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Abstract: Evidence that cryptocurrencies exhibit speculative bubble behavior is well documented.
This evidence could trigger global financial instability leading to systemic risk. It is therefore crucial
to quantify systemic risk and investigate its transmission mechanism across crypto markets and
other global financial markets. We can accomplish this using the so-called multivariate conditional
value-at-risk (MCoVaR), which measures the tail risk of a targeted asset from each market conditional
on a set of multiple assets being jointly in distress and on a set of the remaining assets being jointly in
their median states. In this paper, we aimed to find its analytic formulas by considering multivariate
copulas, which allow for the separation of margins and dependence structures in modeling the
returns of the aforementioned assets. Compared to multivariate normal and Student’s t benchmark
models and a multivariate Johnson’s SU model, the copula-based models with non-normal margins
produced a MCoVaR forecast with superior conditional coverage and backtesting performances.
Using a corresponding Delta MCoVaR, we found the crypto assets to be potential sources of systemic
risk jointly transmitted within the crypto markets and towards the S&P 500, oil, and gold, which was
more apparent during the COVID-19 period encompassing the recent 2021 crypto bubble event.

Keywords: cryptocurrency; speculative bubble; conditional value-at-risk; asymmetric loss function;
asymmetry; leptokurticity; tail dependence; elliptical copula

1. Introduction

Cryptocurrencies are relatively new digital financial instruments to which finan-
cial market participants and policy-makers have paid much attention. They were ini-
tially launched as fully decentralized payment systems based on blockchain technol-
ogy, allowing the transaction process to take place directly from one party to another
without the need for any financial institution or governing body (Wang et al. 2019, 2020).
Nevertheless, rapid appreciations and extreme fluctuations in their prices and market
capitalization have led them to be speculative investment assets instead of currencies
(Baur and Dimpfl 2021; Baur et al. 2018) and thus prone to high risk and uncertainty
(Almeida et al. 2022). This evidence results from their speculative aspects dominating
their ability to work as a medium of exchange, a unit of account, and a store of value, as
fiat currencies do (Cheah and Fry 2015). Due to such a speculative nature and lack of a
central regulator controlling the crypto markets, drastic increases in crypto-asset prices are
frequently followed by dramatic declines, resulting in giant bubbles. The vulnerability of
crypto assets to speculative bubbles was statistically significant, as tested by Cheah and
Fry (2015), Corbet et al. (2018), Agosto and Cafferata (2020), Haykir and Yagli (2022), and
Bazán-Palomino (2022). This phenomenon could trigger the instability of the global finan-
cial system leading to systemic financial risk. Managing potential systemic risk transmitted
from the crypto markets towards other global financial markets and vice versa is thus of
importance for maintaining global financial stability.
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Systemic risk can be quantitatively managed using (1) the so-called conditional value-
at-risk (CoVaR), which measures the tail risk of a targeted asset conditional on another asset
being under distress, and (2) the corresponding ∆CoVaR, which quantifies the systemic risk
contribution of the latter to the former. These measures were first proposed by Adrian and
Brunnermeier (2016) and originally modeled using Koenker and Bassett’s (1978) quantile
regression model. More specifically, the quantile regression-based (∆)CoVaR specifies the
conditional quantile of the targeted asset return as a linear combination of (1) the VaR
for another asset and (2) a set of covariates by taking no account of any distributional
assumption. This framework was adopted by Borri (2019) to measure systemic risk in
the crypto markets by involving four global conventional assets as covariates. The author
highlighted that the major crypto assets under study (i.e., Bitcoin, Ethereum, Ripple, and
Litecoin) were greatly exposed to risk within the crypto markets. In addition, the above
CoVaR model was also employed by Xu et al. (2021) and Akhtaruzzaman et al. (2022) to
develop systemic risk contagion networks for cryptocurrencies only by considering the
same four conventional assets as covariates. The former authors revealed that Ethereum
and Bitcoin played roles as the largest systemic risk transmitter and receiver, respectively,
while the latter provided evidence of higher transmissions of systemic risk due to the global
outbreak of COVID-19.

As an alternative to the quantile regression-based (∆)CoVaR, Adrian and Brunnermeier
(2016) proposed a parametric model approach based on a bivariate normal distribution, as
in Girardi and Ergün (2013). This approach was modified by Girardi and Ergün (2013) using
a bivariate skewed Student’s t distribution that is a special case of the bivariate generalized
hyperbolic distribution. According to their empirical study on the US financial industries,
the CoVaR formulated using the skewed Student’s t distribution was shown to better satisfy
coverage properties, suggesting the importance of accounting for returns’ asymmetry and
leptokurticity. This is in line with Chu et al. (2015) (and Catania and Grassi 2022), who
found more accurate risk measure forecasts for Bitcoin (and other crypto assets) when
considering an asymmetric and leptokurtic distribution, namely, a generalized hyperbolic
(skewed Student’s t) distribution. This is also supported by Núñez et al. (2019), who em-
ployed another member of the family of generalized hyperbolic distributions for the returns
of Bitcoin exchange rates against seven major currencies during different periods when
bubbles were detected. Despite their capability to capture asymmetry and leptokurticity,
the above distributions may have infinite moments for high orders. To overcome this short-
coming, one may take Johnson’s SU distribution into consideration. This distribution was
derived by Johnson (1949) and Choi and Nam (2008) from a normal distribution through
a simple increasing transformation, making its distributional and moment properties as
uncomplicated as those of the normal distribution. In particular, its moments are finite for
all orders with explicit expressions. Accordingly, it can be a useful alternative for more
accurately formulating risk measure forecasts with analytically tractable expressions, as in
Gurrola (2008), Choi et al. (2012), Castillo-Brais et al. (2022), and Hakim et al. (2022). Their
superior coverage and backtesting performances for cryptocurrencies and other assets were
reported by, e.g., Venkataraman and Rao (2016), Troster et al. (2019), Patra (2021), and Som
and Kayal (2022).

Another challenging task in modeling and quantifying systemic risk is to account
for the tail dependence between the returns of targeted and conditioning assets. The tail
dependence structure shows the tendency of their extreme events to take place simul-
taneously. This typical feature cannot be described using quantile regression (Bernard
and Czado 2015) and some of the above classical models. Thus, one may require more
sophisticated tools, namely copulas, to overcome this limitation. Basically, copulas are
joint distribution functions of random variables uniformly distributed over a unit interval
(McNeil et al. 2015). By relating our random risks with such uniformly distributed random
variables through the (inverse) probability integral transform, we can employ copulas to
link the marginal and joint distributions of these random risks based on Sklar’s (1959)
famous theorem. This framework enables us to obtain many choices of greatly flexible
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risk models, whose margins and dependence structure can be analyzed separately. The
dependence information is contained in the chosen copula. For instance, Student’s t (nor-
mal) copula derived from Student’s t (normal) distribution provides tail (in)dependence. It
belongs to the elliptical copula family with radially symmetric dependence. To allow for
asymmetric dependence, Demarta and McNeil (2005) proposed a skewed elliptical copula,
namely a skewed Student’s t copula, constructed from a skewed Student’s t distribution.
Chan and Kroese (2010) also did this based on an adjusted skewed normal distribution.
Asymmetric dependence may also be accommodated using Archimedean copulas, as exten-
sively studied by McNeil and Nešlehová (2009). Two popular members of the Archimedean
copula family are Clayton and Gumbel copulas, which exhibit lower tail dependence and
upper tail dependence, respectively.

Elliptical and Archimedean copulas, along with other copula families, have been
applied by numerous studies, e.g., Cherubini and Luciano (2001), Embrechts et al. (2003a),
Embrechts and Höing (2006), Rosenberg and Schuermann (2006), and Li et al. (2015), for
aggregate or portfolio risk quantification. Recently, their bivariate versions were utilized
by, e.g., Mainik and Schaanning (2014), Hakwa et al. (2015), Bernard and Czado (2015),
Bernardi et al. (2016), and Jaworski (2017), to analytically formulate the (∆)CoVaR systemic
risk measure with generally closed-form expressions. Karimalis and Nomikos’s (2018)
empirical study on the European banking sectors found that a combination of bivariate
copulas exhibiting tail dependence with asymmetric and leptokurtic margins was the best
candidate for accurately forecasting CoVaR. This indicates the importance of taking account
of asymmetric and leptokurtic margins and their tail dependence and hence complements
the findings of previous studies (e.g., Girardi and Ergün 2013; Hakim et al. 2022). Similar
approaches were adopted by Yu et al. (2021) and Rehman et al. (2022) to forecast the
(∆)CoVaR for Bitcoin, gold, and currencies.

In practice, multiple assets may simultaneously experience financial distress at the
same time. To obtain a complete picture of systemic risk transmissions in a basket of
financial assets that includes these multiple distressed assets, one prefers to rely on an
extension of (∆)CoVaR, namely (∆)MCoVaR, where the “M” refers to “multiple” or “multi-
variate”. This extension was first proposed by Cao (2013) to replace the (∆)CoVaR, which
only involves a single conditioning asset being in either distress or a normal condition.
The author defined the MCoVaR for a targeted asset by accounting for the joint distressing
events of all the remaining assets at the same time. Meanwhile, Torri et al. (2021) took
account of the distressing event of one conditioning asset and the joint normal conditions of
the remaining assets. These frameworks were generalized by Bernardi and Petrella (2015)
and Bernardi et al. (2017) by considering the condition that multiple assets are jointly in
distress and that the remaining assets are in their median or normal states. The resulting
∆MCoVaR can then be utilized to measure the joint transmissions of systemic risk across
the analyzed financial markets.

The above (∆)MCoVaR definitions led previous studies to make use of multivari-
ate or multidimensional risk models. For instance, Cao (2013) computed the proposed
(∆)MCoVaR using a multivariate Student’s t model when investigating systemic risk in the
French and Chinese banking systems. By relying on a finite mixture of multivariate normal
and Student’s t models, Bernardi and Petrella (2015) and Bernardi et al. (2017) computed the
(∆)MCoVaR they proposed for the US financial entities. Meanwhile, Torri et al. (2021) and
Chen et al. (2022) implemented the ∆MCoVaR they formulated using multivariate normal
and Student’s t distributions to construct network models for the European and Chinese
financial systems, respectively. A similar ∆MCoVaR-based network was also developed by
Hakim et al. (2022) using a multivariate Johnson’s SU model and its conditional moments
with an application to global foreign exchange markets. In addition, Torri et al. (2021) also
considered a multiple-quantile regression-based MCoVaR, similar to what Bonaccolto et al.
(2023) proposed.

In this study, we aimed to formulate the (∆)MCoVaR of Bernardi and Petrella (2015)
and Bernardi et al. (2017) to measure systemic risk in crypto and non-crypto markets.1 The
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MCoVaR was computed for each asset from these markets when all the (remaining) assets
from different (same) markets are jointly distressed. We then determined the ∆MCoVaR
by computing the difference between (1) the MCoVaR when considering distressed condi-
tioning assets and (2) the MCoVaR when all the conditioning assets are simultaneously in
normal situations. This framework allows us to quantify the joint transmissions of systemic
risk within the same markets and across different markets. We did the (∆)MCoVaR formula-
tion by modeling the returns of these assets using a multivariate Johnson’s SU model, which
has finite and explicit moments for all orders and permits us to capture their asymmetry
and leptokurticity. Furthermore, we proposed more sophisticated multivariate risk models
determined based on copulas, particularly normal and Student’s t copulas. The reason for
considering these two copulas is that they remain analytically tractable and closed under
marginalization and multivariate conditioning when extended to a multivariate setting. For
the comparisons, we also employed classical models distributed according to a multivariate
normal or Student’s t distribution as benchmarks. The performances of the aforementioned
models were assessed and compared by evaluating the conditional coverage and backtest-
ing performances of the resulting MCoVaR forecasts. For the empirical study, we selected
Bitcoin, Ethereum, Ripple, Litecoin, and Monero as representations of crypto assets. In
addition, we chose the following non-crypto assets: the S&P 500 composite index, the S&P
US Treasury Bond index, the US dollar index, West Texas Intermediate (WTI) crude oil, and
gold. Their daily closing (spot) prices were sampled over a period from 16 January 2018 to
23 February 2022, which encompasses (1) the global COVID-19 crisis, the first major crisis
since the invention of crypto assets (Almeida et al. 2022), and (2) the 2021 crypto bubble
(Bazán-Palomino 2022).

In contrast to other crises (such as the 2008 global financial crisis and the subsequent
European sovereign debt crisis), the COVID-19 pandemic was a major global public health
emergency with unique urgency and uncertainty that has brought considerable challenges
to global financial markets. It not only impacted people’s lives, healths, and properties, but
also affected the global economic systems (Li et al. 2021). For instance, Syuhada et al. (2022a,
2022b) demonstrated that the COVID-19 outbreak led the prices of oils and petroleum to
exhibit downward volatile movements and even reach the lowest level during the first
quarter of the COVID-19 period, suggesting more acute losses. In early March 2020, gold
also showed a massive spiking as global travel restrictions and supply chain disruptions
impacted its supply (Corbet et al. 2020). Sharif et al. (2020) highlighted that the COVID-
19 and oil price shocks unprecedentedly impacted the geopolitical risk levels, economic
policy uncertainty, and stock market volatility. Caferra and Vidal-Tomás’s (2021) findings
provided evidence of a financial contagion in March 2020 as cryptocurrency and stock
prices exhibited dramatic declines. While stock markets were stuck in the bear phase,
cryptocurrencies quickly rebounded, resulting in the 2021 crypto bubble starting from the
first week of November 2020 to the second week of May 2021, as documented by Bazán-
Palomino (2022). Bazán-Palomino (2022) also found the volatility of crypto-portfolio returns
to increase due to this bubble event. The cryptocurrency systemic risk contagion networks
of Akhtaruzzaman et al. (2022) revealed that the COVID-19 pandemic induced increased
interconnections, highlighting a higher number of systemic risk contagion channels. In
this study, we attempted to investigate the impacts of the COVID-19 pandemic and the
2021 crypto bubble on the mechanism of joint systemic risk transmissions across crypto
and non-crypto markets.

In summary, the main contribution of this study to the literature is three-fold. First,
we derive analytic (∆)MCoVaR formulas by taking multivariate Johnson’s SU and copula-
based models into consideration. They overcome the existing asymmetric and leptokurtic
models, whose moments, distributional properties, and tail dependence structures may be
analytically intractable. Second, we assess the MCoVaR forecast accuracy by investigating
the closeness between its conditional coverage probability and the significance level under
consideration. We also perform the assessment by introducing a conditional asymmetric
loss function, which asymmetrically penalizes observations below and above the MCoVaR
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forecast. This attempt complements previous studies, e.g., Cao (2013), Torri et al. (2021),
Chen et al. (2022), Bernardi and Petrella (2015), and Bernardi et al. (2017), which were
only concerned with the MCoVaR magnitude. Third, using ∆MCoVaR, we quantify the
systemic risk contributions of jointly distressed (crypto/non-crypto) assets transmitted to
the targeted (crypto/non-crypto) asset. In particular, the mechanism of joint systemic risk
transmissions from the crypto assets towards the non-crypto assets permits us to examine
whether the crypto markets, well known to have speculative bubble behavior, really become
potential sources of financial instability. This framework is contrary to previous works, i.e.,
Borri (2019), Xu et al. (2021), and Akhtaruzzaman et al. (2022), which solely focused on the
systemic risk transmissions from one crypto asset to the other within the crypto markets on
the basis of ∆CoVaR.

After this introduction section, we organize the remainder of this paper as follows. We
outline multivariate risk models in Section 2. Using these models, we formulate (∆)MCoVaR
in Section 3 and examine the conditional coverage and backtesting performances of its
forecasts in Section 4. We implement these theoretical results for crypto and non-crypto
assets and provide empirical findings in Section 5. We then conclude our study in Section 6.

2. Multivariate Risk Models

For a fixed I ∈ N, I ≥ 2, let I = {1, 2, . . . , I}. Suppose that X = (Xi)i∈I denotes a
vector of I real-valued random variables defined on the same probability space (Ω, F ,P).
We consider that these random variables are continuously distributed for representing I
assets’ risks or returns such that X(Ω) = RI . Provided that E

(
|Xi|2

)
< ∞ for all i ∈ I , the

random vector X can be expressed as follows:

X = (µi + σi Zi)i∈I = µ+ D
1
2 Z, (1)

with µ = (µi)i∈I =
(
E(Xi)

)
i∈I

symbolizing a vector of marginal means and D =

diag
{

σ2
i
}

i∈I = diag
{
V(Xi)

}
i∈I

denoting a diagonal matrix, whose diagonal entries are
marginal variances assumed to be positive. Meanwhile, Z = (Zi)i∈I is a random vector
following a standardized I-variate distribution, i.e., Z ∼ DI(0, P,ω), with a joint distri-
bution function G(0,P,ω) characterized by Pearson’s correlation matrix P = (ρij)i,j∈I

=(
Corr(Zi, Zj)

)
i,j∈I

being nonsingular and possibly by a vector ω = (ωi)i∈I of shape

parameters. This implies that X ∼ DI(µ, Σ,ω), with Σ = Cov(X, X) = D
1
2 PD

1
2 being its

covariance matrix. Its joint distribution function F(µ,Σ,ω) can be written as follows:

F(µ,Σ,ω)(x) = G(0,P,ω)

[(
xi − µi

σi

)
i∈I

]
, x = (xi)i∈I ∈ RI . (2)

For each i ∈ I , its margin Xi admits D
(
µi, σ2

i ,ωi
)

with a marginal distribution function

Fi;(µi ,σ2
i ,ωi)

given by Fi;(µi ,σ2
i ,ωi)

(xi) = Gi;ωi

(
xi−µi

σi

)
, xi ∈ R, where Gi;ωi = Gi;(0,1,ωi)

is the

marginal distribution function of Zi ∼ D(0, 1,ωi).2

It is worth noting that P is the common Pearson’s correlation matrix of Z and X due to
the invariance property of Pearson’s correlation coefficient ρ under any increasing linear
transformation. To overcome its incapability to capture nonlinear dependence, we can
employ a rank-based correlation coefficient, namely, Kendall’s τ. In contrast to Pearson’s ρ,
Kendall’s τ is invariant under any increasing transformation, which is linear or nonlinear.
The similarity between these two correlation coefficients is that they measure dependence
in the entire values of the random variables of interest. When dealing with systemic risk
quantification by considering the extreme or distressing event of the conditioning random
variable, we prefer to measure dependence only in their tails or extreme parts. We can do
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this using tail dependence coefficients. For all i, j ∈ I , i 6= j, the coefficients of lower and
upper tail dependence between Xi and Xj are defined as follows (Embrechts et al. 2003b):3

λL
ij;θij

= lim
u→0+

P
({

Xj < F−1
j;θj

(u)
} ∣∣∣ {Xi < F−1

i;θi
(u)
})

, (3)

λU
ij;θij

= lim
u→1−

P
({

Xj > F−1
j;θj

(u)
} ∣∣∣ {Xi > F−1

i;θi
(u)
})

, (4)

respectively, provided that the limits exist. We can say that λL
ij;θij

(λU
ij;θij

) measures the
tendency of their lower (upper) extreme events to take place simultaneously. Similarly to
Kendall’s τ, the coefficients of lower and upper tail dependence are invariant under any
increasing transformation (Embrechts et al. 2003b).

