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Abstract: In recent multi-population stochastic mortality models, one critical scientific issue is
the vague distinction between trend risk and population basis risk. In particular, the cross- and
auto-correlations between the innovations of the latent factors representing the common trend and
the population-specific trends are often assumed to be non-existent, although they are possibly
statistically significant. While it is theoretically possible to capture such correlations by treating the
latent factors as a vector time series, the resulting model would contain a large number of parameters,
which may in turn lead to robustness problems. In this paper, we address these issues by the use
of the product–ratio model. Contrary to the prevalent assumption of non-existent correlations, the
latent factors under the product–ratio model are approximately uncorrelated. This permits us to
disentangle trend risk and population basis risk, thereby sparing us from the need to use a heavily
parameterized vector time-series process. Compared to the augmented common factor model,
our approach demonstrates improved robustness in terms of correlation structures and hedging
performance, offering a new perspective on treating cross- and auto-correlations between latent
factors in mortality modeling.

Keywords: population basis risk; mortality model; functional time series; index-based hedge

1. Introduction

Recent advancements in public health and medical systems have significantly im-
proved human mortality rates. For instance, the life expectancy at birth in the U.S. has
increased dramatically from 60.91 in 1935 to 78.70 in 2010, a 30% increase over 75 years1.
This pattern is also observed in other developed countries such as Canada. However, this
remarkable progress in longevity is sometimes viewed as a social or economic burden.
This is because the increased life expectancy substantially extends the duration of pension
payments, posing a financial risk to insurance companies and pension plan providers. In
actuarial studies, this is referred to as mortality risk (or longevity risk), which is the risk that
insurance companies face financial strain due to policyholders living longer than expected.

Mortality risk is generally categorized into two types: trend risk and idiosyncratic risk.
Idiosyncratic risk refers to the uncertainty associated with the realized death probability.
This risk can be mitigated effectively by increasing the population base, thanks to the law
of large numbers. Trend risk, however, is associated with the uncertainty in the increasing
trends of life expectancy. It is a systematic risk that affects everyone and cannot be reduced
simply by expanding the population base.

In longevity research, various stochastic mortality models have been developed to
address mortality trend risk. The Lee–Carter model (Lee and Carter 1992), for example,
decomposes log-central death rates into an age-period structure. The period effects, which
reflect the dynamics of mortality over time, are modeled as a time series (typically random
walk) to forecast future mortality, capturing trend risk. The CBD model (Cairns et al. 2006)
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focuses on modeling death probability, with its decomposition including two period ef-
fects modeled as a bi-variate random walk, thus addressing mortality trend risk. Some
researchers have extended these models to include cohort effects, assuming that mortality
trend risk also exists along the year-of-birth direction. Notable models in this category in-
clude the Renshaw–Haberman model (Renshaw and Haberman 2006), models M6/M7/M8
(Cairns et al. 2009), and the Plat model (Plat 2009). More recently, the Heat-Wave model Li
and Liu (2020) was proposed, differentiating short-term and long-term mortality improve-
ments in its assessment of trend risk.

To manage emerging mortality risks, many pension providers use insurance-based
solutions like buy-ins/buy-outs and longevity swaps. However, as some studies suggest
(e.g., Graziani (2014) and Michaelson and Mulholland (2014)), the insurance industry can
only absorb a limited portion of longevity risk, highlighting the need to find additional
participants, such as capital market investors. In standardized index-based mortality
derivatives, the payouts are linked to standardized mortality indexes. These financial
products appeal to a broader range of participants because of their cost efficiency, high
liquidity, and the way they mitigate concerns about information asymmetry. However,
the use of standardized index-based mortality derivatives introduces population basis
risk, stemming from the mismatch between the population tied to the liability and the one
linked to the hedging instrument. Traditional mortality models, which typically focus on
single populations, do not account for this risk.

To address population basis risk, various multi-population extensions to traditional
mortality models have been proposed. For example, based on the Lee–Carter modeling
framework, Li and Lee (2005) proposed the augmented common factor model (ACF model),
which assumes the existence of a common factor governing the mortality co-movement of
all the underlying populations. Any deviations from the common trend are then absorbed
by the population-specific factors. The ACF structure is then applied by Lyu et al. (2021)
to model cause-of-death mortality data. Russolillo et al. (2011) considered a three-way
Lee-Carter model which incorporates the population effects in addition to the age and
period effects in the original Lee-Carter model. This modeling approach is later generalized
by Dong et al. (2020) via the use of Tucker decomposition. Based on the CBD framework,
Cairns et al. (2011) proposed a mortality model designed for two populations of similar
size. Dowd et al. (2011), on the other hand, developed a gravity model for populations with
imbalance size. Notably, under the gravity model, the population with a bigger size is the
main driving force while the population with a smaller size is orbiting the other population,
similar to being attracted by gravity. Zhou et al. (2014, 2019) considered a multi-population
model where the underlying period effects from different populations are assumed to
follow the vector auto-regressive (VAR) model and the vector error correction (VECM)
model. Furthermore, Chen et al. (2015) used a factor copula approach to capture mortality
dependence among different populations. Tsai and Zhang (2019) combined Bühlmann
credibility with a multi-population mortality model and proposed a new modeling method
called the multi-dimensional Bühlmann credibility approach.

In most existing multi-population models, the distinction between trend risk and
population basis risk is vague. In particular, the cross- and auto-correlations between
the innovations of the latent factors representing the common trend and the population
specific trends are often assumed to be non-existent, although they are possibly statistically
significant. While it is theoretically possible to capture such correlations by treating the
latent factors as a vector time series, the resulting model would contain a large number of
parameters, which may in turn lead to robustness problems.

