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Abstract: This research article provides criticism and arguments why the canonical framework
for derivatives pricing is incomplete and why the delta-hedging approach is not appropriate. An
argument is put forward, based on the efficient market hypothesis, why a proper risk-adjusted
discount rate should enter into the Black-Scholes model instead of the risk-free rate. The resulting
pricing equation for derivatives and, in particular, the formula for European call options is then
shown to depend explicitly on the drift of the underlying asset, which is following a geometric
Brownian motion. It is conjectured that with the generalized model, the predicted results by the
model could be closer to real data. The adjusted pricing model could partly also explain the mystery
of volatility smile. The present model also provides answers to many finance professionals and
academics who have been intrigued by the risk-neutral features of the original Black-Scholes pricing
framework. The model provides generally different fair values for financial derivatives compared
to the Black-Scholes model. In particular, the present model predicts that the original Black-Scholes
model tends to undervalue for example European call options.

Keywords: options pricing; financial derivatives; efficient market hypothesis; martingale; Feynman-Kac;
Black-Scholes

1. Introduction

Pricing of financial derivatives was revolutionized in 1973, when the famous Black-
Scholes framework was introduced (Black and Scholes 1973). The value of, say a European
call option, is given by a linear parabolic partial differential equation, and an explicit
formula is available to compute the value of the option, given parameters. The explicit
formulas are obtained by transforming the Black-Scholes partial differential equation (PDE)
into a constant coefficient PDE and using Fourier methods, for example. The Black-Scholes
PDE can also be seen as a Hamilton-Jacobi-Bellman equation for a certain stochastic control
problem (Lindgren 2020). The parameters needed are the risk-free rate, volatility, exercise
price, and time to maturity. In empirical terms, the Black-Scholes model does not predict
true market values of options, so as a scientific model, it performs rather poorly. However,
it has been thought that it gives a reasonable benchmark for traders and financial markets
professionals, as well as for risk managers. One classical narrative against the assumptions
of the model comes from (Bergman 1982) and (Musiela and Rutkowski 2005), where it
is argued that the hedging portfolio is not self-financing in the first place in the original
model. The present approach goes further and claims that the whole premise of the model
is too narrow and in particular the argument related to delta-hedging is almost irrelevant
to any real speculant, hedger, or investment professional.

One of the hardest concepts to understand intuitively within the Black-Scholes model
is indeed the fact that, in the Black-Scholes formulas, the fair price of the option does
not depend on the drift of the underlying asset. This is a result of the framework, even
though the geometric Brownian motion for the underlying asset is assumed to have some
non-zero drift. The prediction of the model is rather counterintuitive—one would assume
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that placing one’s bet on an option with a higher positive drift would affect the value of the
respective call option in a positive manner. The Black-Scholes model in effect works as if
the market was risk-neutral as a whole, or in other words, as if the drift of the asset was
equal to the risk-free rate.

The mathematical reason why the true drift is irrelevant in the Black-Scholes model
is nevertheless a direct consequence of the hedging portfolio approach and the reason is
the following: in the hedging portfolio, one is shorting the underlying asset by an amount
which is the delta of the option. In terms of the hedging portfolio, if the asset has a higher
positive drift, the call option goes up in terms of value, but the short position goes down
in terms of value and the effects cancel each other out exactly. That is the reason why the
hedging portfolio should be instantaneously risk free and yield the risk free rate. This is
the core of the Black-Scholes reasoning. The value of the option is determined as a kind of
residual in order to keep the hedging portfolio locally risk-free. There are, however, at least
two main problems with this approach.

First, the fair price of a call option given by the Black-Scholes model is thus the fair
value merely for the hedging portfolio holder, and this is the main problem with the model.
If a randomly chosen market participant buys a call option on say a stock of a blue-chip
company, it is unreasonable to assume that he or she holds a short position on the company
exactly an amount corresponding to the delta of the call option. If a speculant holds a
long call option, his portfolio is probably not completely offset by shorting the respective
underlying asset.