2.1. Benchmark Models

One commonly assumes that Z, which determines X in Equation (1), obeys a stan-
dardized I-variate normal distribution, i.e., Z ∼ NI(0, P), with a joint distribution function
NG(0,P) = Φ(0,P) given by

Φ(0,P)(z) =
∫
· · ·

∫
Ś

i∈I
(−∞,zi ]

1√
(2π)I |P|

e−
1
2 w>P−1w dw, z = (zi)i∈I ∈ RI , (5)

where P ∈ (−1, 1)I×I . This assumption leads to X ∼ NI(µ, Σ) that has the following joint
distribution function:

NF(µ,Σ)(x) = Φ(0,P)

[(
xi − µi

σi

)
i∈I

]
=
∫
· · ·

∫
Ś

i∈I
(−∞,xi ]

1√
(2π)I |Σ|

e−
1
2 (w−µ)

>Σ−1(w−µ) dw, x = (xi)i∈I ∈ RI .
(6)

Proposition 1 (Tong 1990). Let X = (Xi)i∈I ∼ NI(µ, Σ). For each K ∈ N, K < I, if

X =

(
X1
X2

)
, µ =

(
µ1
µ2

)
, and Σ =

(
Σ11 Σ12
Σ21 Σ22

)
such that X1 ∼ NK(µ1, Σ11) and X2 ∼

NI−K(µ2, Σ22), then for all x1 ∈ RK, X2 | {X1 = x1} ∼ NI−K

(
µ2|1, Σ2|1

)
, where µ2|1 =

µ2 + Σ21 Σ−1
11 (x1 − µ1) and Σ2|1 = Σ22 − Σ21 Σ−1

11 Σ12.

For each i ∈ I , the random variable Xi obeys a univariate normal distribution
N
(
µi, σ2

i
)

and has a zero skewness and a zero excess-kurtosis. This suggests its incapability
to accommodate asymmetric and leptokurtic returns. For all i, j ∈ I , i 6= j, the random
variables Xi and Xj are distributed according to a bivariate normal distribution N2(µij, Σij)

and have Kendall’s correlation coefficient Nτij;ρij =
2
π sin−1(ρij) (McNeil et al. 2015). The

coefficient NλL
ij of their lower tail dependence can be derived as follows:

NλL
ij = 2 lim

u→0+
Φ

Φ−1(u)− ρij Φ−1(u)√
1− ρ2

ij

 = 2 lim
u→0+

Φ

(
Φ−1(u)

√
1− ρij

1 + ρij

)
= 0,

where Φ = Φ(0,1) is the distribution function of a standardized univariate normal distribu-
tion. Similarly, we can derive NλU

ij = 0. This means that the above normal model exhibits
lower and upper tail independence. In other words, extreme returns comove independently
under the normality assumption.
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As an alternative, one can consider Z derived through the following transformation:

Z =
1√
Q

Y, (7)

where Y = (Yi)i∈I denotes a random vector obeying NI(0, P), and Q is a random variable
having a scaled chi-square distribution, with a shape parameter ν ∈ (2, ∞) denoting degrees
of freedom and a scale parameter ν− 2; that is, Q ∼ χ2(ν, ν− 2). Assuming that they are
independent, we find Z to follow a standardized I-variate Student’s t distribution, with
Pearson’s correlation matrix P and degrees of freedom ν; that is, Z ∼ TI(0, P, ν) (Demarta
and McNeil 2005; Ding 2016; Nadarajah and Kotz 2005). Its joint distribution function
TG(0,P,ν) = T(0,P,ν) is given by

T(0,P,ν)(z) =
∫
· · ·

∫
Ś

i∈I
(−∞,zi ]

Γ( ν+I
2 )

Γ( ν
2 )
√
[(ν− 2)π]I |P|

(
1 +

w>P−1w
ν− 2

)− ν+I
2

dw, z ∈ RI , (8)

where Γ denotes the gamma function defined by Γ(a) =
∫
R+

wa−1 e−w dw, a ∈ R+. As a
result, we have X ∼ TI(µ, Σ, ν) with the following joint distribution function:

TF(µ,Σ,ν)(x)

= T(0,P,ν)

[(
xi − µi

σi

)
i∈I

]

=
∫
· · ·

∫
Ś

i∈I
(−∞,xi ]

Γ( ν+I
2 )

Γ( ν
2 )
√
[(ν− 2)π]I |Σ|

[
1 +

(w− µ)>Σ−1(w− µ)
ν− 2

]− ν+I
2

dw, x ∈ RI .

(9)

Remark 1. In this study, we set Q ∼ χ2(ν, ν− 2), with a distribution function proportional to∫
(−∞,q] w

ν
2−1 e−

1
2 (ν−2)w dw, q ∈ R+, to ensure that the resulting random vector Z has a standard-

ized joint distribution, more specifically a standardized multivariate Student’s t distribution, with
Pearson’s correlation matrix P. This assumption results in a multivariate Student’s t distribution
for the random vector X with the same Pearson’s correlation matrix P and a covariance matrix
Cov(X, X) = Σ. This proposed multivariate Student’s t distribution is different from the one
discussed in previous studies (e.g., Demarta and McNeil 2005; Ding 2016; Nadarajah and Kotz
2005). More specifically, these studies considered Q ∼ χ2(ν, ν), with a distribution function pro-
portional to

∫
(−∞,q] w

ν
2−1 e−

1
2 νw dw, q ∈ R+, resulting in a multivariate Student’s t distribution

with Pearson’s correlation matrix ν
ν−2 P 6= P and a covariance matrix ν

ν−2 Σ 6= Σ.

Proposition 2 (Ding 2016). Let X = (Xi)i∈I ∼ TI(µ, Σ, ν). For each K ∈ N, K < I, if

X =

(
X1
X2

)
, µ =

(
µ1
µ2

)
, and Σ =

(
Σ11 Σ12
Σ21 Σ22

)
such that X1 ∼ TK(µ1, Σ11, ν) and X2 ∼

TI−K(µ2, Σ22, ν), then for all x1 ∈ RK, X2 | {X1 = x1} ∼ TI−K

(
µ2|1, Σ2|1, ν + K

)
, with

µ2|1 = µ2 + Σ21 Σ−1
11 (x1 − µ1) and Σ2|1 =

ν+(x1−µ1)
>Σ−1

11 (x1−µ1)−2
ν+K−2

(
Σ22 − Σ21 Σ−1

11 Σ12

)
.4

For each i ∈ I , Xi is distributed according to T
(
µi, σ2

i , ν
)

and has a zero skew-
ness, which is only defined if ν ∈ (3, ∞), and an excess kurtosis equal to 6

ν−4 , which
is only defined when ν ∈ (4, ∞). These moments (and other statistical properties) are
controlled by the same degrees of freedom ν for each margin, indicating its inflexibility
to capture asymmetric and leptokurtic returns. For all i, j ∈ I , i 6= j, Xi and Xj admits
T2(µij, Σij, ν) and have Kendall’s Tτij;ρij equal to 2

π sin−1(ρij), as the normal model pos-
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sesses (McNeil et al. 2015). The coefficient TλL
ij;(ρij ,ν)

of their lower tail dependence can be

obtained as follows:

TλL
ij;(ρij ,ν)

= 2 lim
u→0+

Tν+1

T−1
ν (u)− ρij T−1

ν (u)√
1− ρ2

ij

√
ν− 1

ν + T−1
ν (u)

2 − 2



= 2 lim
u→0+

Tν+1

 T−1
ν (u)∣∣∣T−1
ν (u)

∣∣∣
√√√√1− ρij

1 + ρij
× ν− 1

ν−2
T−1

ν (u)
2 + 1


= 2Tν+1

(
−
√

1− ρij

1 + ρij
(ν− 1)

)
,

where Tν = T(0,1,ν) is the distribution function of a standardized univariate Student’s t
distribution, with degrees of freedom ν. Similarly, we can find TλU

ij;(ρij ,ν)
= TλL

ij;(ρij ,ν)
.5

This suggests that the above Student’s t model exhibits lower and upper tail dependence.
It is noteworthy that if ν → ∞, then TI(µ, Σ, ν) → NI(µ, Σ), in line with the fact that
TλL

ij;(ρij ,ν)
→ 0 = NλL

ij and TλU
ij;(ρij ,ν)

→ 0 = NλU
ij .

2.2. Johnson’s Models

To find a more appropriate distribution for Z (and for X), we follow Johnson (1949)
to propose a set of transformations (or in Johnson’s terminology, translations) with the
following general form:

Yi = γi + δi h
(

Zi − ζi
ηi

)
, i ∈ I , (10)

or equivalently

Zi = ζi + ηi h−1
(

Yi − γi
δi

)
, i ∈ I , (11)

for some monotone real-valued function h (called the translation function), location pa-
rameter vector ζ = (ζi)i∈I ∈ RI , scale parameter vector η = (ηi)i∈I ∈ RI

+, and shape
parameter vectors γ = (γi)i∈I ∈ RI and δ = (δi)i∈I ∈ RI

+ such that Y = (Yi)i∈I is
a random vector obeying NI(0, P). It is hoped that the translation function h preserves
the theoretical importance and advantages of the (multivariate) normal distribution while
eliminating its drawbacks (Johnson 1949). The monotonicity of h is required to ensure
the existence of h−1 and thus make the statistical properties of Z analytically tractable. In
particular, if h is increasing, we can verify that its joint distribution function is given by

G(ζ,η,γ,δ,P)(z) = Φ(0,P)

[(
γi + δi h

(
zi − ζi

ηi

))
i∈I

]
, z ∈ RI . (12)

Furthermore, we can obtain the quantile function of Zi as follows:

G−1
i;(ζi ,ηi ,γi ,δi)

(α) = ζi + ηi h−1
(

Φ−1(α)− γi
δi

)
, α ∈ (0, 1). (13)

By choosing any translation function h, we can define a multiply infinite system of
distributions. In particular, Johnson (1949) considered three types of increasing translation
function h, resulting in three special systems of distributions described as follows.
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1. System of Bounded Distributions (SB)
This system is derived using h : (0, 1)→ R, with h(z) = ln( z

1−z ) and h−1(y) = ey

1+ey .
The resulting distribution for Zi is bounded since

Zi = ζi + ηi
e

Yi−γi
δi

1 + e
Yi−γi

δi

∈ (ζi, ζi + ηi). (14)

2. System of Lognormal Distributions (SL)
This system is constructed using h : R+ → R, with h(z) = ln(z) and h−1(y) = ey. The
resulting distribution for Zi is bounded from below since

Zi = ζi + ηi e
Yi−γi

δi ∈ (ζi, ∞). (15)

3. System of Unbounded Distributions (SU)

This system is determined using h : R→ R, with h(z) = sinh−1(z) = ln
(

z +
√

1 + z2
)

and h−1(y) = sinh(y) = 1
2 (e

y − e−y). The resulting distribution for Zi is unbounded
since

Zi = ζi + ηi sinh
(

Yi − γi
δi

)
∈ (−∞, ∞). (16)

In this study, since we focus on modeling financial returns defined on the entire real number
line R = (−∞, ∞), we choose Johnson’s SU translation function. This choice implies that
the random vector Z = (Zi)i∈I is said to admit an I-variate Johnson’s SU distribution,
parameterized by ζ, η, γ, δ, and P; see Johnson (1949), Choi and Nam (2008), Choi et al.
(2012), and van Dorp and Jones (2020). We can find that

E(Zi) = ζi − ηi e
1

2δ2
i sinh

(
γi
δi

)
, (17)

V(Zi) =
1
2

η2
i

(
e

1
δ2
i − 1

)[
e

1
δ2
i cosh

(
2

γi
δi

)
+ 1

]
, (18)

with cosh(a) = 1
2 (e

a + e−a). Following the work of Hakim et al. (2022), we set ζi = ζ(γi, δi)

= η(γi, δi) e
1

2δ2
i sinh

(
γi
δi

)
, ηi = η(γi, δi) =

{
1
2

(
e

1
δ2
i − 1

)[
e

1
δ2
i cosh

(
2 γi

δi

)
+ 1

]}− 1
2

, with

ζ(·, ·), η(·, ·) : R×R+ → R, to obtain a standardized I-variate Johnson’s SU distribution
for Z written by Z ∼ J SU

I
(
0, SUP,γ,δ

)
. Accordingly, the random vector X defined in

Equation (1) follows J SU
I
(
µ, SUΣ,γ,δ

)
, with a joint distribution function SUF(µ,SUΣ,γ,δ)

given by

SUF(µ,SUΣ,γ,δ)(x) = Φ(0,P)

[(
γi + δi sinh−1

( xi−µi
σi
− ζ(γi, δi)

η(γi, δi)

))
i∈I

]
, x ∈ RI , (19)

where SUΣ =
(
D

1
2
)(SUP

)(
D

1
2
)
.

For each i ∈ I , Xi has finite moments for all orders. In particular, its skewness ξi and
excess kurtosis κi can be expressed as follows (Hakim et al. 2022):

ξi = −2ζ(γi, δi)
3 +

3
2

ζ(γi, δi) η(γi, δi)
2

[
e

2
δ2
i cosh

(
2

γi
δi

)
− 1

]

− 1
4

η(γi, δi)
3 e

1
2δ2

i

[
e

4
δ2
i sinh

(
3

γi
δi

)
− 3 sinh

(
γi
δi

)]
,

(20)
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κi = −3− 3ζ(γi, δi)
4 + 3ζ(γi, δi)

2 η(γi, δi)
2

[
e

2
δ2
i cosh

(
2

γi
δi

)
− 1

]

− ζ(γi, δi) η(γi, δi)
3 e

1
2δ2

i

[
e

4
δ2
i sinh

(
3

γi
δi

)
− 3 sinh

(
γi
δi

)]

+
1
8

η(γi, δi)
4

[
e

8
δ2
i cosh

(
4

γi
δi

)
− 4e

2
δ2
i cosh

(
2

γi
δi

)
+ 3

]
,

(21)

whose values are controlled by γi and δi, respectively, (Choi and Nam 2008). More specif-
ically, ξi < 0 for all (γi, δi) ∈ R+ × R+, ξi = 0 for all (γi, δi) ∈ {0} × R+, and ξi > 0
for all (γi, δi) ∈ R− × R+. Furthermore, κi > 0 for all (γi, δi) ∈ R× R+. This suggests
that Johnson’s SU model is a suitable choice for more flexibly modeling asset returns that
frequently exhibit asymmetry and leptokurticity. For all i, j ∈ I , Pearson’s correlation
coefficient SUρij;(ρij ,γij ,δij)

between Xi and Xj, which is the entry of Pearson’s correlation

matrix SUP, is different from the entry ρij of P due to the nonlinearity of the translation
function h = sinh−1. These are related through the following formula (Hakim et al. 2022):

SUρij;(ρij ,γij ,δij)
=

1
2

η(γi, δi) η(γj, δj) e
1

2(δ2
i +δ2

j )

×
[(

e
ρij
δiδj − 1

)
cosh

(
γi
δi

+
γj

δj

)
−
(

e
−

ρij
δiδj − 1

)
cosh

(
γi
δi
−

γj

δj

)]
.

(22)

However, since h = sinh−1 is increasing and δi is positive, Johnson’s SU translation (16)
leads us to have Kendall’s correlation coefficient SUτij;(ρij ,γij ,δij)

= Nτij;ρij =
2
π sin−1(ρij)

and the following lower and upper tail dependence coefficients: SUλL
ij =

NλL
ij = 0 and

SUλU
ij =

NλU
ij = 0. This indicates the incapability of Johnson’s SU model to accommodate

tail dependence in both lower and upper tails, as the normal model does.

2.3. Copulas

More sophisticated multivariate risk models can be constructed using another ap-
proach based on the so-called copula defined as follows.

Definition 1 (McNeil et al. 2015). An I-variate copula is a joint distribution function, restricted
to [0, 1]I , for a vector of I random variables uniformly distributed over [0, 1].

From the above definition, we can denote an I-variate copula for a random vector
U = (Ui)i∈I as a function Cϑ : [0, 1]I → [0, 1], with6

Cϑ(u) = P
(
{Ui ≤ ui}i∈I

)
, u = (ui)i∈I ∈ [0, 1]I , (23)

characterized by a parameter ϑ. For a given vector X = (Xi)i∈I of continuous random
variables, with a joint distribution function Fθ and marginal distribution functions Fi;θi ,
i ∈ I , we can find that Fi;θi (Xi) ∼ U (0, 1), i ∈ I , known as the probability integral trans-
form. This implies that there exists a copula Cϑ that can determine the joint distribution
function Fθ. Conversely, for a given vector U = (Ui)i∈I of random variables following
U (0, 1) with a copula Cϑ, and for specified continuous marginal distribution functions
Fi;θi , i ∈ I , we can verify that F−1

i;θi
(Ui), i ∈ I , are continuous random variables, whose

marginal distribution functions are Fi;θi , i ∈ I ; this is known as the inverse probability
integral transform. Consequently, there exists a joint distribution function Fθ for such
random variables. These notions were introduced by Sklar (1959), as completely stated in
the following theorem.
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Theorem 1 (Sklar 1959). If Fθ is a continuous I-variate distribution function with marginal
distribution functions Fi;θi , i ∈ I , then there uniquely exists an I-variate copula Cϑ such that

Fθ(x) = Cϑ
[(

Fi;θi (xi)
)

i∈I

]
, x = (xi)i∈I ∈ RI . (24)

Conversely, if Cϑ is an I-variate copula, and Fi;θi , i ∈ I , are continuous univariate distribution
functions, then the function Fθ defined in Equation (24) is an I-variate distribution function with
marginal distribution functions Fi;θi , i ∈ I .

We see from Equation (24) that the distribution function Fθ can be determined using
a composition of the copula Cϑ and the marginal distribution functions Fi;θi , i ∈ I . This
means that Cϑ represents the dependence structure of random variables having a joint
distribution function Fθ. This copula has the following expression:

Cϑ(u) = Fθ
[(

F−1
i;θi

(ui)
)

i∈I

]
, u = (ui)i∈I ∈ [0, 1]I . (25)

Based on the above formula, an I-variate copula can be constructed from a given I-variate
distribution function and its margins; this is known as the inversion copula. According to
the second part of Sklar’s Theorem 1, this copula can be employed to determine another
I-variate distribution function when given some margins. Due to the invariance properties
of Kendall’s correlation coefficient and tail dependence coefficients under any increasing
transformation, these coefficients are preserved in the resulting copula Cϑ.

In this study, the copulas we take into consideration are the members of the elliptical
copula family. Two popular members of this copula family are the following:

1. Gaussian or normal copula NCP, which is derived from NI(0, P) as follows:

NCP(u) = Φ(0,P)

[(
Φ−1(ui)

)
i∈I

]
, u ∈ [0, 1]I ; (26)

2. Student’s t copula TC(P,ν), which is obtained from TI(0, P, ν) as follows:7

TC(P,ν)(u) = T(0,P,ν)

[(
T−1

ν (ui)
)

i∈I

]
, u ∈ [0, 1]I . (27)

For all i, j ∈ I , due to the invariance properties of Kendall’s correlation coefficient and
tail dependence coefficients under any increasing transformation, the normal copula has
the coefficients of Nτij;ρij =

2
π sin−1(ρij) and NλL

ij =
NλU

ij = 0, as the normal distribution
possesses. Similar to Student’s t distribution, Student’s t copula has the coefficients of

Tτij;ρij =
2
π sin−1(ρij) and TλL

ij;(ρij ,ν)
= TλU

ij;(ρij ,ν)
= 2Tν+1

(
−
√

1−ρij
1+ρij

(ν− 1)
)

.8 If ν → ∞,

we have TC(P,ν) → NCP, in line with evidence that TI(µ, Σ, ν)→ NI(µ, Σ).
Note that if we construct an I-variate normal copula NCP with normal margins

N
(
µi, σ2

i
)
, i ∈ I , then the resulting distribution is NI(µ, Σ), as discussed in Section 2.1.

