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Abstract: Modelling the energy price in the Australian National Electricity Market (NEM) requires
features that are not well reflected in existing models. We present a semi-structural, multi-regional
model wherein bidding is not required to be cost-based, renewable fuels and storage technology are
structurally integrated, and network constraints are often binding in optimal dispatch. Available fuel
capacity then does not necessarily sum to registered bid capacity, as-bid fuel costs do not dependably
follow input fuel prices, and cross-regional interconnectedness requires modelling trade. Furthermore,
modelling the NEM spot price path must admit price negativity and price spikes. Extending previous
work in the literature, the present paper proposes a hyperbolic bid stack approach to price modelling
under these conditions.
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price model; fundamental price model
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1. Introduction
1.1. Aims

Electricity price modelling is central to investment and asset valuation—including
physical power investments, commercial licences, clean energy certificates, debt and equity
claims, and financial derivatives—as projecting the cash flows of these types of assets
usually requires the expected value of the electricity price. In addition, the optimal control
and the financial risk management involved in using these types of assets are no less
dependent on the electricity price evolution. These applications require a price model that
recovers the common empirical features of the spot price path, including negativity and
spikes, with distributional accuracy at the minimum.

There has also been a renewed interest in modelling the electricity price in such a way
that the price effects of certain market factors such as the capacity changes of the regional
fuel mix or the cross-regional interconnectors are traceable. These features open any price
model to scenario analysis, commonly used in, e.g., commissioning and capacity planning,
system constraint cost pricing, investigating interconnector arbitrage, setting regulatory
price thresholds, etc., by the market operator and in regulatory oversight. Available capacity
variation, replicating the ramping speed, must-run amounts, shut-down periods, etc., and
the intricate link between intermittent generation and the price, as found in empirical
studies by Maciejowska (2020); Paraschiv et al. (2014) and Mwampashi et al. (2021, 2022),
have been sources of detailed modelling assumptions in recent years. These often also have
a lot of data support, giving more accurate modelling frameworks that are often highly
specific to the fuel mix (see for example Benth and Ibrahim 2017; Deschatre and Veraart
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2017; Gianfreda and Bunn 2018; Moazeni et al. 2016). Models of this type, which aim to
reflect the way prices are formed in market, are typically called “structural”, as opposed to
“reduced–form” models which simply assume a particular stochastic dynamic for prices.

The objective of the present paper is formulating a semi-structural electricity price
model that reflects the market design in Australia sufficiently well, while also recovering
the most important empirical features of the price path and tracking the price effects of
both the permanent and temporary capacity changes in the fuels and interconnectors. The
proposed approach is, in this sense, structural. More precisely, we suggest a hyperbolic
variation to the market merit order dynamics of Carmona et al. (2013), giving a bid stack
model formulation that extends to renewable and storage power sources as well as to
network restrictions in multi-regional settings.

1.2. Bid Stack Modelling Context

The bid stack model literature—starting with Barlow (2002), who retrieved the stochastic
microeconomic market structure of Föllmer and Schweizer (1993) and wrote the spiky electricity
price as a non-linear transformation of a jumpless diffusion process for demand—typically
maintains a characteristic, fundamental set of assumptions about the pre-existing supply–
demand and auction schema relations. Most bid stack models still at least implicitly
retain this characteristic market structure with perfect demand inelasticity and friction
(Carmona and Coulon 2014). Also, to obtain the price, the different parametric bid stack
models give different forms to the aggregate supply function, i.e., the market bid stack
function, as appropriate in the local context. These differentiations give various instances
of the largely typical market structure. The rationale is that the price formation cannot sig-
nificantly detach from the equilibrium mechanism as long as end-user demand is assumed
inelastic and electricity is not economically storable. In what follows, we give a generic
overview of wholesale price settlement from the Australian perspective, which, however,
demonstrates that any strict non-storability assumption is already untenable at the opera-
tional level. Also, the market structure underpinning the usual bid stack framework can
easily be adjusted for storability.

In Australia and in other countries, electricity is almost always cleared as a homo-
geneous commodity in an automated multi-unit and often also uniform price auction
according to Krishna (2009). The wholesale price is typically determined from the partici-
pants’ bids, in a way that is based on economic principles under the physical constraints
of the electric system, using constrained linear optimization programs, such as the NEM
Dispatch Engine (AEMC 2020) in the Australian National Electricity Market (NEM). Simply
put, this program collects the bids in the maximum registered capacity of the units, discards
the ones that are physically infeasible (“constrained-off”), enforces those that cannot be
omitted for feasibility reasons (“constrained-on”), and returns the least-cost price from the
marginal prices at the optimum solution (AEMO 2022a).