In this paper, we address the issue by the use of the product–ratio model (PR model)
developed by Hyndman et al. (2013). The PR model includes a product model that uses
the geometric mean of sub-populations to capture the overall mortality trend, and a ratio
model that specifically models deviations between sub-populations. Our paper contributes
to the literature in the following aspects. First, we specifically target the cross- and/or
auto-correlation of latent factors, which is assumed to be non-existent and not studied
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extensively in the previous literature. Second, we utilize the property of the PR model that
the latent factors are approximately uncorrelated and provides a new perspective on the
disentangling of trend risk and population basis risk. Third, via the numerical comparison
between the ACF model and the PR model, we found that the approach we consider yields
term structures of correlations and hedging performances that are more robust with respect
to how cross- and auto-correlations between the latent factors are treated.

The remainder of the paper is organized as follows. Section 2 describes the multi-
population mortality models considered in this paper. Specifically, we consider the aug-
mented common factor model and the product–ratio model. Section 3 provides the esti-
mation results of the models and conducts the numerical analysis on various time series
structures for the assumed models. Section 4 studies the hedge performance of the assumed
models. And finally, Section 5 concludes the paper.

2. Mortality Models for Multiple Populations
2.1. Augmented Common Factor Model

We first present the augmented common factor model (the ACF model) developed
by Li and Lee (2005), which can be used to model mortality rates for multiple populations.
The ACF model extends the Lee–Carter model (Lee and Carter 1992) to include a common
factor that describes the mortality trend shared by all populations, and a population-specific
factor which accommodate any population-specific deviation from the common trend. The
ACF model with two populations is defined as follow:

log(m(i)
x,t) = a(i)x + BxKt + b(i)x k(i)t + e(i)x,t for i = 1, 2, (1)

where m(i)
x,t represents the central death rate for individuals at age x in year t from population

i. Parameters a(i)x , Bx, and b(i)x , are the age-specific parameters, with a(i)x representing the
level of (log-)mortality at age x from population i, Bx and b(i)x capturing the sensitivity of
mortality rate to changes in the common trend and population-specific deviation. Parameter
Kt represents the co-movement of mortality shared by all populations and would generally
be modeled by a random walk. Parameters k(1)t and k(2)t are population-specific deviations
from the common trend, which would be modeled by some mean-reverting processes.

We assume the error terms e(i)x,t in Equation (1) are normally distributed, that is, e(i)x,t
iid∼

N(0, σ2
i ). The parameter estimation of the ACF model is then achieved through maximum

likelihood estimation (MLE). We assume ∑x Bx = ∑x b(i)x = 1 and ∑t Kt = ∑t k(i)t = 0 to
ensure the uniqueness of parameter estimation (Hunt and Blake 2020).

After obtaining the MLE estimates, the sequences of Kt, k(1)t , and k(2)t would be fitted
to some time-series for the purpose of mortality forecast. Based on the same MLE estimates,
we consider three time-series structures, denoted by the ACF0 model, ACF1 model, and
ACF2 model, respectively. The definition of these three variants are summarized below:

• ACF0 Model:

In the ACF0 model, we assume the three mortality indices Kt, k(1)t , and k(2)t are inde-

pendent. Under this assumption, Kt, k(1)t , and k(2)t can be modeled by the following
expression: 

∆Kt = µc + ηc
t

k(1)t = µ(1) + φ(1)k(1)t−1 + η
(1)
t

k(2)t = µ(2) + φ(2)k(2)t−1 + η
(2)
t

,

where  ηc
t

η
(1)
t

η
(2)
t

 ∼ MVN(~0, Q), Q =

 Q11 0 0
0 Q22 0
0 0 Q33

.
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There are eight parameters in this model, which include µc, µ(1), µ(2), φ(1), φ(2), Q11, Q22,
and Q33.

• ACF1 Model:
The ACF1 model extends the ACF0 model to incorporate the correlations between
different sequences. As a result, the Q matrix is no longer diagonal and we have ηc

t

η
(1)
t

η
(2)
t

 ∼ MVN(~0, Q), Q =

 Q11 Q12 Q13
Q12 Q22 Q23
Q13 Q23 Q33

.

Comparing to the ACF0 model, the number of unknown parameters increase from
eight to eleven due to the addition of off-diagonal covariance parameters Q12, Q13,
and Q23.

• ACF2 Model:
In the ACF2 model, we consider a more complicated autoregressive structure, the
vector autoregressive (VAR) structure, for Kt, k(1)t , and k(2)t sequences. We consider the
simplest lag-1 vector autoregression model, the VAR(1) model, which can be expressed
as follow: 

∆Kt = µc + φ11∆Kt−1 + φ12k(1)t−1 + φ13k(2)t−1 + ηc
t

k(1)t = µ(1) + φ21∆Kt−1 + φ22k(1)t−1 + φ23k(2)t−1 + η
(1)
t

k(2)t = µ(2) + φ31∆Kt−1 + φ32k(1)t−1 + φ33k(2)t−1 + η
(2)
t

,

where  ηc
t

η
(1)
t

η
(2)
t

 ∼ MVN(~0, Q), Q =

 Q11 Q12 Q13
Q12 Q22 Q23
Q13 Q23 Q33

.

In this model, a fully vectorized autoregressive structure is used. Even in the simplest
case, the VAR(1) structure, the number of unknown parameters increase to eighteen.
For a more complicated autoregressive VAR(p) (p > 1) structure, the number of
unknown parameters would be (18 + 9× (p− 1)).

