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Abstract: In this study, we analyse a large sample of Egyptian social pension data which covers,
by law, the policyholder’s spouse, children, parents and siblings. This data set uniquely enables
the study and comparison of pairwise dependence between multiple familial relationships beyond
the well-known husband and wife case. Applying Bayesian Markov Chain Monte Carlo (MCMC)
estimation techniques with the two-step inference functions for margins (IFM) method, we model
dependence between lifetimes in spousal, parent–child and child–parent relationships, using copulas
to capture the strength of association. Dependence is observed to be strongest in child–parent
relationships and, in comparison to the high-income countries of data sets previously studied, of
lesser significance in the husband and wife case, often referred to as broken-heart syndrome. Given
the traditional use of UK mortality tables in the modelling of mortality in Egypt, the findings of this
paper will help to inform appropriate mortality assumptions specific to the unique structure of the
Egyptian scheme.

Keywords: joint life mortality; dependence modelling; copulas; Markov chain Monte Carlo; Egyptian
social security

1. Introduction

The existence of dependence between individual lifetimes presents the need to re-
fine the independence assumption traditionally used in the pricing and reserving of life
insurance products that involve multiple lives and mortality assumptions. Joint lifetime
research in the existing literature largely considers dependence between husband and wife.
Commonly referred to as broken-heart syndrome, this short-term dependence causes an
immediate increase in the mortality of the surviving spouse upon the death of their partner,
with the significance of the impact decreasing over time. Early work by Rees and Lutkins
(1967), Parkes et al. (1969), and Ward (1976) find the increase to be of greatest severity
during the first 6 to 12 months of bereavement, with mortality eventually decreasing to
that of a non-widowed sample in some cases.

In studying joint life dependence, Denuit and Cornet (1999) and Denuit et al. (2001)
use data from the Belgian National Institute of Statistics for the estimation of the marginal
force of mortality in a Markovian model. Bivariate data is, however, more difficult to obtain,
with the data for copula estimation in these studies sampled from the gravestones of
couples in Belgian cemeteries. Here, an increase in mortality among widowed individuals
is observed, with a more significant deviation from the non-widowed mortality in bereaved
males. The impact of marriage status on mortality is also presented in Maeder (1995). Many
studies, including those by Frees et al. (1996), Carriere (2000), Youn and Shemyakin (1999,
2001), Shemyakin and Youn (2001, 2006), Luciano et al. (2008), Spreeuw and Wang (2008),
Spreeuw and Owadally (2013), Ji et al. (2011), Dufresne et al. (2018) and Arias and Cirillo
(2021) consider a generation-based joint life data set from a large Canadian insurer in their
analysis of joint life dependence. Joint annuity data from a French insurer is analysed in
Lu (2017), French geneaology data in Cabrignac et al. (2020) and Dutch census data on
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married couples in Sanders and Melenberg (2016). Henshaw et al. (2020) consider Ghanaian
survey data, and Walter et al. (2021) consider joint life and last survivor annuity data from
a Kenyan insurer. To the best of our knowledge, the latter two studies are the only two
studies assessing dependence in an alternative socioeconomic context.

Copula-based approaches are widely used in the lifetime dependence literature.
Frees et al. (1996) use standard maximum likelihood techniques to fit the one-parameter
Frank copula to the aforementioned Canadian joint life data. Considering the impact of
dependence on joint and r annuities, whose benefits reduce to a proportion r of the original
benefit after the death of one annuitant, for varying r, a reduction in annuity values of
approximately 5% is observed when dependence is assumed. Youn and Shemyakin (1999)
implement a Weibull-Hougaard copula model with Weibull marginals and a Gumbel-
Hougaard (or Gumbel) copula, and introduce age difference as a determinant of lifetime
dependence, where the copula association parameter is a function of the difference in age.
Luciano et al. (2016) observe reduced dependence among a younger sample of joint lives
when splitting data through a generation-based model. In this study, the pseudo-maximum
likelihood approach is adopted for the estimation of parameters of both one- and two-
parameter copulas. Comparison is made between the reversionary annuity prices under
dependence and independence for varying benefit levels. The age difference of policy-
holders is again incorporated by Dufresne et al. (2018) in their copula-based study, with
inference functions for margins and pseudo-maximum likelihood approaches adopted for
estimation. Dependence is found to be a decreasing function of age difference by both Youn
and Shemyakin (1999) and Dufresne et al. (2018). However, the impact of incorporating
age difference on product pricing that is observable for an individual liability is mitigated
when considering the total liability of an insurer, given a portfolio of policyholders.

Frailty models are an alternative method for dependence modelling, which account
for unobserved heterogeneities between individuals in a population. First introduced
by Vaupel et al. (1979) and developed by Hougaard (1984) and Oakes (1989), among
others, in the lifetime dependence context, frailty-type models have been used in studies
including those by Clayton (1978), Hougaard et al. (1992), Klein (1992), Nielsen et al. (1992),
Gourieroux and Lu (2015) and Walter et al. (2021). In the latter study, dependence life
tables are created. Lu (2017) implement a mixed proportional hazards model to account for
observed and unobserved frailties, with a treatment effect capturing the mortality jump
characteristic of broken-heart syndrome. The impact of losing a spouse is found to be
asymmetric between males and females, a finding also observed in Dufresne et al. (2018).
Dependence induced by the occurrence of an event experienced simultaneously by two
lifetimes, due to, for example, a car accident or natural disaster, can be modelled using
the common shock model of Marshall and Olkin (1967). Gobbi et al. (2019) consider the
extended Marshall–Olkin model of Pinto and Kolev (2015), which combines the copula and
common shock approaches.

A four-state Markovian mortality model dependent on marital status is proposed
in Norberg (1988). Using Fréchet-Hoeffding bounds to estimate the maximum impact of
dependence under the assumption of Norberg’s model, Denuit and Cornet (1999) observe
a reduction of approximately 10% when analysing the impact of dependence on a widow’s
pension premiums. This study is further developed in Denuit et al. (2001). Norberg’s model
is extended by Spreeuw and Wang (2008) and Spreeuw and Owadally (2013) to account
for the typically short-term nature of broken-heart syndrome. Through the inclusion of
an additional state, the mortality of the survivor is assumed to be dependent on the time
elapsed since the first death. Ji et al. (2011) extend the model to a semi-Markov model
that incorporates instantaneous, short- and long-term dependence, where broken-heart
syndrome is a decreasing function of time since bereavement.

Stochastic mortality models are a further class of joint mortality models that appear in
the literature. Adopting a credit risk-type approach, the remaining lifetime of an individual
is assumed to be a doubly stochastic stopping time with an intensity that is equivalent
to the force of mortality. Although well-established for single cohort studies (see, for
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example, Dahl 2004; Biffis 2005; Luciano and Vigna 2005, 2008 and Schrager 2006), the use
of stochastic mortality models for joint life dependence is limited. Luciano et al. (2008)
implement the approach with dependence induced through copulas, while Jevtić and Hurd
(2017), and Henshaw et al. (2020) use a probabilistic mechanism with correlated mortality
intensities to capture the dependence structure. An alternative approach to correlating
stochastic processes in the credit risk setting is proposed by Zhang and Brockett (2020).
In this study, individual mortalities are modelled as Brownian motions with drift, and
have time indices that move according to correlated subordinators. Dependence is induced
through this correlation, where the subordinators are structured to capture both shared
frailties and idiosyncratic risks in a similar manner to Jevtić and Hurd (2017) and Henshaw
et al. (2020). In a recent study, Arias and Cirillo (2021) propose the use of the non-parametric
bivariate reinforced urn process, which learns from the lifetime experiences of individuals
and uses the information obtained to make inference about others. In line with Bayesian
approaches, prior knowledge on the data can be incorporated into the model and updated
at the end of each lifetime, thus facilitating improvements in the model over time.