Furthermore, if we combine an I-variate normal copula NCP and Johnson’s SU margins
J SU(µi, σ2

i , γi, δi
)
, i ∈ I , we then derive J SU

I
(
µ, SUΣ,γ,δ

)
, as described in Section 2.2.

Therefore, this study considers four copula-based multivariate models provided in the
following proposition.

Proposition 3. Let NCP and TC(P,ν) symbolize an I-variate normal and Student’s t copulas,
respectively.

1. A combination of the normal copula NCP and Student’s t margins T
(
µi, σ2

i , νi
)
, i ∈ I ,

results in an I-variate model with the following joint distribution function:

N−TFθ(x) = Φ(0,P)

[(
Φ−1 ◦ Tνi

(
xi − µi

σi

))
i∈I

]
, x ∈ RI . (28)
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2. A combination of Student’s t copula TC(P,ν) and normal margins N
(
µi, σ2

i
)
, i ∈ I , results

in an I-variate model with the following joint distribution function:

T−NFθ(x) = T(0,P,ν)

[(
T−1

ν ◦Φ

(
xi − µi

σi

))
i∈I

]
, x ∈ RI . (29)

3. A combination of Student’s t copula TC(P,ν) and Student’s t margins T
(
µi, σ2

i , νi
)
, i ∈ I ,

results in an I-variate model with the following joint distribution function:9

T−TFθ(x) = T(0,P,ν)

[(
T−1

ν ◦ Tνi

(
xi − µi

σi

))
i∈I

]
, x ∈ RI . (30)

4. A combination of Student’s t copula TC(P,ν) and Johnson’s SU margins J SU(µi, σ2
i , γi, δi

)
,

i ∈ I , results in an I-variate model with the following joint distribution function:

T−SUFθ(x)

= T(0,P,ν)

{(
T−1

ν ◦Φ

[
γi + δi sinh−1

( xi−µi
σi
− ζ(γi, δi)

η(γi, δi)

)])
i∈I

}
, x ∈ RI .

(31)

Overall, the seven models proposed in this study are summarized in Table 1. We see
that Model 7 constructed using Student’s t copula and Johnson’s SU margins has the most
complete ability to capture asymmetry, leptokurticity, and tail dependence.

Table 1. Seven multivariate models.

Model Abbreviation Asymmetry Leptokurticity Tail Dependence

1 Normal N No No No
2 Student’s t T No Yes Yes
3 Johnson’s SU SU Yes Yes No
4 Normal copula with Student’s t margins N–T No Yes No
5 Student’s t copula with normal margins T–N No No Yes
6 Student’s t copula with Student’s t margins T–T No Yes Yes
7 Student’s t copula with Johnson’s SU margins T–SU Yes Yes Yes

Student’s t copula and Student’s t margins constructing Model 6 have different degrees of freedom. The last three
columns indicate the ability of each model to capture asymmetry, leptokurticity, and tail dependence structure.

3. MCoVaR Formulation

For each i ∈ I , we measure asset i’s tail risk at a specified significance level αi ∈ (0, 1)
using the VaR risk measure we denote by VaRαi (Xi;θi) = VaRαi

i (θi) or simply VaRαi (Xi) =
VaRαi

i . It satisfies the coverage probability equation P
{
−Xi ≤ VaRαi

i
}
= 1− αi or equiva-

lently P
{

Xi ≤ −VaRαi
i
}
= αi, and thus equals

VaRαi
i = −F−1

i;(µi ,σ2
i ,ωi)

(αi) = −µi − σi G−1
i;ωi

(αi). (32)

Given the distressing event
{

Xi = −VaRαi
i
}

of asset i at the αi level, Adrian and Brunner-
meier (2016) introduced CoVaR, defined by

CoVaR
αj
j|i

(
θ

αi
j|i

)
= CoVaR

αj |αi
j|i = VaRαj

(
Xj
∣∣ {Xi = −VaRαi

i
})

, (33)

to measure asset j’s tail risk at another fixed significance level αj ∈ (0, 1). The corresponding

∆CoVaR equal to CoVaR
αj |αi
j|i − CoVaR

αj |50%
j|i can be used to quantify the change in asset

j’s tail risk if asset i moves from a normal state to a distressing situation. However, these
measures only account for potential systemic risk transmissions across each pair of targeted
asset j and conditioning asset i by disregarding the remaining assets. Instead of involving
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asset i only, we prefer to account for the joint conditioning events of multiple assets
by adopting the (∆)MCoVaR systemic risk measure of Bernardi and Petrella (2015) and
Bernardi et al. (2017). For simplicity in formulating the (∆)MCoVaR, we introduce the
following notations:

• For a given index set I = {1, 2, . . . , I}, we denote I \{j} by I\j or simply \j for all
j ∈ I .

• For a given matrix A = (akl)k∈I1,l∈I2
, we denote (akj)k∈I ∗1

and (akl)k∈I ∗1 ,l∈I ∗2
by

AI ∗1 ,j and AI ∗1 ,I ∗2
, respectively, for all j ∈ I2, I ∗1 ⊆ I1, and I ∗2 ⊆ I2.

• For a given function h : A → B, we denote
(
h(akl)

)
k∈I1,l∈I2

by h(A) for all

A = (akl)k∈I1,l∈I2
∈ AI1×I2 .

Definition 2 (Bernardi and Petrella 2015; Bernardi et al. 2017). Let X = (Xi)i∈I . For each
j ∈ I , suppose that I\j = I D

\j ∪ I N
\j such that I D

\j ∩ I N
\j = ∅. For all αj ∈ (0, 1) and

αD
\j = (αi)i∈I D

\j
∈ (0, 1)

∣∣∣I D
\j

∣∣∣, the MCoVaR of Xj at the αj level is defined by10

MCoVaR
αj
j|\j

(
θ
αD
\j ,50%

j|\j

)
= MCoVaR

αj |αD
\j ,50%

j|\j

= VaRαj

(
Xj

∣∣∣∣∣ {Xi = −VaRαi
i
}

i∈I D
\j

⋂{
Xk = −VaR50%

k

}
k∈I N

\j

)
,

(34)

which has the following conditional coverage probability:

P

({
Xj ≤ −MCoVaR

αj |αD
\j ,50%

j|\j

} ∣∣∣∣ {Xi = −VaRαi
i
}

i∈I D
\j

⋂{
Xk = −VaR50%

k

}
k∈I N

\j

)
= αj.

(35)

The corresponding ∆MCoVaR is defined as the difference

∆MCoVaR
αj |αD

\j ,50%

j|\j = MCoVaR
αj |αD

\j ,50%

j|\j −MCoVaR
αj |50%,50%
j|\j . (36)

Remark 2. MCoVaR was first introduced by Cao (2013) by assuming that I D
\j = I\j; that is, all

assets, except for targeted asset j, are jointly distressed. Meanwhile, Torri et al. (2021) proposed
MCoVaR by taking I D

\j = {i} and I N
\j = I \{i, j} into consideration.

We can say that the MCoVaR in Equation (34) measures asset j’s tail risk under the
condition that all the assets in I D

\j are jointly in distress and that all the assets in I N
\j

are jointly in their median or normal states. Meanwhile, the ∆MCoVaR in Equation (36)
quantifies the joint systemic risk contributions of all the assets in I D

\j to the targeted asset j.
These systemic risk measures can be derived by determining and inverting the conditional
distribution function Fj|\j;θj|\j

of Xj, given the joint conditioning events involving the vector
X\j = (Xi)i∈I\j

of the remaining random variables; that is,

MCoVaR
αj |αD

\j ,50%

j|\j = −F−1
j|\j;θj|\j

(αj | ·). (37)

In this study, we perform the MCoVaR formulation when the asset returns are modeled
using classical multivariate risk models, including multivariate normal and Student’s t
benchmark models and a multivariate Johnson’s SU model. Some multivariate copulas
with normal, Student’s t, or Johnson’s SU margins are also taken into consideration.
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3.1. MCoVaR Based on Benchmark Models

The following theorems provide analytic MCoVaR formulas determined based on
two benchmark models distributed according to multivariate normal and Student’s t
distributions. While previous studies (e.g., Bernardi and Petrella 2015; Bernardi et al. 2017;
Torri et al. 2021) directly partitioned the covariance matrices of these models, this study
considers the partitions of their correlation matrices, resulting in simpler formulas.

Theorem 2. Let X = (Xi)i∈I ∼ NI(µ, Σ), as determined by Z = (Zi)i∈I ∼ NI(0, P) through
Equation (1). For all j ∈ I and αj ∈ (0, 1), the MCoVaR of Xj at the αj level, defined in
Definition 2, is given by

NMCoVaR
αj |αD

\j ,50%

j|\j = −µj − σj

(
Pj,\j P−1

\j,\j

)
I D
\j

Φ−1
(
αD
\j

)
− σj

√
1− Pj,\j P−1

\j,\j P\j,j Φ−1(αj).

(38)

Proof. Suppose that all the entries of Z ∼ NI(0, P) are rearranged and partitioned as fol-
lows: (

Zj
Z\j

)
∼ NI

[(
0
0

)
,

(
1 Pj,\j

P\j,j P\j,\j

)]
. (39)

According to Proposition 1, for all z\j ∈ RI−1, we obtain

Zj

∣∣∣ {Z\j = z\j

}
∼ N

(
Pj,\j P−1

\j,\j z\j, 1− Pj,\j P−1
\j,\j P\j,j

)
. (40)

For all x\j = (xk)k∈I\j
∈ RI−1, the conditional random variable Xj

∣∣∣ {X\j = x\j

}
is distri-

butionally equal to µj + σj Zj

∣∣∣ {Z\j = z\j

}
, with z\j =

(
xk−µk

σk

)
k∈I\j

. Therefore, we find

that it obeys N
[
µj + σj Pj,\j P−1

\j,\j z\j, σ2
j

(
1− Pj,\j P−1

\j,\j P\j,j

)]
. Its conditional quantile at

the αj level is given by

NF−1
j|\j;θj|\j

(
αj

∣∣∣ x\j

)
= µj + σj Pj,\j P−1

\j,\j z\j + σj

√
1− Pj,\j P−1

\j,\j P\j,j Φ−1(αj).

By substituting xk = −NVaRαk
k = µk + σk Φ−1(αk) for all k ∈ I D

\j and xk = −NVaR50%
k = µk

for all k ∈ I N
\j , we obtain the MCoVaR of Xj, as presented in Equation (38).

Theorem 3. Let X = (Xi)i∈I ∼ TI(µ, Σ, ν), as determined by Z = (Zi)i∈I ∼ TI(0, P, ν)
through Equation (1). For all j ∈ I and αj ∈ (0, 1), the MCoVaR of Xj at the αj level, defined in
Definition 2, is given by

TMCoVaR
αj |αD

\j ,50%

j|\j

= −µj − σj

(
Pj,\j P−1

\j,\j

)
I D
\j

T−1
ν

(
αD
\j

)

− σj

√√√√√ν + T−1
ν

(
αD
\j

)>
P−1

I D
\j ,I D

\j
T−1

ν

(
αD
\j

)
− 2

ν + I − 3

(
1− Pj,\j P−1

\j,\j P\j,j

)
T−1

ν+I−1(αj).

(41)

Proof. Suppose that all the entries of Z ∼ TI(0, P, ν) are rearranged and partitioned as
follows: (

Zj
Z\j

)
∼ TI

[(
0
0

)
,

(
1 Pj,\j

P\j,j P\j,\j

)
, ν

]
. (42)
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Based on Proposition 2, for all z\j ∈ RI−1, we obtain

Zj

∣∣∣ {Z\j = z\j

}
∼ T

Pj,\j P−1
\j,\j z\j,

ν + z>\j P−1
\j,\j z\j − 2

ν + I − 3

(
1− Pj,\j P−1

\j,\j P\j,j

)
, ν + I − 1

. (43)

For all x\j = (xk)k∈I\j
∈ RI−1, we find Xj

∣∣∣ {X\j = x\j

}
to be distributionally equal to

µj + σj Zj

∣∣∣ {Z\j = z\j

}
, where z\j =

(
xk−µk

σk

)
k∈I\j

. Thus, we obtain that Xj

∣∣∣ {X\j = x\j

}
follows

T

µj + σj Pj,\j P−1
\j,\j z\j,

ν + z>\j P−1
\j,\j z\j − 2

ν + I − 3
σ2

j

(
1− Pj,\j P−1

\j,\j P\j,j

)
, ν + I − 1

.

Its conditional quantile at the αj level is given by

TF−1
j|\j;θj|\j

(
αj

∣∣∣ x\j

)
= µj + σj Pj,\j P−1

\j,\j z\j

+ σj

√
ν + z>\j P−1

\j,\j z\j − 2

ν + I − 3

(
1− Pj,\j P−1

\j,\j P\j,j

)
T−1

ν+I−1(αj).

By substituting xk = −TVaRαk
k = µk + σk T−1

ν (αk) for all k ∈ I D
\j and xk = −TVaR50%

k = µk

for all k ∈ I N
\j , we derive the MCoVaR of Xj, as given in Equation (41).

3.2. MCoVaR Based on Johnson’s SU Models

To formulate the MCoVaR under Johnson’s SU distributional assumption, we first
determine the conditional distribution of Johnson’s SU models as follows.

Proposition 4 (Hakim et al. 2022). Let X = (Xi)i∈I ∼ J SU
I
(
µ, SUΣ,γ,δ

)
, as determined by

Y = (Yi)i∈I ∼ NI(0, P) through Equation (1) and Johnson’s SU transform (16). For all j ∈ I

and x\j ∈ RI−1, the conditional distribution of Xj

∣∣∣ {X\j = x\j

}
is J SU

(
µj|\j, σ2

j|\j, γj|\j, δj|\j

)
,

where

µj|\j = µj + σj

[
ζ(γj, δj)− η(γj, δj) e

1
2(δj|\j)

2
sinh

(
γj|\j

δj|\j

)]
, (44)

σ2
j|\j =

1
2

σ2
j η(γj, δj)

2

(
e

1
(δj|\j)

2
− 1

)[
e

1
(δj|\j)

2
cosh

(
2

γj|\j

δj|\j

)
+ 1

]
, (45)

γj|\j =
γj − Pj,\j P−1

\j,\j y\j√
1− Pj,\j P−1

\j,\j P\j,j

, δj|\j =
δj√

1− Pj,\j P−1
\j,\j P\j,j

, (46)

with

y\j =

(
γk + δk sinh−1

( xk−µk
σk
− ζ(γk, δk)

η(γk, δk)

))
k∈I\j

. (47)

Proof. Suppose that all the entries of Y ∼ NI(0, P) are rearranged and partitioned as
in Equation (39) such that Yj

∣∣∣ {Y\j = y\j

}
∼ N

(
Pj,\j P−1

\j,\j y\j, 1− Pj,\j P−1
\j,\j P\j,j

)
for all
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y\j ∈ RI−1. This implies that, for all x\j ∈ RI−1, the conditional distribution function of

Xj

∣∣∣ {X\j = x\j

}
is given by

SUFj|\j;θj|\j

(
xj

∣∣∣ x\j

)
= P

({
Xj ≤ xj

} ∣∣∣ {X\j = x\j

})
= P

Yj ≤ γj + δj sinh−1

 xj−µj
σj
− ζ(γj, δj)

η(γj, δj)


∣∣∣∣∣∣
{

Y\j = y\j

}

= Φ


γj + δj sinh−1

 xj−µj
σj
−ζ(γj ,δj)

η(γj ,δj)

− Pj,\j P−1
\j,\j y\j√

1− Pj,\j P−1
\j,\j P\j,j


= Φ

 γj − Pj,\j P−1
\j,\j y\j√

1− Pj,\j P−1
\j,\j P\j,j

+
δj√

1− Pj,\j P−1
\j,\j P\j,j

sinh−1

 xj−µj
σj
− ζ(γj, δj)

η(γj, δj)

,

where y\j is provided in Equation (47). This shows that Xj

∣∣∣ {X\j = x\j

}
admits Johnson’s

SU distribution, with shape parameters γj|\j and δj|\j given in Equation (46). According to
Equations (17) and (18), its conditional mean µj|\j and conditional variance σ2

j|\j are derived
as in Equations (44) and (45), respectively.

The following theorem states an analytic MCoVaR formula determined based on the
above multivariate Johnson’s SU model.

Theorem 4. Let X = (Xi)i∈I ∼ J SU
I
(
µ, SUΣ,γ,δ

)
, as determined by Y = (Yi)i∈I ∼ NI(0, P)

through Equation (1) and Johnson’s SU transform (16). For all j ∈ I and αj ∈ (0, 1), the MCoVaR
of Xj at the αj level, defined in Definition 2, is given by

SUMCoVaR
αj |αD

\j ,50%

j|\j

= −µj − σj

ζ(γj, δj)− η(γj, δj) e
1

2(δj|\j)
2

sinh

γ
αD
\j ,50%

j|\j

δj|\j




− σj η(γj, δj)

√√√√√√1
2

(
e

1
(δj|\j)

2
− 1

)e
1

(δj|\j)
2

cosh

2
γ
αD
\j ,50%

j|\j

δj|\j

+ 1



×

ζ

(
γ
αD
\j ,50%

j|i,\j , δj|\j

)
+ η

(
γ
αD
\j ,50%

j|\j , δj|\j

)
sinh

Φ−1(αj)− γ
αD
\j ,50%

j|\j

δj|\j


,

(48)

where

γ
αD
\j ,50%

j|i,\j =

γj −
(

Pj,\j P−1
\j,\j

)
I D
\j

Φ−1
(
αD
\j

)
√

1− Pj,\j P−1
\j,\j P\j,j

, δj|\j =
δj√

1− Pj,\j P−1
\j,\j P\j,j

. (49)
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Proof. According to Proposition 4, the conditional quantile of Xj

∣∣∣ {X\j = x\j

}
at the αj

level is formulated as follows:

SUF−1
j|\j;θj|\j

(
αj

∣∣∣ x\j

)
= µj + σj

[
ζ(γj, δj)− η(γj, δj) e

1
2(δj|\j)

2
sinh

(
γj|\j

δj|\j

)]

+ σj η(γj, δj)

√√√√1
2

(
e

1
(δj|\j)

2
− 1

)[
e

1
(δj|\j)

2
cosh

(
2

γj|\j

δj|\j

)
+ 1

]

×
[

ζ
(

γj|i,\j, δj|\j

)
+ η

(
γj|\j, δj|\j

)
sinh

(
Φ−1(αj)− γj|\j

δj|\j

)]
,

where the two shape parameters γj|\j and δj|\j are given in Equation (46); these parame-

ters depend on y\j =

(
γk + δk sinh−1

(
xk−µk

σk
−ζ(γk ,δk)

η(γk ,δk)

))
k∈I\j

stated in Equation (47). If

we substitute xk = −SUVaRαk
k = µk + σk

[
ζ(γk, δk) + η(γk, δk) sinh

(
Φ−1(αk)−γk

δk

)]
for all

k ∈ I D
\j and xk = −SUVaR50%

k = µk + σk

[
ζ(γk, δk) + η(γk, δk) sinh

(
−γk

δk

)]
for all k ∈ I N

\j ,
we obtain the MCoVaR of Xj, as formulated in Equation (48).

