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Abstract: We present a method for the arbitrage-free interpolation of plain-vanilla option prices and
implied volatilities, which is based on a system of integral equations that relates terminal density and
option prices. Using a discretization of the terminal density, we write these integral equations as a
system of linear equations. We show that the kernel matrix of this system is, in general, ill-conditioned,
so that it cannot be solved for the discretized density using a naive approach. Instead, we construct
a sparse model for the kernel matrix using singular value decomposition (SVD), which allows us
not only to systematically improve the condition number of the kernel matrix, but also determines
the computational effort and accuracy of our method. In order to allow for the treatment of realistic
inputs that may contain arbitrage, we reformulate the system of linear equations as an optimization
problem, in which the SVD-transformed density minimizes the error between the input prices and
the arbitrage-free prices generated by our method. To further stabilize the method in the presence of
noisy input prices or arbitrage, we apply an L1-regularization to the SVD-transformed density. Our
approach, which is inspired by recent progress in theoretical physics, offers a flexible and efficient
framework for the arbitrage-free interpolation of plain-vanilla option prices and implied volatilities,
without the need to explicitly specify a stochastic process, expansion basis functions or any other
kind of model. We demonstrate the capabilities of our method in a number of artificial and realistic
test cases.

Keywords: option pricing; plain-vanilla options; volatility interpolation; arbitrage; inverse problem;
optimization; regularization; sparse modeling

1. Introduction

Since the dawn of modern quantitative finance, academics and practitioners have tried
to understand the dynamics of asset price fluctuations, which, in financial markets, are
called volatility. Understanding volatility is not only necessary for the risk management of
financial products in general, but also, specifically, for the pricing of option contracts, since
their value depends on the size of expected price fluctuations for the respective underlying
assets. These studies have produced various books and reviews (Carr and Lee 2009; Clark
2010; Derman and Miller 2016; Gatheral 2006), as well as many focused studies for which
we can cite only a few examples here: (Aït-Sahalia et al. 2001; Baker et al. 2004; Egloff et
al. 2010; Hagan et al. 2001; Jiang 2020; Lipton 2002; Mixon 2002; Xing et al. 2010). Over
time, many option pricing models have emerged, which assume specific dynamics for
the underlying asset and its volatility. Among them are the seminal Black and Scholes
(1973) model and the, similarly influential, Heston (1993) model, which specify an explicit
stochastic process for the price of the underlying asset, and also for the volatility, in the
case of the Heston model.

Most option pricing models require knowledge of various parameters which reflect the
state of the market, such as interest rate, dividends or implied volatilities. If, for example,
the ubiquitous Black–Scholes model (Black and Scholes 1973) is applied to realistic settings,
it requires an implied volatility for each strike for which a price is intended. This implied
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volatility characterizes the size of price fluctuations for the option’s underlying asset, which
is implied by the price of the option, i.e., only when this value of volatility is inserted into
the pricing formula does one obtain the same price as is observed on the market.

Plain-vanilla European options for many underlyings are traded on exchanges, but for
a fixed discrete set of strikes. To price a plain-vanilla option with a strike not contained
in this set of market-quoted instruments, it is necessary to calculate the volatility for this
missing strike out of the available option prices. Often, this is done not only by implying
the volatility for single strikes, but by constructing a continuous representation of the
implied volatility out of the discrete set of quoted option prices. Other use cases for
such a continuous representation of implied volatility include the construction of a local
volatility (LV) (Derman and Kani 1994; Dupire 1994) for use in the popular class of local
stochastic volatility (LSV) models (Lipton 2002; Lipton et al. 2014), or the pricing of exotic
derivatives. (Carr and Lee 2009).

There are many methods for constructing a continuous representation of option prices
or implied volatilities, starting from simple spline interpolation, directly applied to the
implied volatility, and moving to sophisticated arbitrage-free schemes in either volatility
or option prices. Kahale (2004) uses a C2 interpolating function to produce an arbitrage-
free interpolation of option prices, but requires that the inputs also be arbitrage-free.
Andreasen and Huge (2011) developed a one-step finite difference scheme to calibrate a
piecewise constant local volatility model to quoted option prices. Jäckel (2014) formulates
another method to construct C2 interpolants for option prices and presents an algorithm to
remove arbitrage from these interpolants. Another approach, developed by Le Floc’h and
Osterlee (2019a, 2019b) directly relates option prices and terminal density using stochastic
collocation to various basis functions. Such a relation exists, since the fair price of any
financial instrument is the present value of its expected payoff. This expected payoff can
be calculated from the payoff function of the instrument and the risk-neutral probability
distribution. For plain-vanilla options, which are investigated herein, the payoff is only
determined at maturity, so that the terminal density is sufficient to calculate the expected
payoff (Breeden and Litzenberger 1978).

A totally different route to a continuous representation of option prices or implied
volatility are stochastic volatility models, such as the Heston (1993), or SABR (Hagan et
al. 2015) models and related approximate formulae for the volatility smile (Gatheral and
Jacquier 2014; Lorig et al. 2017). These models are usually based on, or inspired by, a
stochastic process with few parameters. Therefore, the forms of the volatility smiles in
these models are somewhat inflexible, and it can be hard to fit them to market-quoted
prices. Nevertheless, these models describe the whole dynamics of an underlying asset,
instead of just the terminal density at a given point in time, which enables them to also
price path-dependent options (Carr et al. 2022; Guterding and Boenkost 2018; Tian et al.
2014) and other exotic derivatives. (Guterding 2021; Zhu and Lian 2012).

Our aim here was to find a method for which it is not necessary to specify a stochastic
process and which should also not require specifying a specific functional form for either the
volatility or the terminal density. Such a method for the interpolation of implied volatilities
would be versatile and applicable to a broad range of realistic situations. Inspired by
recent progress on inverse problems in theoretical physics (Otsuki et al. 2020), we present a
new method that uses the singular value decomposition (SVD) and L1-regularization to
obtain a sparse model, i.e., one containing only a few non-zero parameters of the relation
between plain-vanilla European option prices and the terminal density of the underlying
asset. Using a constrained and L1-regularized optimization, our method is able to extract
arbitrage-free representations of both option prices and implied volatilities, even from
inputs that contain severe arbitrage, without any de-arbitraging or pre-processing steps.
Since we are directly working with the density, our method is also able to extrapolate
implied volatilites in an arbitrage-free manner beyond the quoted strike range.