On top of this conceptual problem, there is the well known technical challenge in terms
of self-financing portfolios. The key assumption in the Black-Scholes model is the assumed
self-financing of the hedging portfolio, in other words, it is assumed that there is no net
flows of funding in or out of the hedging portfolio. A self-financing delta-hedging portfolio
in this case means that the holdings of the option and underlying are not changed, i.e., the
changes in the value of the portfolio come purely from changes in the value of the option
and the underlying asset. However, this seems to be false and is quite clearly argumented
in (Bergman 1982) and (Bartels 1995). This possibly fundamentally flawed assumption
of a self-financing hedging portfolio might mean in itself that the rate of return on the
hedged portfolio is not truly riskless. If this is indeed the case, the Black-Scholes pricing
model assumptions are fundamentally problematic. Then again, the false assumption of
a self-financing portfolio does not destroy the Black-Scholes model as such, as is argued
in (Bana 2007). On top of this, naturally, the assumption of geometric Brownian motion
for the underlying asset is itself perhaps not fully correct, but is less of concern. Whether
a geometric Brownian motion is a proper model for asset price dynamics is an important
issue, but it does not affect qualitatively the reasoning within the Black-Scholes model.

In the literature concerning imperfect hedging portfolios due to market incompleteness,
the value of the contingent claim is shown to lie within some hedging bounds, see for
example (Hao 2008). On the other hand, costly short-selling has been shown to affect
the bid-ask-spreads of options, see (Atmaz and Basak 2019). An equal risk pricing rule
in incomplete markets was developed in (Guo and Zhu 2017), and further developed in
(Marzban et al. 2022). For equal risk pricing using deep learning, see (Carbonneau and
Godin 2021). These approaches do not however consider the fundamental problem of
delta-hedging, so that usually holding a long call option, the portfolio is probably not
completely offset by shorting the respective underlying asset.

2. Properly Anticipated Prices in the Options Pricing Framework—A General
Framework for Pricing Derivatives without the Hedging Portfolio

The present model argues that the canonical framework for options pricing based
on Black-Scholes pricing is to be generalized to be consistent with the efficient markets
hypothesis as put forward by Paul Samuelson (Samuelson 1965; Samuelson 1973). The
traditional approach of delta-hedging is therefore not suitable in general; instead, we need
to consider first what the appropriate discount rate of an efficient financial market is. The
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underlying asset following geometric Brownian motion is not a martingale due to its drift as
such, but properly discounted it is. To require the martingale property from the discounted
price process is in line with (Samuelson 1973) and is a mathematical consequence of the
efficient market hypothesis (Fama 1965; Fama 1970). The key assumption thus is that the
properly discounted process must be a martingale in an efficient market.

Consider an asset such as a common stock.
Suppose that an asset price Xτ follows geometric Brownian motion:

dXτ = µXτdτ + σXτdWτ , (1)

with some drift of instantaneous return µ > 0 and volatility σ > 0. Wτ is a standard
Brownian motion, and we consider valuing a generic financial derivative written on the
asset.

In line with the formulation of the efficient market hypothesis by Samuelson (1973),
see also the review article (LeRoy 1989), we now require that the discounted price process
is a martingale. Given that for a geometric Brownian motion, the expectation for the price
at future time T > 0 is given by:

Et(XT) = Xteµ(T−t), (2)

where Et is an expectation operator with respect to the probability measure generated by
the Brownian motion. We see, immediately, that we need to introduce a discount factor
e−µ(T−t) for the market in order to obtain:

Xt = Et

(
e−µ(T−t)XT

)
(3)

This requirement of market efficiency can be interpreted as follows: the expected
discounted price of an asset at future time must be equal to the current price of the asset.
In other words, the risk aversion preferences of the market as a whole are reflected in the
discount factor and all relevant information is already reflected in the current price of the
asset.

Consider now a financial derivative written on the asset. The financial derivative has
a payoff at terminal time T and a respective payoff function ϕ(XT). In line with above, we
are looking the fair value independent of individual risk preferences of market participants,
instead we discount the derivative payoff using the market discount function above and
evaluate the expectation according to the physical or real probability measure:

C(x(t), t) = Et

(
e−µ(T−t)ϕ(XT)

)
, (4)

where C(x(t), t) is the fair value of the financial derivative at time t when the asset has
some known price x(t). It is straightforward to use the Feynman-Kac formula (Pavliotis
2014) to write down the partial differential equation describing the evolution of the value
of the financial derivative:

∂C
∂t

(x, t) + µx
∂C
∂x

(x, t) +
1
2

σ2x2 ∂2C
∂x2 (x, t)− µC(x, t) = 0. (5)