2.2. Product–Ratio Model

In the traditional modeling approach, the number of unknown parameters increases
dramatically when we additionally consider cross- and auto-correlations between the
innovations of the common trend and the population specific trends. To overcome this
over-parameterization problem, we consider the product–ratio model (the PR model) by
Hyndman et al. (2013), under which the innovations are uncorrelated by construction. The
PR model includes two parts, the product model and the ratio model, which are defined
as follow:

• The product model is defined by

log(gx,t) = µ
p
x +

m

∑
i=1

Bi,xKi,t + ex,t, (2)

where gx,t =
√

m(1)
x,t m(2)

x,t is the square root of the product of m(1)
x,t and m(2)

x,t , µ
p
x is the

average level at age x for the product model, m is the number of components being
considered, ex,t is the error.
In the product model, the quantity log(gx,t) captures the average of (log-) mortality
rates under different populations. The product of Bi,x and Ki,t is then used to reflect
the evolution of (average) mortality at age x.



Risks 2023, 11, 208 5 of 18

• The ratio model is defined by

log(rx,t) = µr
x +

n

∑
i=1

bi,xki,t + wx,t (3)

where rx,t =
√

m(1)
x,t /m(2)

x,t is the square root of the ratio of m(1)
x,t and m(2)

x,t , µr
x is the

average level at age x for the ratio model, n is the number of components being
considered, wx,t is the error.
In the ratio model, the quantity log(rx,t) captures the deviation between the two
populations. The product of bi,x and ki,t is then used to reflect the evolution of such
deviation at age x.

The parameter estimation of the PR model is achieved through the demography
package (Hyndman 2023) in R. We specify m = 1 and n = 2 such that the PR model is
comparable to the ACF model defined in the previous section. The notation of B1,x and K1,t
in the product model can be simplified to Bx and Kt, respectively.

The PR model does not directly model the log-central death rate. Instead, using
Equations (2) and (3), the expression of the (log-) central death rates under the PR model
can be computed via:

log(m(1)
x,t ) = (µ

p
x + µr

x) + BxKt + b1,xk1,t + b2,xk2,t + ex,t + wx,t,

log(m(2)
x,t ) = (µ

p
x − µr

x) + BxKt − b1,xk1,t − b2,xk2,t + ex,t − wx,t.

Similar to the ACF model, the sequences of Kt, k1,t, and k2,t would be fitted to some
time-series for the purpose of forecasting future mortality rates. We consider three variants
of the PR model that are the same as those described in Section 2.1.

3. Numerical Analysis
3.1. Data

For illustration purpose, we consider U.S. males and Canadian males with age range
between 20 and 100, and a sample period from 1950 to 20192. We obtain the mortality data
for these two populations from the Human Mortality Database (HMD). The observations
from the most recent years (i.e., year 2020 and year 2021) are excluded from this study to
avoid the impact of COVID-19, so that we can be more focused on trend risk and basis risk.

3.2. Parameter Estimation

We fit the ACF model and the PR model to the U.S. and Canadian male populations.
The parameter estimates for the ACF model and the PR model are shown in Figure 1 and
Figure 2, respectively. The following observations can be made:

• The ACF Model
The ACF model uses the common factor to capture the general mortality trend shared
by all populations, and the population-specific factor to capture any deviation from
the common trend. The estimated values of Kt are therefore representing the co-
movement of the mortality dynamic shared by the two countries, and Bx representing
the common age sensitivity to such co-movement.
For the U.S. and Canada, although they are not identical, these two countries do share
a great amount of similarities in economy, culture, living style, and healthcare system.
As a result, the estimated levels a(i)x as well as the population-specific factors b(i)x and
k(i)t from the two countries are quite similar to each other, causing a vague distinction
between trend risk and basis risk.

• The PR Model
The PR model, on the other hand, decomposes trend risk and population basis risk
by construction, meaning that these two risks are separated in the first place when
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the product model and ratio model are defined. As a result, the product model would
be solely focusing on trend risk while the ratio model is solely focusing on basis risk,
respectively, leading to a clear distinction between the two.

– In the product model, the estimated µp represents the mean level of the general

trend. It carries very similar shape to both of a(1)x and a(2)x in the ACF model.
The estimated Kt carries similar downward pattern as that in the ACF model,
representing general mortality improvement overtime. For the estimated Bx, it
presents similar peak (around age 70) and trough (around age 30) to those shown
in the ACF model, with different magnitudes.

– In the ratio model, the estimated µr describes the difference in the mean level
between the two populations. It can be easily observed in the pattern of µr that
the biggest difference between the two populations lies in the working age males
(from 25 to 65). The gap closes out quickly toward older ages.
Besides the difference in the mean level, the ratio model further decomposes
the difference between the U.S. and Canada into two components, b(1)x k(1)t and

b(2)x k(2)t . The upward pattern of k(1)t suggests that the differences between the

two countries are getting bigger over time, and the pattern of b(1)x shows such a
gap is more significant in young adults around age 20. The remaining residuals
not explained through the first component are then captured by the second
component b(2)x k(2)t .
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Figure 1. Parameter estimates of the Augmented Common Factor model fitted to the U.S. and
Canadian males with ages from 20 to 100 and years from 1950 to 2019.
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3.3. The Time-Series Process

Once we obtain the estimates of Kt, k(1)t , and k(2)t , we will fit these sequences to the
VAR time series models as described in Section 2. In this subsection, we first explore the
sample cross-correlation matrix (SCCM) of the time series sequences. We then present the
model selection result for the three time series structures described in Section 2. Finally, we
analyze the term structure of the death probability under different time series structures.

3.3.1. Sample Cross-Correlation Matrix

The sample cross-correlation matrix (SCCM) is typically used to measure the strength
of linear dependence between time series. Considering the multivariate sequence
(∆Kt, k(1)t , k(2)t ) obtained in ACF model and PR model, we present the values of SCCM
in Table 1. For the reader’s convenience, we also include the simplified SCCM in this table.