Previous research beyond the context of lifetimes paired through marriage includes
the study of dependence in disease incidence among fathers and sons (Clayton 1978),
lifetime dependence and disease heritability in adult twins (Hougaard et al. 1992; van den
Berg and Drepper 2022; Wienke et al. 2002, (Denmark); Iachine et al. 1998; Lichtenstein
et al. 2000, (Denmark, Sweden, Finland)), where there is a large body of genetics literature,
and familial dependence and its impact on child mortality among siblings (Zenger 1993,
(Bangladesh); Guo 1993, (Guatemala); Sastry 1997, (Brazil)). However, the implications for
insurance are not specifically considered in these works.

In this paper, the existence of dependence between the lifetimes of multiple family
members is, therefore, assessed for the first time on this scale and in this socioeconomic
context. Pairwise dependence between the lifetimes of husband, wife, son, daughter, father
and mother are considered through analysis of Egyptian pension data. Dependence within
these relationships spans each of the three classifications of lifetime dependence structures
presented by Hougaard (2000). Broken-heart syndrome is characteristic of short-term
dependence.

Socioeconomic influences on the determinants of an individual’s lifetime, including
living circumstances, health, education, religious beliefs and the associated approaches to
bereavement and loss are widely accepted. Yet the study of dependence and its impact
on insurance is limited to high-income countries. Given that many low and lower-middle
income countries rely on mortality tables from high-income countries for the pricing of their
mortality-based products, it is critical to know whether the patterns observed in samples
from countries such as the UK and Canada can also be seen in different socioeconomic
environments. Henshaw et al. (2020) propose a coupled stochastic mortality model with
a tempered volatility to reflect the impact of close familial and community structures in
low-income countries on the severity of broken-heart syndrome. The findings in this paper
provide evidence in support of the propositions of Henshaw et al. (2020), where a Ghanaian
data set is considered.

Differences in familial structures across socioeconomic environments are highlighted
by the structure of the Egyptian social pension scheme. In the event of a pensioner’s
death, social pension schemes typically pay out to a spouse or child; however, in Egypt,
siblings and parents are also listed as beneficiaries (see Section 2 for details). This policy
aligns with the fact that children often live with their parents until marriage, and for male
children, in some cases, even after marriage. In addition, many families remain financially
dependent on the main income provider or breadwinner, typically the father or eldest
son. Emotional ties and living circumstances that influence dependence between family
members are strongly reinforced by such traditions and norms. Wide age differences in
marital relationships, polygamous partnerships and large families are further features of
the environment that may change the strength of dependence in comparison to the samples
considered in previous studies.
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This paper contributes to the dependence literature by expanding the study of de-
pendence within marital relationships through analysis of a large data set in a previously
unstudied socioeconomic context. The study focuses on male pensioners and their benefi-
ciaries, assessing the impact of the death of a father or son, i.e., the main income provider, on
the lifetimes of their relatives. Five samples are included in the analysis, where each sample
considers a different relationship. Samples are collected from the Egyptian social pension
scheme for pensioners covered under the General Social Insurance System (Egyptian Social
Insurance and Pension Law 79 1975), a compulsory scheme with two funds, covering the
government sector, and the public and private sectors, respectively. This system is also
studied in detail in Khalil (2006). Throughout the paper, those covered by the pension
scheme will be referred to as the policyholder or pensioner, and the beneficiaries.

Copula-based analysis is used to capture the dependence between the lifetimes in each
relationship. Comparisons are made between four Archimedean copulas, in line with the
widespread use of the Archimedean family in the modelling of bivariate lifetime. As in
Dufresne et al. (2018), the Clayton, Frank, Gumbel and Joe copulas are assumed. Copula
dependence parameters determining the level of association between two lifetimes, are
estimated using the two-step inference functions for margins (IFM) method. In each of the
five samples, the marginal distribution parameters are first estimated independently before
estimation of the copula dependence parameter. All marginal distributions are fitted with
the informative reparametrised Gompertz law (Carriere 1992, 1994).

For parameter estimation, the Bayesian Markov Chain Monte Carlo (MCMC) Metropolis–
Hastings (MH) algorithm is implemented. Classical estimation techniques such as maxi-
mum likelihood estimation (MLE) provide point estimates of unknown parameters. How-
ever, Bayesian MCMC algorithms treat the unknown parameters as random variables and
derive estimates of their distribution using random sampling techniques, thus capturing
parameter uncertainty. MCMC methods enable the inclusion of prior parameter informa-
tion and reduce the risk of obtaining local rather than global maxima or minima when
random walk sampling is not used, a benefit that is particularly useful for high-dimensional
problems. The computation time can, however, be high in comparison to MLE for problems
with many parameters and complex likelihood functions. For a more detailed discussion
of the workings of MCMC, the interested reader may refer to Robert and Casella (1999),
Roberts and Rosenthal (2004) and van Ravenzwaaij et al. (2018). In the analysis of this
paper, all MCMC results are compared with MLE point parameter estimates.

Bayesian MCMC techniques are well-used in the literature on copula-based depen-
dence analysis. Huard et al. (2006) and Silva and Lopes (2008) adopt Bayesian analysis
to study copula selection criteria, reparameterising the problem such that the prior dis-
tribution is on the Kendall’s tau correlation coefficient rather than the copula parameter.
A comparison of one and two-step Bayesian estimation techniques is made in Silva and
Lopes (2008) and Ausin and Lopes (2010). Almeida and Czado (2012) use MCMC sampling
to estimate the parameters of a stochastic copula autoregressive model with time-varying
dependence, again reparametrising to estimate Kendall’s tau. A common approach in the
copula literature, this reparametrisation enables a clear comparison of dependence across
the copula families by unifying the domains of the estimated dependence parameters.
Following the IFM two-step method with MH in the second step, Thongkairat et al. (2019)
observe a more accurate estimation of mixed copula models when using Bayesian rather
than ML estimation. MCMC methods have also been applied in problems including claim
reserve and loss prediction (da Rocha Neves and Migon 2007; de Alba 2002; Hong and
Martin 2017; Ntzoufras and Dellaportas 2002); survival analysis (Arjas and Gasbarra 1996,
where a coupled MH algorithm with joint prior distribution is used to account for stochas-
tic ordering with known differences in the lifetimes of samples) and mortality modelling
(Antonio et al. 2015; Cairns et al. 2011; Czado et al. 2005; Fung et al. 2019; Li and Lu 2018).
For a non-exhaustive list of the early use of MCMC techniques in actuarial modelling, see
Scollnik (2001).



Risks 2023, 11, 18 5 of 25

The remainder of the paper is organised as follows. In Section 2, the data set is
introduced and empirical correlation measures for the five samples presented. Section 3
describes the Gompertz survival model and the copula models used for dependence
estimation. The MCMC algorithm is introduced in Section 4, and the IFM method in
Section 5. Results are presented in Section 6, and the concluding remarks in Section 7.

2. Data Set

Between 1975 and 1980, a number of fundamental laws were issued to ensure the
coverage of all working Egyptian citizens, both inside and outside of Egypt. These laws
provide compulsory coverage, funded by the State, for employees in government, public
and private sectors (Egyptian Social Insurance and Pension Law 79 1975), coverage for
employers and the self-employed (Egyptian Social Insurance and Pension Law 108 1976),
regulation of the voluntary social insurance system for Egyptians working abroad (Egyp-
tian Social Insurance and Pension Law 50 1978) and pay-as-you-go (PAYG) coverage for all
working individuals excluded under the three aforementioned laws (Egyptian Social Insur-
ance and Pension Law 112 1980). Each law covers beneficiaries against old age, disability
and death. The data analysed in this paper consists of lifetime data for individuals covered
by Law 79, focusing on those working in the government. Law 79 is a defined benefit
system that provides additional benefits including injury at work, health, unemployment
and social patronage insurance, which offers benefits such as the provision of housing and
monetary discounts. Law 79 was restructured under Law 148 in 2019 to cover all four social
security laws. Although no significant changes were observed, in this study, only Law 79 is
relevant.