3.3. MCoVaR Based on Copulas

In this subsection, we formulate the MCoVaR systemic risk measure by employing
elliptical copulas with normal, Student’s t, or Johnson’s SU margins. To accomplish this,
we first determine conditional copula functions and their inverse as follows.

Theorem 5. Let U = (Ui)i∈I be uniformly distributed over [0, 1]I , with a copula Cϑ.

1. If Cϑ = NCP is a normal copula, then for all j ∈ I and u\j ∈ [0, 1]I−1, the conditional

distribution function of Uj

∣∣∣ {U\j = u\j

}
and its inverse are given by

NCj|\j;ϑj|\j

(
uj

∣∣∣ u\j

)
= Φ

Φ−1(uj)− Pj,\j P−1
\j,\j Φ−1(u\j)√

1− Pj,\j P−1
\j,\j P\j,j

, uj ∈ [0, 1], (50)

and

NC−1
j|\j;ϑj|\j

(
αj

∣∣∣ u\j

)
= Φ

[
Pj,\j P−1

\j,\j Φ−1(u\j) +
√

1− Pj,\j P−1
\j,\j P\j,j Φ−1(αj)

]
,

αj ∈ [0, 1].
(51)

2. If Cϑ = TC(P,ν) is Student’s t copula, then for all j ∈ I and u\j ∈ [0, 1]I−1, the conditional

distribution function of Uj

∣∣∣ {U\j = u\j

}
and its inverse are formulated as follows:

TCj|\j;ϑj|\j

(
uj

∣∣∣ u\j

)

= Tν+I−1


T−1

ν (uj)− Pj,\j P−1
\j,\j T−1

ν (u\j)√
ν+T−1

ν (u\j)
>

P−1
\j,\j T−1

ν (u\j)−2
ν+I−3

(
1− Pj,\j P−1

\j,\j P\j,j

)
, uj ∈ [0, 1],

(52)
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and

TC−1
j|\j;ϑj|\j

(
αj

∣∣∣ u\j

)
= Tν

[
Pj,\j P−1

\j,\j T−1
ν (u\j)

+

√√√√ν + T−1
ν (u\j)

>
P−1
\j,\j T−1

ν (u\j)− 2

ν + I − 3

(
1− Pj,\j P−1

\j,\j P\j,j

)
T−1

ν+I−1(αj)

,

αj ∈ [0, 1].

(53)

Proof.

1. Based on the inverse probability integral transform, if U has a normal copula NCP, we
find that Φ−1(U) ∼ NI(0, P). By adopting Equations (39) and (40), we obtain

NCj|\j;ϑj|\j

(
uj

∣∣∣ u\j

)
= P

({
Uj ≤ uj

} ∣∣∣ {U\j = u\j

})
= P

({
Φ−1(Uj) ≤ Φ−1(uj)

} ∣∣∣ {Φ−1(U\j) = Φ−1(u\j)
})

= Φ

Φ−1(uj)− Pj,\j P−1
\j,\j Φ−1(u\j)√

1− Pj,\j P−1
\j,\j P\j,j

.

Its inverse is straightforward to derive.
2. According to the inverse probability integral transform, if U possesses Student’s t

copula TC(P,ν), we obtain T−1
ν (U) ∼ TI(0, P, ν). By using Equations (42) and (43), we

have

NCj|\j;ϑj|\j

(
uj

∣∣∣ u\j

)
= P

({
Uj ≤ uj

} ∣∣∣ {U\j = u\j

})
= P

({
T−1

ν (Uj) ≤ T−1
ν (uj)

} ∣∣∣ {T−1
ν (U\j) = T−1

ν (u\j)
})

= Tν+I−1


T−1

ν (uj)− Pj,\j P−1
\j,\j T−1

ν (u\j)√
ν+T−1

ν (u\j)
>

P−1
\j,\j T−1

ν (u\j)−2
ν+I−3

(
1− Pj,\j P−1

\j,\j P\j,j

)
.

Its inverse is straightforward to find.

Analytic MCoVaR formulas determined based on the above copulas are provided in
the following theorem.

Theorem 6. Let X = (Xi)i∈I have a joint distribution determined by a copula Cϑ and marginal

distribution functions Fi;(µi ,σ2
i ,ωi)

(xi) = Gi;ωi

(
xi−µi

σi

)
, xi ∈ R, i ∈ I .

1. If Cϑ = NCP is a normal copula, then for all j ∈ I and αj ∈ (0, 1), the MCoVaR of Xj at
the αj level, defined in Definition 2, is given by

N−XMCoVaR
αj |αD

\j ,50%

j|\j

= −µj − σj G−1
j;ωj
◦Φ

[(
Pj,\j P−1

\j,\j

)
I D
\j

Φ−1
(
αD
\j

)
+
√

1− Pj,\j P−1
\j,\j P\j,j Φ−1(αj)

]
.

(54)
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2. If Cϑ = TC(P,ν) is Student’s t copula, then for all j ∈ I and αj ∈ (0, 1), the MCoVaR of Xj
at the αj level, defined in Definition 2, is given by

T−XMCoVaR
αj |αD

\j ,50%

j|\j

= −µj − σj G−1
j;ωj
◦ Tν

[(
Pj,\j P−1

\j,\j

)
I D
\j

T−1
ν

(
αD
\j

)

+

√√√√√ν + T−1
ν

(
αD
\j

)>
P−1

I D
\j ,I D

\j
T−1

ν

(
αD
\j

)
− 2

ν + I − 3

(
1− Pj,\j P−1

\j,\j P\j,j

)
T−1

ν+I−1(αj)

.

(55)

Proof. According to the probability integral transform, we find Ui = Fi;θi (Xi) ∼ U (0, 1),
i ∈ I , with a copula Cϑ. Based on the MCoVaR definition in Equations (34) and (35),
we have

αj = P

({
Xj ≤ −MCoVaR

αj |αD
\j ,50%

j|\j

} ∣∣∣∣ {Xi = −VaRαi
i
}

i∈I D
\j

⋂{
Xk = −VaR50%

k

}
k∈I N

\j

)

= P

[{
Fj;θj(Xj) ≤ Fj;θj

(
−MCoVaR

αj |αD
\j ,50%

j|\j

)} ∣∣∣∣
{

Fi;θi (Xi) = Fi;θi

(
−VaRαi

i
)}

i∈I D
\j

⋂{
Fk;θk

(Xk) = Fk;θk

(
−VaR50%

k

)}
k∈I N

\j

]

= P

[{
Uj ≤ Fj;θj

(
−MCoVaR

αj |αD
\j ,50%

j|\j

)} ∣∣∣∣ {Ui = αi}i∈I D
\j

⋂
{Uk = 50%}k∈I N

\j

]
= Cj|\j;ϑj|\j

[
Fj;θj

(
−MCoVaR

αj |αD
\j ,50%

j|\j

) ∣∣∣∣ αD
\j, 50%

]
.

This implies that

C−1
j|\j;ϑj|\j

(
αj

∣∣∣ αD
\j, 50%

)
= Fj;θj

(
−MCoVaR

αj |αD
\j ,50%

j|\j

)
= Gj;ωj

−MCoVaR
αj |αD

\j ,50%

j|\j − µj

σj


and thus

MCoVaR
αj |αD

\j ,50%

j|\j = −µj − σj G−1
j;ωj
◦ C−1

j|\j;ϑj|\j

(
αj

∣∣∣ αD
\j, 50%

)
.

If we substitute C−1
j|\j;ϑj|\j

= NC−1
j|\j;ϑj|\j

given in Equation (51), we have N−XMCoVaR
αj |αD

\j ,50%

j|\j ,

as presented in Equation (54). Furthermore, when we substitute C−1
j|\j;ϑj|\j

= TC−1
j|\j;ϑj|\j

given

in Equation (53), we derive T−XMCoVaR
αj |αD

\j ,50%

j|\j , as formulated in Equation (55).

Based on Theorem 6 and Table 1, we formulate the MCoVaR for four copula-based
models as follows:

1. From Equation (54), we obtain the MCoVaR formula for the N–T model by replacing
G−1

j;ωj
with T−1

νj
.

2. From Equation (55), we derive the MCoVaR formula for the T–N model by replacing
G−1

j;ωj
with Φ−1.

3. From Equation (55), we construct the MCoVaR formula for the T–T model by replacing
G−1

j;ωj
with T−1

νj
.
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4. From Equation (55), we build the MCoVaR formula for the T–SU model by replacing

G−1
j;ωj

(·) with ζ(γj, δj) + η(γj, δj) sinh
(

Φ−1(·)−γj
δj

)
.

4. MCoVaR Forecasts and Their Conditional Coverage and Backtesting Performances

The true values of VaRαi
i = VaRαi

i (θi) and MCoVaR
αj |αD

\j ,50%

j|\j = MCoVaR
αj
j|\j

(
θ
αD
\j ,50%

j|\j

)
are unable to be computed in practice since these measures depend on the unknown pa-
rameters of the risk models. Consequently, we must first estimate them from an available
dataset

{
(xi;n)i∈I

}
n∈N

, with N = {1, 2, . . . , N}, and then substitute the resulting estima-
tors to the above measures.

• For the multivariate normal model, we estimate its mean vector µ and covariance ma-
trix Σ using the moment matching method as follows: µ̂ = (µ̂i)i∈I and Σ̂ = (σ̂ij)i,j∈I

,
with 

µ̂i =
1
N ∑

n∈N

xi;n = x̄i,

σ̂2
i =

1
N ∑

n∈N

(xi;n − x̄i)
2,

σ̂ij = ρ̂ij σ̂i σ̂j =
1
N ∑

n∈N

(xi;n − x̄i)(xj;n − x̄j).

• For the multivariate Student’s t model, we estimate its mean vector µ and covariance
matrix Σ using the moment matching method. Once their estimators µ̂ and Σ̂ have
been derived, we then estimate its degrees of freedom ν using the maximum likelihood
method as follows:

ν̂ = arg max
ν∈(2,∞)

∏
n∈N

T f(µ̂,Σ̂,ν)
(
(xi;n)i∈I

)
= arg max

ν∈(2,∞)
∑

n∈N

ln
[

T f(µ̂,Σ̂,ν)
(
(xi;n)i∈I

)]
.

• For the multivariate Johnson’s SU model, we estimate its mean vector µ, covariance
matrix SUΣ, and shape parameter vectors γ and δ using the moment matching method
as follows: µ̂ = (µ̂i)i∈I , SUΣ̂ = (SUσ̂ij)i,j∈I

, γ̂ = (γ̂i)i∈I , and δ̂ = (δ̂i)i∈I , with



µ̂i =
1
N ∑

n∈N

xi;n = x̄i,

σ̂2
i =

1
N ∑

n∈N

(xi;n − x̄i)
2,

SUσ̂ij =
SUρ̂ij σ̂i σ̂j =

1
N ∑

n∈N

(xi;n − x̄i)(xj;n − x̄j),

ξ̂ i σ̂3
i =

1
N ∑

n∈N

(xi;n − x̄i)
3,

κ̂i σ̂4
i =

1
N ∑

n∈N

(xi;n − x̄i)
4.

• For the copula-based multivariate models, we first estimate the parameter vector θi of
each margin i using the moment matching or maximum likelihood method and then
determine a collection

{
(ui;n)i∈I

}
n∈N

of pseudo observations, with ui;n = Fi;θ̂i
(xi;n).

We estimate the parameter matrix P of the normal and Student’s t copulas by matching
the dependence measures as follows: P̂ = (ρ̂ij)i,j∈I

, with ρ̂ij = sin
(
π
2 τ̂ij

)
. We then

estimate the degrees of freedom ν of Student’s t copula using the maximum likelihood
method as follows:

ν̂ = arg max
ν∈(2,∞)

∏
n∈N

Tc(P̂,ν)
(
(ui;n)i∈I

)
= arg max

ν∈(2,∞)
∑

n∈N

ln
[

Tc(P̂,ν)
(
(ui;n)i∈I

)]
.
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Once the parameter estimators θ̂i and θ̂
αD
\j ,50%

j|\j have been found, an estimative VaR forecast

VaRαi
i (θ̂i) and an estimative MCoVaR forecast MCoVaR

αj
j|\j

(
θ̂
αD
\j ,50%

j|\j

)
can be obtained.

4.1. Conditional Coverage Performance of MCoVaR Forecasts

We need to examine the coverage probability (CP) of VaRαi
i
(
θ̂i
)

and the conditional

coverage probability (MCoCP) of MCoVaR
αj
j|\j

(
θ̂
αD
\j ,50%

j|\j

)
as follows:

CPαi
i (θi) = P

{
Xi ≤ −VaRαi

i
(
θ̂i
)}

, (56)

which is different from αi, and

MCoCP
αj

j|\j

(
θ
αD
\j ,50%

j|\j

)
= P

[{
Xj ≤ −MCoVaR

αj

j|\j

(
θ̂
αD
\j ,50%

j|\j

)} ∣∣∣∣
{

Xi = −VaRαi
i (θi)

}
i∈I D

\j

⋂{
Xk = −VaR50%

k (θk)
}

k∈I N
\j

]
,

(57)

which is different from αj. To assess the accuracy of VaRαi
i (θ̂i) and MCoVaR

αj
j|\j

(
θ̂
αD
\j ,50%

j|\j

)
,

we can thus measure the closeness between CPαi
i (θ̂i) and αi and the closeness between

MCoCP
αj
j|\j

(
θ̂
αD
\j ,50%

j|\j

)
and αj. By adopting the approach of Hakim et al. (2022), we calculate

the following root-mean-square errors (RMSEs):

RMSE
[
CPαi

i (θ̂i)
]
=

√
1
M ∑

m∈M

[
CPαi

i
(
θ̂i;m

)
− αi

]2, (58)

RMSE
[

MCoCP
αj
j|\j

(
θ̂
αD
\j ,50%

j|\j

)]
=

√√√√ 1
M ∑

m∈M

[
MCoCP

αj
j|\j

(
θ̂
αD
\j ,50%

j|\j;m

)
− αj

]2

, (59)

with M = {1, 2, . . . , M}. For all m ∈M , CPαi
i
(
θ̂i;m

)
is the simulated CP of the VaR forecast,

and MCoCP
αj
j|\j

(
θ̂
αD
\j ,50%

j|\j;m

)
is the simulated MCoCP of the MCoVaR forecast.

4.2. Backtesting Performance of MCoVaR Forecasts

Since VaRαi
i (θi) is basically the negative of the αi-quantile of Xi, it can be derived

through the following minimization: VaRαi
i (θi) = −arg min

w∈R
ALαi

i (w;θi), with ALαi
i (w;θi) =

E[ϕαi (Xi − w)] denoting the expected value of an asymmetric piecewise-linear loss function
ϕαi (Xi −w) =

∣∣∣αi − I(−∞,0](Xi − w)
∣∣∣ · |Xi −w| (Kuan et al. 2009).11 This means ALαi

i (w;θi)

attains its minimum at w = −VaRαi
i (θi). Following Syuhada et al. (2021), we estimate

ALαi
i (w;θi) by

ALαi
i (w; θ̂i) =

∑
n∈N

ϕαi (xi;n − w) fi;θ̂i
(xi;n)

∑
n∈N

fi;θ̂i
(xi;n)

. (60)

Its value evaluated at −VaRαi
i (θ̂i), i.e., ALαi

i
[
−VaRαi

i (θ̂i); θ̂i
]
, is used to examine the VaR

backtesting performance.12 It asymmetrically penalizes observations below and above
−VaRαi

i (θ̂i) by accounting for their magnitude. This is contrary to the VaR backtesting
techniques of Kupiec (1995) and Christoffersen (1998) that only rely on the rate or proportion
of VaR violations.
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Analogous to the above VaR definition, we can define MCoVaR through the following

minimization: MCoVaR
αj
j|\j

(
θ
αD
\j ,50%

j|\j

)
= −arg min

w∈R
MCoAL

αj
j|\j

(
w;θ

αD
\j ,50%

j|\j

)
, with

MCoAL
αj
j|\j

(
w;θ

αD
\j ,50%

j|\j

)
= E

[
ϕαj(Xj − w)

∣∣ {Xi = −VaRαi
i (θi)

}
i∈I D

\j

⋂{
Xk = −VaR50%

k (θk)
}

k∈I N
\j

] (61)

denoting the expected value of a conditional asymmetric piecewise-linear loss function.
If vD
\j =

(
VaRαi

i (θi)
)

i∈I D
\j

and vN
\j =

(
VaR50%

k (θk)
)

k∈I N
\j

, then based on Bayes’ theorem,

MCoAL
αj
j|\j

(
w;θ

αD
\j ,50%

j|\j

)
can be expressed as follows:

MCoAL
αj
j|\j

(
w;θ

αD
\j ,50%

j|\j

)
=
∫
R

ϕαj(xj − w) f j|\j;θj|\j

(
xj

∣∣∣∣ (−vD
\j

)>
,
(
−vN
\j

)>)
dxj

=
∫
R

ϕαj(xj − w)

f\j|j;θ\j|j

((
−vD
\j

)>
,
(
−vN
\j

)> ∣∣∣∣ xj

)
f j;θj(xj)

f\j;θ\j

((
−vD
\j

)>
,
(
−vN
\j

)>) dxj

=

∫
R

[
ϕαj(xj − w) f\j|j;θ\j|j

((
−vD
\j

)>
,
(
−vN
\j

)> ∣∣∣∣ xj

)]
f j;θj(xj)dxj

f\j;θ\j

((
−vD
\j

)>
,
(
−vN
\j

)>)

=

E

[
ϕαj(Xj − w) f\j|j;θ\j|j

((
−vD
\j

)>
,
(
−vN
\j

)> ∣∣∣∣ Xj

)]
f\j;θ\j

((
−vD
\j

)>
,
(
−vN
\j

)>) ,

with

f\j;θ\j

((
−vD
\j

)>
,
(
−vN
\j

)>)
=
∫
R

fθ

(
xj,
(
−vD
\j

)>
,
(
−vN
\j

)>)
dxj

=
∫
R

f\j|j;θ\j|j

((
−vD
\j

)>
,
(
−vN
\j

)> ∣∣∣∣ xj

)
f j;θj(xj)dxj

= E

[
f\j|j;θ\j|j

((
−vD
\j

)>
,
(
−vN
\j

)> ∣∣∣∣ Xj

)]
.