Table 1. Sample cross-correlation matrix of the estimated sequence of (∆Kt, k(1)t , k(2)t ) under the ACF
model and the PR model. The symbol “.” means insignificance (at α = 1% significance level), “+”
means positive significance.

ACF Model P/R Model

∆Kt k(1)
t k(2)

t ∆Kt k(1)
t k(2)

t ∆Kt k(1)
t k(2)

t ∆Kt k(1)
t k(2)

t

Lag 0

1.0000 0.1797 0.2752 + . . 1.0000 –0.0405 0.3563 + . .
0.1797 1.0000 0.9426 . + + –0.0405 1.0000 0.0180 . + .
0.2752 0.9426 1.0000 . + + 0.3563 0.0180 1.0000 . . +

Lag 1

0.0668 0.2995 0.3395 . . . 0.2952 –0.0118 0.2574 . . .
0.1238 0.9612 0.8934 . + + –0.0062 0.9484 –0.0333 . + .
0.2453 0.9377 0.9688 . + + 0.3023 0.0684 0.8464 . . +

Lag 2

0.3110 0.3811 0.3538 . . . 0.2163 –0.0193 0.3509 . . .
0.0895 0.8990 0.8371 . + + –0.0487 0.9092 –0.0683 . + .
0.2414 0.9178 0.9348 . + + 0.2803 0.1131 0.8269 . . +

Lag 3

0.1718 0.3854 0.3461 . . . 0.0640 –0.0482 0.3242 . . .
0.0817 0.8311 0.7815 . + + –0.0924 0.8635 –0.1339 . + .
0.2139 0.8959 0.9005 . + + 0.2535 0.1753 0.7405 . . +

Lag 4

0.0070 0.4049 0.3551 . + . 0.1223 –0.0878 0.3519 . . .
0.0786 0.7685 0.7310 . + + –0.1899 0.8075 –0.1704 . + .
0.1759 0.8736 0.8643 . + + 0.1557 0.2055 0.6686 . . +

Lag 5

0.1093 0.3565 0.2957 . . . 0.0949 –0.0788 0.3239 . . .
0.0840 0.7078 0.6851 . + + –0.2548 0.7553 –0.2155 . + .
0.1583 0.8397 0.8243 . + + 0.1600 0.2280 0.6172 . . +

By comparing the results between the ACF model and the PR model, the following
observations can be made. First, for the ACF model, some off-diagonal components are
statistically significant. This finding highlights the existence of cross-correlations between
different latent states in the ACF model.

On the other hand, for the PR model, all the off-diagonal components from lag 0 to
lag 5 are insignificant. These insignificant values serve as the advantageous outcome of
the PR model, since it is more capable of removing the cross-correlation among different
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latent states. With this advantage, a time series model with simpler structure could be used
under the PR model.

The differing cross-correlations observed in the two models primarily stem from the
different response variables they use. In the ACF model, the response variables are set
to be the log mortality rates from sub-populations, which are highly correlated. On the
other hand, the PR model operates differently: its product model uses the square root
of the geometric mean to capture the joint movement of multiple populations, while its
ratio model employs the square root of the ratio between two populations to capture their
divergence. Hyndman et al. (2013) demonstrated that these response variables in the PR
model are largely uncorrelated, particularly when the variances among the sub-populations
are relatively similar.

A final observation lies in the significant SCCM in the diagonal components of k(1)t , k(2)t

from lag 1 to 5. It suggests that k(1)t , k(2)t are serially correlated with their previous values,

and, as such an auto-regressive structure is needed for each of k(1)t and k(2)t .

3.3.2. AICs and Likelihood Ratio Test

In this section, we compare the fitting performance of the time series models within
each of the ACF modeling framework and the PR modeling framework. Since the two
sets of model variants, (ACF0, ACF1, and ACF2) and (PR0, PR1, and PR2), are both nested
models, we use the Akaike information criterion (AIC) to compare the fitting of different
model variants. The value of AIC is computed as follow:

AIC = −2(L) + 2(N ),

where L is the maximized log-likelihood and N is the number of unknown parameters in
the model. The term 2(N ) can be viewed as a penalty term penalizing for the complexity
of the model. Therefore, AIC can be viewed as a trade-off between the fitting performance
and the model complexity. According to its definition, a model with a smaller value of AIC
is preferred. In the following, we use restricted model to refer to a model with simpler
model structure, and unrestricted model to a model with more complex structure within
the nested models.

Table 2 shows the values of AIC for different time series models within the ACF
framework (left panel) and within the PR framework (right panel). Let us first consider
the results within the ACF framework. By comparing the pairs of “ACF0 vs. ACF1”,
“ACF0 vs. ACF2”, “ACF1 vs. ACF2”, we can find that a more complicated model is always
resulting in a greater value of L, the maximized log-likelihood. This result is expected
since these are all nested models where the restricted model is always a special case of
an unrestricted model. More importantly, if we compare the AIC values, the unrestricted
models are always preferred since they have smaller AIC values. It suggests that, under
the ACF model framework, the restricted model does not provide adequate fit to the data,
partly due to the significant cross-correlation among different latent states as presented in
previous section.

Next we focus on the results for the PR framework. The same observation can be
made regarding the value of L when we compare the three pairs of “PR0 vs. PR1”, “PR0
vs. PR2”, “PR1 vs. PR2”. However, regarding the value of AIC, a conclusion opposite to
that for the ACF framework will be drawn, since the restricted models are always having
smaller AIC values. It matches the result represented in previous section where the cross-
correlation coefficients are insignificant for the PR framework. It can be viewed as the main
advantage of the PR model under which by construction separates the co-movement from
the deviation of the two populations, and therefore disentangling trend risk and basis risk.
Finally, it should be noted that the results between the two modeling framework are not
directly comparable, since they are based on different estimated values of (Kt, k(1)t , k(2)t ).
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Table 2. The log-likelihood and AIC for different model variants.