The laws determining the structure of the Egyptian social security system reflect
the nature of living circumstances within families in Egypt. The Egyptian social pension
scheme is designed to provide benefits to participating workers when they become of
pension age, where contributions are made by the worker throughout their employment.
A worker exits the scheme through death, partial permanent disability, total disability, or
reaching retirement age, where retirement age is to be increased from 60 (Egyptian Social
Insurance and Pension Law 79 1975, Section 18(3)) to 65 in 2040, in line with Section 41 of
Egyptian Social Insurance and Pension Law 148 (2019).

Following the death of a pensioner, benefits are distributed among their beneficiaries.
By law, beneficiaries are defined as the widow or widower, sons, daughters, parents,
brothers and sisters of the pension policyholder (Egyptian Social Insurance and Pension
Law 148 2019, Section 98). Payments cease and beneficiaries exit the scheme through,
for example, death, marriage for a widow, daughter or sister, and reaching the age of 21
for a son or brother, except for those incapable of earning, students not yet aged 26 and
unemployed, university degree holders not yet aged 26 and unemployed and those with
lower-level qualifications not yet aged 24 (Egyptian Social Insurance and Pension Law
148 2019, Section 105). In the event that an individual is listed as a beneficiary of multiple
pensioners, they receive only one benefit. The order in which the selected benefit is received
is: personal pension, spouse’s pension, parents’ pension, son’s pension, and brother or
sister’s pension (Egyptian Social Insurance and Pension Law 148 2019, Section 102).

Data for this analysis were collected from the Social Egyptian Pension scheme, with
an observation period of 10 years, from 2010 to 2019. A pair is included in the data set only
if the policyholder dies within the observation period. The observed distribution of the
survival time of the policyholder is therefore conditional on their death within this period.
The sample consists of 20,863 male pensioners (the policyholders) and their dependents,
where the dependents are either a spouse, parent, son or daughter. On average, the male
policyholder dies at age 62.9, with 80% dying between the ages of 53 and 74. Further
descriptive statistics for the full sample are given in Table 1.



Risks 2023, 11, 18 6 of 25

Table 1. Descriptive statistics of the male pensioners.

Count 10th
Quantile

25th
Quantile

50th
Quantile

75th
Quantile

90th
Quantile Mean SD

20,683 53 57 62 68 74 62.9 8.6

Classifying the data according to the pensioner–beneficiary relationship, five samples
are observed. These include husband and wife (H,W), father and son (F,S), father and
daughter (F,D), son and father (S,F) and son and mother (S,M). The most commonly studied
relationship in the existing literature, the husband and wife sample contains 19,475 males
and 19,937 females. The discrepancy in size indicates instances of polygamy. Participation
in such a relationship could be a determinant of the strength of dependence between
husband and wife. However, although an interesting feature in the Egyptian social context
and one that does not appear among the subjects of previous research in this area, due to the
small sample size (462 duplicated husbands), polygamous relationships are removed, such
that only one spouse beneficiary is considered. The average entry age is approximately
58 and 50.5 for husbands and wives, respectively, with corresponding deaths at ages
62.6 and 65. Of the 19,937 wives in the sample, just 955 (4.79%) died within the 10-year
observation period.

A total of 76 sons (0.56%) and 57 daughters (0.40%) exited the observation due to death,
where 13,655 father–son and 14,274 father–daughter relationships were included in the
sample. The average ages at death of these beneficiaries were just 28 and 36, respectively.
Son–father and son–mother constitute the smallest observed samples, with 218 son–father
relationships and 1067 son–mother relationships. Since the data is from a pension scheme,
the age at entry and age at death of the child in child–parent relationships are relatively high
in comparison to parent–child relationships. However, within the child–parent samples, in
comparison to the average age at death of the parent, the average age at death of a son is low.
This is likely due to the fact that only policyholders that die within the observation period
with a parent that is still alive are included in these samples. As such, pensioner sons dying
at older ages outside of this period and those who have already lost the corresponding
parent are not accounted for. The full summary statistics for all five samples are provided
in Table 2.

Empirical dependence measures for the relationships in each sample are provided in
Table 3. Here, the Pearson, Spearman and Kendall’s tau correlation coefficients between the
lifetimes of each member of a pair are calculated. Note that in obtaining these measures,
only pairs in which both members die within the observation period are considered, and
as such, the measures do not represent the dependence exhibited between all lifetimes in
each sample. However, the empirical results indicate the existence of dependence in the
data and thus motivate further exploration of the strength of the lifetime association in this
setting.

Age differences among married couples vary significantly in the data. The sample is,
therefore, split by age difference (d) to test whether there is an observable impact on the
respective correlations, where a positive age difference indicates that the policyholder is the
elder member of the pair. For the husband and wife sample, the correlation measures are
also provided for samples that are split by the sex of the elder spouse (Table 4). Although
the minimum age difference between husband and wife is 0 years and the maximum is
59 years, 80% of the sample differs in age by between 1 and 15 years, where the husband is
the elder spouse. While the impact of age difference may be less significant in parent–child
relationships, a comparison is also made in these cases.

A high positive correlation is observed between the lifetimes of husband and wife,
father and son, father and daughter, and son and father. The correlation decreases with
increasing age difference in each of these four samples, in line with the results for spousal
dependence in the literature (Dufresne et al. 2018; Youn and Shemyakin 1999). In contrast,
correlation between the lifetimes of son and mother increases with increasing age difference,
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indicating a greater reliance of mother upon son with age. Although the two sample sizes
are not comparable, couples in which the wife is the older spouse exhibit an increased
correlation, aligning with the findings of asymmetric mortality experience in Lu (2017) and
Dufresne et al. (2018).

Table 2. Descriptive statistics for age at entry (Entry) and age at death (Death) for each of the
five samples. “Death *” gives the descriptive statistics for policyholders whose beneficiaries have
also died.

Sample Count 10th
Quantile

25th
Quantile

50th
Quantile

75th
Quantile

90th
Quantile Mean SD

(H
,W

) Husband
Entry 19,475 49 52 57 63 68 58.02 8.03
Death 19,475 53 57 62 68 73 62.57 8.27
Death * 955 56 61 66 73 79 67.02 8.92

Wife Entry 19,937 39 44 50 57 62 50.52 9.13
Death 955 53 59 65 71 77 64.92 9.46

(F
,S

) Father
Entry 13,655 47 50 53 58 63 54.07 7.01
Death 13,655 50 53 57 62 67 57.99 7.19
Death * 76 51.5 54 58 65.25 78.5 61.22 11.16

Son Entry 13,655 6 10 15 18 22 14.47 7.16
Death 76 16.5 19.75 23.5 35.25 51 28.34 16.16

(F
,D

) Father
Entry 14,274 47 50 55 61 67 56.17 8.55
Death 14,274 51 54 59 65 71 60.17 8.7
Death * 57 52.6 60 64 73 88 67.3 12.88

Daughter Entry 14,274 6 11 16 23 31 17.52 10.39
Death 57 19 25 33 41 58.4 36.12 14.66

(S
,F

) Son
Entry 218 43 48 51 55 58 49.84 8.06
Death 218 45.7 50 54 58 61.3 53.14 8.23
Death * 119 49 51 55 58 61 54.67 5.13

Father Entry 218 68 74 78 83 86 77.35 8.23
Death 119 78 82 86 89 92 85.71 5.71

(S
,M

) Son
Entry 1067 44 48 52 56 60 51.58 7.43
Death 1067 47 51 56 60 64 55.16 7.56
Death * 429 49 53 57 60 65 56.61 6.39