Therefore, by adopting Kabaila’s (1999) method, we estimate MCoAL
αj
j|\j

(
w;θ

αD
\j ,50%

j|\j

)
by

MCoAL
αj
j|\j

(
w; θ̂

αD
\j ,50%

j|\j

)
=

∑
n∈N

ϕαi (xj;n − w) f\j|j;θ̂\j|j

((
−v̂D
\j

)>
,
(
−v̂N
\j

)> ∣∣∣∣ xj;n

)
∑

n∈N

f\j|j;θ̂\j|j

((
−v̂D
\j

)>
,
(
−v̂N
\j

)> ∣∣∣∣ xj;n

) , (62)
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where v̂D
\j =

(
VaRαi

i (θ̂i)
)

i∈I D
\j

and v̂N
\j =

(
VaR50%

k (θ̂k)
)

k∈I N
\j

. Similar to the VaR forecast,

the backtesting performance of the MCoVaR forecast is assessed by evaluating this expected

conditional asymmetric loss function at −MCoVaR
αj
j|\j

(
θ̂
αD
\j ,50%

j|\j

)
, i.e.,

MCoAL
αj
j|\j

[
−MCoVaR

αj
j|\j

(
θ̂
αD
\j ,50%

j|\j

)
; θ̂
αD
\j ,50%

j|\j

]
.

This approach complements the CoVaR backtesting technique of Girardi and Ergün (2013)
that extends the VaR backtesting methods of Kupiec (1995) and Christoffersen (1998).

5. Empirical Results

In this section, we employ the multivariate risk models and (∆)MCoVaR formulas
described in Sections 2 and 3 to investigate joint systemic risk transmissions across crypto

and non-crypto markets. More specifically, we compute (∆)MCoVaR
αj |αD

\j ,50%

j|\j for the
following four cases:

• Case 1: if the targeted asset j is a crypto asset, the conditioning set I D
\j consists of

all the remaining crypto assets being jointly in distress, and the conditioning set I N
\j

contains all the non-crypto assets being jointly in normal states;
• Case 2: if the targeted asset j is a crypto asset, the conditioning set I D

\j consists of all

the non-crypto assets being jointly in distress, and the conditioning set I N
\j contains

all the remaining crypto assets being jointly in normal states;
• Case 3: if the targeted asset j is a non-crypto asset, the conditioning set I D

\j consists of

all the crypto assets being jointly in distress, and the conditioning set I N
\j contains all

the remaining non-crypto assets being jointly in normal states;
• Case 4: if the targeted asset j is a non-crypto asset, the conditioning set I D

\j consists of
all the remaining non-crypto assets being jointly in distress, and the conditioning set
I N
\j contains all the crypto assets being jointly in normal states.

This means that Case 1 (Case 4) allows us to investigate joint systemic risk transmissions
within the crypto (non-crypto) markets. Meanwhile, Case 2 (Case 3) allows us to assess
systemic risk jointly transmitted from the non-crypto (crypto) markets towards the crypto
(non-crypto) markets. These mechanisms of systemic risk transmissions are summarized in
Table 2.

Table 2. Four cases of systemic risk transmission mechanisms.

Case j I D
\jI D
\jI D
\j I N

\jI N
\jI N
\j Transmission Direction

1 C Cs NCs C← Cs
2 C NCs Cs C← NCs
3 NC Cs NCs NC← Cs
4 NC NCs Cs NC← NCs

C and NC stand for crypto and non-crypto assets, respectively.

5.1. Data

We selected five prominent cryptocurrencies, namely, Bitcoin (BTC, i = 1), Ethereum
(ETH, i = 2), Ripple (XRP, i = 3), Litecoin (LTC, i = 4), and Monero (XMR, i = 5). They
are the most liquid and long-standing cryptocurrencies (Moreno et al. 2022). The first four
cryptocurrencies (i = 1, 2, 3, 4) were used by previous studies (i.e., Akhtaruzzaman et al.
2022; Borri 2019; Xu et al. 2021) that dealt with systemic risk transmissions within crypto
markets. Therefore, the empirical results of this study could be compared with those re-
vealed by such studies. The daily closing prices of these five cryptocurrencies were collected
from CoinMarketCap.com (accessed on 14 November 2022), one of the cryptocurrency

https://coinmarketcap.com
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databases proven by Vidal-Tomás (2022) to be a correct database for empirically analyzing
cryptocurrencies. CoinMarketCap.com showed us that, as of 23 February 2022, the global
crypto market capitalization was USD 1716.90 billion, with Bitcoin (42.29%), Ethereum
(18.40%), Ripple (2.02%), Litecoin (0.44%), and Monero (0.16%) comprising 63.31%. The
corresponding 24-hour volume was USD 86.04 billion, with Bitcoin (25.39%), Ethereum
(15.55%), Ripple (3.13%), Litecoin (0.86%), and Monero (0.12%) comprising 45.05%. As
representations of non-crypto markets, we also included the S&P 500 composite index (SPX,
i = 6), the S&P US Treasury Bond index (SPB, i = 7), the US dollar index (USD, i = 8), West
Texas Intermediate crude oil (OIL, i = 9), and gold (GLD, i = 10) that may be impacted by
the movements and bubble event in the crypto markets. Their daily closing (spot) price
datasets were sourced from SPGlobal.com, SPGlobal.com, Investing.com, EIA.gov, and
Nasdaq.com, respectively (accessed on 14 November 2022).

We considered the data period from 16 January 2018 to 23 February 2022,13 which
we split into a subperiod before COVID-19 and a subperiod during COVID-19, where 11
March 2020 was chosen as the starting point of the latter subperiod. The former subperiod
is a quiet period over which no crisis or systemic event existed. Meanwhile, in addition to
encompassing the global outbreak of the COVID-19 pandemic, the latter subperiod also
covers the episode of the 2021 crypto bubble, as detected by Bazán-Palomino (2022) from
the first week of November 2020 to the second week of May 2021. This bubble can be
observed in Figure 1. Thus, our empirical analysis provides us with different mechanisms
of systemic risk transmissions across crypto and non-crypto markets during a fully calm
period and a stressful period. To provide a particular picture of the effect of the crypto
bubble event on the systemic risk transmission mechanism, we also considered the 2021
bubble subperiod (2 November 2020–14 May 2021). The dataset {pi;n} of each asset i’s
prices over each subperiod was then transformed into the following return dataset: {xi;n},
with xi;n = 100 ln

(
pi;n

pi;n−1

)
. Over the pre-COVID-19 (respectively, COVID-19) subperiod, it

consisted of 532 (respectively, 487) observations. In particular, during the bubble subperiod,
it contained 132 observations.

From Table 3, we observe that the crypto assets appeared to be much more volatile
during the pre-COVID-19, COVID-19, and bubble periods compared to the non-crypto
assets. All the asset returns tended to become more volatile, more skewed, and more heavy-
tailed due to the COVID-19 pandemic. The highly volatile movement of the crypto-asset
returns was more evident during the 2021 bubble period. This is in line with the finding
of Bazán-Palomino (2022) that revealed an increase in the variance of crypto-portfolio
returns in response to bubbles in the crypto market. The skewness of each asset return
was significantly nonzero according to the D’Agostino test, and its excess kurtosis was
significantly positive based on the Anscombe–Glynn test. Furthermore, the Jarque–Bera
test result significantly confirmed that each asset return was not normally distributed.
As depicted in Figure 2, all the crypto assets were strongly correlated with each other
with positive Pearson’s ρ and Kendall’s τ, consistent with the findings of Borri (2019),
Jiménez et al. (2020b), and Syuhada and Hakim (2020). They were also positively correlated
with the S&P 500, oil, and gold, but the correlations were weak. Interestingly, they exhibited
a negative correlation with the S&P US Treasury Bond and the US dollar. This is in line
with evidence revealed by Choudhury et al. (2022) and Syuhada et al. (2022a) that these
two non-crypto assets played roles as strong safe-havens. In addition, we detect from
Figure 3 strong tail dependence among the crypto assets, suggesting a high possibility of
the occurrence of their joint extreme events, which may cause greater financial instability
(Jiménez et al. 2020a).

https://coinmarketcap.com
https://www.spglobal.com
https://www.spglobal.com
https://www.investing.com
https://www.eia.gov
https://www.nasdaq.com
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Table 3. Summary statistics of crypto- and non-crypto-asset returns.

BTC ETH XRP LTC XMR SPX SPB USD OIL GLD

Before COVID-19
Mean −0.07 −0.31 −0.32 −0.25 −0.33 0.01 0.03 0.01 −0.12 0.04
Variance 19.71 32.55 34.94 33.66 37.90 1.17 0.05 0.12 6.36 0.62
Skewness −0.35 a −0.48 a 0.38 a 0.40 a −0.34 a −1.13 a −0.03 0.08 −2.50 a −0.18
Excess Kurtosis 4.07 b 2.64 b 3.94 b 3.24 b 2.01 b 8.03 b 4.45 b 0.89 b 30.85 b 4.15 b

Jarque–Bera 391.04 c 181.39 c 369.32 c 255.06 c 103.44 c 1590.81 c 454.52 c 19.09 c 22,280.80 c 398.57 c

During COVID-19
Mean 0.32 0.53 0.24 0.15 0.20 0.08 −0.01 −0.00 0.20 0.03
Variance 23.96 43.66 70.72 43.44 43.22 2.53 0.07 0.15 35.52 1.36
Skewness −1.77 a −1.23 a 0.36 a −1.46 a −2.01 a −1.04 a 0.46 a 0.31 a −2.68 a −0.37 a

Excess Kurtosis 17.53 b 12.57 b 14.14 b 8.96 b 16.86 b 16.71 b 9.03 b 1.66 b 54.97 b 4.30 b

Jarque–Bera 6695.15 c 3435.93 c 4199.63 c 1858.86 c 6290.78 c 5937.76 c 1730.33 c 66.21 c 63,846.39 c 399.99 c

During Bubble
Mean 0.99 1.79 1.34 1.36 0.92 0.18 −0.02 −0.03 0.46 −0.02
Variance 25.61 48.37 160.36 50.00 34.48 0.83 0.05 0.11 4.81 1.26
Skewness −0.13 0.71 a 0.64 a −0.62 a −0.50 a −0.30 0.14 0.13 −0.21 −1.00 a

Excess Kurtosis 1.60 b 3.77 b 7.10 b 1.27 b 2.62 b 0.50 2.07 b −0.10 1.83 b 3.70 b

Jarque–Bera 17.11 c 101.20 c 324.21 c 19.33 c 49.52 c 3.90 28.02 c 0.43 22.64 c 109.28 c

a The skewness is significantly different from zero based on the D’Agostino test at the 5% level. b The excess
kurtosis is significantly positive based on the Anscombe–Glynn test at the 5% level. c The Jarque–Bera test
significantly rejects the null hypothesis of normality at the 5% level.

Figure 1. Daily prices and returns of crypto and non-crypto assets. The prices of the five crypto assets
(i.e., BTC, ETH, XRP, LTC, and XMR) and the three indices (i.e., the SPX, SPB, and USD indices) are
denominated in USD. Meanwhile, crude oil and gold are priced in USD per barrel and in USD per
troy ounce, respectively. Green and brown represent the crypto and non-crypto assets, respectively.
The shaded gray region shows the COVID-19 pandemic period (11 March 2020–23 February 2022),
and the shaded red region indicates the 2021 crypto bubble period (2 November 2020–14 May 2021).
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Figure 2. Empirical Pearson’s and Kendall’s correlation matrices of crypto- and non-crypto-asset returns.

Figure 3. Empirical lower and upper tail dependence matrices of crypto- and non-crypto-asset returns.
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5.2. Conditional Coverage and Backtesting Performances of MCoVaR Forecasts

We first computed the VaR forecast for each asset at the 5% (1%) level of significance
or at the 95% (99%) level of confidence by assuming it to be in isolation. The resulting
root-mean-square error (RMSE) of its estimated coverage probability (CP) is tabulated in
Table 4, and the corresponding expected asymmetric loss function (AL) is provided in
Table 5. If the VaR forecast has an estimated CP with the lowest RMSE, we say that it
shows the best coverage performance. Meanwhile, if the VaR forecast produces the lowest
expected AL, we say that it exhibits the best backtesting performance.

Table 4. RMSE of the estimated coverage probability CPαi
i of the VaRαi

i forecast.

i

BTC ETH XRP LTC XMR SPX SPB USD OIL GLD

αi = 5%

Before COVID-19
N 1.13% 1.10% 1.00% 0.82% 0.96% 1.42% 0.92% 0.72% 2.53% 1.22%
T 0.82% 0.81% 0.73% 0.60% 0.70% 1.03% 0.69% 0.52% 1.87% 0.91%
SU 1.06% 1.00% 1.03% 0.88% 0.93% 1.12% 0.99% 0.71% 1.61% 1.15%

During COVID-19
N 1.86% 1.73% 1.56% 1.65% 2.22% 1.77% 1.32% 0.77% 3.11% 1.11%
T 1.26% 1.15% 1.04% 1.09% 1.49% 1.20% 0.91% 0.50% 2.13% 0.75%
SU 1.28% 1.30% 1.47% 1.23% 1.46% 1.49% 1.31% 0.86% 2.62% 1.02%

During Bubble
N 1.99% 2.10% 2.75% 2.02% 2.15% 1.73% 1.86% 1.48% 1.83% 2.66%
T 1.67% 1.74% 2.32% 1.69% 1.80% 1.46% 1.57% 1.25% 1.54% 2.25%
SU 1.89% 1.99% 3.28% 1.82% 1.94% 1.65% 1.91% 1.56% 1.90% 2.17%

αi = 1%

Before COVID-19
N 0.41% 0.39% 0.37% 0.30% 0.33% 0.54% 0.34% 0.24% 1.04% 0.44%
T 0.25% 0.24% 0.22% 0.19% 0.20% 0.32% 0.20% 0.15% 0.61% 0.26%
SU 0.44% 0.38% 0.43% 0.36% 0.40% 0.50% 0.74% 0.26% 1.03% 0.74%

During COVID-19
N 0.71% 0.67% 0.64% 0.62% 0.90% 0.72% 0.50% 0.28% 1.49% 0.42%
T 0.36% 0.34% 0.32% 0.32% 0.45% 0.36% 0.26% 0.15% 0.72% 0.21%
SU 0.96% 0.76% 0.71% 0.60% 0.72% 0.72% 0.75% 0.54% 2.12% 0.36%

During Bubble
N 0.79% 0.95% 1.35% 0.81% 0.86% 0.65% 0.76% 0.53% 0.67% 1.17%
T 0.60% 0.72% 1.00% 0.61% 0.65% 0.48% 0.57% 0.39% 0.50% 0.87%
SU 0.98% 1.12% 2.97% 0.85% 1.00% 0.78% 1.01% 0.60% 1.11% 1.16%

Each RMSE value was computed based on Equation (58). For each asset i over each period, the lowest RMSE is
presented in boldface.

We observe from Table 4 that the VaR we forecasted at the 5% and 1% significance
levels using the normal model exhibited the worst coverage performance because it had
an estimated CP with the highest RMSE for most assets. This is in line with evidence
previously revealed from Table 3 that each asset return significantly deviated from the
normality assumption. The most accurate VaR forecast was obtained if the Student’s t
model was taken into consideration. Meanwhile, the VaR forecast derived using Johnson’s
SU model was less accurate than that determined using Student’s t model but was better
than that computed using the normal model in the majority of cases. Similar results were
also derived from Table 5, although this table shows the normal and Johnson’s SU models
to be slightly better in terms of the expected asymmetric loss function minimization. These
results are consistent with the findings of previous studies conducted by, e.g., Venkataraman
and Rao (2016), Troster et al. (2019), Castillo-Brais et al. (2022), and Hakim et al. (2022).
Overall, the RMSE of the estimated CP and the expected AL of each VaR forecast tended
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to increase as the COVID-19 pandemic and the 2021 crypto bubble progressed. This
evidence was more apparently detected in crypto assets where an increase in the former
was approximately two times. This evidence might be caused by the increased variance
and kurtosis of each asset return in response to the pandemic.

Table 5. Expected asymmetric loss function ALαi
i evaluated at the −VaRαi

i forecast.

i

BTC ETH XRP LTC XMR SPX SPB USD OIL GLD

αi = 5%

Before COVID-19
N 37.58% 48.55% 49.50% 48.87% 52.00% 9.55% 1.87% 2.89% 21.66% 6.61%
T 35.68% 45.99% 46.95% 46.34% 49.27% 9.04% 1.78% 2.74% 20.58% 6.27%
SU 37.92% 49.19% 45.50% 44.24% 51.72% 10.48% 1.81% 2.70% 25.71% 6.51%

During COVID-19
N 41.18% 55.89% 69.54% 56.62% 56.36% 13.51% 2.28% 3.19% 49.51% 10.09%
T 37.47% 50.97% 63.75% 51.59% 51.52% 12.39% 2.08% 2.93% 45.50% 9.26%
SU 43.83% 58.24% 65.02% 61.08% 63.66% 14.01% 2.02% 2.83% 57.97% 9.83%

During Bubble
N 42.21% 57.39% 101.53% 61.90% 49.12% 7.63% 1.79% 2.79% 18.50% 9.67%
T 41.21% 56.45% 99.82% 60.54% 48.28% 7.45% 1.75% 2.74% 18.14% 9.46%
SU 42.33% 52.02% 99.03% 68.33% 52.73% 7.85% 1.72% 2.67% 18.94% 11.07%

αi = 1%

Before COVID-19
N 10.44% 13.50% 13.74% 13.54% 14.40% 2.62% 0.52% 0.80% 6.01% 1.83%
T 11.68% 15.04% 15.39% 15.13% 16.13% 2.92% 0.58% 0.89% 6.71% 2.05%
SU 12.83% 16.12% 14.65% 13.91% 16.59% 3.74% 0.61% 0.79% 10.38% 2.19%

During COVID-19
N 11.49% 15.53% 19.50% 15.66% 15.65% 3.77% 0.63% 0.89% 13.92% 2.77%
T 13.00% 17.62% 22.30% 17.70% 17.72% 4.28% 0.72% 1.02% 15.92% 3.15%
SU 17.05% 21.93% 24.01% 22.21% 24.43% 5.39% 0.71% 0.85% 25.01% 3.31%

During Bubble
N 11.85% 16.02% 28.93% 17.04% 13.87% 2.13% 0.50% 0.78% 5.13% 2.66%
T 12.72% 17.33% 31.22% 18.21% 14.89% 2.28% 0.53% 0.84% 5.54% 2.87%
SU 13.35% 15.96% 33.91% 21.02% 17.36% 2.34% 0.54% 0.74% 6.00% 3.73%

Each expected AL was computed based on Equation (60). For each asset i over each period, the lowest expected
AL is presented in boldface.

