ n(β(∑n
l=0 vlIoT)); (9)

As =
(n− 1)

n
∗ n(β(∑n

l=0 vlIoT)); (10)

When replacing in Equation (3) the value δ = 1
As with the values for Equation (10), we

have the following equation:

R = Pt

(
1− 1

(n−1)
n ∗ n(β(∑n

l=0 vlIoT))

)
∗ I (11)

Analyzing the final proposed formula, reducing the number of IoT devices—although
feasible through a process of resource optimization—may not always be practical. If more
IoT devices are used it could improve the process of sensorization and, therefore, the data
acquisition for the decision-making process. Thus, it would not be possible to reduce the
number of links between devices under the same justification.

At this point, the two remaining factors would be the Beta value representing sus-
ceptibility and vIoT representing vulnerability. This last factor is more intrinsic to the IoT
device and could be addressed by a hardening process. The susceptibility, which is more
an extrinsic element of the device and depends mostly on the conditions of its environment,
could be addressed by the implementation of a set of policies, and is controlled based on
best practices related to each vertical domain. The process of hardening and best practice
could be carried out based on security controls such as those proposed by the Center for
Internet Security (CIS).

3.2. Output Elements

To address output elements, we propose the following questions: (i) What would be
the indicators to assess systemic risk? (ii) What would be acceptable values of security risk
before having a systemic-type condition? We take as a basis what was presented by the
Bank of England in July of 2018 regarding systemic risk thresholds. In Figure 4, graph A
shows the impact tolerance threshold as a function of aggregate impact as a function of time.
The threshold includes a systemic buffer capacity. The second shows that depending on an
incident response in the response phase, the shock could be absorbed within the threshold.
Finally, graph C shows that if the event exceeds the established tolerance threshold, a
systemic event resulting from a disruption will occur and a second disruption B may occur
in ∝ time.
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Returning from our first risk equation, we have the modified equation in which we
have included the security level.

R = Pt(1− δ) ∗ I (12)

Focusing on the second component of the equation, the impact, although a threat can
generate a level of impact on the IoT device or system, what we are interested in evaluating
is the impact on the strategic objectives of the organization. For example, an IoT system
is used to develop smart health to improve effectiveness in the processes of measuring
the physical conditions of patients, so the impact could be associated with the theft of
sensitive patient information, with the manipulation of medical information, or with the
unavailability of patient data. If the IoT system is used to develop smart traffic, the impact
could be reflected in the unavailability of signaling, which can produce traffic jams and
generate an economic impact related to the monetary loss of people who cannot get to their
jobs, or have a negative social impact due to the stress generated in drivers. In this context,
we establish that the impact must be evaluated in strategic axes such as economic, social,
and environmental, as is shown in Table 6.

Table 6. Possible impact to economic, social and environmental domains due to attacks in IoT systems
(Cazares et al. 2021).

Vertical/Domain Economic Social Environmental

Smart city

Potential loss of high
economic revenues due to
non-operation
of city services.

Loss of credibility of public
services.

Possibility of certain attacks
affecting services related to
waste management that could
affect the environment.

Smart health Possible high economic losses
due to possible legal claims. Possibility of the loss of lives. Possibility of certain attacks

affecting waste management.

Smart home Possible low economic losses. Low impact. Low impact.

Smart grid
Potential high economic losses
due to lack of energy for the
organization’s operations.

Possibility of generating a
feeling of chaos, insecurity, or
stress in people due to the lack
of electric power.

Possibility of certain attacks
affecting waste management
or environmental control
processes in organizations due
to lack of energy.

Smart traffic
Possible low-to-medium
economic losses due to delays
in people getting to their jobs.

Possibility of generating
anxiety and exhaustion in
drivers.

Possibility of increased
pollution due to vehicular
congestion.

Economic, social, and environmental impact has been of great interest in the research
field given its relevance. In this work, the scope is to focus on the economic domain
given its importance in the security budget management processes. The budget factor is
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important to improve strategies for the development of an acceptable security level for IoT
systems. For this, it is necessary to establish some controls and best practices that directly
or indirectly require a monetary value for implementation.