We first review the relation between option prices and terminal density and describe
how it can be discretized and written in matrix form. We show why naive attempts to
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invert this system of equations fail, in general, and propose a solution that involves trans-
forming the problem into a better-conditioned one using the SVD. Then, we reformulate
the procedure for finding the terminal density from a matrix inversion into a constrained
optimization problem that also avoids arbitrage. We test our method on several classic ex-
amples, such as normal and log-normal densities. Furthermore, we show that our method
can easily handle multimodal densities, arbitrage and volatility smiles with kinks, all of
these being areas in which stochastic volatility models struggle (Le Floc’h and Osterlee
2019a). We conclude with a summary of the advantages and disadvantages of our method.

2. Methodology
2.1. Relation between Terminal Density and Option Price

Suppose we know the probability distribution or density φ(x) for the price of an asset
at time T. Then, we may calculate the price of a European option on this underlying asset
at time t, with strike K and expiry at time T, from the following integral: (Breeden and
Litzenberger 1978)

Pr(K) = e−rτ

∞∫
−∞

dx ψ(K, x)φ(x) . (1)

The time to expiry is given by τ = T − t and r is a risk-free interest rate. The kernel
ψ(K, x) depends on the type of option we want to price. For a European Call option we use
the following kernel:

ψC(K, x) = max(0, x− K) . (2)

For a European Put option we use another kernel:

ψP(K, x) = max(0, K− x) . (3)

In cases when the price of the underlying asset is, for example, non-negative, such as
a stock, or obeys some other restriction, this may be taken into account not only by picking
a suitable probability distribution φ(x) , but also by adjusting the integral boundaries.

For numerical calculations, it is useful to discretize φ(x). If we pick a relevant interval
[xmin : xmax], divide it into L, not necessarily uniform, sub-intervals and apply the trape-
zoidal rule, we obtain a discrete representation of Equation (1). Using the abbreviation
f (x) = fK,r,τ(x) = e−rτψ(K, x)φ(x), it reads:

Pr(K) ≈ 1
2

L

∑
i=1

(
f (xi) + f (xi−1)

)(
xi − xi−1

)
. (4)

If we pick a uniform discretization of the interval [xmin : xmax], we obtain the following
simplified approximation:

Pr(K) ≈
(1

2
[

f (x0) + f (xL)
]
+

L−1

∑
i=1

f (xi)
)

∆x . (5)

As we refine the interval into smaller sub-intervals, the calculated price converges to
the true price.

2.2. Matrix Representation of the Relation between Option Price and Terminal Density

From Equation (1), it is clear that the same density, φ(x), should be used for Call
and Put options with the same underlying and expiry at T. Different strikes are taken
into account through the kernel ψ(K, x). In practice, European Call and Put options are
often traded on exchanges, such that quoted prices for a set of discrete strikes are publicly
available.
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Based on these prices, we would like to find an approximation to the density φ(x).
We write down a matrix equation that relates all M available Call and Put prices to the
uniformly discretized density with N points (see Equation (5)):

Pr =

 Pr1
...

PrM

 =


1
2 g1(x1) g1(x2) . . . g1(xN−1)

1
2 g1(xN)

...
...

. . .
...

...
1
2 gM(x1) gM(x2) . . . gM(xN−1)

1
2 gM(xN)


φ(x1)

...
φ(xN)

 = Gφ . (6)

Here, we absorbed ∆x into the function gi(x). If the option with index i is a Call option
with strike Ki, we use:

gi(x) = ∆x · e−rτψC(Ki, x) = ∆x · e−rτ max(0, x− Ki) . (7)

If the option with index i is a Put option, we use:

gi(x) = ∆x · e−rτψP(Ki, x) = ∆x · e−rτ max(0, Ki − x) . (8)

2.3. The Difficulty in Implying the Terminal Density from Option Prices

In general, we are interested in a finely resolved density φ(x) with N discrete points
in the interval [xmin : xmax], while only a limited number of option prices M is available.
Hence, G in Equation (6) is, in general, not a square, but an (M× N) matrix, where M ≤ N
and often even M� N. Therefore, G is ill-conditioned and cannot, in general, be inverted
to find the vector of φ(xi) on the right-hand side.

A way to circumvent this difficulty is provided by the singular value decomposition
(SVD) of a matrix. The singular value decomposition of G reads:

G = USVT . (9)

Here, T denotes the transpose of a matrix. Matrices U and V are orthogonal matrices of
sizes (M×M) and (N× N). S is a matrix of size (M× N), which contains, on its diagonal,
the singular values si, where i = 1, . . . , min(M, N). The singular values are non-negative
real numbers in descending order.

This means we can write Equation (6) as:

Pr = Gφ = USVTφ . (10)

Since U and V are orthogonal matrices (UT = U−1), we can multiply from the left by
UT and obtain:

UTPr = UTUSVTφ = U−1USVTφ = SVTφ . (11)

We now introduce the abbreviations Pr′ = UTPr and φ′ = VTφ, which we call
transformed quantities from now on. Prices Pr′ are the SVD-transformed prices, while φ′ is
the SVD-transformed density. With these transformed quantities we can write Equation (11)
in the following form:

Pr′ = UTPr = SVTφ = Sφ′ . (12)

Since the matrix of singular values S in Equation (12) is diagonal, we conclude that an
element-wise equation also holds:

Pr′i = Siiφ
′
i = siφ

′
i . (13)

This shows that the transformation from φ to Pr via G can be decomposed into
three steps:

1. application of a basis transformation from φ to φ′ via φ′ = VTφ
2. weighting the elements of φ′ with the singular values S to get Pr′ via Pr′ = Sφ′

3. application of a basis transformation from Pr′ to Pr via Pr = UPr′
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Whether such a transformation is easily invertible, is characterized by the decay of
singular values and, in particular, by the condition number C = smax/smin. While the
best-conditioned system of equations has C = 1, we are dealing here with the kernel matrix
G (see Equation (6)), for which C � 1.

To show this, we analyze the kernel G for an equidistant discretization of the interval
[xmin : xmax] with N = 10,000 points and a variable number of strikes in the same interval.
For simplicity, we only take into account Call options. The condition number as a function
of the number of option strikes M in the problem is shown in Figure 1.
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Figure 1. Log–log plot of the condition number of the kernel matrix G defined in Equation (6) as
a function of the number of strikes. The fit with f (x) = a · xk clearly shows that the growth of the
condition number follows such a power law with exponent k ≈ 2.