ACF0 ACF1 ACF2 PR0 PR1 PR2

N 8 11 18 8 11 18
L –338.5748 –297.5167 –285.9478 –144.2575 –141.3853 –135.7845

AIC 693.1496 617.0334 607.8957 304.5149 304.7706 307.5689

Besides the comparison of the AIC values, we have also considered likelihood ratio
(LR) tests to compare the goodness-of-fit of these nested models. The null hypothesis and
alternative hypothesis of a LR test is summarized as follow:

H0 : θ = θ0, representing the restricted model
H1 : θ = θ1, representing the unrestricted model

The result of the LR test is summarized in Table 3. If p-value is less than 5%, it means the
null is rejected and the unrestricted model is preferred, and vice versa. The same conclusion
can be drawn; that is, among the ACF framework, the unrestricted model is preferred,
due to the fact that the restricted model fails to adequately capture the cross-correlation
among different latent states. On the other hand, among the PR model, the restricted model
is preferred since the PR model by construction has separated common-factor from the
population-specific deviation.

Table 3. Likelihood ratio test result for the three variants of the ACF model and the PR model.

H0 : θ = θ0 H1 : θ = θ1
Restricted Model Unrestricted Model p-Value

ACF0 ACF1 0.0000
ACF0 ACF2 0.0000
ACF1 ACF2 0.0016

PR0 PR1 0.1247
PR0 PR2 0.0756
PR1 PR2 0.1301

3.3.3. Term Structure of Correlation

Finally, we present the term structure of correlation between q(1)x,t and q(2)x,t , the death
probabilities calculated for the two populations. Following Cairns et al. (2019), the term
structure of correlation is defined to be Corr(q(1)x,t , q(2)x,t ), for t = 1, . . . , T. For illustration, we

select x = 70, and provide the term structure of correlation between q(1)70,t and q(2)70,t over the
period of 2020 to 2069 (that is, a 50-year forecast window) in Figure 3. We assume constant
force of mortality, so qx,t and mx,t is linked through the following equation:

mx,t = − log(1− qx,t).

The key findings are summarized into four aspects.

• ACF0 vs. ACF1
Let us first focus on ACF0 model and ACF1 model. For these models, the only
difference is the specification of Q matrix. To be more specific, In ACF0, the off-
diagonal elements of Q matrix are zeros, while in ACF1, those elements are all non-
zeros. The term structures of correlation under ACF0 and ACF1 have similar shape.
However, a 10% increase is observed when the model does incorporate the off-diagonal
covariance elements.

• ACF2 vs. ACF1 or ACF0
The mortality indices in the ACF2 model follows a VAR(1) model where additional
parameters are used to capture the cross-correlation among different period effects.
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Comparing to ACF1 and ACF0, a dramatic change of shape (the black dotted line) is
observed for the ACF2, reflecting those additional interactions.

• PR0 vs. PR1 vs. PR2
Within the PR framework, the resulting term structures of correlation from the three
models carry two features. The first feature is related to the magnitudes of the lines,
with the values being greater for more complex models. The second feature is related
to the shape of the lines, where all three lines yield very similar patterns. This finding
is consistent with the observations we made in Sections 3.3.1 and 3.3.2. It also justifies
the argument made by Hyndman et al. (2013) that the latent factors are uncorrelated
in the PR model.

• PR vs. ACF
Since the two models have different model specification, the shape of the curve may
not be the same. For the PR model, the three variants yield similar term structure of
correlations, while for the ACF model, the ACF0 variant and ACF1 variant have omit-
ted the cross-correlation between different latent states, and thereby not adequately
fitting the data and leading to the worst term structure of correlations. When the full
VAR structure is used in the ACF2 variant, its term structure of correlation would be
similar to those in the PR framework.
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Year (t)

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
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Term Structure of Correlation: q
x
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ACF0 Model
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PR1 Model
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Figure 3. The term structure of correlation between q(1)x,t and q(2)x,t , x = 65.

4. Hedge Performance

In this section, we apply the ACF models and the PR models to longevity hedges and
study their hedge performances.

4.1. Basic Set Up

We first describe the set up of the hedge. Suppose it is now time t0 (the end of year t0).
We assume the hedger has a longevity liability that is a life annuity that pays USD 1at the
end of each year, provided that the annuitant is alive. Let L(x, t) denotes the value of a life
annuity sold to individuals aged x at time t. We consider a deferred life annuity that sold
to age x0 in Td years. The liability being hedged is L(x0, t0 + Td), which can be expressed as

L(x0, t0 + Td) =
w−x0

∑
s=1

e−r·s
s

∏
k=1

p(PL)
x0+k−1,t0+Td+k,
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where w is the maximum age, r is the interest rate and PL is the underlying population of
the liability.