For each of the four cases mentioned in Table 2, we computed MCoVaR forecasts at the
5% and 1% significance levels and then assessed their accuracy by evaluating the RMSE of
their estimated conditional coverage probability (MCoCP) and the corresponding expected
conditional asymmetric loss function (MCoAL). The assessment results are presented in
Tables 6 and 7 and summarized in Table 8. Similar to the accuracy assessment of the VaR
forecast, the resulting MCoVaR forecast is said to exhibit the best conditional coverage
performance if its estimated MCoCP has the smallest RMSE, and it is said to have the best
backtesting performance if it produces the lowest expected MCoAL.
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Table 6. RMSE of the estimated conditional coverage probability MCoCP
αj |αD

\j ,50%

j|\j of the MCoVaR
αj |αD

\j ,50%

j|\j forecast.

j = C Case 1 (C← Cs) Case 2 (C← NCs) j = NC Case 3 (NC← Cs) Case 4 (NC← NCs)

Before During During Before During During Before During During Before During During
COVID-19 COVID-19 Bubble COVID-19 COVID-19 Bubble COVID-19 COVID-19 Bubble COVID-19 COVID-19 Bubble

αj = 5% and αi = 5%, i ∈ I D
\j

BTC N 3.26% 4.82% 5.25% 2.26% 4.28% 7.13% SPX N 1.74% 3.31% 3.89% 3.74% 3.52% 6.44%
T 3.40% 5.10% 5.23% 1.64% 2.70% 5.14% T 4.93% 4.54% 4.33% 2.64% 3.09% 4.55%
SU 3.78% 6.96% 6.47% 2.30% 3.23% 7.78% SU 1.69% 3.00% 4.08% 3.29% 3.86% 6.74%
N–T 1.34% 2.94% 5.87% 2.80% 3.22% 8.39% N–T 1.35% 1.24% 4.02% 2.42% 3.08% 6.56%
T–N 4.11% 7.28% 7.75% 2.23% 3.44% 6.93% T–N 1.98% 2.89% 4.36% 2.37% 2.94% 5.53%
T–T 1.82% 3.32% 6.74% 2.05% 2.34% 6.34% T–T 1.53% 1.47% 4.15% 2.00% 2.32% 5.32%
T–SU 4.73% 9.93% 9.14% 2.24% 2.39% 6.79% T–SU 1.58% 2.51% 4.15% 2.10% 2.75% 5.49%

ETH N 3.35% 4.60% 6.72% 3.73% 2.53% 6.53% SPB N 1.29% 1.95% 3.65% 3.37% 3.87% 7.23%
T 3.62% 4.77% 6.82% 2.45% 1.70% 4.48% T 4.51% 2.45% 3.98% 3.50% 3.24% 4.84%
SU 3.43% 5.48% 10.51% 4.08% 2.38% 6.85% SU 1.13% 2.28% 3.72% 3.73% 4.99% 8.44%
N–T 1.65% 2.67% 5.60% 4.06% 3.06% 8.28% N–T 1.17% 1.32% 4.69% 2.58% 2.73% 5.48%
T–N 4.87% 6.80% 9.12% 3.32% 2.93% 6.62% T–N 1.36% 1.85% 5.10% 2.21% 2.38% 4.84%
T–T 2.06% 3.16% 6.19% 3.08% 2.19% 6.12% T–T 1.31% 1.47% 4.88% 2.11% 2.18% 4.29%
T–SU 5.31% 7.90% 10.61% 3.60% 2.24% 6.51% T–SU 1.12% 1.71% 4.77% 2.21% 2.53% 5.07%

XRP N 2.52% 3.04% 5.42% 2.57% 2.97% 6.20% USD N 1.21% 1.82% 3.73% 3.26% 3.09% 4.00%
T 2.66% 3.08% 5.63% 1.85% 2.22% 4.60% T 4.20% 2.37% 4.13% 2.87% 3.70% 6.30%
SU 3.13% 3.98% 9.52% 2.79% 4.01% 7.08% SU 1.28% 1.81% 3.96% 3.43% 3.78% 4.45%
N–T 1.29% 1.16% 3.25% 2.92% 3.39% 7.02% N–T 1.31% 1.24% 3.79% 2.27% 2.34% 4.56%
T–N 3.51% 5.28% 7.96% 2.28% 2.98% 6.54% T–N 1.41% 1.42% 3.88% 2.08% 2.12% 4.18%
T–T 1.69% 1.59% 3.44% 2.15% 2.51% 5.10% T–T 1.44% 1.34% 3.92% 1.96% 2.01% 4.00%
T–SU 4.27% 6.11% 13.73% 2.25% 3.02% 7.63% T–SU 1.51% 1.32% 3.87% 2.04% 2.14% 4.12%
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Table 6. Cont.

j = C Case 1 (C← Cs) Case 2 (C← NCs) j = NC Case 3 (NC← Cs) Case 4 (NC← NCs)

Before During During Before During During Before During During Before During During
COVID-19 COVID-19 Bubble COVID-19 COVID-19 Bubble COVID-19 COVID-19 Bubble COVID-19 COVID-19 Bubble

LTC N 2.25% 5.82% 6.41% 2.75% 2.46% 5.51% OIL N 3.30% 3.20% 3.24% 8.07% 5.80% 5.08%
T 2.25% 5.84% 6.31% 1.82% 1.75% 3.81% T 6.17% 3.24% 3.60% 4.37% 3.62% 4.17%
SU 2.93% 5.92% 7.75% 2.85% 5.86% 6.50% SU 1.80% 2.89% 3.21% 7.08% 6.41% 5.51%
N–T 1.20% 2.70% 5.14% 3.07% 3.00% 7.36% N–T 1.34% 1.44% 3.10% 2.86% 2.52% 6.33%
T–N 2.85% 7.56% 6.97% 2.31% 2.57% 5.56% T–N 3.07% 3.30% 3.39% 3.84% 3.76% 5.35%
T–T 1.48% 3.32% 5.83% 2.37% 2.12% 5.24% T–T 1.39% 1.73% 3.24% 2.33% 1.98% 5.04%
T–SU 3.91% 7.69% 7.89% 2.49% 2.70% 5.18% T–SU 1.65% 2.14% 3.16% 3.26% 3.81% 5.22%

XMR N 2.42% 5.68% 4.35% 3.22% 3.03% 8.81% GLD N 2.18% 1.64% 3.36% 2.70% 4.88% 4.34%
T 2.58% 6.17% 4.59% 2.07% 2.06% 6.31% T 4.91% 2.14% 3.50% 1.84% 3.01% 4.66%
SU 3.18% 4.68% 4.88% 3.30% 4.04% 10.34% SU 1.93% 1.77% 2.90% 2.70% 5.67% 5.43%
N–T 1.36% 2.84% 3.98% 3.75% 3.06% 10.65% N–T 1.52% 1.34% 2.88% 2.34% 2.85% 5.51%
T–N 3.00% 7.05% 6.15% 2.84% 3.38% 8.70% T–N 2.03% 1.73% 3.75% 2.43% 2.57% 4.80%
T–T 1.65% 3.37% 4.47% 2.67% 2.40% 7.97% T–T 1.66% 1.52% 2.94% 2.03% 2.28% 4.46%
T–SU 3.89% 5.79% 6.72% 2.88% 2.72% 8.84% T–SU 1.58% 1.61% 2.93% 2.50% 2.62% 4.63%

αj = 1% and αi = 1%, i ∈ I D
\j

BTC N 1.58% 2.54% 3.11% 0.89% 2.23% 5.16% SPX N 0.70% 1.69% 2.10% 1.92% 1.78% 4.93%
T 1.55% 2.21% 2.81% 0.52% 0.93% 2.49% T 3.18% 2.36% 2.39% 0.82% 1.11% 1.97%
SU 2.62% 10.65% 7.41% 0.90% 1.51% 5.56% SU 0.70% 1.70% 2.75% 1.77% 1.96% 5.45%
N–T 0.58% 2.91% 6.82% 1.06% 1.44% 6.59% N–T 0.46% 0.50% 2.46% 1.05% 1.43% 4.44%
T–N 2.22% 4.72% 5.29% 0.73% 1.28% 3.51% T–N 0.74% 1.38% 2.34% 0.82% 1.13% 2.62%
T–T 0.59% 3.83% 8.23% 0.60% 0.83% 3.10% T–T 0.44% 0.50% 2.25% 0.64% 0.67% 2.59%
T–SU 4.41% 19.07% 11.05% 1.10% 1.77% 3.58% T–SU 0.67% 1.52% 2.58% 0.94% 1.43% 3.09%

ETH N 1.65% 2.36% 4.48% 2.03% 1.14% 5.00% SPB N 0.52% 0.83% 1.93% 1.68% 2.08% 5.10%
T 1.56% 2.02% 3.99% 0.84% 0.62% 2.17% T 2.93% 1.11% 2.15% 1.20% 1.00% 2.28%
SU 2.11% 5.80% 12.76% 2.28% 0.85% 5.20% SU 0.56% 1.49% 2.28% 1.90% 3.07% 7.19%
N–T 0.79% 2.36% 6.12% 2.03% 1.33% 6.23% N–T 0.44% 0.54% 3.05% 1.19% 1.30% 3.68%
T–N 2.84% 4.33% 7.27% 1.22% 1.06% 3.23% T–N 0.48% 0.71% 3.09% 0.75% 0.90% 2.18%
T–T 0.78% 3.07% 7.22% 1.09% 0.74% 2.72% T–T 0.41% 0.51% 2.78% 0.67% 0.78% 2.35%
T–SU 4.30% 11.27% 14.49% 2.16% 1.45% 3.37% T–SU 0.54% 1.03% 3.12% 1.48% 1.67% 3.43%
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Table 6. Cont.

j = C Case 1 (C← Cs) Case 2 (C← NCs) j = NC Case 3 (NC← Cs) Case 4 (NC← NCs)

Before During During Before During During Before During During Before During During
COVID-19 COVID-19 Bubble COVID-19 COVID-19 Bubble COVID-19 COVID-19 Bubble COVID-19 COVID-19 Bubble

XRP N 1.15% 1.50% 3.44% 1.21% 1.41% 4.28% USD N 0.46% 0.78% 1.96% 1.74% 1.48% 2.31%
T 1.15% 1.48% 3.60% 0.63% 0.90% 2.37% T 2.78% 1.04% 1.90% 1.08% 1.49% 3.75%
SU 1.90% 2.37% 12.32% 1.33% 2.40% 6.38% SU 0.50% 0.90% 2.14% 1.83% 1.94% 2.66%
N–T 0.64% 0.56% 2.42% 1.33% 1.56% 5.07% N–T 0.48% 0.51% 2.03% 1.05% 1.08% 2.58%
T–N 1.77% 3.31% 5.84% 0.80% 1.16% 3.68% T–N 0.48% 0.51% 1.77% 0.74% 0.74% 1.77%
T–T 0.77% 0.68% 2.60% 0.67% 0.81% 2.46% T–T 0.45% 0.46% 1.69% 0.68% 0.64% 1.61%
T–SU 3.35% 4.98% 21.19% 1.19% 1.93% 8.69% T–SU 0.48% 0.55% 1.79% 0.92% 1.08% 1.86%

LTC N 1.04% 3.35% 3.93% 1.31% 1.09% 3.43% OIL N 1.55% 1.62% 1.57% 5.41% 3.69% 3.11%
T 0.97% 2.71% 3.55% 0.69% 0.58% 1.50% T 4.16% 1.82% 1.57% 1.35% 1.36% 1.90%
SU 1.80% 6.48% 8.98% 1.40% 3.09% 4.42% SU 1.27% 2.16% 1.63% 6.23% 4.88% 3.61%
N–T 0.76% 2.29% 5.96% 1.37% 1.41% 5.13% N–T 0.61% 0.49% 1.56% 1.59% 1.17% 4.26%
T–N 1.42% 4.96% 4.37% 0.78% 0.90% 2.57% T–N 1.31% 1.51% 1.51% 1.67% 1.80% 2.36%
T–T 0.78% 3.07% 6.86% 0.78% 0.67% 2.28% T–T 0.58% 0.45% 1.30% 1.30% 0.59% 2.22%
T–SU 2.81% 10.26% 8.88% 1.29% 1.32% 2.30% T–SU 1.15% 1.95% 1.50% 2.67% 3.87% 2.98%

XMR N 1.05% 3.21% 2.51% 1.65% 1.52% 7.57% GLD N 0.88% 0.66% 1.58% 1.22% 2.95% 2.76%
T 1.05% 2.73% 2.53% 0.64% 0.81% 3.19% T 3.19% 0.94% 1.74% 0.54% 0.88% 2.38%
SU 2.37% 4.20% 4.43% 1.75% 2.49% 9.65% SU 1.12% 0.78% 1.49% 1.57% 3.66% 3.68%
N–T 0.80% 2.48% 3.47% 1.95% 1.63% 9.67% N–T 0.58% 0.48% 1.30% 1.03% 1.45% 3.38%
T–N 1.42% 4.47% 3.77% 0.96% 1.48% 5.00% T–N 0.76% 0.65% 1.65% 0.92% 1.00% 2.01%
T–T 0.88% 3.38% 3.93% 0.81% 1.06% 4.02% T–T 0.55% 0.45% 1.18% 0.85% 0.73% 1.75%
T–SU 3.42% 6.13% 7.60% 1.44% 1.66% 5.26% T–SU 0.87% 0.62% 1.55% 1.91% 1.39% 2.21%

C and NC stand for crypto and non-crypto assets, respectively. Each RMSE value was computed based on Equation (59). For each targeted asset j and each case over each period, the
lowest RMSE is presented in boldface.
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Table 7. Expected conditional asymmetric loss function MCoAL
αj |αD

\j ,50%

j|\j evaluated at the −MCoVaR
αj |αD

\j ,50%

j|\j forecast.

j = C Case 1 (C← Cs) Case 2 (C← NCs) j = NC Case 3 (NC← Cs) Case 4 (NC← NCs)

Before During During Before During During Before During During Before During During
COVID-19 COVID-19 Bubble COVID-19 COVID-19 Bubble COVID-19 COVID-19 Bubble COVID-19 COVID-19 Bubble

αj = 5% and αi = 5%, i ∈ I D
\j

BTC N 27.31% 35.38% 62.62% 18.56% 23.87% 28.95% SPX N 9.55% 17.70% 11.20% 8.24% 11.18% 8.89%
T 18.06% 22.21% 39.16% 28.68% 33.11% 45.36% T 6.70% 10.11% 7.99% 11.89% 14.59% 12.29%
SU 42.14% 41.23% 57.19% 15.59% 20.47% 28.04% SU 10.17% 22.22% 10.90% 8.17% 10.22% 9.23%
N–T 43.65% 42.49% 42.04% 12.54% 18.90% 27.24% N–T 11.65% 22.61% 10.32% 9.60% 13.43% 10.50%
T–N 22.31% 27.89% 51.47% 20.46% 26.69% 33.12% T–N 9.09% 14.22% 8.65% 11.27% 14.95% 12.06%
T–T 27.56% 32.47% 54.39% 19.08% 27.87% 36.85% T–T 7.91% 12.00% 8.07% 13.92% 18.15% 12.33%
T–SU 26.45% 37.89% 55.23% 20.95% 29.84% 36.43% T–SU 9.05% 13.46% 8.50% 13.61% 18.58% 11.93%

ETH N 36.00% 41.02% 64.98% 25.65% 31.96% 45.56% SPB N 1.69% 2.51% 2.33% 1.66% 2.19% 3.15%
T 24.38% 30.03% 38.41% 36.66% 44.93% 60.42% T 1.34% 1.83% 1.89% 2.07% 2.73% 3.09%
SU 50.34% 67.05% 64.11% 22.66% 27.26% 40.50% SU 1.67% 2.62% 2.35% 1.65% 2.15% 2.76%
N–T 50.91% 61.73% 66.48% 14.96% 25.67% 39.39% N–T 1.72% 2.63% 2.27% 1.71% 2.48% 2.48%
T–N 25.81% 29.61% 41.23% 24.83% 35.21% 48.50% T–N 1.56% 2.25% 1.96% 1.90% 2.72% 2.89%
T–T 32.96% 35.84% 53.89% 22.24% 36.34% 53.14% T–T 1.45% 1.98% 1.88% 2.10% 3.09% 2.79%
T–SU 30.29% 44.65% 37.71% 25.55% 38.33% 50.02% T–SU 1.49% 1.98% 1.89% 2.08% 3.06% 2.83%

XRP N 43.32% 98.81% 197.73% 30.58% 60.02% 108.40% USD N 3.15% 3.43% 2.67% 3.06% 3.93% 2.93%
T 29.76% 46.38% 101.04% 48.81% 82.47% 186.28% T 2.50% 2.94% 2.50% 3.89% 4.23% 3.12%
SU 52.54% 157.57% 202.63% 26.86% 53.52% 109.91% SU 3.18% 3.44% 2.63% 3.02% 3.64% 2.88%
N–T 50.74% 134.95% 217.40% 21.42% 36.55% 104.65% N–T 3.09% 3.39% 2.83% 2.91% 3.61% 3.14%
T–N 31.14% 45.13% 116.49% 32.35% 55.69% 122.50% T–N 2.78% 3.09% 2.66% 3.14% 3.70% 3.23%
T–T 37.19% 49.08% 134.84% 33.53% 57.86% 147.66% T–T 2.61% 2.91% 2.56% 3.32% 3.82% 3.29%
T–SU 33.91% 50.79% 132.49% 33.54% 59.18% 147.06% T–SU 2.64% 2.89% 2.58% 3.26% 3.77% 3.26%
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Table 7. Cont.

j = C Case 1 (C← Cs) Case 2 (C← NCs) j = NC Case 3 (NC← Cs) Case 4 (NC← NCs)

Before During During Before During During Before During During Before During During
COVID-19 COVID-19 Bubble COVID-19 COVID-19 Bubble COVID-19 COVID-19 Bubble COVID-19 COVID-19 Bubble

LTC N 33.87% 37.91% 69.47% 29.80% 26.65% 37.87% OIL N 23.03% 61.19% 19.74% 29.59% 61.22% 19.48%
T 30.74% 25.40% 46.05% 44.53% 39.34% 54.59% T 16.69% 38.73% 17.61% 32.64% 73.56% 27.12%
SU 36.29% 58.43% 51.70% 26.02% 22.11% 35.78% SU 24.39% 68.83% 20.35% 41.17% 71.34% 19.71%
N–T 39.46% 62.73% 78.73% 22.50% 21.68% 38.96% N–T 26.66% 49.34% 21.06% 30.96% 54.53% 21.91%
T–N 32.05% 29.10% 56.09% 31.62% 30.88% 47.68% T–N 21.27% 43.99% 18.51% 31.93% 65.34% 25.12%
T–T 35.29% 37.35% 60.40% 33.70% 30.61% 52.29% T–T 19.27% 27.17% 17.84% 41.06% 78.61% 27.31%
T–SU 35.17% 43.63% 64.91% 32.60% 33.16% 53.50% T–SU 20.73% 36.58% 18.34% 43.49% 88.83% 26.97%

XMR N 38.00% 56.22% 109.22% 29.07% 41.64% 44.70% GLD N 6.89% 11.37% 8.94% 7.01% 11.91% 8.04%
T 28.25% 38.02% 58.34% 44.98% 59.48% 79.00% T 5.03% 8.66% 8.10% 8.96% 15.01% 9.79%
SU 60.06% 118.40% 86.95% 26.91% 38.47% 45.59% SU 7.08% 12.16% 9.31% 7.41% 13.40% 8.08%
N–T 64.91% 110.63% 86.82% 25.76% 36.71% 38.96% N–T 6.56% 12.73% 10.19% 6.85% 11.85% 9.29%
T–N 29.37% 46.00% 74.55% 35.75% 47.55% 47.78% T–N 5.75% 10.05% 8.86% 7.49% 12.66% 10.07%
T–T 36.73% 48.59% 76.23% 39.00% 53.47% 56.23% T–T 5.21% 9.19% 8.49% 8.50% 15.10% 11.46%
T–SU 36.59% 60.78% 71.84% 39.82% 57.14% 56.46% T–SU 5.42% 9.59% 9.09% 8.34% 14.76% 11.59%