We fit the condition number of the matrix G with a power law of the form f (x) = a · xk,
where we take x to be the number of option strikes. The fit clearly reveals that k ≈ 2, which
means that the condition number increases quadratically with the number of options taken
into account. Importantly, even if only as few as ten strikes are considered, we already have
C � 1, i.e., the system is very ill-conditioned and any naive attempt at solving Equation (6)
for φ will not succeed.

2.4. Rapid Decay of the Kernel Matrix Singular Values

The fact that G is, in general, ill-conditioned leads to problems in treating Equation (6)
numerically. In the previous section, we discussed how the condition number increases
rapidly as we consider a larger number of options. This indicates that the additional
singular values associated with additional market quotes, i.e., additional linear equations,
decay rapidly.

Here, we show that the singular values also decay rapidly for a fixed matrix G, i.e., for
a fixed number of considered options M and for a fixed number of discretization points
N within [xmin : xmax]. We chose M = 25 equidistant strikes in a fixed interval and varied
the number of discretization points N. As before, we only took into account Call options.
The normalized singular values si/s1 are shown in Figure 2. We attempted to fit the decay
of singular values with an inverse power law of the form f (x) = x−k. The initial decay
seemed to follow such a law with roughly k ≈ 2.7 and slowed down a little for the tail of
singular values.

Recall from the previous section (see Equation (13)) that the singular values si play the
role of weights for the transformed density φ′ to obtain the transformed prices Pr′. From
Figure 2, it is obvious that these weights may differ by several orders of magnitude.

In any direct inversion method this would cause severe numerical problems, essentially
because we would calculate φ′i = Pr′i/si, wherein we would have to divide by the quickly
decaying singular values si.

However, the role of si as weights also shows that most of the relevant information
must be contained in the first few basis vectors associated with the largest singular values.
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Therefore, we may consider only a limited number of these singular values and basis
vectors to reconstitute a better-conditioned approximate version of G.
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Figure 2. Logarithmic plot of the normalized singular values si/s1 for various numbers of discretiza-
tion points N. The number of strikes is fixed to M = 25. The normalized singular values decay with
an inverse power law of the form f (x) = x−k with k ≈ 2.7.

Let us fix the number of considered singular values to Q, where 1 ≤ Q ≤ min(M, N).
We take the Q largest singular values and form the new diagonal matrix S̃. We also reduce
the dimensionality of U with (M×M) to Ũ with (M×Q) and of VT with (N × N) to ṼT

with (Q× N), by keeping only the first Q columns for Ũ or rows for ṼT , respectively. Thus,
the new kernel matrix reads:

G̃ = ŨS̃ṼT . (14)

The matrix G̃ is still of size (M× N), but is better conditioned than the initial matrix
G, which it aims to approximate. We achieved this by cutting off the tail of singular values
sj with Q < j ≤ min(M, N), for which we know that sj ≤ sQ. Thus, the condition number
of G̃ is C̃ = s1/sQ, for which we know, in general, that C̃ ≤ C. However, since we have
already shown that singular values for our kernel matrix G decay with a power law (see
Figure 2), we can safely assume that C̃ � C if the chosen Q is sufficiently small, i.e., the tail
of small singular values is discarded.

This means we can systematically reduce the condition number of our kernel to obtain
a better-conditioned kernel matrix G̃ by retaining only the largest singular values and
associated orthogonal vectors, which is accomplished by lowering Q.

The prices Pr and the density φ are now related by the new kernel matrix G̃, which
gives us a new relation similar to Equation (10):

Pr ≈ G̃φ = ŨS̃ṼTφ . (15)

How good the approximation of G by G̃ is, obviously depends on how many singular
values we retain, i.e., how we pick Q.

We also note that Pr and φ have M and N entries, respectively, while the transformed
quantities Pr′ ≈ ŨTPr and φ′ ≈ ṼTφ both only have Q entries. Since we are often interested
in cases where N � M ≥ Q, this can make a large difference computationally.

In this sense, the SVD allows us to describe the relation between density and prices
with only a few parameters and related orthogonal vectors. Therefore, we may say that the
SVD gives us a sparse model of the original relation defined by Equation (6).
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This, however, does not mean that our method is only useful for sparse inputs. Rather,
our method generates a sparse representation of the relation between any number of input
prices and any number of density discretization points.

2.5. Optimization Problem for Finding the Density

So far, we have discussed how to treat the kernel matrix G of Equation (6) that relates
prices Pr and densities φ. Remember that, in practice, the prices Pr are known, and, thus,
we are interested in the density φ. This means we now attempt to solve Equation (6)
approximately, by actually solving Equation (15).

This could work in cases in which the input prices are reachable with a non-negative
density, i.e., they contain no arbitrage. In many other methods this is solved by filtering the
input prices or applying some other form of de-arbitraging. (Jäckel 2014; Kahale 2004; Le
Floc’h and Osterlee 2019a).

However, we can resolve the need for de-arbitraging by reformulating Equation (15) in
the form of a constrained optimization problem. This optimization problem should give us the
non-negative density φ with N entries. In our sparse model, φ is, however, directly related to
φ′ ≈ ṼTφ, which has only Q entries. Therefore, the most efficient way to find φ is to actually
find φ′ via optimization.

To this end, we minimize the squared error in the transformed quantities:

χ2(φ′|Pr′) =
1
2
‖Pr′ − S̃φ′‖2

2 . (16)

To further enhance the sparsity in the transformed domain, we add another term for
L1-regularization with a free parameter λ:

F(φ′|Pr′, λ) =
1
2
‖Pr′ − S̃φ′‖2

2 + λ‖φ′‖1 . (17)

The same optimization may also be carried out based on the deviation from the
non-transformed prices Pr:

F(φ′|Pr, λ) =
1
2
‖Pr− ŨS̃φ′‖2

2 + λ‖φ′‖1 . (18)

We still cannot guarantee that the density φ is non-negative, as it should be. Therefore,
we constrain the optimization with the following additional conditions:

φi =
(
Ṽφ′

)
i ≥ 0 ∀ i . (19)

Furthermore, the integral of the density, expressed using the trapezoidal rule as before,
should be equal to one:

1 =
(1

2
(
φ1 + φN

)
+

N−1

∑
i=2

φi

)
∆x

=
(1

2

[
(Ṽφ′)1 + (Ṽφ′)N

]
+

N−1

∑
i=2

(Ṽφ′)i

)
∆x . (20)

Our goal is now to find the transformed density φ′ that minimizes Equation (18) under
the constraints defined by Equations (19) and (20). The true density φ can then be calculated
from the solution φ′ of the optimization problem via φ = Ṽφ′.