Mother Entry 1076 66 71 76 81 85 75.67 8.33
Death 429 76 80 85 89 93 84.63 7.16

Distributions of age difference and the survival time of the beneficiary after the death
of the policyholder, i.e., the time between the first and second deaths, are presented in
Figure 1 for each of the five samples. Increased correlation between lifetimes in child–parent
relationships can also be observed in the survival time distribution plots, with a greater
proportion of bereaved deaths occurring in the early years of bereavement, specifically
years 2 and 3. This trend appears with less significance in the husband and wife data set;
however, in both parent–child relationships, the association between survival probability
and years since bereavement is less clear. This perhaps aligns with their fairly small sample
sizes. The father–son sample experiences a gradual increase in mortality, which falls after
the fifth year of bereavement, while the father–daughter sample experiences the same year
three peak as observed in the three other samples, with an additional peak much later in the
bereavement. In comparison to the Ghanaian data set considered in Henshaw et al. (2020),
where 13.1% of the sample dies within the first year of bereavement, lifetime dependence is
of much lower initial significance. In the Egyptian data set presented here, the impact of
losing a spouse appears to be delayed.
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Figure 1. Age difference and survival time distributions for all samples.

Table 3. Empirical dependence measures for each of the five samples, split by age difference d.

Sample Count Pearson Spearman Kendall

(H
,W

) 0 ≤ d < 4 288 0.946 0.942 0.819
4 ≤ d < 8 343 0.899 0.881 0.742

d ≥ 8 324 0.776 0.803 0.655
Total 955 0.769 0.771 0.604

(F
,S

) 18 ≤ d < 35 28 0.962 0.923 0.771
d ≥ 35 48 0.892 0.779 0.647
Total 76 0.881 0.781 0.610

(F
,D

) 18 ≤ d < 35 31 0.971 0.924 0.834
d ≥ 35 26 0.916 0.825 0.688
Total 57 0.871 0.771 0.621

(S
,F

)

18 ≤ d < 25 34 0.891 0.871 0.743
25 ≤ d < 35 74 0.876 0.742 0.597

d ≥ 35 11 0.758 0.704 0.594
Total 119 0.544 0.513 0.385

(S
,M

)

18 ≤ d < 25 222 0.820 0.775 0.618
25 ≤ d < 35 181 0.842 0.822 0.654

d ≥ 35 26 0.932 0.943 0.832
Total 429 0.612 0.575 0.425
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Table 4. Empirical dependence measures for the husband and wife sample, split by the sex of the
elder spouse, where Xh represents the lifetime of the husband and Xw the lifetime of the wife.

Sample Count Pearson Spearman Kendall

(H
,W

) Xh >Xw 807 0.819 0.817 0.659
Xh ≤ Xw 148 0.905 0.911 0.767

3. Model Description

In this section, the survival and copula models for dependence are presented. Let (x)
denote an individual aged x. Then, the survival function of (x) is defined by

Sx(t) = P(τx > t), (1)

where τx is the remaining lifetime of (x), given their survival to age x, and X denotes the
remaining lifetime of an individual at birth.

Many mortality models exist and are implemented in the literature. For the pur-
pose of this study, Gompertz’s law of mortality is adopted. Gompertz’s law is a classical
model of mortality experience first proposed in Gompertz (1825), which states that after
a given age, the logarithm of mortality intensity is a linear function of age. The law is
specified to reflect mortality behaviours above a sufficiently high level (observed to be
approximately 30 years of age); the suitability of Gompertz’s law for old-age mortality
is, however, also widely debated. Many studies argue for the existence of a deceleration
in the increase in mortality at the highest ages (above approximately 80–90 years), with
mortality observed to curve away from the Gompertzian trend and to plateau at very high
ages; see, for example, Thatcher and Kannisto (1998) and Thatcher (1999). However, more
recently, developments in the reporting of age and mortality data have been proposed as
improvements that could contest the non-Gompertzian nature of old-age mortality; see, for
example, Gavrilov and Gavrilova (2019).

In line with this ongoing debate, extensions of the classical Gompertz model and
alternative mortality models have been developed to allow for flexibility in the mod-
elling of mortality behaviours. The simplest extension of the Gompertz model is the
Gompertz-Makeham model (Makeham 1860, 1867), where the addition of a constant term
is introduced to capture age-independent mortality. Willemse and Koppelaar (2000) and
Willemse and Kaas (2007) propose generalisations of the Gompertz distribution in the
context of frailty-based mortality models, extending the model beyond classical age depen-
dent considerations. In more recent work, El-Gohary et al. (2013) propose an alternative
generalised Gompertz distribution that allows for flexibility in the specification of the
hazard rate to overcome the monotonic requirement of the Gompertz hazard function.
Li et al. (2021) alternatively capture the old-age mortality curvature and plateau through
proposition of a multi-factor exponential model based on the approximation of mortality
measures with Laguerre functions. For a thorough overview of mortality models and their
suitability for capturing the mortality experience of different age ranges, see, for example,
Booth and Tickle (2008), and the references therein. Cairns et al. (2009) specifically focus
on the mortality of pension-age lives (60–89 years), comparing the performances of eight
stochastic mortality models in explaining mortality improvements at older ages. Their
analysis compares alternatives to the classical Gompertz model, including Lee–Carter and
Age-Period-Cohort type models, in addition to generalisations of the model of Cairns et al.
(2006).

With the exception of survival data in the son and daughter samples, Table 2 shows that
the age at entry largely lies within the Gompertz range. As such, the marginal distributions
of the individuals studied in this analysis are assumed to follow the Gompertz law. MCMC
relies on the idea that the Markov chain describing the transient behaviour of the parameters
accepted by the algorithm converges to its stationary distribution after a sufficient number
of iterations, where the stationary distribution resembles the desired probability distribution
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of the estimated parameters. For the small samples of sons and daughters with ages that are
largely outside of the Gompertz range, inaccurate estimates, and thus, greater parameter
uncertainty, are more likely to appear. This is exemplified in the results of Table 5 (Section 6).
However, the parameter distribution obtained in the first IFM step captures this uncertainty.
Sampling from this distribution to estimate the marginal parameters for the second IFM
step paired with the assumed convergence of the Markov chain to its stationary distribution
therefore mitigates the significance of errors in the marginal estimation. Future work could
involve the fitting of a more appropriate model for the age range of child beneficiaries. In
addition, while the simple construction of the Gompertz model provides a good starting
point for the exploration of mortality experience, it would be interesting to consider the
impact on the dependence results of fitting a more comprehensive model of mortality.

The force of mortality λx and survival function S(x) associated with X are given by

λx = Bcx and S(x) = exp
(
− B

ln c
(cx − 1)

)
, (2)

respectively, for all samples, where B > 0, c > 1 and x ≥ 0. Reparametrising the Gompertz
law such that the estimated parameters are informative (Carriere 1992, 1994), let

e
−m

σ =
B

ln c
and e

1
σ = c, (3)

where m > 0 is the modal density and σ > 0 is the dispersion of the density about the
mode. Then,

λx+t =
1
σ

exp
( x + t−m

σ

)
(4)

and
t px = exp(e

x−m
σ (1− e

t
σ )), (5)

where t px = P(X > x + t|X > x) = S(x+t)
S(x) .

The probability that (x) dies at a given time t, i.e., the probability density function of
the remaining lifetime of (x), is then derived by

fx(t) = t pxλx+t. (6)

Copulas are widely used across a broad set of disciplines for the study of dependence
between random variables. Since this paper focuses on the estimation of dependence
between two lifetimes, bivariate copula functions will be used throughout the analysis.