The hedging instrument is a q-forward, which is a zero-coupon swap with the fix leg
attached to the forward mortality rate determined at the beginning of the contract, and the
floating leg being the realized mortality rate at maturity. We use H(x, t) to represent the
value of a q-forward which is linked to reference age x and maturity time t. For simplicity,
we assume only one q-forward is used in the hedge. The q-forward being used is denoted
by H(xh, t0 + Th), which has a reference age xh and maturity Th years from now. The value
of H(xh, t0 + Th) can be expressed as

H(xh, t0 + Th) = e−r·Th
(

q̂(PH)
xh ,t0+Th

− q(PH)
xh ,t0+Th

)
We assume the hedger’s goal is to minimize volatility of their longevity exposure over

the long run. The hedging target is set to be

min
N

(Var(VL − N ×VH)),

where N is the notional amount or the hedge ratio of the portfolio, VL and VH are the values
of the liability and the q-forward at time (t0 + Td). We obtain both VL and VH through
simulation with detailed procedure provided in Appendix B. The hedge ratio N is obtained
by matching the sensitivity of VL and VH with respect to Kt0+Td , i.e., N = ∆c

L/∆c
H . The

procedure for calculating ∆c
L and ∆c

H is provided in Appendix A. The effectiveness of the
hedge is measured by HE, which is computed via the following equation

HE = 1− Var(VL − N ×VH)

Var(VL)
.

4.2. Illustration of Hedge Performance

To illustrate the hedge result, we consider the following set up for the liability and the
q-forward.

• The liability is a life annuity sold to individuals aged 70 (x0 = 70) 20 years from now
(Td = 20). The liability is linked to population 1, the U.S. males. The maximum age is
set to be w = 100.

• The q-forward has a reference age of 65 (xh = 70) and will matures 20 years from now
(Th = 20). The q-forward is linked to population 2, the Canadian males.

• The interest rate is assumed to be 1% per annum.

To assess the impact of different VAR structures, we allow the simulation model (that is,
the model used to generate the future mortality sample paths) to be different from the
model used for hedge calibration. The values of hedge effectiveness and the associated
notional amounts of the hedging instrument are provided in Tables 4 and 5, respectively. In
these two tables, each column corresponds to a particular simulation model and each row
corresponds to a particular calibration model. For example, for the column of ACF0 and
the row of ACF1, we use ACF0 to simulate VL and VH . We use ACF1 to derive the hedge
ratio N. The values in the cell are the corresponding HE and N.

For the ACF framework, the hedge effectiveness is highly dependent on the model
used for simulating the underlying mortality experience. The resulting HE ranges from
47.1669% to 77.8786%, with a maximum difference being as large as 30%. This reveals the
model risk embedded in the ACF framework. When the time series model is not specified
properly, the outcome of the hedge would also suffer. However, in practice, the hedger is
always subject to model uncertainty, since the true underlying mortality model is unknown.

The PR framework, on the other hand, yields more robust result in hedging. Consider-
ing different combinations of simulation model and calibration model, very little change
is observed in the resulting HE, where its value ranges from 68.1193% and 73.0943% with
maximum difference of 4.9750% which is way smaller than that in the ACF framework.
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Table 4. The value of hedging effectiveness (HE) in the longevity hedge under the ACF framework
(left panel) and the PR framework (right panel), using different combinations of simulation model
and hedge calibration model.

Simulation Simulation

C
al

ib
ra

ti
on Model ACF0 ACF1 ACF2

C
al

ib
ra

ti
on Model PR0 PR1 PR2

ACF0 52.6756% 61.7846% 77.8786% PR0 68.7645% 68.2410% 73.0943%
ACF1 52.6756% 61.7846% 77.8786% PR1 68.7645% 68.2410% 73.0943%
ACF2 47.1669% 53.5626% 70.2547% PR2 68.6478% 68.1193% 72.9632%

Max diff. = 30.7117% Max diff. = 4.9750%

Table 5. The notional amounts of q-forward in the longevity hedge under the ACF framework (left
panel) and the PR framework (right panel), using different combinations of simulation model and
hedge calibration model.

C
al

ib
ra

ti
on

Simulation

C
al

ib
ra

ti
on

Simulation
Model ACF0 ACF1 ACF2 Model PR0 PR1 PR2
ACF0 182.9765 182.9765 182.9765 PR0 146.9599 146.9599 146.9599
ACF1 182.9765 182.9765 182.9765 PR1 146.9599 146.9599 146.9599
ACF2 141.4138 141.4138 141.4138 PR2 146.5070 146.5070 146.5070

5. Conclusions

In this paper, we apply the PR model developed by Hyndman et al. (2013) to the U.S.
male population and Canadian male population, with a goal of studying its performance
in disentangling mortality trend risk and population basis risk. Under the PR model,
the trend risk and basis risk are separated by construction when the product model and
the ratio model are specified. Based on the U.S. and Canada’s data, we found that the
cross-correlations of different latent states under the PR model are insignificant and the
resulting time series structure is more parsimonious. This finding is in great contrast to the
result obtained under the ACF framework, where cross-correlations are presented and the
associated time series structure is heavily parameterized. We then apply both models to a
longevity hedge. The hedge performance as well as the notional amounts of the hedging
instruments under the PR framework are more robust.

In this paper, we only consider two populations. For future research, we may extend
the PR model to more than two populations. The extension is not trivial. Based on the
current structure, the ratio model which focus on capturing deviations among different
populations need to be extended to accommodate any pair-wise combinations. If we have a
large population size, say 10 populations, the equations required in the ratio model would
be increase significantly to C9

10 = 45, which is way more than the number of equations
required in the traditional ACF model. As a final item of note, when applying the PR
model, we should always consider populations similar mortality experience. As pointed
out by Hyndman et al. (2013), the geometric mean and the ratio of the two populations
are roughly uncorrelated when they share a similar mortality experience, which advocates
the use of the PR model in this case. Extra caution should be taken when dealing with
populations that have significantly different mortality experiences.