In Appendix A we discuss further details of how to calculate the error in prices and
when it may be reasonable to convert between Call and Put prices.

In cases in which not only the mid-price is known, but also the Bid–Ask spread for
each option is known, one could reformulate the optimization problem in Equation (18)
to penalize calculated prices that lie outside the spread. We leave this problem for fur-
ther studies.
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2.6. Finding a Solution to the Optimization Problem

We implemented the system of equations defined by Equation (18) under the con-
straints defined by Equations (19) and (20) using the domain-specific language CVXPY
(Agrawal et al. 2018; Diamond and Boyd 2016), available as a package for the Python
programming language.

The transformed density φ′ that minimizes the squared error with additional L1-
regularization on φ′ (see Equation (18)) can be found using various optimization algorithms.
While some authors recommend using their own implementation of the Alternating Direc-
tion Method of Multipliers (ADMM) (Boyd et al. 2010), we have found that the open-source
solvers ECOS (Domahidi et al. 2013) and SCS (O’Donoghue et al. 2016) both deliver excellent
performances, especially with systems, such as the system we attempt to solve, which usu-
ally have only a few degrees of freedom (remember that φ′ has only Q entries). Therefore,
we refer readers who are interested in details of the implementation of these solvers to the
respective papers. In our case, ECOS seemed to be a good choice for the numerical solver.

For further considerations on how to efficiently solve the optimization problem, please
see Appendix B. For readers interested in the computer code of our reference implementa-
tion, we provide a full working example on Github.1

2.7. A Measure for the Similarity of Probability Distributions

For test cases with known probability distributions we wanted to quantify the degree
to which our method recovered the known density. A suitable measure for the similarity of
probability distributions is the Bhattacharyya (1943) distance dB, which, for two probability
distributions, p(x) and q(x), is defined as:

dB(p, q) = − ln
[∫ ∞

−∞
dx
√

p(x)q(x)
]

. (21)

If the probability distributions p(x) and q(x) are identical, i.e., the overlap is maximal,
the integral under the logarithm is equal to one and the Bhattacharyya distance is zero. For
all other cases, the overlap calculated from the integral is between zero and one, or exactly
zero when there is no overlap. The Bhattacharyya distance is a non-negative number which
approaches +∞ in cases where there are no overlaps.

In practice, we sample the probability distributions that are exactly known on the same
grid for which we know our implied density φ(x) and calculate the integral in Equation (21),
using the trapezoidal rule.

3. Examples

In this section, we calculate option prices for a number of known densities and show
that our method is able to accurately recover the terminal density only using the supplied
prices. Furthermore, we demonstrate that our method is able to reconstruct densities from
realistic input prices without any de-arbitraging, filtering or other pre-processing steps.

Since our implied density is non-negative, we can safely apply linear interpolation to
the density and calculate option prices with strikes between the available input prices. This
enables us to also interpolate implied volatilities by calculating these from the interpolated
option prices.

3.1. Normal Density

A normal density corresponds to the Bachelier model, which, having mostly been
ignored for a long time, has regained attention in the context of negative interest rates and
negative prices for oil-futures. (Bachelier 1901; Choi et al. 2022).
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Using the forward price F of the underlying asset, the strike of the option K, the
normal volatility σ and the time to expiry τ, we define the moneyness m of an option in the
following way:

m = m(F, K, σ, τ) =
F− K
σ
√

τ
. (22)

Denoting the normal density function as φN and the cumulative normal density
function as ΦN , the pricing formula of the Bachelier model can be expressed as follows for
a Call option:

PrC = e−rτ
[
(F− K)ΦN(m) + σ

√
τφN(m)

]
. (23)

For the Put option it reads:

PrP = e−rτ
[
(K− F)ΦN(−m) + σ

√
τφN(m)

]
. (24)

We fixed the initial underlying price to S0 = 0.1, the normal volatility to σ = 0.1, the
interest rate to r = 0.05 and the time to expiry to τ = 1. We then calculated the prices of
200 Call and Put options for a uniformly discretized grid of strikes between Kmin = −0.7
and Kmax = 0.7.

We used our method with the option prices so-calculated to imply the density φ(x)
on a uniformly discretized grid with xmin = −0.9, xmax = 0.9 and N = 1000. We retained
Q = 150 singular values.

The normal distribution, upon which the Bachelier model is based, was recovered
to a high degree of accuracy (see Figure 3). Further evidence is shown in Figure 4, which
depicts the error in prices χ2 calculated from Equation (16) and the Bhattacharyya distance
of φ(x) with respect to the normal distribution calculated via Equation (21).
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Figure 3. Comparison of the exact (bold line) and implied (dashed line) densities φ(x) for two
different values of the regularization parameter λ. The exact density was normal with σ = 0.1
and shifted to µ = S0 exp(rτ) ≈ 0.105. The top panel shows an under-regularized implied density
(λ = 10−12), while the bottom panel shows a close to optimal implied density with λ = 10−7.5.
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For λ < 10−8 the error in prices was almost independent of λ. That meant that many
different solutions to the optimization problem existed, which produced a basically perfect
fit to the prices. This was possible since we retained a large number of singular values. In
the density φ(x) this manifested in the form of tiny oscillations, as can be seen in Figure 3.
In other words, without regularization the input prices did not contain enough information
for the optimization to yield a smooth density at the high resolution we selected for φ(x).
As expected, all densities, irrespective of the value of λ, were non-negative.
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Figure 4. Log–log plot of the squared error in prices χ2 (top panel) and the Bhattacharyya distance
dB (bottom panel). Both measures were calculated based on a comparison between the exact input
data and our implied output data for prices and densities, respectively. The input option prices were
based on a Bachelier model. The related input density was a normal distribution with σ = 0.2 and
shifted to µ = S0 exp(rτ) ≈ 0.105. The vertical lines mark the positions of λ = 10−12 and λ = 10−7.5,
for which we show the implied densities in Figure 3.

For λ ≈ 10−7.5, the error in prices was very slightly higher, but the Bhattacharyya
distance dB, with respect to the known normal distribution, was actually minimal, since
the oscillations were suppressed.