First introduced by Sklar (1959), copula functions provide a link between the marginal
and bivariate distributions of two random variables, thus facilitating a tractable analysis
of the associated dependence structures. The definition of the bivariate copula can be
extended for the definition of multivariate copulas of dimensions greater than two if the
dependence between a higher number of random variables is of interest.

The Archimedean copula family is a class of copulas that are well-used in the modelling
of bivariate survival functions, due to their analytical tractability and their relation with
informative measures of association, such as Kendall’s tau. Copulas in the Archimedean
family are particularly useful in high-dimensional studies as they facilitate the modelling
of dependence with a single parameter. In addition, in their theoretical study, Genest and
Kolev (2021) introduce an extension of the law of uniform seniority to two dependent
lives, proving that for a bilinear averaging function, paired lifetimes exhibit Archimedean
dependence and have marginal distributions from the same scale family.

For a thorough discussion of copula families, and their definitions and properties,
see Nelsen (2006). The analysis in the remainder of this paper focuses on the Clayton,
Frank, Gumbel and Joe copulas. To improve the interpretability of the results, estimates
of Kendall’s tau correlation coefficient, given the copula dependence parameter estimates,
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will also be provided in Section 6. Details of the structure of each copula and the associated
Kendall’s tau are provided in Appendix A.

To fit the copulas in Table A1 to the Egyptian pension data set of Section 2, let τx1

and τx2 denote the remaining lifetimes of the first (pensioner) and second (beneficiary)
member of each pair, respectively, given their current ages x1 and x2. Then, by Sklar’s
theorem (Sklar 1959), if τx1 and τx2 are positive and continuous, there exists a unique copula
C : [0, 1]2 → [0, 1] that describes the joint distribution function of the bivariate pair of
random variables (τx1 , τx2 ), such that

P(τx1 ≤ t1, τx2 ≤ t2) = C(Fτx1
(t1), Fτx2

(t2)), (7)

where Fτx1
(t1) and Fτx2

(t2) are the marginal distribution functions of τx1 and τx2 , respec-
tively. The joint survival function of (τx1 , τx2 ) is similarly given by

P(τx1 > t1, τx2 > t2) = C̃(Sτx1
(t1), Sτx2

(t2)) (8)

= Sτx1
(t1) + Sτx2

(t2)− 1 + C(Fτx1
(t1), Fτx2

(t2)). (9)

Considering marginal distributions conditional upon survival to observation means
that lifetimes are coupled at the beginning of the observation period. Coupling lifetimes at
an earlier date would infer the existence of dependence prior to the observation period. In
the husband and wife case, the date of marriage would therefore be an appropriate starting
point; however, this data is not readily available. Similarly, coupling from the date of birth
of the child would be relevant in the parent–child and child–parent relationships; however,
for consistency, we couple at the outset of the observation for all samples.

4. Metropolis–Hastings MCMC

In this paper, the model parameters are estimated using Bayesian Markov Chain Monte
Carlo (MCMC) techniques. Through this approach, Bayes’ theorem is used to update the
conditional probability of an event, given some known information as more information
is obtained. Given a sample of observed data y ∈ Rn, with distribution p(y, θ), Bayes’
theorem states that

p(θ|y) = p(y|θ)p(θ)
p(y)

=
p(y|θ)p(θ)∫
p(y|θ)p(θ)dθ

, (10)

where θ is the vector of parameters to be estimated. Since p(y) does not change with θ, it
holds that

p(θ|y) ∝ p(y|θ)p(θ). (11)

The posterior distribution p(θ|y) which describes the distribution of the parameters
given the observed data is therefore proportional to the product of the likelihood p(y|θ)
and the prior distribution of parameters p(θ). Analytical and numerical analysis of the
normalising constant p(y) is, however, largely intractable in higher dimensions, enforcing
restrictions on the full estimation of the posterior.

MCMC methods provide algorithms for constructing Markov chains, with stationary
distributions replicating that of the posterior. Ensuring convergence to the target dis-
tribution, these Markov chains are ergodic and stationary with respect to the posterior
distribution. As such, the state of the chain after a sufficient number of steps can be used
to approximate the target distribution, the quality of which increases with the number
of iterations. Early chain values are highly dependent on the initial value of the chain,
due to the Markovian nature of the algorithm, and are thus typically discarded. Through
estimation of (11), MCMC algorithms enable random sampling from any probability dis-
tribution defined up to a normalisation factor, thus eliminating the limitations associated
with integral evaluation.

The Metropolis–Hastings MCMC algorithm (Robert and Casella 1999) proposes a
simple method for constructing such a Markov chain (θt)t≥0 on the state space of the
posterior distribution, where θt ∈ Rd for a parameter vector of dimension d. The algorithm
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explores the state space of the posterior, progressively constructing an approximation of
the target distribution. To implement the algorithm, a proposal kernel q(θ′|θ) must first be
selected as the distribution from which the potential parameters are sampled. This kernel
describes the probability of transitioning to a new point in space θ′, given that the chain is
currently in state θ and thus describes the movement of the Markov chain. Once specified,
the algorithm proceeds as follows:

• Initialise, i.e., draw θ0 from the prior distribution.
• For t = 1, 2, . . . , N

– Sample the proposal θ′ ∈ Rd for θt from q(θ′|θt−1).
– Compute

A = min
(

1,
p(θ′|y)q(θt−1|θ′)

p(θt−1|y)q(θ′|θt−1)

)
, (12)

where A defines the acceptance probability.
– Draw u ∼ U(0, 1). If U < A, accept the proposal, fixing θt = θ′. Else, fix

θt = θt−1.

Note that if the proposal kernel is specified such that it is symmetric in distribution,
the acceptance probability simplifies to

A = min
(

1,
p(θ′|y)

p(θt−1|y)

)
, (13)

since q(θ|θ′) = q(θ′|θ) for all θ, θ′.
In the analysis of this paper, a normal proposal distribution is selected, such that

θ′ = θt−1 + N(0, σ), where σ is the standard deviation (step-wise) parameter selected by
the user to ensure sufficient exploration of the parameter space. Due to the inclusion of the
noise term, such a proposal is referred to as a random walk proposal. Prior distributions
in all simulations undertaken in the estimations of this paper are assumed to be non-
informative Uniform priors.

The proportion of parameters sampled from the proposal distribution that are accepted
by the MH algorithm is the acceptance rate. This measure is used to assess the efficiency of
the algorithm, with an acceptance rate of 0.234 considered as optimal (Gelman et al. 1997).
The integrated autocorrelation (IAT) score is a further indicator of the robustness of an
MCMC simulation. The IAT estimates the number of iterations, on average, needed for an
independent sample to be drawn. When running the analysis, an estimate was therefore
selected if the acceptance rate of the chain was sufficiently close to the optimal level and if
the associated IAT score was low. For the purpose of this study, parameter estimates are
given by the mean of the estimated probability distributions.

The standard error of the MCMC sampler is given by

σ =

√
IAT
N

σ̂, (14)

where N is the number of iterations of the MCMC algorithm and N
IAT is the effective sample

size, which provides an estimate of the sample size required to achieve the same level of
precision as if the sample were a random sample.