Author Contributions: Conceptualization, J.S.-H.L.; Methodology, Y.L. and J.S.-H.L.; Validation, Y.L.;
Formal analysis, Y.L. and J.S.-H.L.; Investigation, Y.L.; Writing—original draft, Y.L. and J.S.-H.L.;
Writing—review & editing, J.S.-H.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Risks 2023, 11, 208 14 of 18

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can
be found here: https://www.mortality.org accessed on 1 September 2023.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Partial Derivatives of Liability and Hedging Instrument

Appendix A.1. The ACF Model:

Liability:

VL = e−r·Td ∑w−x0
s=1 e−rs

sP(PL)
x0

= e−r·Td ∑w−x0
s=1 e−rs ∏s

u=1 p(PL)
x0+u−1,t0+Td+u

= e−r·Td ∑w−x0
s=1 e−rs ∏s

u=1 e−m(PL)
x0+u−1,t0+Td+u

= e−r·Td ∑w−x0
s=1 e−rse−∑s

u=1 m(PL)
x0+u−1,t0+Td+u

= e−r·Td ∑w−x0
s=1 e−rsexp(−∑s

u=1 exp(ax0+u−1 + Bx0+u−1 · Kt0+Td+u + b(PL)
x0+u−1 · k

(PL)
t0+Td+u))

At time t0 + Td, we project the life table and we have

VL = e−r·Td ∑w−x0
s=1 e−rsexp(−∑s

u=1 exp(ax0+u−1 + Bx0+u−1 · Kt0+Td + b(PL)
x0+u−1 · k

(PL)
t0+Td

)).

The partial derivatives w.r.t. Kt0+Td and k(PL)
t0+Td

can then be computed as follows:

∆c
L = ∂VL

∂Kt0+Td
= e−r·Td ∑w−x0

s=1 e−r·s ∂A
∂Kt0+Td

∆(PL)
L = ∂VL

∂k(PL)
t0+Td

= e−r·Td ∑w−x0
s=1 e−r·s ∂A

∂k(PL)
t0+Td

where

A = exp(−
s

∑
u=1

exp(ax0+u−1 + Bx0+u−1(Kt0+Td) + b(PL)
x0+u−1 · (k

(PL)
t0+Td

)))

∂A
∂Kt0+Td

= A[−
s

∑
u=1

Bx0+u−1exp(ax0+u−1 + Bx0+u−1(Kt0+Td) + b(PL)
x0+u−1 · (k

(PL)
t0+Td

))]

and

∂A

∂k(PL)
t0+Td

= A[−
s

∑
u=1

b(PL)
x0+u−1exp(ax0+u−1 + Bx0+u−1(Kt0+Td) + b(PL)

x0+u−1 · (k
(PL)
t0+Td

))]

Q-forward:

VH = e−rTh(q̂xh ,t0+Th − qxh ,t0+Th)

= −e−rTh [1− e−m(PH )
xh ,t0+Th − 1 + e−m̂(PH )

xh ,t0+Th ]

= −e−rTh [e−m̂(PH )
xh ,t0+Th − e−exp(a(PH )

xh
+Bxh Kt0+Th

+b(PH )
xh

k(PH )
t0+Th

)
].

The partial derivatives of Hj w.r.t. Kt0+Th and k(PH)
t0+Th

can be computed as follows:

∆c
H =

∂H
∂Kt0+Th

= −erTh · e−exp(a(PH )
xh

+Bxh Kt0+Th
+b(PH )

xh
k(PH )

t0+Th
) · Bxh exp(a(PH)

xh + Bxh Kt0+Th + b(PH)
xh k(PH)

t0+Th
)

∆(PH)
H =

∂H

∂k(PH)
t0+Th

= −erTh · e−exp(a(PH )
xh

+Bxh Kt0+Th
+b(PH )

xh
k(PH )

t0+Th
) · Bxh exp(a(PH)

xh + b(PH)
xh Kt0+Th + b(PH)

xh k(PH)
t0+Th

)

https://www.mortality.org
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Appendix A.2. The PR Model:

Liability:

VL = e−r·Td ∑w−x0
s=1 e−rs

sP(PL)
x0

= e−r·Td ∑w−x0
s=1 e−rs ∏s

u=1 p(PL)
x0+u−1,t0+Td+u

= e−r·Td ∑w−x0
s=1 e−rs ∏s

u=1 e−m(PL)
x0+u−1,t0+Td+u

= e−r·Td ∑w−x0
s=1 e−rse−∑s

u=1 m(PL)
x0+u−1,t0+Td+u

Since that in the PR model, we have

log(m(1)
x,t ) = (µ

p
x + µr

x) + BxKt + b1,xk1,t + b2,xk2,t + ex,t + wx,t,

log(m(2)
x,t ) = (µ

p
x − µr

x) + BxKt − b1,xk1,t − b2,xk2,t + ex,t − wx,t.

Therefore, if PL is selected to be population 1, the value of VL can be computed as

VL = e−r·Td
w−x0

∑
s=1

e−rsexp(−
s
∑

u=1
exp((µp

x0+u−1 + µr
x0+u−1)+

Bx0+u−1 · Kt0+Td + b1,x0+u−1 · k1,t0+Td + b2,x0+u−1 · k2,t0+Td)).

Similarly, if PL is selected to be population 2, we have

VL = e−r·Td
w−x0

∑
s=1

e−rsexp(−
s
∑

u=1
exp((µp

x0+u−1 − µr
x0+u−1)+

Bx0+u−1 · Kt0+Td − b1,x0+u−1 · k1,t0+Td − b2,x0+u−1 · k2,t0+Td)).

In the following derivation, we assume PL is population 1 and PH is population 2. It can be
easily modified to adapt different situations.

At time t0 + Td, we project the life table. This is denoted by

m̃(PL)
x,t0+Td

= exp
(
(µ

p
x + µr

x) + Bx · Kt0+Td + b1,x · k1,t0+Td + b2,x · k2,t0+Td

)
.