Bids are a series of price–quantity pairs offered by a unit as terms of trade. There
are two basic types of bids. Firstly, generator bids are placed by generator units of any
fuel type—e.g., coal, gas, solar, battery, hydro, etc.—to sell electricity. Regardless of their
availability, the units partition their full capacity into quantity blocks. They assign the
lowest price that they would ask for producing every quantity block to each block. These
are the price–quantity pairs, i.e., the generator bids. They submit as many bids as there are
blocks, and that number is usually capped by the market operator. Secondly, load bids are
placed by load units of any fuel type—e.g., battery, hydro—to buy electricity. Regardless of
their availability, the units also partition their full capacity into quantity blocks. They then
assign the highest price that they would offer for purchasing every quantity block to each
block. These are the price–quantity pairs, i.e., the load bids. The units submit as many bids
as there are blocks, and that number is usually capped by the market operator.

For market price settlement, the generator bids are pooled and arranged in ascending
order on price, i.e., in merit order. The generator bid stack is the cumulative sum of the
bid quantities in merit order, at or below every price on the complete set of bid prices in
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ascending order, from the regulatory price floor to the regulatory price cap. It is agnostic to
the fuel type behind the bids. The generator bid stack is a left-continuous, step-wise relation
that resembles the implied aggregate inverse supply. As such, the bid stack is typically
plotted with the quantity on the horizontal axis and the price along the vertical axis. With
fully inelastic end-user demand, the price at demand—where the vertical demand line
intersects the generator bid stack—is the market price. It is the price of the last bid in merit,
i.e., the price of the most expensive generator bid still needed to fill the demand in full.

Similarly, the load bids are pooled and arranged in descending order of price, i.e., in
merit order. The load bid stack is the cumulative sum of the bid quantities in merit order,
at or above every price on the complete set of bid prices in descending order from the
regulatory price cap to the regulatory price floor. The load bid stack is a right-continuous,
step-wise relation that resembles the implied inverse demand of the load units. Market
price settlement is not complete without coalescing the load bid stacks with the generation
bid stacks in the equilibrium mechanism. The load bids that are eventually granted uptake
in addition to end-user demand are the ones at or above the market price. Consequently, in
the presence of loading, aggregate demand is higher, and becomes slightly elastic, compared
to the generation-only market structure.

Above, in stating that the bid stacks from the two basic bid types resemble implied
inverse supply and implied inverse demand, respectively, we are assuming that there
exist appropriate parametric formulae for transforming the bid information to supply and
demand functions within a mostly typical stochastic market structure. For generator bids
and the implied inverse supply curve, this is a fundamental assumption in the parametric
bid stack model literature (Carmona and Coulon 2014). For load bids and the implied
inverse demand curve, however, this is a new assumption.1

The more recent bid stack models that emulate the above mechanism make extensive
and varied assumptions about what constitutes aggregate supply under the operational
constraints of the electric system2, mostly through the capacity variation effect, which
concerns the removal of unavailable capacity (Burger et al. 2004; Cartea and Villaplana
2008; Coulon et al. 2013) or similarly, the scarcity effect, which captures sudden capacity
depletion (Aid et al. 2013; Howison and Coulon 2009), and the merit order dynamics, i.e.,
fuel bid curve aggregation, when the fuel types are differentiated (Aid et al. 2009, 2013;
Carmona et al. 2013; Howison and Coulon 2009). The models propose different functional
forms to the aggregate inverse supply function, but usually omit two-way (i.e., storage)
fuels with loads. Also, some are more explicit about the underlying market structure than
others (Filipović et al. 2018). The diversity of the literature on these models also shows that
the geographic and commercial wholesale environment has a profound impact on the spot
price trajectory.

Indeed, as wholesale electricity is traded almost immediately after it is produced, and
always locally, the main features of the local market, such as the fuel mix, the network
sparsity, and the rules and regulatory requisites of the automated auction algorithm, all
tend to factor into price discovery to some extent (Eydeland and Wolyniec 2003). We
argue that the properties of the local market routinely determine the correct modelling
assumptions and heavily restrict the functional form of the aggregate supply function.