5. Inference Functions for Margins

The inference functions for margins (IFM) approach of Joe and Xu (1996) is adopted to
specify the likelihood function for maximisation. The use of IFM for dependence estimation
in copula-based models in the actuarial literature has been observed in studies including
those by da Silva Filho et al. (2012) and Brechmann et al. (2013) for dependence between
international financial markets, Krämer et al. (2013) and Lee and Shi (2019) for dependence
between the number and size of insurance claims and Wang et al. (2015), Lin et al. (2015)
and Dufresne et al. (2018) for dependence in mortality models. IFM for estimation of
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dependence between mortalities modelled with affine processes, is also implemented by
Xu et al. (2020). For a d-dimensional multivariate distribution, IFM involves first estimating
the vectors of marginal distribution parameters θ1, . . . , θd, then substituting the marginal
estimates to maximise the associated likelihood function for the parameters of the joint
distribution, which is given by

L(α, θ1, . . . , θd) =
N

∏
i=1

f (xi; θ1, . . . , θd, α), (15)

where xi is the observed data, α the vector of parameters of the joint distribution, and for
joint distributions captured with copula-based models,

f (xi; θ1, . . . , θd, α) = c(F1(x1; θ1), . . . , Fd(xd; θd); α)
d

∏
j=1

f j(xj; θj), (16)

where c(F1(x1; θ1), . . . , Fd(xd; θd); α) is the copula density and f j(xj; θj) the marginal density
for variate j. Splitting parameter estimation in this way is particularly useful for reducing
the computation time for multivariate problems in which large numbers of parameters are
to be estimated.

Following this two-step approach, two sets of parameter pairs, θ1 = (m1, σ1) and
θ2 = (m2, σ2), are estimated for the marginal distributions in each of the five samples,
where the subscripts differentiate between the first and second members of each pair. The
univariate likelihood for the estimation of θk, where k = 1, 2, is given by

L(θk) =
N

∏
i=1

[ci
k
pxi

k
(θk)]

1−δi
k [ fxi

k
(ti

k, θk)]
δi

k , (17)

where N is the number of pairs in the sample; and xi
k, ti

k and ci
k are the age at entry,

remaining lifetime and censoring point of member k of pair i, respectively, where the
censoring point marks the time between entry into the sample and the terminal time of the
observation, such that δi

k = 1{ti
k≤ci

k}
. The remaining lifetime of an individual (xi

k) in the
observed period is then

Xi
k(xk) = min(ti

k, ci
k). (18)

Inclusion of the censoring point and conditioning on an individual’s survival to their age
at entry ensures that left truncation and right censoring in the data are accounted for.

In estimating the dependence between lifetimes, the survival time is the variable of
interest. As such, the likelihood function for the estimation of the copula dependence
parameters is constructed in relation to the joint survival function C̃(ui, vi), where

ui = Sτ
xi

1
(ti

1)θ̂1
and vi = Sτ

xi
2
(ti

2)θ̂2
, (19)

for the member 1 and member 2 marginal estimates θ̂1 and θ̂2, respectively. Having obtained
the parameter estimates for the marginal distributions of each pair, copula dependence
parameters are estimated through the maximisation of the following likelihood function:

L(α) =
N

∏
i=1

[
∂2C̃α(ui, vi)

∂ui∂vi

]δi
1δi

2
[

∂C̃α(ui, vi)

∂ui

]δi
1(1−δi

2)
[

∂C̃α(ui, vi)

∂vi

](1−δi
1)δ

i
2

× [C̃α(ui, vi)]
(1−δi

1)(1−δi
2). (20)
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The four terms in (20) correspond to the likelihood of the death of both (xi
1) and (xi

2),
the death of (xi

1) and survival of (xi
2), the survival of (xi

1) and death of (xi
2), and the survival

of both (xi
1) and (xi

2), respectively, where

∂C̃α(ui, vi)

∂ui
= P(τxi

2
> ti

2|τxi
1
= ti

1) fτ
xi

1
(ti

1) (21)

and
∂2C̃α(ui, vi)

∂ui∂vi
= fτ

xi
1

,τ
xi

2
(ti

1, ti
2). (22)

The partial derivative of C̃(ui, vi) with respect to vi is analogous to (21). Given that
all pensioners die within the observation period, for the data considered in this paper,
(20) reduces to the product of only the first and second terms.

When presenting the results in Section 6, labels k = 1, 2 will be replaced by labels
corresponding to the identity of each family member. The likelihood functions (17) and
(20) are also used in the comparison of the MCMC estimation with classical MLE. In this
case, the standard error of the parameter estimates is calculated via the inverse of the
information matrix I(θ), where I(θ) = −E[H(θ)], the negative of the expected value of the
Hessian matrix.

6. Results

Table 5 displays the MCMC and MLE marginal parameter estimation results, with
acceptance rate, IAT score, and standard error (SE), as defined in Section 4. Note that in all
cases, MCMC and MLE produce almost the same results. Standard errors are generally low
for both estimation techniques, but they are lower when MCMC is used. In all samples, the
modal age at death of the beneficiary is greater than that of the pensioner. In the husband
and wife case, this reflects the higher life expectancy of females. The modal age at death is
particularly high among beneficiaries in the son and father, and son and mother samples.
This observation could be due to the fact that here, the parent is alive at the time of the
child’s death, and so may already be of high age. Each of the marginal estimates may
also be influenced by the level of censoring, with many survivors observed relative to
the respective sample sizes (see Table 2). The effect of censoring and the associated small
sample sizes can also be seen in the IAT, with Markov chains corresponding to samples
with fewer data points exhibiting higher scores. However, due to the stationary behaviour
of the Markov chain, any increased error in the marginal distribution estimate associated
with a limited sample size will be overcome in the second MCMC step.

Comparison of the non-parametric Kaplan-Meier distribution and the Gompertz
distribution obtained from the survival function in (5) with MCMC parameters as in Table 5
is presented in Figure 2. Note that in all cases, the Gompertz and Kaplan-Meier distributions
fit more closely for the marginals of the beneficiaries. Bias in the data induced by the fact
that all pensioners die within the observation period (otherwise, neither pensioner or
beneficiary are observed) could be a determinant of this observation. Confidence intervals
for the son and daughter samples are also much larger at higher ages, aligning with their
small sample sizes, and thus, increased uncertainty. The limited number of observation
points resulting from the data’s annual reporting of deaths could also be associated with
inaccuracies in the fitting of the continuous marginals.
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Table 5. Marginal distribution parameter estimation results for all five data sets. MCMC: estimate,
acceptance rate, standard deviation (SD), integrated autocorrelation score (IAT) and standard error
(SE); MLE: estimate, SE.

MCMC MLE

Estimate Acceptance SD IAT SE Estimate SE

(H
,W

) mh 66.79 0.2573 0.06765 9.303 0.002918 66.80 0.06923
σh 9.076 0.2573 0.04583 6.609 0.001666 9.078 0.04436
mw 86.65 0.2486 0.3638 25.77 0.02612 86.66 0.3671
σw 6.958 0.2486 0.1342 18.42 0.008143 6.955 0.1342

(F
,S

)

m f 62.61 0.2769 0.1016 9.590 0.004448 62.61 0.1004
σf 8.973 0.2769 0.06157 7.239 0.002342 8.973 0.05980
ms 75.38 0.2438 2.942 93.84 0.4030 74.48 2.583
σs 9.244 0.2438 0.6400 78.79 0.08033 9.053 0.5774

(F
,D

)

m f 65.73 0.2529 0.1091 10.36 0.004967 65.73 0.1158
σf 10.65 0.2529 0.07023 7.125 0.002651 10.64 0.07252
md 89.91 0.2348 3.649 118.9 0.5628 89.29 3.598
σd 10.15 0.2348 0.7810 99.46 0.1101 10.03 0.7776

(S
,F

)

ms 59.69 0.2478 0.4648 11.26 0.02206 56.70 0.4417
σs 6.263 0.2478 0.3441 9.471 0.01498 6.199 0.3225
m f 91.73 0.2360 0.5434 8.767 0.02275 91.70 0.5100
σf 5.636 0.2360 0.3838 7.649 0.01501 5.554 0.3708

(S
,M

)

ms 58.67 0.2601 0.2184 10.94 0.01022 58.67 0.2144
σs 6.640 0.2601 0.1482 8.864 0.006238 6.621 0.1488

mm 94.23 0.2488 0.3679 9.668 0.01617 94.20 0.3578
σm 7.289 0.2488 0.2385 7.572 0.009281 7.248 0.2323

The empirical dependence measures presented in Table 3 suggest that the lifetimes of
family members in all relationships considered exhibit strong dependence, aligning with
the findings in the literature. However, a large number of censored data points appear in
all samples, particularly husband and wife, father and son, and father and daughter. In
contrast to the empirical correlation estimates which consider only those who have died,
and so a biased sample of the data, assumption of copula models for dependence enables
censoring in the data to be captured.