For larger values of λ, the error in prices and Bhattacharyya distance increased, since
the implied density was a broadened version of the original normal distribution.

The effect of regularization on the optimized parameters φ′ could also be visualized by
counting the number of entries in φ′, for which the absolute value was above a threshold a.
The visualization for a few different threshold values is shown in Figure 5. Recall that the
number of entries in φ′ was Q = 150. Figure 5 shows that for λ < 10−7.5 the problem was
basically unregularized, and almost all parameters had a magnitude larger than a = 10−2.
As soon as the regularization became effective, the number of parameters with significant
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magnitude drastically reduced, starting with those that had the least impact on the quality
of the prices.

The point where the number of parameters sharply decreased was directly related to
the minimum in the Bhattacharyya distance that we observed in Figure 4. For larger values
of the regularization parameter, the fit simply became worse, since relevant components of
φ′ were strongly suppressed. The fit tried to compensate for this by increasing the number
of other non-zero components of φ′, but failed to achieve good accuracy.

The Bhattacharyya distance dB can of course only be used to select an optimal solution
when the original density is known. As we see in further examples, the minimum in the
Bhattacharyya distance usually corresponds to the point where the error in prices starts to
increase after showing a plateau for small values of the regularization parameter λ.

12 10 8 6 4
log10( )

0

50

100

150

n(
|

′ i|
>

a)

a = 10 3

a = 10 2

a = 10 1

a = 100

Figure 5. Visualization of the effect of regularization on the number of relevant parameters for
the implied transformed density φ′. A larger regularization parameter λ led to fewer entries with
significant magnitude in φ′, i.e., regularization turned φ′ into a sparse representation of the true
density φ. The number of entries in φ′ with a magnitude above the positive threshold a is denoted as
n(
∣∣φ′i ∣∣ > a) and shown as a function of the regularization parameter λ. For λ we chose to show the

axis in logarithmic scale. The figure is based on the same Bachelier model as that in Figures 3 and 4.
The effect of regularization is clearly visible around λ ≈ 10−7.5, where there was a sharp decrease in
the number of parameters with significant magnitude.

Hence, for practical use cases, where the density is not known, we suggest calculating
the solutions for multiple values of λ, as we did here, and selecting the solution with
the highest value of λ that still shows close to minimal error in prices χ2. The effect of
regularization on the parameters can also be verified by an analysis, similar to what we
presented in Figure 5.

3.2. Log-Normal Density

A log-normal density corresponds to the classic Black–Scholes formula for option
pricing. (Black and Scholes 1973) We fixed the initial underlying price to S0 = 0.5, the
volatility to σ = 0.2, the interest rate to r = 0 and the time to expiry to τ = 1. We then
calculated the prices of 200 Call and Put options for a uniformly discretized grid of strikes
between Kmin = 0.01 and Kmax = 1.0.
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We used the so-calculated option prices to imply the density φ(x) on a uniformly
discretized grid with xmin = 0, xmax = 1.5 and N = 1000 using our method. We retained
Q = 150 singular values.

In summary, we recovered the log-normal distribution of the Black–Scholes model
to a high degree of accuracy (see Figure 6). Further evidence is shown in Figure 7, which
depicts the error in prices χ2 calculated from Equation (16) and the Bhattacharyya distance
of φ(x) with respect to the log-normal distribution calculated via Equation (21).

It is clear that the results were optimal for λ ≈ 10−7.5, where the price error and the
Bhattacharyya distance were simultaneously minimized. For smaller values of the regular-
ization parameter λ we observed convergence issues in the ECOS solver, probably because
we retained a large number of singular values Q, which allowed for many similarly good
solutions. This could probably be resolved by either fine-tuning of numerical parameters
in ECOS or by reducing the number of singular values.

Figure 6 compares the exact log-normal distribution and our implied discretization
φ(x) for two values of the regularization parameter λ. The optimal solution (λ = 10−7.5)
closely followed the log-normal distribution. Even though the less optimal solution had
a slightly broader shape, it still looked similar to a log-normal distribution. Finally, we
verified that all densities we implied from option prices were non-negative.
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Figure 6. Comparison of the exact (bold line) and implied (dashed line) density φ(x) for two different
values of the regularization parameter λ. The exact density was log-normal with σ = 0.2 and shifted
to µ = S0 = 0.5. The top panel shows a close to optimal regularized implied density (λ = 10−7.5),
while the bottom panel shows an over-regularized implied density with λ = 10−3.
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Figure 7. Log–log plot of the squared error in prices χ2 (top panel) and the Bhattacharyya distance dB

(bottom panel). Both measures were calculated based on a comparison between exact input data and
our implied output data for prices and densities, respectively. The input option prices were based on
the Black–Scholes model. The related input density was a log-normal distribution with σ = 0.2 and
shifted to µ = S0 = 0.5. The vertical lines mark the positions of λ = 10−7.5 and λ = 10−3, for which
we show the implied densities in Figure 6.

3.3. Multimodal Density

Since it has been reported that several known methods struggle with multimodal
densities (Le Floc’h and Osterlee 2019a), we wanted to verify that our method also per-
forms well in such cases. For simplicity, we considered a linear combination of normal
distributions φN(µ, σ). Since the price could be calculated from an integral over the density
(see Equation (1)), and since every integral was linear, we concluded that the price for an
option on an underlying that was distributed according to a linear combination of normal
distributions, could be calculated as the equivalent linear combination of Bachelier option
prices (see Equations (23) and (24)).

We next considered a probability distribution φM, built from the linear combination of
three normal distributions φN :

φM =
3

∑
i=1

ciφN(µi, σi) . (25)

For the parameters, we used the values given in Table 1. If we want φM to be a
probability distribution, we must obviously require that ∑i ci = 1 and that all ci are non-
negative. Note that setting the mean value µi for each normal distribution implies the use
of different values for the forward price F = µi in the Bachelier formulae for each term.
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Table 1. Parameters for a multimodal density. These parameters are used in Equation (25) to generate
a density which is a superposition of multiple normally distributed components.

i ci µi σi

1 0.50 −0.20 0.10
2 0.45 0.15 0.15
3 0.05 0.55 0.05

Again, we fixed the interest rate to r = 0.05 and the time to expiry to τ = 1. We then
calculated the prices of 200 Call and Put options for a uniformly discretized grid of strikes
between Kmin = −0.7 and Kmax = 0.7.