Somewhat surprisingly, the well-known bid stack models with fuel-type differentiation
mentioned above all encounter difficulties at the model assumption level when simulating
the NEM power price due to the following peculiarities of the local market: the already
high and increasing renewable penetration, the ongoing two-way fuel expansion, the price
effects of binding network constraints, the price-based auction mechanism, and the frequent
price negativity as a result. At the same time, the seminal model by Carmona et al. (2013)
has an attractive merit order dynamic, which the present work retrieves and adapts in five
directions for an improved approach that better reflects the NEM.

In the NEM, the fuel mix is increasingly high in solar-, wind-, and hydropower
(Department of the Industry and Resources 2020) and therefore the model cannot rely
on the spot and futures prices of the input fuels, e.g., gas and coal, as closely as the
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existing literature suggests (Aid et al. 2013; Carmona and Coulon 2014; Carmona et al.
2013). Given, however, that the NEM has a price-based auction mechanism, i.e., that the
participants can bid at any price within the regulatory price thresholds with no obligation
to justify their price on a cost basis according to AEMC (2020), the proposed model can
establish the fuel-specific bidding behaviours by fitting a time-dependent fuel bid stack
function to the different fuel bid data with fuel-specific variables. Using the fuels, or
explicitly evaluating the relationship between the bidding behaviour and the input fuel
prices by fuel type, then recovers the implied inverse supply curves in reduced form
without tying the fitted functions to the production costs or the utility equations of the
individual plants (thus making the model “semi-structural” in this sense). In any liberalised
market, this is applicable to all fuels in which the individual operators engage in bidding,
including renewables.

While fitting the functions to the fuel bid data transfers easily between the different
fuel types, the physically available capacity of the fuels cannot be readily captured by the
same formulation. In the NEM, the individual participants bid in their full capacity (AEMC
2020); these are the bid data. They also provide other real-time technical data, e.g., ramp
rates, renewable forecast measurements, etc., from which the available quantities can be
ascertained centrally. Drawing on the same data set, rather than introducing a “hidden”
variable for average capacity variation (Burger et al. 2004; Cartea and Villaplana 2008;
Coulon et al. 2013) or a scarcity effect (Aid et al. 2013; Howison and Coulon 2009), the
proposed model makes use of the technical data for approximating what constitutes the
available aggregate capacity under the operational constraints.

The NEM also has a considerable amount of pumped hydropower and a rapidly grow-
ing battery fleet, as described in Department of the Industry and Resources (2020). These
two-way fuels enter on both sides of the market by placing two distinct sets of generator
and load bids, and thus open the typical market structure to demand elasticity with an
evident effect on the electricity price. Therefore, the suggested equilibrium formulation
that extends to two-way fuels is a new contribution in the bid stack modelling literature.

Furthermore, dispatch scheduling and price settlement in the NEM is subject to a
myriad of security constraints. When some of these constraints bind, some bids are forced
on (constrained-on) and others are curtailed (constrained-off) in result, depending on
the constraint coefficients of the participating units placing the bids. It follows that the
market bid stack, or more simply and equivalently (as we show) the demand quantity,
must be adjusted to reflect these constraint effects on quantity. This is not a case of higher
scarcity when the constrained-on quantities are considered, but a new feature we suggest
incorporating into the usual market bid stack formulation.

Finally, the regulatory market price floor is AUD −1000 in the NEM and negative
prices, incl. negative price spikes, are common. This requires a model that evaluates the
positive and the negative price outcomes in much the same way. Although the existing bid
stack models write elaborate mechanisms for positive prices, they only provide probabilistic
overlays (Carmona and Coulon 2014; Carmona et al. 2013), if anything, for the negative
prices. More commonly, they disallow (Filipović et al. 2018; Howison and Coulon 2009)
or disregard (Aid et al. 2009, 2013) price negativity. In contrast, our approach assigns
a hyperbolic form to the fuel bid stack functions and preconditions the negative price
outcomes the same way as the positive ones, as long as the bid data record negative bids.
This hyperbolic feature is akin to the spread adjustment method of Ward et al. (2019), who
apply this to the short-term marginal cost of thermal technologies, in the sense that both
approaches clearly identify what puts prices under downward pressure near the negative
end of the price spectrum, and use a hyperbolic feature to reproduce it.