The estimation results for the dependence parameters of the Clayton, Frank, Gumbel
and Joe copulas defined in Section 3 are presented in Table 6. MCMC and MLE techniques
are compared, with the estimates aligning consistently as in the marginal case. The IAT
and SE are low for all MCMC estimates, with increased errors in the marginal distribution
estimates unobservable in the copula parameter estimation, as expected.

In comparison to the findings of Dufresne et al. (2018), the dependence parameters are
relatively low across all of the samples. Dependence is greatest between the lifetimes of
son, and mother or father, which may be expected due to the typically unnatural ordering
of the deaths. In addition, with increasing age, elder members of Egyptian families are
traditionally taken care of by their children. As such, the loss of a son could impact the
living circumstances of the bereaved parent, particularly in cases where the son is the
breadwinner. Dependence between the lifetimes of husband and wife is stronger than
in parent–child and weaker than in child–parent relationships. Focusing on age at death
dependence in historical French genealogy data, Cabrignac et al. (2020) consider parent–
child and grandparent–child dependencies in addition to the classical marital case, noting
a very weak but significant association between lifetimes in the alternative relationships, in
line with the parent–child findings of this study.
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Figure 2. Comparison of Kaplan-Meier marginal distribution functions with 95% confidence intervals
(black) and Gompertz marginal distribution functions with MCMC marginal parameter estimates as
in Table 5 (red).

Kendall’s tau correlation coefficient estimates obtained from the MCMC dependence
parameter estimates in Table 6 are given in Table 7. Here, when comparing between
relationships, the same trends in dependence strength as those discussed for the copula
estimation are observed. Correlation between lifetimes modelled with a Clayton copula
is much lower than for the Frank, Gumbel and Joe copulas. This may suggest that the
Clayton copula is not the most appropriate copula for estimation of dependence within the
data set of this paper. This finding was also observed in Dufresne et al. (2018) through a
comparison of IFM with the omnibus semi-parametric procedure (or pseudo-maximum
likelihood) approach.
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Table 6. Copula dependence parameter estimation results for all five data sets. MCMC: estimate,
acceptance rate, standard deviation (SD), integrated autocorrelation score (IAT) and standard error
(SE). MLE: estimate, SE.

MCMC MLE

Estimate Acceptance SD IAT SE Estimate SE

(H
,W

) Clayton 0.1557 0.2523 0.01013 6.106 0.0003539 0.1553 0.01056
Frank 2.474 0.2603 0.1390 6.445 0.004991 2.470 0.1392
Gumbel 1.322 0.2777 0.02173 6.472 0.0007817 1.321 0.02053
Joe 1.677 0.2448 0.06180 5.745 0.002095 1.676 0.05869

(F
,S

)

Clayton 0.06314 0.2703 0.01551 5.111 0.0004960 0.06225 0.01523
Frank 1.799 0.2474 0.3997 5.848 0.01367 1.759 0.3983
Gumbel 1.179 0.2484 0.04224 5.819 0.001441 1.175 0.04116
Joe 1.412 0.2719 0.1536 5.052 0.004882 1.386 0.1456

(F
,D

)

Clayton 0.05751 0.2757 0.01816 5.360 0.0005944 0.05773 0.01859
Frank 1.738 0.2410 0.4699 6.600 0.01707 1.738 0.4613
Gumbel 1.172 0.2348 0.05206 5.314 0.001697 1.174 0.05060
Joe 1.435 0.2947 0.1720 5.101 0.005493 1.427 0.1763

(S
,F

)

Clayton 0.2863 0.2541 0.06058 5.790 0.002061 0.2774 0.06242
Frank 3.498 0.2721 0.5054 5.680 0.01703 3.457 0.4852
Gumbel 1.534 0.2444 0.09218 6.370 0.003290 1.512 0.09009
Joe 2.243 0.2835 0.2214 5.101 0.007071 2.177 0.2167

(S
,M

)

Clayton 0.3205 0.2480 0.03032 5.476 0.001003 0.3179 0.03019
Frank 3.040 0.2817 0.2325 5.213 0.007506 3.029 0.2360
Gumbel 1.459 0.2611 0.04415 5.875 0.001513 1.454 0.04267
Joe 1.832 0.2555 0.09921 6.277 0.003515 1.814 0.09694

Figure 3 presents a selection of MCMC simulation results for the copula dependence
parameter estimation. The density of the estimated parameter distribution, the traceplot of
accepted parameters, and the copula likelihood (20) with estimated parameter indicated
are presented, where the traceplot depicts the behaviour of the Markov chain, and is thus
a plot of the parameters accepted by the MH algorithm. The results for the husband
and wife, and father and daughter samples are selected for all four copulas in order to
highlight the insignificance of inaccuracies in the marginal estimation step. In contrast to
the husband, wife and father marginal samples, the increased IAT score associated with
estimation of the daughter marginal parameters (Table 5) induces non-stationary behaviour
in the chain. However, despite the risk of inaccurate marginal estimation resulting from
this non-convergent behaviour, stationarity in the Markov traceplots presented in Figure 3
is observed in both data sets for all copulas. In addition, plotting the likelihood function
(20) for varying α shows that the algorithm maximises the likelihood well in all cases. The
MCMC estimate consistently lies close to the ML estimate, with the ML estimate always
within its distribution.

Table 7. Kendall’s tau correlation coefficient corresponding to MCMC α dependence parameter
estimates.

Clayton Frank Gumbel Joe

Husband & wife 0.07225 0.2593 0.2435 0.2738
Father & son 0.03061 0.1937 0.1518 0.1881
Father & mother 0.02795 0.1873 0.1469 0.1970
Son & father 0.1252 0.3484 0.3480 0.4046
Son & mother 0.1381 0.3100 0.3145 0.3154
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Figure 3. MCMC posterior density, accepted parameter (α) traceplots and likelihood function for
estimation of the Clayton, Frank, Gumbel and Joe dependence parameters. Results for (H,W) and
(F,D), given in rows 1–3 and 4–6, respectively. MCMC estimates given by blue solid line, and MLE
estimates by red dashed line.

6.1. Goodness-of-Fit

Various methods for assessing the goodness-of-fit of copula models are discussed
in the literature. A thorough overview and comparison of the performance of blanket-
type goodness-of-fit tests, which can be applied to all copula structures, is presented in
Genest et al. (2009). Given the right-censoring of the data set of this study, an empirical
copula capturing censoring in the data is, however, required. As such, aligning with the
observation of the survival time of all policyholders, we implement the non-parametric
copula proposed by Gribkova and Lopez (2015) for the case where censoring acts on one of
two variables, as follows:

Consider a semiparametric estimator of the copula function C(Fτx1
(t1), Fτx2

(t2)) given by

Cn(t1, t2) =
1
n

n

∑
j=1

Wjn1{X j
1(xj

1)≤F−1
x1 (u1,θ̂1),X

j
2(xj

2)≤F−1
x2 (u2,θ̂2)}

, (23)

where Wjn is a random weight reflecting the jump of the Kaplan-Meier estimator of the
distribution function of the remaining lifetime τx2 , incorporated to account for right censor-
ing, and F−1

xk
(uk, θ̂k) is a Gompertz realisation of the remaining lifetime of (xj

k), i.e., tj
k. The

estimator is consistent, and so converges in probability to the true distribution as the sample
size tends to infinity, if the censoring point c2 is independent of the remaining lifetime
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τx2 and if P(τx2 ≤ c2|τx1 , τx2) = P(τx2 ≤ c2|τx2). In defining the structure of the random
weights, Gribkova and Lopez (2015) align their specification with that of Satten and Datta
(2001), where the estimator is weighted inversely by the probability that censoring occurs.
Given a Kaplan-Meier estimator of the distribution function of the censoring point