With the initial condition C(x, T) = ϕ(XT). Notice that the only difference to the
canonical Black-Scholes partial differential equation is that the risk-free rate is replaced
with the discount rate reflecting the efficiency of the financial market. As an instruc-
tive example, consider now pricing a plain vanilla European call option. The payoff is
ϕ(XT) = max(XT − K, 0), where K > 0 is the exercise or strike price of the call option
maturing at time T > t. As everything else is the same as in the Black-Scholes pricing PDE,
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we can deduce the price for a European call option easily by using the well-known formulas
and by just replacing the risk-free rate in the formulas with the drift of the underlying asset:

C(Xt, t) = N(d1)Xt − N(d2)Ke−µ(T−t) (6)

where N is the cumulative distribution function of the standard normal variable, and

d1 =
1

σ
√

T − t

(
Log

(
Xt

K

)
+

(
µ +

1
2

σ2
)
(T − t)

)
(7)

d2 = d1 − σ
√

T − t. (8)

The obtained pricing formula is similar as presented already by James Boness in
(Boness 1964). It is instructive to note that now the price of the European call depends
explicitly on the drift of the asset, as it should intuitively be and the Rho of the option
for the call is positive so that an increase in the drift increases the value of the European
long call. The only difference with the canonical Black-Scholes model is therefore that
the risk-free rate is replaced by the drift of the underlying asset performing geometric
Brownian motion. As the higher discount rate effectively affects the strike price in (6),
the present approach could also alleviate the volatility smile phenomenon as described in
(Derman and Miller 2016).

3. Discussion and Conclusions

It is argued that based on the assumption that in an efficient market the risk-adjusted
discounted expected price of an asset following geometric Brownian motion should be the
current price, it is deduced that the correct risk-adjusted discount rate should be the drift of
the asset process. These assumptions will lead to derivatives pricing, where the fair value
of the financial derivative can be evaluated as a conditional expectation, discounted at the
above rate reflecting market efficiency. The fair value for an option can then be solved by
using the Feynman-Kac formula, leading to a modified Black-Scholes PDE, where the drift
of the underlying process is explicitly present.

The results thus suggest that the approach based on the hedging portfolio is too
limited. The fair price of an option in the Black-Scholes approach is based on the idea
of a hedging portfolio. The value of the financial derivative is forced to be such that the
hedging portfolio yields exactly the risk-free rate. In the present approach, it is argued that
the delta-hedge approach is not sufficient in general, as it implicitly requires that the option
holders have that delta-hedged portfolio. For an investor with the delta-hedging portfolio,
it is indeed true that the drift of the underlying asset does not make any difference. If the
underlying goes up, the short position on the underlying goes down and the call option
gains in value; these effects cancel each other out. However, for a general investor, there is
no perfectly hedging portfolio, and the increase in the drift of the asset has an effect on the
value of the call option, for example.

In this article, it is shown mathematically, based on the theory of efficient markets,
why the drift should in fact matter when pricing financial derivatives. The present model
predicts that for a generic call option holder, the price of a European call option depends
explicitly on the drift of the underlying asset. The results might lead to better empirical
results when comparing the actual prices of options in the markets and the theoretical
prices predicted by the present model. Furthermore, volatility smile (Derman and Miller
2016) should be examined through the lens of this extended model. The higher discount
rate compared to the original Black-Scholes model implies that the fair value of the financial
derivative depends in general on the drift of the underlying asset performing geometric
Brownian motion. Therefore, if an option holder is long in a European call option, the
value of the call is higher for underlying assets, which have higher instantaneous return
or drift. The reason is simply that the fair value of the option is not valued in terms of
a hedging portfolio, but instead demanding that the market risk aversion is such that
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assets with a drift are martingales when discounted properly. The well known discrepancy
between option market data and the values predicted by the Black-Scholes model has been
empirically verified many times. The practical benefit of the present model for the investor
is that the model could give more accurate fair values for financial derivatives. It should
also be noted that if the present approach performs better than the original Black-Scholes
model, implied volatilities must change as well. The present model includes the drift of the
underlying asset, which can be estimated from data, as has been the case for the risk-free
interest rate in the original model. The present model suggests that when pricing financial
derivatives with an underlying following geometric Brownian motion, one should use the
pricing PDE (5) instead of the original Black-Scholes PDE. In similar fashion, for European
call options, one should use pricing Formulas (6)–(8).

Finally, it is indeed interesting to note that the pricing formula in the present approach
is similar to the pricing formula of (Boness 1964), see also the discussion in (O’Brien and
Selby 1986).
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