To predict the future level of some key economic variables, some economic models
can be used. These models identify the relation between one set of economic variables
(independent variables) and variables of interest for tactical decision-making (dependent
variable). For instance, the impact on inflation given information about changing GDP and
unemployment levels must be considered. In the case of cybersecurity, some research has
contributed to the evaluation of economic impact through of the use of VaR to estimate pos-
sible losses. Others researchers take into consideration an expected loss called conditional
value at risk (CVaR), instead of VaR, for they consider that this information allows a more
accurate estimation of losses.

Economic impact assessment starts from the need to consider the value of assets. Here,
there is an important issue to be considered for correctly determining assets. An alternative
method would be to consider IoT devices as critical assets, but really they are a component
of the proposed smart solution. To exemplify our proposition we will analyze a smart
parking solution, considering a smart parking lot that receives a total of 100 cars per hour,
with a billing value of USD 10 per hour. If, due to security attacks, the system remains
inoperative for three hours, there will be certain losses. When considering the critical assets
for loss assessment, the asset would be the smart parking while the IoT devices would be
components of the solution, but not the main asset. One aspect of certain IoT solutions
is that the IoT devices used can have values that range from 60 to 100 dollars, so their
replacement would not have a high economic impact. This economic aspect of IoT devices
is just one of the factors that has enabled the huge growth and inclusion of IoT devices in
various applications. In this case, the value of loss (impact) will be given by the threat’s
probability of occurrence for the estimated value of loss in dollars for the organization,
thus, not for IoT devices. We define lower and upper values of monetary loss and define a
probability of loss in this range. Additionality, we establish a probability value where these
losses could occur. For example, the probability of occurrence of a DoS attack is 20% and
the probability of having losses between USD 25,000 and USD 50,000 is 90%. We calculate
the value Vr that corresponds to economic loss.

I = Pt ∗Vr (13)

where I is the impact and Vr represents the possible loss in terms of currency.
In this case, Vr would be obtained by the means of the CVAR application. It is through

the CVAR application that we can define a threat portfolio capable of obtaining monetary
losses for every single one of the present threats.

3.3. Methodology

The third component of the generic model is the risk assessment methodology. Al-
though we have mathematically expressed risk itself as a function of the probability of
success—depending on the existence of the threat and the security level of the system, the
conditions of scalability, and impact measured in terms economic losses—it is necessary
that a risk methodology is utilized help us make projections. To evaluate scenarios related
to high economic losses or natural catastrophes, which result from systemic cyber risk, it is
possible to use either a frequency/severity model or a loss ratio model. The methodology
proposal for security risk assessment in IoT systems defines the relation between input (risk
factors) and output (economic impact). In the context of security, it is not always feasible
to have enough data to establish a decision-making process. Having an IoT environment
that is a complex and dynamic system makes this aspect even more relevant. Thus, we
can define a set of actual or hypothetical tests to probe a system’s behavior under unusual
conditions and then estimate the response of the system to predict conditional probabilities
and beliefs (see Figure 5).
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We propose a Bayesian network consisting of the following factors: vulnerability,
susceptibility, attack surface, and interdependency. These factors shine a light on the
possible impact on the economic, social, and environmental domains. We have selected
the Bayesian network because it allows us to work in data-poor environments that face the
presence of uncertainty. Additionally, it allows us to incorporate evidence that can update
the state of the output variables, allowing us to capture the dynamics of these IoT systems
(see Figures 6 and 7).
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4. Monitoring of Outputs

Finally, the fourth component for the assessment of IoT risk is output monitoring.
Based on the Bayesian network, we obtained the results presented in Table 7. After
obtaining the percentage of possible impact, we were interested in obtaining the resulting
economic value from the security attack. For this, we were initially interested in seeing if
the simulated output data could be adjusted to a financial risk calculation model to verify
if it could fit a normal distribution, such as the one used by economic models such as VAR.
There are some ways to estimate whether a variable has a normal distribution or not. We
rely mostly on the shape of frequency polygons. Now, we are going to introduce a more
formal test of normality.

Table 7. Values for Bayesian network simulation for input factors.