We used the so-calculated option prices to imply the density φ(x) on a uniformly
discretized grid with xmin = −0.9, xmax = 0.9 and N = 1000 using our method. We
retained Q = 150 singular values.

In summary, multimodal distributions seem to pose no problem for our method. The
original density is recovered with good accuracy (see Figure 8). Quantitative error estimates
are shown in Figure 9, which depicts the error in prices χ2 calculated from Equation (16)
and the Bhattacharyya distance of φ(x) with respect to the linear combination of normal
distributions calculated via Equation (21). Again, we observed that the minimum in the
Bhattacharyya distance dB corresponded to the minimum of the price error χ2.
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Figure 8. Comparison of the exact (bold line) and implied (dashed line) density φ(x) for two
different values of the regularization parameter λ. The exact density is a linear combination of normal
distributions, according to Equation (25), with parameters taken from Table 1. The top panel shows an
optimal regularized implied density (λ = 10−8.5), while the bottom panel shows an over-regularized
implied density with λ = 10−4.

In Figure 8 we show a comparison between the exact linear combination of normal
distributions and our implied discretization φ(x) for two values of the regularization
parameter λ. The optimal solution (λ = 10−8.5) closely followed the original distribution.
The solution for λ = 10−4 was a version of our initial density, in which the features were
broadened to become almost indistinguishable.
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Figure 9. Log–log plot of the squared error in prices χ2 (top panel) and the Bhattacharyya distance
dB (bottom panel). Both measures were calculated based on a comparison between exact input data
and our implied output data for prices and density, respectively. The input density was given by
Equation (25), with parameters taken from Table 1. The input option prices were calculated from
an equivalent linear combination of Bachelier models with the same parameters, as in Table 1. The
vertical lines mark the positions of λ = 10−8.5 and λ = 10−4, for which we show the implied densities
in Figure 8.

3.4. Density Implied from Prices with Arbitrage

We now show that our method not only recovered known densities with high accuracy,
but also carried out automatic de-arbitraging. Again, we set up a “density” as a linear
combination of three normal distributions using Equation (25). However, we use quotation
marks since we introduced one negative pre-factor, so that the resulting “density” φM
contained negative “probabilities”. The parameters used in this subsection can be found in
Table 2.

Table 2. Parameters for a multimodal density. These parameters were used in Equation (25) to
generate a density which was a superposition of multiple normally distributed components. This
parameter set contained arbitrage, i.e., the resulting “density” contained negative “probabilities”.
This was due to the negative pre-factor.

i ci µi σi

1 0.55 0.80 0.10
2 −0.20 1.15 0.07
3 0.65 1.35 0.20

We used the Bachelier option pricing formulae (see Equations (23) and (24)) in the
same way as in the multimodal case previously discussed. We set the interest rate to
r = 0.05 and the time to expiry to τ = 1. We then calculated the prices of 200 Call and Put
options for a uniformly discretized grid of strikes between Kmin = 0.3 and Kmax = 1.7.
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From the so-calculated option prices we implied the density φ(x) on a uniformly
discretized grid with xmin = 0.1, xmax = 2.2 and N = 1000 using our method. We retained
Q = 150 singular values.

Even prices that corresponded to partly negative “densities” could be processed using
our method. In Figure 10 we show the error in prices χ2 calculated from Equation (16)
and the Bhattacharyya distance. Here, special care must be taken when calculating the
Bhattacharyya distance, which is not defined for partly negative “densities”. Therefore,
we calculated the Bhattacharyya distance using Equation (21) with respect to the non-
negative part of the input “density”, that is φ+

M(x) = max(0, φM(x)). However, φ+
M is not

truly a density. Recall that we fixed the sum of coefficients ∑i ci = 1 so that the integral
over the density yielded unity. However, if there are negative regions, we know that the
integral over the non-negative part φ+

M is larger than one. Therefore, the overlap in the
Bhattacharyya formula may be larger than one, so that the Bhattacharyya distance dB may
become negative.
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Figure 10. Log–log plot of the squared error in prices χ2 (top panel) and log plot of the Bhattacharyya
distance dB (bottom panel). Both measures were calculated based on a comparison between exact
input data and our implied output data for prices and densities, respectively. The input density was
given by Equation (25) with parameters taken from Table 2. The input option prices were calculated
from an equivalent linear combination of Bachelier models with the same parameters as those in
Table 2. The vertical lines mark the positions of λ = 10−7 and λ = 10−5, for which we show the
implied densities in Figure 11.

Of course, we could have normalized the non-negative part so that the integral over
it was exactly one. However, we believe that such a situation may occur in practical
applications and wanted to point out the consequences in detail. Therefore, we show, in
Figure 10, the Bhattacharyya distance dB directly, instead of its logarithm.

This time, any regularization led to an increase in the pricing error χ2. This was
quite logical, since the input prices were simply not reachable with a non-negative density,
both because the inputs implied negative “probabilities” and because the integral over
the positive part of the input “density” was not equal to one. Hence, there is no easy
rule for selecting an appropriate regularization parameter. Any regularization increases
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the pricing error, while it reduces the oscillations in the extracted density. Therefore, we
suggest defining the necessary pricing accuracy and then selecting the largest possible
regularization parameter λ that yields a lower pricing error.

In Figure 11 we show a comparison between the exact linear combination of normal
distributions and our implied discretization φ(x) for two values of the regularization
parameter λ. Which of these extracted densities was better suited for further processing
depended on the specific use case.
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Figure 11. Comparison of the exact (bold line) and implied (dashed line) density φ(x) for two different
values of the regularization parameter λ. The exact “density” is a linear combination of normal
distributions according to Equation (25), using parameters from Table 2, which contains a region with
negative probability. The top panel shows an under-regularized implied density (λ = 10−7), while
the bottom panel shows a well-regularized implied density with λ = 10−5.

The automatic de-arbitraging feature of our method is also very useful when dealing
with implied volatilities. Suppose we did not know the density from which input prices
were generated. If we were to calculate implied volatilities we would usually use log-
normal volatilities and simply calculate them by inverting the Black–Scholes model. This
generates an implied volatility smile, which may, and in this case does, contain arbitrage.
However, we could also generate an arbitrage-free volatility smile from the prices that we
obtained from our optimization procedure. We calculated the implied volatilities using
a simple bisection solver. We re-used the interest rate r = 0.05 and time to expiry τ = 1.
However, we now also needed an initial value of the underlying, which we arbitrarily set
to S0 = 1.0. Of course, in a realistic setting, this value would be known from the market.