αj = 1% and αi = 1%, i ∈ I D
\j

BTC N 9.91% 3.98% 4.44% 4.99% 6.42% 8.02% SPX N 2.74% 7.54% 2.82% 2.24% 3.01% 2.76%
T 5.23% 5.80% 6.26% 14.81% 13.34% 14.14% T 2.96% 4.52% 2.05% 5.35% 8.37% 3.32%
SU 12.30% 52.24% 11.87% 4.29% 6.31% 8.71% SU 3.27% 12.47% 2.32% 2.51% 3.00% 2.71%
N–T 20.22% 74.31% 17.70% 3.37% 5.35% 7.57% N–T 4.04% 11.65% 2.65% 3.16% 4.67% 2.51%
T–N 7.26% 3.30% 3.48% 7.07% 9.44% 13.29% T–N 2.88% 5.57% 3.07% 6.02% 8.88% 2.18%
T–T 13.00% 12.87% 10.48% 9.96% 14.47% 17.71% T–T 3.58% 7.03% 2.74% 6.85% 15.28% 2.93%
T–SU 10.58% 21.00% 9.12% 9.38% 14.59% 16.98% T–SU 3.49% 7.00% 2.47% 6.81% 14.99% 3.11%

ETH N 9.41% 10.24% 8.79% 6.86% 8.48% 11.78% SPB N 0.47% 0.73% 0.68% 0.44% 0.62% 0.75%
T 6.55% 9.94% 12.13% 19.38% 21.85% 21.51% T 0.51% 0.74% 0.73% 0.86% 1.38% 0.94%
SU 13.56% 69.27% 16.70% 6.62% 7.74% 11.16% SU 0.49% 0.91% 0.69% 0.43% 0.58% 0.74%
N–T 21.74% 73.10% 42.33% 4.21% 7.05% 11.31% N–T 0.50% 0.85% 0.65% 0.48% 0.75% 0.67%
T–N 8.16% 12.91% 7.23% 8.31% 12.07% 15.10% T–N 0.46% 0.67% 0.63% 0.65% 1.96% 1.08%
T–T 11.20% 20.13% 24.71% 11.90% 18.13% 21.37% T–T 0.49% 0.77% 0.65% 1.07% 1.86% 1.06%
T–SU 10.10% 22.10% 12.19% 11.46% 19.12% 19.06% T–SU 0.49% 0.75% 0.64% 1.03% 1.89% 0.86%
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Table 7. Cont.

j = C Case 1 (C← Cs) Case 2 (C← NCs) j = NC Case 3 (NC← Cs) Case 4 (NC← NCs)

Before During During Before During During Before During During Before During During
COVID-19 COVID-19 Bubble COVID-19 COVID-19 Bubble COVID-19 COVID-19 Bubble COVID-19 COVID-19 Bubble

XRP N 26.67% 162.34% 253.69% 8.13% 16.18% 36.97% USD N 0.82% 0.90% 0.71% 0.82% 1.15% 0.73%
T 11.06% 28.36% 72.89% 22.58% 62.31% 51.68% T 0.86% 1.06% 0.83% 1.34% 1.67% 1.02%
SU 15.26% 40.88% 43.06% 7.26% 16.32% 46.27% SU 0.83% 0.92% 0.70% 0.80% 0.97% 0.72%
N–T 27.86% 57.63% 103.03% 6.03% 11.67% 48.23% N–T 0.81% 0.90% 0.76% 0.77% 0.97% 0.80%
T–N 8.02% 26.93% 123.92% 11.46% 18.42% 187.87% T–N 0.77% 0.87% 0.77% 1.05% 1.31% 0.91%
T–T 14.91% 41.83% 58.79% 16.88% 44.22% 77.43% T–T 0.79% 0.91% 0.78% 1.16% 1.40% 0.99%
T–SU 12.40% 35.10% 35.44% 15.26% 41.37% 49.88% T–SU 0.79% 0.90% 0.77% 1.13% 1.35% 0.96%

LTC N 12.49% 4.76% 5.16% 7.95% 7.03% 9.82% OIL N 6.70% 23.31% 5.49% 12.81% 23.34% 5.29%
T 8.57% 7.67% 8.34% 17.29% 20.39% 25.83% T 6.55% 21.44% 7.16% 19.88% 39.20% 10.52%
SU 13.04% 23.98% 19.27% 7.20% 5.90% 9.48% SU 9.02% 33.45% 5.87% 29.67% 35.16% 5.44%
N–T 24.80% 28.33% 20.72% 6.55% 5.60% 10.54% N–T 9.85% 21.97% 6.26% 13.82% 26.50% 6.81%
T–N 4.71% 14.10% 5.07% 11.45% 10.27% 16.48% T–N 6.53% 14.18% 5.99% 23.81% 101.26% 12.65%
T–T 13.45% 23.64% 12.43% 14.80% 15.29% 23.59% T–T 7.57% 16.71% 6.69% 56.09% 116.15% 8.52%
T–SU 9.44% 37.71% 13.56% 14.66% 16.12% 22.32% T–SU 8.49% 21.69% 6.60% 41.07% 112.13% 8.52%

XMR N 17.42% 42.76% 82.97% 7.76% 11.39% 12.44% GLD N 1.87% 3.27% 2.37% 1.90% 3.65% 2.17%
T 9.53% 13.36% 27.95% 22.77% 30.31% 35.27% T 1.91% 3.89% 3.13% 5.07% 4.94% 4.55%
SU 14.74% 38.56% 21.96% 7.48% 12.27% 14.03% SU 2.03% 3.77% 2.72% 2.21% 4.60% 2.17%
N–T 23.65% 48.67% 25.60% 7.39% 11.14% 11.50% N–T 1.93% 4.07% 3.23% 2.02% 3.66% 2.66%
T–N 9.90% 19.41% 40.51% 12.86% 17.12% 24.75% T–N 1.70% 3.09% 2.68% 2.78% 9.40% 4.49%
T–T 12.70% 37.64% 15.68% 19.42% 43.62% 27.02% T–T 1.83% 3.82% 3.45% 5.04% 5.19% 6.22%
T–SU 12.01% 59.91% 15.78% 17.89% 45.05% 25.80% T–SU 1.83% 3.77% 3.44% 5.03% 5.17% 5.69%

C and NC stand for crypto and non-crypto assets, respectively. Each expected MCoAL was computed based on Equation (62). For each targeted asset j and each case over each period,
the lowest expected MCoAL is presented in boldface.
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Table 8. Number of MCoVaR
αj |αD

\j ,50%

j|\j models with the best accuracy.

Model Lowest RMSE of Estimated MCoCP Lowest Expected MCoAL

Before During During Before During During
COVID-19 COVID-19 Bubble COVID-19 COVID-19 Bubble

αj = 5% and αi = 5%, i ∈ I D
\j

N 1 0 5 2 0 3
T 6 4 8 10 6 8
SU 0 0 0 2 2 2
N–T 8 10 6 6 8 5
T–N 0 0 0 0 2 0
T–T 4 6 1 0 1 1
T–SU 1 0 0 0 1 1

αj = 1% and αi = 1%, i ∈ I D
\j

N 0 0 3 4 3 5
T 6 5 10 3 4 1
SU 0 0 0 1 2 3
N–T 4 3 1 6 5 4
T–N 0 0 1 6 6 5
T–T 10 12 5 0 0 1
T–SU 0 0 0 0 0 1

This table summarizes Tables 6 and 7 by counting the number of multivariate models resulting in the

MCoVaR
αj |αD

\j ,50%

j|\j forecast, whose estimated conditional coverage probability MCoCP
αj |αD

\j ,50%

j|\j possesses the

lowest RMSE, and whose expected MCoAL
αj |αD

\j ,50%

j|\j has the lowest value.

We found that the three classical models (i.e., the normal, Student’s t, and Johnson’s
SU models) competed in accurately forecasting the MCoVaR for the crypto and non-crypto
assets under study. However, the classical Student’s t model tended to perform best in
many cases with the smallest RMSE values. This best MCoVaR forecasting performance
is consistent with its ability to produce the most accurate individual VaR forecast before
COVID-19, during COVID-19, and during the 2021 crypto bubble, as previously detected
from Table 4.

Compared to the aforementioned classical models, copula-based models tended to
perform better in producing an accurate MCoVaR forecast. More specifically, among the
resulting 20 MCoVaR forecasts for the four cases, we found 13 (16) MCoVaR forecasts to
possess an estimated MCoCP with the lowest RMSE when formulated at the 5% significance
level using the latter models before (during) COVID-19. At the 1% level of significance,
14 (15) copula-based MCoVaR forecasts exhibited an estimated MCoCP with the lowest
RMSE before (during) COVID-19. A notable exception when examining the conditional
coverage performance of the MCoVaR forecast was that only 7 out of 20 copula-based
MCoVaR forecasts had an estimated MCoCP with the smallest RMSE during the 2021
bubble episode. This evidence demonstrates the importance of considering copulas for
enhancing the conditional coverage performance of the MCoVaR forecast. In more detail,
the models determined based on the normal and Student’s t copulas with Student’s t
margins (i.e., the N–T and T–T models) performed competitively in forecasting MCoVaR
with the best conditional coverage performance over the pre-COVID-19 and COVID-19
periods. This suggests that, in addition to copulas, the non-normality of their margins
is also of significance for better forecasting MCoVaR. These results are in line with what
Karimalis and Nomikos (2018) and Bianchi et al. (2023) concluded from their studies on
forecasting CoVaR based on copulas with non-normal margins.

When utilizing the expected MCoAL to assess the MCoVaR backtesting performance,
we found slightly different assessment results. More specifically, among the resulting 20
MCoVaR forecasts for the four cases, we had 12 copula-based MCoVaR forecasts at the 5%
significance level with the lowest expected MCoAL during COVID-19. At the 1% level
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of significance, 12 (11) copula-based MCoVaR forecasts possessed the lowest expected
MCoAL before (during) COVID-19, and 11 copula-based MCoVaR forecasts exhibited the
lowest expected MCoAL during the 2021 bubble. These were mainly produced by the N–T
and T–N models.

5.3. Quantifying Joint Transmissions of Systemic Risk Using ∆MCoVaR Forecasts

Our next aim was to find the ∆MCoVaR for each targeted (crypto/non-crypto) asset
by calculating the difference between (1) its MCoVaR when the conditioning crypto/non-
crypto assets were jointly in distress and (2) its MCoVaR when all the conditioning assets
were jointly in their median or normal states. If this ∆MCoVaR is significantly positive,
we say that the distressed conditioning assets significantly serve as joint transmitters of
systemic risk and that the targeted asset significantly acts as a systemic risk receiver. The
positivity of the ∆MCoVaR forecast was examined by testing

H0: ∆MCoVaR
αj |αD

\j ,50%

j|\j ≤ 0 or MCoVaR
αj |αD

\j ,50%

j|\j ≤ MCoVaR
αj |50%,50%
j|\j

H1: ∆MCoVaR
αj |αD

\j ,50%

j|\j > 0 or MCoVaR
αj |αD

\j ,50%

j|\j > MCoVaR
αj |50%,50%
j|\j

using the two-sample Kolmogorov–Smirnov test proposed by Abadie (2002) and Bernal et al.
(2014).

We provide in Table 9 the resulting ∆MCoVaR forecasts at the 5% and 1% levels of
significance for the four cases stated in Table 2. We observed that non-normal models
appeared to produce ∆MCoVaR forecasts with a relatively higher magnitude. As the
COVID-19 pandemic and the 2021 crypto bubble progressed, the ∆MCoVaR forecasts
determined under any model setting tended to increase in value. This suggests a higher
tendency of joint systemic risk transmissions across the crypto and non-crypto markets due
to the pandemic and crypto bubble. This is in line with the finding of Akhtaruzzaman et al.
(2022) that provided evidence of pandemic-driven contagion channels across crypto assets
only by utilizing the so-called systemic risk contagion index built based on ∆CoVaR.
However, this is contrary to Bazán-Palomino’s (2022) empirical result that highlighted
weak interdependence and contagion among Bitcoin, Ethereum, and Ripple during the
bubble period.

When regarding each crypto asset as the targeted asset, we found that it received
systemic risk contributions from the other crypto assets being much larger than those from
the non-crypto assets before and during COVID-19 and during the 2021 crypto bubble
(see the “Case 1” and “Case 2” columns of Table 9). This result confirmed the evidence
pointed out by Yi et al. (2018) and Borri (2019) that the crypto assets were significantly
subject to volatility and tail risk spillovers within the crypto markets. This evidence might
result from strongly positive dependence among the crypto assets and weak dependence
between the crypto and non-crypto assets (see Figure 2). In particular, Ripple and Bitcoin
were the largest and smallest receivers, respectively, in the mechanism of joint systemic
risk transmissions within the crypto markets over the pre-COVID-19, COVID-19, and 2021
bubble periods. Bitcoin’s significant role as the smallest systemic risk receiver indicates
that this most prominent crypto asset was less systemically vulnerable. This finding is
consistent with what Akhtaruzzaman et al. (2022) uncovered using their proposed systemic
risk contagion index. More specifically, among the 17 selected cryptocurrencies, they found
Bitcoin to rank second to last for being systemically vulnerable and having low potential
to cause systemic disruption. Our finding is, however, contrary to the empirical result of
Xu et al. (2021) that showed Bitcoin to be the largest systemic risk receiver. Their reason
is that, among the 23 sampled crypto assets whose systemic risk spillover mechanism
was studied through a tail-event driven network approach, Bitcoin exhibited the largest
systemic risk receiver index. Their conclusion might come from the fact that Bitcoin
possessed the largest market capitalization, and the proposed systemic risk receiver index
was proportional to the crypto market capitalizations.



Risks 2023, 11, 35 37 of 45

Table 9. ∆MCoVaR
αj |αD

\j ,50%

j|\j forecasts.

j = C Case 1 (C← Cs) Case 2 (C← NCs) j = NC Case 3 (NC← Cs) Case 4 (NC← NCs)

Before During During Before During During Before During During Before During During
COVID-19 COVID-19 Bubble COVID-19 COVID-19 Bubble COVID-19 COVID-19 Bubble COVID-19 COVID-19 Bubble

αj = 5% and αi = 5%, i ∈ I D
\j

BTC N 6.85 * 7.12 * 6.90 * −0.72 1.26 * 1.13 * SPX N 0.11 * 1.02 * 0.52 * −0.24 −0.45 0.10 *
T 7.24 * 7.66 * 7.90 * 2.26 * 4.63 * 4.63 * T 0.41 * 1.51 * 0.79 * 0.75 * 1.12 * 0.92 *
SU 9.72 * 12.34 * 8.85 * −0.71 1.46 * 1.23 * SU 0.15 * 1.80 * 0.65 * −0.27 −0.54 0.14 *
N–T 9.09 * 10.52 * 10.17 * −0.83 0.32 * 0.00 N–T 0.10 * 0.98 * 0.37 * −0.15 −0.11 0.40 *
T–N 6.76 * 7.44 * 7.45 * −0.15 1.58 * 1.40 * T–N 0.18 * 0.85 * 0.41 * 0.24 * 0.44 * 0.66 *
T–T 7.53 * 8.56 * 9.02 * 0.48 * 2.37 * 2.30 * T–T 0.24 * 0.98 * 0.50 * 0.54 * 0.95 * 0.93 *
T–SU 8.52 * 11.48 * 9.19 * 0.45 * 2.84 * 2.17 * T–SU 0.30 * 1.31 * 0.53 * 0.63 * 1.23 * 0.96 *

ETH N 9.25 * 9.86 * 9.66 * 1.03 * 0.89 * 1.02 * SPB N −0.01 0.05 * 0.03 * −0.13 −0.16 0.17 *
T 9.66 * 10.61 * 11.16 * 4.47 * 5.60 * 6.18 * T 0.06 * 0.17 * 0.11 * 0.06 * 0.12 * 0.39 *
SU 12.92 * 16.50 * 10.71 * 1.08 * 0.91 * 1.00 * SU −0.01 0.08 * 0.04 * −0.13 −0.17 0.24 *
N–T 12.07 * 13.57 * 16.00 * 0.30 * 0.33 * 0.41 * N–T −0.02 0.01 * 0.01 * −0.03 −0.04 0.08 *
T–N 9.31 * 9.96 * 10.32 * 1.55 * 1.97 * 2.36 * T–N 0.00 0.04 * 0.03 * 0.04 * 0.07 * 0.14 *
T–T 10.29 * 11.32 * 13.39 * 1.87 * 3.02 * 3.46 * T–T 0.02 * 0.07 * 0.05 * 0.10 * 0.18 * 0.23 *
T–SU 11.68 * 14.31 * 10.50 * 2.22 * 3.44 * 2.83 * T–SU 0.01 * 0.07 * 0.05 * 0.09 * 0.17 * 0.21 *

XRP N 8.29 * 9.22 * 10.10 * −0.99 0.72 * 3.35 * USD N −0.02 −0.04 −0.01 −0.23 −0.36 −0.39
T 9.03 * 11.29 * 13.50 * 3.87 * 9.92 * 15.88 * T 0.08 * 0.13 * 0.10 * 0.09 * 0.03 * −0.21
SU 10.27 * 15.48 * 13.92 * −0.87 0.80 * 3.87 * SU −0.02 −0.04 −0.01 −0.23 −0.35 −0.39
N–T 11.77 * 17.32 * 24.22 * −0.28 0.71 * 5.32 * N–T −0.02 −0.07 −0.02 −0.28 −0.35 −0.32
T–N 8.55 * 11.67 * 14.04 * 1.19 * 3.38 * 8.88 * T–N 0.01 −0.03 0.02 * −0.19 −0.25 −0.25
T–T 9.73 * 12.86 * 18.74 * 1.91 * 4.48 * 13.18 * T–T 0.04 * 0.02 * 0.05 * −0.10 −0.13 −0.20
T–SU 9.18 * 14.29 * 17.18 * 1.86 * 5.18 * 11.97 * T–SU 0.03 * 0.02 0.04 * −0.12 −0.13 −0.21
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Table 9. Cont.

j = C Case 1 (C← Cs) Case 2 (C← NCs) j = NC Case 3 (NC← Cs) Case 4 (NC← NCs)

Before During During Before During During Before During During Before During During
COVID-19 COVID-19 Bubble COVID-19 COVID-19 Bubble COVID-19 COVID-19 Bubble COVID-19 COVID-19 Bubble

LTC N 8.82 * 11.17 * 11.73 * 1.00 * −1.31 −1.71 OIL N 0.28 * 0.25 −0.72 1.54 * 0.26 −1.00
T 9.41 * 11.66 * 12.97 * 5.11 * 3.06 * 2.74 * T 1.05 * 3.09 * 0.06 4.43 * 7.86 * 0.92 *
SU 10.21 * 19.85 * 17.18 * 0.89 * −1.42 −1.91 SU 0.49 * 0.41 −0.84 3.74 * 0.72 * −1.21
N–T 12.10 * 14.94 * 13.96 * 0.90 * −0.84 −1.11 N–T 0.07 * −0.31 −0.67 0.68 * 0.04 −0.35
T–N 8.91 * 10.69 * 10.66 * 2.46 * 0.32 * 0.72 * T–N 0.28 * 0.25 −0.35 1.53 * 2.30 * 0.45 *
T–T 10.24 * 12.19 * 12.57 * 3.07 * 1.41 * 1.95 * T–T 0.48 * 0.61 * −0.15 2.89 * 3.47 * 1.06 *
T–SU 9.29 * 16.12 * 14.59 * 2.91 * 1.69 * 1.93 * T–SU 0.62 * 1.21 * −0.22 3.95 * 6.91 * 0.98 *