We have

VL = e−r·Td
w−x0

∑
s=1

e−rsexp
(
−

s
∑

u=1
m̃(PL)

x0+u−1,t0+Td

)
.

The partial derivatives with respect to Kt0+Td , k1,t0+Td and k2,t0+Td can then be computed as
follows:

∆c
L = ∂VL

∂Kt0+Td
= e−r·Td ∑w−x0

s=1 e−r·s ∂A
∂Kt0+Td

∆1,L = ∂VL
∂k1,t0+Td

= e−r·Td ∑w−x0
s=1 e−r·s ∂A

∂k1,t0+Td

∆2,L = ∂VL
∂k2,t0+Td

= e−r·Td ∑w−x0
s=1 e−r·s ∂A

∂k2,t0+Td

where
∂A

∂Kt0+Td
= A

(
−

s
∑

u=1
Bx0+u−1 · m̃

(PL)
x0+u−1,t0+Td

)
∂A

∂k1,t0+Td
= A

(
−

s
∑

u=1
b1,x0+u−1 · m̃

(PL)
x0+u−1,t0+Td

)
∂A

∂k2,t0+Td
= A

(
−

s
∑

u=1
b2,x0+u−1 · m̃

(PL)
x0+u−1,t0+Td

)
and

A = exp
(
−

s
∑

u=1
m̃(PL)

x0+u−1,t0+Td

)
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Q-forward:
VH = e−rTh(q̂xh ,t0+Th − qxh ,t0+Th)

= −e−rTh

(
1− e−m(PH )

xh ,t0+Th − 1 + e−m̂(PH )
xh ,t0+Th

)
= −e−rTh

(
e−m̂(PH )

xh ,t0+Th − e−m̃(PH )
xh ,t0+Th

)
.

As previously mentioned, we assume PH to be population 2. Therefore, m̃(PH)
x,t0+Th

can be
computed as

m̃(PH)
x,t0+Th

= exp
(
(µ

p
x − µr

x) + Bx · Kt0+Th − b1,x · k1,t0+Th − b2,x · k2,t0+Th

)
.

The partial derivatives of Hj with respect to Kt0+Th and k(PH)
t0+Th

can be computed as
follows:

∆c
H = ∂H

∂Kt0+Th
= (−1)erTh · Bxh · m̃

(PH)
xh ,t0+Th

· e−m̃(PH )
xh ,t0+Th

∆1,H = ∂H
∂k1,t0+Th

= erTh · b1,xh · m̃
(PH)
xh ,t0+Th

· e−m̃(PH )
xh ,t0+Th

∆2,H = ∂H
∂k2,t0+Th

= erTh · b2,xh · m̃
(PH)
xh ,t0+Th

· e−m̃(PH )
xh ,t0+Th

Appendix B. Simulation Procedure

The simulation procedure of the value of the liability being hedged is summarized
as follows:

• Simulate M sample paths of Kt0+T , k1,t0+T and k2,t0+T . We denote these simulated
paths as ωj, for j = 1, 2, . . . , M. Accordingly, for each simulated path ωj, the values of
the corresponding state variables are Kt0+T(ωj), k1,t0+T(ωj) and k2,t0+T(ωj).

• For each simulated path ωj, j = 1, 2, . . . , M, we project the life table at time t0 + T,
based on the simulated Kt0+T(ωj), k1,t0+T(ωj) and k2,t0+T(ωj). The methodology of
how we project the life table is summarized as follows:

1. Based on Kt0+T(ωj), k1,t0+T(ωj) and k2,t0+T(ωj), we first compute the central
death rate of an individual aged x, mx,t0+T(ωj):

– ACF Model

log(m(1)
x,t0+T(ωj))) = a(1)x + BxKt0+T(ωj)) + b(1)x k(1)t0+T(ωj))

log(m(2)
x,t0+T(ωj))) = a(2)x + BxKt0+T(ωj)) + b(2)x k(2)t0+T(ωj))

– PR Model

log(m(1)
x,t0+T(ωj)) = (µ

p
x + µr

x) + BxKt0+T(ωj) + b1,xk1,t0+T(ωj) + b2,xk2,t0+T(ωj),

log(m(2)
x,t0+T(ωj)) = (µ

p
x − µr

x) + BxKt0+T(ωj)− b1,xk1,t0+T(ωj)− b2,xk2,t0+T(ωj).

2. Then we compute the death probability qx,t0+T(ωj), based on the value of
mx,t0+T(ωj). Throughout this study, we assume constant force of mortality.
Therefore, qx,t0+T(ωj) can be computed through the following equation:

qx,t0+T(ωj) = 1− exp(−mx,t0+T(ωj)),

and accordingly
px,t0+T(ωj) = 1− qx,t0+T(ωj).
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3. We use sPx,t0+T(ωj) to denote the probability that an individual aged x at time
t0 + T survives to age x + s, for a particular path ωj. The survival probability is
computed as

sPx,t0+T(ωj) =
s

∏
k=1

px+k−1,t0+T(ωj).

• For each projected life table, we calculate the value of the life annuity VL(ωj), which is

VL(ωj) =
w−x0

∑
s=1

e−r·s
sP

(PL)
x0,t0+Td

(ωj),

Similarly, the value of the q-forward VH is

VH(ωj) = e−r·Th
(

q̂(PH)
xh ,t0+Th

− q(PH)
xh ,t0+Th

(ωj)
)

,

where
q(PH)

xh ,t0+Th
(ωj) = 1− 1P(PH)

xh ,t0+Th
(ωj),

and q̂(PH)
xh ,t0+Th

is the pre-defined forward mortality rate at time t0.

Notes
1 Data source: Human Mortality Database (HMD).
2 For an expanded data set, the same MLE method can be used.
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