We show the results of the log-normal implied volatility calculation in Figure 12.
Clearly, the original volatility smile and our de-arbitraged version, calculated on the
density with λ = 10−5 (see Figure 11, bottom panel) were very similar. The arbitrage in
the original volatility smile was not directly visible. This also shows why methods that
work directly with the implied volatility may introduce arbitrage, which is not immediately
apparent to the user.
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Figure 12. Comparison of the log-normal implied volatilities σ (as a function of the option strike K)
calculated from the input prices containing arbitrage (bold line), which were based on Equation (25)
and parameters from Table 2, and the de-arbitraged prices calculated from our method (dashed line)
at λ = 10−5. The calculation of de-arbitraged implied volatilities is based on the density shown in
Figure 11 (bottom panel).

Note how our method also enables us to extrapolate beyond the range of known
strikes, since it gives us access to smooth non-negative density in our range of choice.
The results beyond the range of strikes with known prices are certainly speculative, but
consistent with the known inputs. That we obtain sensible behavior in the wings of the
volatility smile without any additional effort, is another advantageous property of the
sparse modeling approach.

3.5. Density Implied from S&P 500 Option Prices

It has been mentioned in the literature (Le Floc’h and Osterlee 2019a) that short-term
SPX500 options pose a challenge, particularly to stochastic volatility models and the similar
SVI smile model (Gatheral and Jacquier 2014), since their volatility smiles are quite steep.
We imported the market data from Table 11 in Le Floc’h and Osterlee (2019a), which
corresponded to SPX500 1M (one month) options on 5 February 2018. We calculated Call
and Put option prices from these market data for 75 strikes in the range between 1900 and
2900, using the Black (1976) model.

We noticed that the strikes in the thousands range led to numerical problems in the
ECOS solver, so we divided all strikes in the inputs by 1000. The same transformation was
also applied to the forward price. This simple rescaling of the problem solved the numerical
issues we encountered with the original inputs.

We used the so-calculated option prices to imply the density φ(x) on a uniformly
discretized grid with xmin = 1.4, xmax = 3.4 and N = 1000 using our method. We retained
Q = 70 singular values, which was lower than in the previous cases, because we also had
fewer quoted strikes available.

The original prices were reproduced to a high degree of accuracy. In Figure 13 we
show the error in prices χ2 calculated from Equation (16), which was negligible in the
unregularized limit. Since the terminal density was truly unknown in this case, we could
not measure the Bhattacharyya distance. As can be seen in Figure 13, any increase in the
regularization parameter λ led to an increase in pricing error.

In Figure 14 we show the implied density φ(x) for two different values of the regu-
larization parameter λ. For λ = 10−7 the error in prices was still close to minimal and the
density showed a pronounced spike around x = 2800, followed by a very sharp decrease.
For stronger regularization, such as for λ = 10−4, the features of the density were smeared
out and the error in prices increased substantially. Again, the largest possible λ, which still
gives an error in prices χ2 close to the minimum, should be selected.
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Figure 13. Log–log plot of the squared error in prices χ2 as a function of the regularization parameter
λ for SPX500 1M options as of 5 February 2018. The squared error was calculated from a comparison
between exact input data and our implied output prices. The input option prices were calculated
from the Black (1976) model with market data of Table 11 in Le Floc’h and Osterlee (2019a). The
vertical lines mark the positions of λ = 10−7 and λ = 10−4, for which we show the implied densities
in Figure 14.
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Figure 14. Comparison of implied densities φ(x) for SPX500 1M options as of 5 February 2018. A
good compromise between accuracy and smoothness was achieved for λ = 10−7 (bold line), while
λ = 10−4 yielded a density that contained fewer features (dashed line) and was potentially over-
regularized. As explained in the main text, we rescaled both the price x of the underlying asset and
the density φ(x), for numerical reasons, by a factor of 1/1000 and 1000, respectively.

Since the original data in Le Floc’h and Osterlee (2019a) is given in terms of log-normal
implied volatilities, we also calculated these implied volatilities from our density φ(x)
at λ = 10−7. The implied volatility was found by calculating option prices from the
density using Equation (1) and then inverting the Black formula using a bisection solver
for the volatility.

The comparison between input volatilities and the volatility smile extracted from our
method is shown in Figure 15. The visible kink in the implied volatility around K = 2800
was well reproduced. Note again how our method enabled us to not only interpolate, but
also extrapolate, implied volatilities even in challenging situations.
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Figure 15. Comparison of input implied volatilities σ (open circles) and the volatility smile provided
by our method at λ = 10−7 (bold line) for SPX500 1M options as of 5 February 2018. The volatilities σ

are shown as a function of the option strike K in units of thousands. Clearly, our method reproduced
the inputs with a high degree of accuracy and, additionally, provided a sensible extrapolation of the
available data.

4. Conclusions

We have presented a new method for implying terminal densities directly out of
option prices. We showed that our method is able to produce arbitrage-free interpolations
and extrapolations of both option prices and implied volatilities, while it does not require
de-arbitraging of input prices or other pre-processing steps.

Our algorithm is based on singular value decomposition (SVD), which produces a
transformation to a basis, in which the relation between prices and density is represented
by a sparse model. In this sense, the number of parameters in the model Q is smaller than,
or similar to, the number of input option prices M, while we may extract the density φ(x)
with a much larger number of discretization points N.

This property is the hallmark of any sparse model. It enables us to formulate the
optimization problem for finding the density based on optimizing a small number of
parameters Q. We also showed how L1-regularization helps in finding a density that is a
good compromise between pricing error and smoothness.

Besides the trivial parameters xmin and xmax that define the boundaries of the interval
in which the density is discretized, the only relevant parameters of our method that are
visible to the user are the number of retained singular values Q, the number of input option
prices M, the number of discretization points for the density N and the regularization
parameter λ. The number of input prices M is fixed by the problem that is under investi-
gation. We experienced good results when choosing Q . M/2. For N, we simply chose a
large number so that we could re-calculate option prices with sufficient accuracy. For our
purposes, N = 1000 always seemed sufficient.