Vulnerabilities–
IoT

Susceptibility–
IoT

Attack
Surface–IoT

Interdependency–
IoT

Economic
Impact Social Impact Environmental

Impact

70.00% 50.00% 60.00% 60.00% 70.77% 63.98% 55.90%

100.00% 50.00% 50.00% 60.00% 73.12% 66.04% 57.66%

100.00% 100.00% 50.00% 60.00% 76.56% 69.08% 60.26%

100.00% 100.00% 100.00% 60.00% 77.91% 70.25% 61.26%

100.00% 100.00% 100.00% 100.00% 86.05% 77.15% 67.28%

70.00% 100.00% 50.00% 60.00% 73.40% 66.30% 57.88%

70.00% 50.00% 50.00 100.00% 84.86% 76.2% 66.43%

To probe if our values had a normal distribution, we used the Shapiro–Wilks test to
identify if the null hypothesis of the sample came from a normal distribution. We chose a
significance level of 0.05, and we had an alternative hypothesis that the distribution was
not normal. We observed that the variables related to the proposal factors (vulnerability,
attack surface, interdependency, and susceptibility) did not follow a normal distribution,
and since in all four cases the probability value (p) was less than our chosen level (0.05) we
rejected the null hypothesis. On the other hand, we observed that the variables related to
impact followed a normal distribution; since in all three cases the probability value (p) was
greater than our chosen level (0.05), we concluded that the null hypothesis should not be
rejected. The correlations among the variables are shown in Figure 8.

Additionally, we observed evidence that the correlations were positive in all cases,
but the interdependence variable had a high correlation close to 1, implying a higher
contribution to social, economic, and environmental impact.



Risks 2022, 10, 162 17 of 21Risks 2022, 10, x FOR PEER REVIEW 17 of 21 
 

 

 
Figure 8. Correlation of a set of variables indicating that the null hypothesis should not be rejected 
since the financial risk calculation model followed the normal distribution. ** high correlation; *** 
very high correlation. 

To evaluate the outputs, we defined a risk scale based on the percentage in the range 
of absorption capacity. The absorption capacity relates to the response that the organiza-
tion has when faced with a security incident. An organization could have direct capital or 
insurance to counter a value that exceeds the threshold defined by the organization. The 
absorption capacity depends on the organization and defines the threshold. The risk value 
is an element within the range of the absorbing capacity. A risk value of 1 is equivalent to 
a value of 10% of the range defined for the absorption capacity, and the value is 10% above 
the threshold value set by the organization to absorb the impact of a security attack. A risk 
value of 2 is equivalent to a value of 20% of the range defined for the absorption capacity, 
a risk value of 3 is equivalent to a value of 30% of the range defined for the absorption 
capacity, and so on accordingly with the rest of the values. Best practice would be to set 
this threshold value between 70% and 80%; this would represent a risk value of 7 and 8, 
respectively. A risk value of 9 and 10 would mean that the organization could exceed the 
absorptive capacity threshold and generate a systemic event (see Figure 9). 

 
Figure 9. The percentage in the range absorption capacity relates directly to the risk value and is 
related to the response given in the event of the security incident. 

We can establish a quantitative value of the economic impact based on the normal 
distribution. Table 8 presents the risk value as a function of the impact values obtained 
from the Bayesian network and the evaluation of normal distribution. 

Figure 8. Correlation of a set of variables indicating that the null hypothesis should not be rejected
since the financial risk calculation model followed the normal distribution. ** high correlation; *** very
high correlation.

To evaluate the outputs, we defined a risk scale based on the percentage in the range
of absorption capacity. The absorption capacity relates to the response that the organization
has when faced with a security incident. An organization could have direct capital or
insurance to counter a value that exceeds the threshold defined by the organization. The
absorption capacity depends on the organization and defines the threshold. The risk value
is an element within the range of the absorbing capacity. A risk value of 1 is equivalent to a
value of 10% of the range defined for the absorption capacity, and the value is 10% above
the threshold value set by the organization to absorb the impact of a security attack. A risk
value of 2 is equivalent to a value of 20% of the range defined for the absorption capacity,
a risk value of 3 is equivalent to a value of 30% of the range defined for the absorption
capacity, and so on accordingly with the rest of the values. Best practice would be to set
this threshold value between 70% and 80%; this would represent a risk value of 7 and 8,
respectively. A risk value of 9 and 10 would mean that the organization could exceed the
absorptive capacity threshold and generate a systemic event (see Figure 9).
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We can establish a quantitative value of the economic impact based on the normal
distribution. Table 8 presents the risk value as a function of the impact values obtained
from the Bayesian network and the evaluation of normal distribution.
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Table 8. Risk level according to economic impact.