XMR N 9.43 * 8.85 * 5.53 * −0.16 0.94 * −0.86 GLD N 0.06 * 0.01 −0.15 0.12 * 0.12 * −0.88
T 10.03 * 10.10 * 7.08 * 4.22 * 6.99 * 4.72 * T 0.29 * 0.52 * 0.20 * 0.94 * 1.48 * −0.16
SU 12.88 * 18.81 * 8.89 * −0.17 1.30 * −1.24 SU 0.07 * −0.02 −0.21 0.21 * 0.29 * −1.04
N–T 12.62 * 13.51 * 10.74 * 0.41 * 0.94 * −0.67 N–T 0.08 * 0.07 * −0.05 0.17 * −0.09 −0.26
T–N 9.16 * 8.84 * 7.22 * 2.11 * 3.00 * 1.30 * T–N 0.13 * 0.17 * 0.07 * 0.42 * 0.33 * 0.07 *
T–T 10.69 * 10.64 * 9.31 * 3.02 * 4.68 * 2.66 * T–T 0.18 * 0.30 * 0.16 * 0.69 * 0.78 * 0.29 *
T–SU 11.43 * 14.91 * 10.42 * 3.22 * 6.20 * 2.67 * T–SU 0.19 * 0.34 * 0.18 * 0.69 * 0.86 * 0.31 *

αj = 1% and αi = 1%, i ∈ I D
\j

BTC N 9.69 * 10.06 * 9.75 * −1.02 1.78 * 1.60 * SPX N 0.16 * 1.44 * 0.73 * −0.34 −0.64 0.14 *
T 13.40 * 15.51 * 14.02 * 7.42 * 12.63 * 11.36 * T 1.21 * 3.67 * 1.67 * 2.53 * 4.05 * 2.42 *
SU 20.87 * 30.80 * 16.89 * −1.12 2.72 * 2.01 * SU 0.30 * 4.61 * 1.07 * −0.53 −1.12 0.22 *
N–T 28.51 * 31.63 * 23.59 * −1.31 0.54 * 0.00 N–T 0.25 * 3.10 * 0.62 * −0.34 −0.27 0.68 *
T–N 9.45 * 10.40 * 10.44 * 1.06 * 3.66 * 3.62 * T–N 0.36 * 1.34 * 0.67 * 0.77 * 1.22 * 1.22 *
T–T 19.38 * 20.76 * 18.45 * 2.91 * 8.11 * 7.36 * T–T 0.87 * 3.27 * 1.03 * 3.00 * 5.46 * 2.15 *
T–SU 16.73 * 26.64 * 16.83 * 2.96 * 10.58 * 6.68 * T–SU 1.00 * 3.83 * 1.06 * 2.94 * 5.77 * 2.13 *

ETH N 13.09 * 13.94 * 13.66 * 1.46 * 1.26 * 1.45 * SPB N −0.01 0.07 * 0.04 * −0.18 −0.23 0.24 *
T 17.70 * 21.47 * 19.92 * 11.80 * 16.02 * 15.73 * T 0.20 * 0.50 * 0.28 * 0.34 * 0.60 * 0.88 *
SU 25.74 * 40.64 * 22.12 * 1.73 * 1.62 * 1.65 * SU −0.01 0.17 * 0.07 * −0.22 −0.32 0.51 *
N–T 34.61 * 38.36 * 48.01 * 0.47 * 0.55 * 0.73 N–T −0.03 0.03 * 0.02 * −0.06 −0.08 0.18 *
T–N 12.99 * 13.96 * 14.45 * 3.58 * 4.65 * 5.57 * T–N 0.03 * 0.09 * 0.07 * 0.14 * 0.21 * 0.27 *
T–T 24.61 * 26.48 * 33.43 * 5.77 * 10.09 * 12.28 * T–T 0.09 * 0.27 * 0.19 * 0.42 * 0.82 * 0.80 *
T–SU 21.33 * 32.09 * 20.17 * 6.24 * 12.39 * 8.31 * T–SU 0.08 * 0.26 * 0.15 * 0.40 * 0.75 * 0.59 *
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Table 9. Cont.

j = C Case 1 (C← Cs) Case 2 (C← NCs) j = NC Case 3 (NC← Cs) Case 4 (NC← NCs)

Before During During Before During During Before During During Before During During
COVID-19 COVID-19 Bubble COVID-19 COVID-19 Bubble COVID-19 COVID-19 Bubble COVID-19 COVID-19 Bubble

XRP N 11.72 * 13.04 * 14.28 * −1.41 1.02 * 4.74 * USD N −0.03 −0.06 −0.01 −0.33 −0.51 −0.55
T 17.15 * 24.92 * 26.59 * 12.41 * 29.38 * 39.61 * T 0.32 * 0.53 * 0.31 * 0.57 * 0.57 * −0.10
SU 21.85 * 42.04 * 33.46 * −1.39 1.61 * 8.25 * SU −0.04 −0.07 −0.01 −0.36 −0.55 −0.55
N–T 35.84 * 69.49 * 102.16 * −0.48 1.43 * 14.67 * N–T −0.03 −0.12 −0.02 −0.43 −0.55 −0.46
T–N 11.96 * 16.38 * 20.06 * 3.54 * 7.55 * 16.84 * T–N 0.05 * 0.01 * 0.07 * −0.14 −0.21 −0.26
T–T 24.54 * 38.98 * 64.95 * 7.51 * 19.82 * 70.83 * T–T 0.14 * 0.18 * 0.15 * 0.07 * 0.09 * −0.12
T–SU 17.53 * 33.49 * 40.01 * 6.23 * 19.19 * 39.81 * T–SU 0.12 * 0.15 * 0.12 * 0.02 0.06 −0.15

LTC N 12.48 * 15.79 * 16.58 * 1.41 * −1.85 −2.41 OIL N 0.39 * 0.36 −1.02 2.18 * 0.36 −1.41
T 17.55 * 23.04 * 22.41 * 13.68 * 10.86 * 9.48 * T 3.10 * 10.31 * 1.24 * 11.10 * 23.87 * 3.78 *
SU 20.62 * 46.49 * 31.20 * 1.41 * −2.28 −2.94 SU 1.20 * 1.13 −1.49 10.47 * 2.02 * −2.10
N–T 33.36 * 44.56 * 30.14 * 1.51 * −1.32 −1.74 N–T 0.19 * −0.98 −1.31 1.89 * 0.13 * −0.70
T–N 12.43 * 14.91 * 14.91 * 5.12 * 2.21 * 3.31 * T–N 0.69 * 1.20 * −0.14 3.17 * 5.64 * 1.48 *
T–T 23.64 * 29.00 * 24.20 * 9.41 * 5.96 * 7.41 * T–T 2.05 * 3.88 * 0.54 * 15.46 * 26.78 * 4.71 *
T–SU 17.01 * 33.68 * 25.25 * 7.60 * 7.62 * 7.60 * T–SU 2.75 * 7.16 * 0.35 * 18.43 * 36.61 * 3.81 *

XMR N 13.34 * 12.51 * 7.82 * −0.23 1.33 * −1.22 GLD N 0.08 * 0.01 −0.21 0.16 * 0.17 * −1.25
T 18.68 * 21.28 * 13.56 * 12.44 * 20.21 * 13.93 * T 0.89 * 1.80 * 0.84 * 2.61 * 4.41 * 0.65 *
SU 25.11 * 49.38 * 18.80 * −0.28 2.59 * −2.22 SU 0.13 * −0.05 −0.38 0.41 * 0.61 * −1.76
N–T 33.42 * 43.30 * 28.71 * 0.69 * 1.81 * −1.21 N–T 0.16 * 0.16 * −0.10 0.36 * −0.21 −0.53
T–N 12.78 * 12.42 * 10.24 * 4.89 * 6.46 * 4.09 * T–N 0.26 * 0.39 * 0.25 * 0.87 * 0.91 * 0.48 *
T–T 23.82 * 27.11 * 21.78 * 9.80 * 17.64 * 10.84 * T–T 0.56 * 1.16 * 0.71 * 2.56 * 3.77 * 1.69 *
T–SU 20.69 * 35.20 * 21.14 * 9.28 * 23.37 * 10.33 * T–SU 0.55 * 1.17 * 0.74 * 2.27 * 3.24 * 1.64 *

C and NC stand for crypto and non-crypto assets, respectively. The asterisk * indicates that the ∆MCoVaR
αj |αD

\j ,50%

j|\j forecast is significantly positive based on the two-sample
Kolmogorov–Smirnov test at the 5% level.
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Furthermore, Ripple and Bitcoin were negatively impacted by systemic risk jointly
transmitted from the non-crypto assets amid the pre-COVID-19 period. This indicates
that the Ripple and Bitcoin markets became less risky when global non-crypto markets
moved from normal situations to stressful circumstances during such a period. Meanwhile,
Litecoin was found to be the largest receiver of systemic risk jointly transmitted from the
non-crypto assets. As the pandemic and bubble progressed, joint transmissions of systemic
risk from the non-crypto assets negatively impacted Litecoin and positively affected the
remaining crypto assets. This was a notable exception where the systemic impacts of the
non-crypto markets on the Litecoin market substantially declined due to the COVID-19
pandemic and crypto bubble. A similar exception was Monero, which received decreased
systemic impacts from the non-crypto markets during the bubble period.

Conversely, when each non-crypto asset was treated as the targeted asset, the joint
systemic risk contributions of the crypto assets to the non-crypto asset were not found
to be as large as the joint systemic risk contributions of the crypto assets to the other
within the crypto markets. In particular, the joint transmissions of systemic risk from the
crypto assets tended to have a small positive impact on the S&P 500, oil, and gold and a
small negative effect on the S&P US Treasury Bond and the US dollar. This is in line with
evidence previously shown from Figure 2 that the crypto assets exhibited a weakly positive
correlation with the former three non-crypto assets and a weakly negative correlation with
the latter two non-crypto assets. This is also consistent with the finding of Jang et al. (2019)
that documented interdependence between Bitcoin and other global assets, including the
S&P 500 and gold. Meanwhile, joint transmissions of systemic risk within the non-crypto
markets had a tendency to negatively impact the S&P 500, the S&P US Treasury Bond, and
the US dollar and positively influence the two commodities before and during COVID-19.
Overall, compared to the systemic impacts of the non-crypto markets, the systemic impacts
of the crypto markets on the former three non-crypto assets appeared to be larger, and
the systemic impacts of the crypto markets on the latter two non-crypto assets seemed
to be smaller. Among the five non-crypto assets examined in this study, oil was found
to be the largest receiver of systemic risk jointly transmitted from the crypto assets and
from the remaining non-crypto assets. Interestingly, the systemic impacts of the crypto and
non-crypto markets on the US dollar significantly decreased as a result of the COVID-19
pandemic and the 2021 crypto bubble.

6. Conclusions

This study proposed to analytically formulate the MCoVaR systemic risk measure
for a targeted asset by considering that a set of conditioning assets were jointly in distress
and that a set of the remaining conditioning assets were jointly in their median or normal
situations. The formulation was carried out by modeling their returns through an approach
based on multivariate copulas, which enabled us to study their margins and dependence
structure separately. Classical multivariate risk models, including multivariate normal
and Student’s t benchmark models and a multivariate Johnson’s SU model, were also
considered. These methodological frameworks were applied to investigate joint systemic
risk transmissions across crypto and non-crypto markets over periods before and during
the global outbreak of the COVID-19 pandemic, which covers the 2021 crypto bubble.

By examining the RMSE of the estimated conditional coverage probability (MCoCP)
and the expected conditional asymmetric loss function (MCoAL) of the resulting MCoVaR
forecast, the copula-based models with non-normal margins outperformed the aforemen-
tioned three classical models in accurately forecasting MCoVaR. This suggests the impor-
tance and significance of combining copulas with asymmetric and leptokurtic margins
for formulating an accurate MCoVaR forecast and thus complements previous studies,
e.g., Cao (2013), Bernardi and Petrella (2015), Bernardi et al. (2017), Torri et al. (2021),
Chen et al. (2022), and Hakim et al. (2022), that relied on classical models. The so-called
multivariate Archimedean copulas and vine copulas may also be taken into consideration
to capture asymmetric tail dependence among multiple asset returns. However, their
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conditional copula function Cj|\j;ϑj|\j
for high dimensions has a very complex expression

and thus no explicit inverse C−1
j|\j;ϑj|\j

. Furthermore, ARMA-GARCH specifications may also

be considered to capture the stylized facts of dynamic crypto- and non-crypto-asset returns
and volatilities. Nonetheless, the use of these models leads us to require a greater effort for
computing the expected value of our proposed MCoAL by accounting for a conditioning
information set and cross-sectional dependence. Thus, these alternative models were not
employed in this study, but they may become an interesting direction for future research. In
addition, further statistical tests of our proposed (MCo)AL may be carried out through the
Diebold–Mariano (DM) test for pairwise comparisons and the model confidence set (MCS)
procedure for equal predictive ability (EPA), as in Bernardi and Catania (2016), Le (2020),
and Jiménez et al. (2022).

By computing the corresponding ∆MCoVaR forecast, we found non-normally dis-
tributed classical models and copulas with non-normal margins to produce this forecast
with a higher value, considerably more evident during the COVID-19 pandemic and the
2021 crypto bubble. This indicates the rising tendency of crypto and non-crypto markets
to jointly transmit systemic risk due to the pandemic and bubble. Furthermore, we high-
lighted that joint transmissions of systemic risk from the crypto markets highly impacted
each crypto asset and oil. In addition to oil, the S&P 500 and gold also received a positive
systemic impact from the crypto markets, although this impact was not as large as what
each crypto asset received. This result supported evidence of the crypto markets as poten-
tial sources of global financial instability triggering systemic risk, particularly during the
ongoing COVID-19 pandemic and the recent 2021 bubble episode. The improvement in the
conditional coverage performance of the copula-based MCoVaR forecast may lead to an en-
hancement in managing systemic risk in global financial markets in the presence of crypto
markets. In contrast, the systemic impact received by the S&P US Treasury Bond and the
US dollar was negative, in line with their strong safe-haven properties. In future research,
it is necessary to include another class of crypto assets, namely, stablecoins, well known to
exhibit stable volatility (as their name suggests) and strong safe-haven characteristics. It is
important to examine whether these stable crypto assets also play roles as potential sources
of systemic risk (as traditional crypto assets do).
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Notes
1 It is well known that VaR is elicitable because there exists a loss or scoring function, particularly an asymmetric piecewise-linear

loss function, minimized by VaR; see Gneiting (2011). This fact makes the VaR forecast easy to backtest using some backtesting
procedures, such as unconditional coverage and independence tests (Christoffersen 1998; Kupiec 1995), coverage probabilities
(Hakim et al. 2022; Kabaila and Syuhada 2008), or expected asymmetric loss functions (Bernardi and Catania 2016; González-
Rivera et al. 2004; Jiménez et al. 2022; Le 2020; Syuhada et al. 2021). Since the MCoVaR systemic risk measure is basically the VaR
risk measure of a targeted entity’s risk conditional on other entities’ risks, it is also an elicitable risk measure. This motivated us
to rely on MCoVaR (instead of other systemic risk measures, such as MCoES, MES, and SRISK) for systemic risk quantification
and propose backtesting techniques for the MCoVaR forecast evaluation.

2 We denote the probability functions that correspond to the distribution functions G(0,P,ω), F(µ,Σ,ω), Gi;ωi , and Fi;(µi ,σ2
i ,ωi)

as
follows: g(0,P,ω), f(µ,Σ,ω), gi;ωi , and fi;(µi ,σ2

i ,ωi)
, respectively.

3 Embrechts et al. (2003b) stated that if the joint distribution function of Xi and Xj is exchangeable, i.e., Fij;θij = Fji;θji , then

λL
ij;θij

= 2 limu→0+P
({

Xj < F−1
j;θj

(u)
} ∣∣∣ {Xi = F−1

i;θi
(u)
})

and λU
ij;θij

= 2 limu→1−P
({

Xj > F−1
j;θj

(u)
} ∣∣∣ {Xi = F−1

i;θi
(u)
})

.

4 In Ding’s (2016) original study assuming X to admit an I-variate Student’s t distribution, with a covariance matrix ν
ν−2 Σ,

the conditional distribution of X2 | {X1 = x1} is an (I − K)-variate Student’s t distribution, with a covariance matrix
ν+(x1−µ1)

>
Σ−1

11 (x1−µ1)
ν+K

(
Σ22 − Σ21 Σ−1

11 Σ12

)
.

5 According to Remark 1, the resulting coefficient 2Tν+1

(
−
√

1−ρij
1+ρij

(ν− 1)
)

of the lower and upper tail dependence of our

proposed Student’s t model is different from the coefficient 2Tν+1

(
−
√

1−ρij
1+ρij

(ν + 1)
)

of the lower and upper tail dependence of

Student’s t model discussed in Demarta and McNeil (2005).
6 The corresponding function cϑ(u) = ∂I

∂u1···∂uI
Cϑ(u) is called the copula density.

7 Student’s t copula constructed in this study using our proposed standardized Student’s t distribution TI(0, P, ν), with Pearson’s
correlation matrix P, is different from the one discussed in Demarta and McNeil (2005).

8 According to Remark 1 as well as Notes 5 and 7, the coefficient 2Tν+1

(
−
√

1−ρij
1+ρij

(ν− 1)
)

of the lower and upper tail dependence

of our proposed Student’s t copula is different from the coefficient 2Tν+1

(
−
√

1−ρij
1+ρij

(ν + 1)
)

of the lower and upper tail

dependence of Student’s t copula discussed in Demarta and McNeil (2005).
9 If Student’s t margins have common degrees of freedom νi = ν that equal the degrees of freedom of Student’s t copula, then their

joint distribution is TI(µ, Σ, ν), as discussed in Section 2.1.
10 In their original works, Bernardi and Petrella (2015) and Bernardi et al. (2017) considered the same significance level αi = α for

the VaR of each distressed asset i ∈ I D
\j . In this study, we generalize their (∆)MCoVaR definition by allowing the conditioning

assets in I D
\j to be distressed at different levels.

11 The notation IA denotes the indicator function of any set A, with a value of IA(a) = 1 if a ∈ A and zero otherwise.
12 Our asymmetric loss function is different from the one proposed by previous studies, e.g., González-Rivera et al. (2004) and

Bernardi and Catania (2016), i.e., 1
N ∑

n∈N
ϕαi (xi;n − w), with ϕαi (xi;n − w) =

(
αi − I(−∞,0](xi;n − w)

)
(xi;n − w).

13 A period before 16 January 2018 encompasses the 2017 crypto bubble, as documented by Bazán-Palomino (2022) from the first
week of March 2017 to the second week of January 2018. Meanwhile, during a period spanning from 24 February 2022 up to
present, the geopolitical conflict between Russia and Ukraine occurred and impacted global financial markets. However, these
two periods are out of the scope of this study.
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