Ĝ(t) = 1−
(

∏
j′ :tj′

2 ≤t

(
1−

{ n

∑
j′′=1

1
{tj′′

2 ≥tj′
2 }

}−1))1−δ2j′
, (24)

the jumps of (23) are defined by Wjn = δ2j[1− Ĝ(tj
2−)]−1, where the survival time of the

beneficiary (k = 2) is the censored observation.
The Cramér–von Mises statistic is a metric that compares the distance between an

empirical and a parametric distribution, providing a criterion that can be used to assess
the goodness-of-fit of a parametrically estimated copula. The definition of this statistic
is provided in Appendix B. The null hypothesis that each copula estimated in Section 6
correctly describes a sample of bivariate lifetimes is tested using the p-values obtained via
the following bootstrap procedure, undertaken separately for all four copulas:

• Let B be the number of bootstrap samples. For b = 1, 2, . . . , B

– Simulate the paired remaining lifetimes (ti,b
1 , ti,b

2 ), i = 1, . . . , n from the estimated
copula Cα̂, with Gompertz marginals distributed as in Table 5.

– Fix ci,b
1 = ∞ and ci,b

2 = 9, i = 1, . . . , n, where 9 is the length of the observation
period. If the censoring point is random, simulate ci,b

2 , i = 1, . . . , n from its
observed distribution.

– Determine the b-th bootstrap observations (Xi,b
1 (xi

1), Xi,b
2 (xi

2), δi,b
1 , δi,b

2 )1≤i≤n from
the data simulated in the preceding steps.

– Estimate the marginal parameters θb and the copula dependence parameter αb of
the bootstrap sample via the IFM procedure described in Section 5.

– Compute the Cramér–von Mises statistic ω̂2
b of the bootstrap sample using (A2).

• Approximate the p-value by

p̂ =
1
B

B

∑
b=1

1{ω̂2
b≥ω̂2

0}
, (25)

where ω̂2
0 is the Cramér–von Mises statistic calculated from the true data with parame-

ter estimates as in Tables 5 and 6.

Given the structure of the censoring point distribution estimator Ĝ(t) in (23), the
computation time required to obtain the semiparametric estimator (24) for a single bootstrap
sample is high. As such, in this analysis, the goodness-of-fit procedure is undertaken for
only the smallest data set, consisting of 218 son–father pairs. This is additionally the sample
with the highest estimated level of dependence in three out of the four copulas considered.

The results for the bootstrap procedure for B = 120 bootstrap samples gives a p-value
of zero for all copula models. This suggests that the null hypothesis should be rejected,
calling into question the appropriateness of the selected copulas for representing bivariate
lifetimes in the son–father case. It should, however, be noted that under the necessary
conditions for consistency, the copula estimator tends to the true distribution only as the
sample size tends to infinity. As such, there may be discrepancies between the estimated
and true copula values, given the small sample size considered in this goodness-of-fit. In
line with this limitation and the associated time inefficiencies, future research will involve
investigating a more efficient semi- or nonparametric copula estimator that captures single
variable censoring, such that it is feasible to perform the goodness-of-fit on larger data sets
and for more bootstrapped samples, thus enabling more accurate and conclusive results.
The alternative to the Gribkova and Lopez (2015) estimator proposed by Geerdens et al.
(2016) for univariate and copula-distributed random right-censoring is one such example.
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7. Conclusions

In this paper, copula dependence parameters were estimated for five different rela-
tionships within Egyptian families, using data from the Egyptian social pension scheme.
MCMC techniques with likelihood specified using IFM were implemented and compared
with classical MLE. Copula dependence parameters were found to be low in comparison
to those in the literature for all of the five relationships considered. However, the corre-
sponding Kendall’s tau correlation estimates imply that dependence in this data set and
in this socioeconomic context should not be ignored when pricing the associated pension
products. Dependence is greatest among child–parent relationships, with non-negligible
correlation estimates of between 0.3 and 0.4. The dependence between husband and wife
is lower than that of child–parent, with parent–child relationships exhibiting the lowest
levels of dependence. Goodness-of-fit testing is highly time-inefficient under the selected
semiparametric copula estimator. Future research will involve selecting a more appropriate
estimator to sufficiently test the accuracy of the estimation for all sample sizes.

The results presented in this paper cannot be compared with those of previous studies
for all samples, due to the absence of research into the dependence between the lifetimes of
varying family members. However, in the husband and wife case, the Canadian insurance
data largely considered in previous studies exhibits higher levels of dependence than the
Egyptian sample. Dependence is also of less significance here than in the Ghanaian data set
of Henshaw et al. (2020). Socioeconomic influences on dependence and the characteristics
specific to Egypt introduced in Sections 1 and 2 likely contribute to this observed difference.

Furthermore, joint life data, such as the joint and last-survivor annuity data of the
Canadian insurer, consists of lifetime data for individuals who specifically sought a joint
life policy. In contrast to the compulsory nature of the Egyptian pension scheme, this
optional participation in such a policy over a single life policy implies the existence of a
relationship (and hence dependence) between the policyholders, which may align with
the increased dependence observed in the data set. This supports the findings of Sanders
and Melenberg (2016), where a reduced significance of dependence and the associated
pricing impacts is observed among married couples under analysis of census data. Since
the Egyptian pension scheme is compulsory for all working individuals, the data also spans
all social classes. Although this cannot be considered in detail here, given the accessible
data, it may further impact the strength of lifetime dependence, and is an interesting area
for further study.
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Appendix A

Table A1 presents details of the Clayton, Frank, Gumbel and Joe Archimedean copulas
implemented in the analysis of this paper, where all copulas are single-parameter models,
and α is the dependence parameter to be estimated. The relationship between the copula
dependence parameters and Kendall’s tau correlation coefficient is provided in Table A2.

Table A1. Copula function, generator and domain for the Clayton, Frank, Gumbel and Joe
Archimedean copulas.

Copula Generator Domain

Clayton (u−α + v−α − 1)−1/α t−α − 1 α > 0

Frank − 1
α ln(1 + (e−αu−1)(e−αv−1)

(e−α−1) ) − ln( e−αt−1
e−α−1 ) α 6= 0

Gumbel exp{−[(− ln(u))α + (− ln(v))α]1/α} (− ln(t))α α ≥ 1

Joe 1− [(1− u)α + (1− v)α − (1− u)α(1− v)α]1/α − ln(1− (1− t)α) α ≥ 1

Table A2. Kendall’s tau correlation coefficient as a function of the copula dependence parameter α,
where D1(x) = x−1 ∫ x

0 t(et − 1)−1dt is the Debeye function of order 1.

Kendall’s Tau

Clayton α
α+2

Frank 1 + 4
α (D1(α)− 1)

Gumbel α−1
α

Joe 1 + 4
α2

∫ 1
0 t log(t)(1− t)2(1−α)/αdt

Appendix B

The Cramér–von Mises statistic is defined by

ω2 =
∫
[0,1]2

√
n(Cn(t)− Cα̂(t))2dCn(t), (A1)

where t = (t1, t2) and Cn =
√

n(Cn − Cα̂)
2, and has estimator

ω̂2 =
n

∑
i=1

(Cn(ui, vi)− Cα̂(ui, vi))
2. (A2)

The estimator (A2) is the metric used in the goodness-of-fit procedure of Section 6.1.
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