Economic Impact Risk Level

70.77 7

73.12 7

76.56 7

77.91 7

86.05 8

73.40 7

84.86 8

To exemplify the risk calculation according to the proposed methodology. We define
the values of economic losses due to attacks. We estimate the minimum and maximum
values of loss according to a risk portfolio (see Table 9).

Table 9. Hypothetical cost for attacks to IoT systems.

Attack Lower Upper

DoS 15,000 45,000

Eavesdropping 2000 7500

Privilege Escalation Attack 10,000 80,000

The following is an example of a security attack on a parking lot system that uses
an IoT infrastructure for its operation. We have used the analysis based on four phases:
context, shock event produced by the incident, amplification of the incident impact, and the
generation of a possible systemic event. The following is a description of the four phases
for our smart parking scenario:

• Context: We define the following assumption. A DoS attack on a parking IoT system
is presented. We define our capacity of absorption of losses as USD 25,000;

• Shock: The attack could generate economic, social, and environmental losses. In
Table 10, we describe the possible loss for economic, social, and environmental aspects;

• Amplification: The attack not only affects the parking lot with losses, but the owners
as well. The social event in this case has the same value as the economic impact;

• Systemic Event: In this case, there is no systemic event that could affect the local or
global economy.

In this case, the loss value is USD 25,000. This value represents a 55% impact or a risk
level of 5 in our proposal, as it is under the maximum expected loss value that we had
proposed for a DoS attack (USD 45,000) in Table 8. However, in this case, we assume one of
the possible scenarios.

Table 10. Indicator for estimating cost of economic security.

Indicator for Estimating Cost of Economic Security

Damage to smart infrastructure

A DoS attack can affect the IoT infrastructure related to vehicle detection devices, generating 10 h
of inoperability to the parking lot.

Economic Loss

There are financial losses due to an estimated parking flow of 100 cars per hour. Since the
inoperability is set to 10 h with a parking price at USD 10, the final loss cost is approximately
USD 10,000.
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Table 10. Cont.

Indicator for Estimating Cost of Economic Security

Social damage

A social impact is inevitable due to the unavailability of parking lots, this generates stress and
latency in people’s lives. In this case, we estimate that at least half (500) of the owners had an hour
delay; if they were to be paid USD 20 an hour, the total loss would be USD 10,000.

Environmental damage

The inoperability of parking lots implies that cars will have to circulate throughout the zone
generating more contamination to the atmosphere than usual. For simplicity, let us suppose that
the environmental damage is of USD 5000.

For the information of the Bayesian network, if the probability of having vulnerability
is 100%, the attack surface is hackable, there is interdependence that allows an attack, and
there is a susceptibility, we would have—in the worst case scenario—an 86.05% probability
of an economic impact, which represents a risk value of 8. This means that the economic
loss value from the normal distribution analysis built with the values of Tables 6–8 is close
to USD 30,000. In this case, we are still inside the range of our capacity of absorption of
the shock, but we are very close to the umbral of a systemic event. Additionally, this is not
considering the notion of a possible second event in the theta period, as shown in Figure 10.
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5. Discussion

Based on the risk formula based on susceptibility, vulnerability, attack surface, interde-
pendence, we have:

R = Pt

(
1− 1

(n−1)
2 ∗ n(β(∑n

l=0 vlIoT))

)
∗Vr (14)

The attack surface, as mentioned above, is related to the number of devices, so reducing
its size would not be feasible, but it would be possible to focus on securing the attack surface
to maintain an adequate risk value. Regarding the vulnerability factor, it is important to
reduce them through security implementation processes in the development process of
the IoT solution or hardening the process to maintain an acceptable risk value. Regarding
susceptibility, the best security practices to be considered depend on the characteristics of
the domain. The number of interdependencies cannot be reduced because they are part of
the construction of the IoT system, and the interoperability between IT and OT systems
gives the expected functionality of the smart solution.

From the analysis of the four factors, interdependency requires the establishment of
mechanisms to improve security aspects to avoid affecting risks. Interdependence is the
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one with the greatest contribution. There is security between the connections of devices
and resilience when a device fails at the interdependency level, and cascading effects of
security events. The theta time between systemic event A and systemic event B is important
to manage in order to avoid the chaining of new events. Containment requires a safety
incident response process.
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