In this sense, only the regularization parameter λ is truly up to the user’s choice. We
also presented a simple rule for selecting λ by scanning the error in prices for a number of
different values for λ and choosing the highest possible one with close to minimal error χ2.
In the literature, this is often referred to as the “elbow method”.
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As far as we are aware, relying on optimization, and the subsequent need to choose a
regularization parameter, seem to be the only drawbacks of the sparse modeling approach.
Of course, our method cannot be used to directly price exotic options, while this is easily
possible with stochastic volatility models once they have been calibrated. That, however, is
not the topic of the present investigation.

Barring these restrictions, the advantages of our method are clear. The mathematics
behind our method is simple and easy to understand. Using the numerical libraries
mentioned, the algorithm is also easy to implement. Our own implementation in the
Python programming language consists of fewer than 100 lines of code. The accuracy of
our method proved to be excellent for all artificial and realistic examples we investigated.

Furthermore, our algorithm is robust against defects in the input data, such as arbitrage.
Since it works directly with the terminal density, our method can also be used to extrapolate
option prices and implied volatilities in an arbitrage-free manner far beyond the available
range of market quotes. Having sensible behavior in the wings of the volatility smile,
without any further effort, is quite rare an occurrence and is certainly a strong advantage of
our method.

What makes our method stand out from other available approaches, is that choosing a
polynomial or other basis for the regression is not necessary, because a suitable orthogonal
basis is automatically constructed by the SVD. In this sense, our method is truly model-free.

At present, our algorithm works with options of multiple strikes, but with a single
time to maturity. In future works, we would like to investigate extensions to multiple
maturities, such that the whole volatility surface can be calibrated consistently.

Such an extension would enable us to use our method to calibrate a local volatility (Der-
man and Kani 1994; Dupire 1994) or local stochastic volatility model (Lipton 2002; Lipton
et al. 2014), which we could then use to price options with American exercise (Andersen
and Lake 2021; Andersen et al. 2016; Healy 2021), barrier options (Clark 2010; Guterding
and Boenkost 2018) or other exotic products. Since our method is robust against defects
in the market data, such an extension should be particularly helpful in situations where
the market data are potentially stale or only a few strikes are quoted. For example, this
could be the case in markets for cryptocurrency (Hou at al. 2020; Yang and Hamori 2021a;
Zulfiqar and Gulzar 2021), energy (Benth et al. 2008; Fabbiani et al. 2020; Yang 2021b) or
foreign exchange options (Clark 2010; Guterding and Boenkost 2018), and also for Equity
options (Healy 2021) with less popular underlyings.
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SPX500 Standard & Poor’s 500 Stock Index
ITM In-The-Money
OTM Out-Of-The-Money



Risks 2023, 11, 83 22 of 24

Appendix A. Treatment of In-the-Money Options in the Error Function Calculation

When considering Call and Put options with arbitrary strike, the prices of the options
may differ by several orders of magnitude if some options are in-the-money. In-the-money
options are executed with large probability and, hence, have a high price.

However, if the prices in our problem differ by orders of magnitude, the calculated
error function is dominated by the options with the largest price, which are, unfortunately,
those that depend only on the tail of the probability distribution φ. This is not desirable,
since we are usually equally interested in all regions of the density, or even more so in
the density close to at-the-money. This problem can be solved by transforming prices of
in-the-money options to prices of out-of-the-money options.

Let F define the forward price of the underlying asset at time T. Then a Call option
with strike K is considered in-the-money if K < F. A Put option is considered in-the-money
if K > F. Conversely, a Call option is out-of-the-money if K > F and a Put option is
out-of-the-money if K < F.

Let PrC denote the price of a European Call option with strike K and expiry at T and
let PrP denote the price of a Put option with the same strike and expiry. If S0 is the value of
the underlying asset at t = 0, then, for European options with the same strike and the same
time to expiry τ, Put–Call-parity holds:

PrC + Ke−rτ = PrP + S0 . (A1)

So, for all in-the-money Call options, we may calculate the price of the respective
out-of-the-money Put option from Equation (A1). Likewise, for all in-the-money Put
options, we may calculate the price of the respective out-of-the-money Call option from
Equation (A1).

In this way, we can easily restrict the prices in our optimization problem to out-of-the-
money and at-the-money options, which all have prices with roughly the same order of
magnitude. Hence, the error function is not dominated by the options that depend only on
the tails of the probability distribution.

Although we did not have to apply this transformation from ITM to OTM options
in the present manuscript, we believe it makes sense to document this idea, in case our
readers encounter problems with ITM options when applying our method.

Appendix B. Ideas for Performance Optimization

The main tunable parameters that influence the performance of the algorithm we
presented are the number of retained singular values Q and the number of discretization
points for the density N. Since Q is also the number of parameters in the optimization
problem, it is clear that reducing Q could lead to faster convergence of the optimization
algorithm. Figure 5 clearly shows that after regularization only a few relevant parameters
remained. Therefore, the remaining parameters with negligible weight could also be
removed, before we even started the optimization process, by choosing a lower value of Q.

Based on our analysis of singular values in Figure 2 we could expect that a reduction of
Q would first result in discarding of the less relevant parameters and would then progress
to removing more relevant ones if Q further reduced. However, the manner by which this
depends on input prices is not clear. Therefore, this issue needs more analysis before we can
give any definitive conclusion, but this was not the main point of the present manuscript.

The second opportunity for speeding up the algorithm is to reduce the number of
discretization points for the density N. The point of having more discretization points than
input strikes is to have a high enough resolution to be able to recalculate the input option
prices with sufficient accuracy, so as to enable use of the implied density for interpolation.
Since N determines the effort for the partial SVD, the basis transformations and the checking
of the constraints in the optimization problem, it is worth thinking about a reduction of N.
We suggest first checking whether a reduction in N increases the error in prices χ2. If the
density is required for an interpolation of prices or implied volatilities, first interpolating
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the density linearly and then calculating prices and implying volatilities, based on the
interpolated densities, is always an option. Since a linear interpolation of a non-negative
function is also non-negative, we can be sure that this procedure would not introduce
negative densities, i.e., arbitrage. Linear interpolation of the density also does not violate
the constraint that the trapezoidal integral over the density must be equal to unity.

If our method is used in a live environment, where the density is implied on every
market data update, or on every couple of market data updates, it may be useful to
warm-start the numerical solver from the previous solution φ′ to accelerate convergence.

Note
1 https://github.com/danielguterding/svdensity (accessed on 21 April 2023).
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