1.3. Other Structural Models

For completeness, it is worth mentioning further papers that model the electricity
price as an equlibrium between supply and demand curves. Because they do this, these
are all structural to some degree. However, the more refined (the more structural) a model,
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the more likely it is to reflect the settings of a specific exchange or wholesale market. A
day-ahead market model in Europe might have very different ingrained assumptions,
such as sequential arbitrage, stable offer capacity over time, lack of real-time balancing
constraints, etc., compared to the requirements of a wholesale real-time market model for
Australia. In addition, negative prices are relatively large and common in some regions
in Australia, which is why the standard assumption of an exponential supply curve is not
adequate in this setting without adjustments. Because of these, the applicability of the
models below to the Australian market is limited.

The X-model proposed by Ziel and Steinert (2016) and further improved by Kulakov
(2020) first creates a small number of price classes, i.e., price ranges that are sub-segments
of the full price range. The authors then stochastically model the bid volume within every
price class, whereby the correlation structure of the bids is also retained. Finally, the bid
volumes are reassessed probabilistically for every discrete price within every price class.
This is referred to as price curve reconstruction. The original model in Ziel and Steinert
(2016) reconstructs both price curves for supply and demand, while Kulakov (2020) reworks
the supply curve so that it contains the elastic negative supply bids from the demand curve,
which allows for the demand curve to be perfectly inelastic. Therefore, Kulakov (2020)
models the supply curve with multiple price classes, but only one price class for the
demand curve. The name of the approach comes from the fact that in equilibrium the
curves appear as the letter X. This approach would be problematic for Australia without
first adjusting the bid-in data to the available capacity and constrained-on/off volumes (see
Section 2.2.5 below). This is possible, but is not recommended by the authors. Moreover,
the computational burden of the whole exercise would be much higher because more price
classes would be required, since market prices might take any value on the range [AUD
−1000, AUD 16,000] and not only [−EUR 50, EUR 3000].

Buzoianu et al. (2012) suggest an exponential supply curve function that incorporates
temperature and seasonality effects, and distinguishes between gas-fuelled and non-gas
generation. In addition, they formulate a linear demand function with an autoregressive
component to equilibrate the two. Furthermore, Rassi and Kanamura (2023) use a stochastic
power transform to map excess supply quantity minus LNG (liquefied natural gas) volume
to the price using a closed-form expression. Their model takes a near-exponential shape
for the supply curve when implemented on JEPX (Japan Electric Power Exchange) data.
Neither of these models is likely to admit negative prices and they are most suitable for
markets or price regions with a high share of natural gas.

Beran et al. (2019) assume a piece-wise linear supply curve, bidding at marginal cost
by fuel type and a level of must-run CHP (combined heat and power) capacity. They
apply fuel-specific available capacity truncation as well before obtaining the price at the
intersection of supply and demand. This approach is well developed in terms of fuel
specification, but the assumption that fuels are bid on at marginal cost is problematic for
the Australian market. In Australia, disorderly bidding away from marginal cost and bid
shading (submitting more than one price–quantity bid pair) are allowed.

Mahler et al. (2019) tackle the pricing problem as an optimisation, where the objective
function minimises the sum of the parametrised marginal prices times residual generation
quantities by production type. The authors make special adjustments for nuclear and
hydroelectric plants. The parametric stack function for the marginal prices is linear. This
model is also well developed in terms of fuel availability, but the linear assumption limits
the model’s ability to predict positive and negative price spikes.

Pinhão et al. (2022) posit a polynomial form for the so-called price sensitivity curve,
which is obtained by subtracting the supply curve from the demand curve. The root of
this curve gives the price. The parameters of the curve are updated over time using a VAR
model with harmonic components. This method does not attempt to isolate fuel-specific
properties in the bid stack; therefore, similar to Ziel and Steinert (2016) and Kulakov (2020),
one would need to adjust the fitted bid-in data for availability and constrained-on/off
quantities first. Otherwise, the supply and demand curves cannot capture the true volumes
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after physical network constraints. These are, however, inevitably present in every real-time
wholesale electricity market.

In summary, the current work is a hyperbolic variation of the market merit order
mechanism put forward in Carmona et al. (2013). The new approach permits the inclusion
of both renewable and two-way fuels, available capacities, and binding security constraints,
and therefore better reflects the Australian wholesale environment in an interconnected
regional setting than the existing models in the literature. Also, due to the hyperbolic
formulation of the fuel bid stack functions, persistently observed price features, including
negativity and spikes, arise semi-structurally in the model.

The paper is organised as follows. Section 2 gives the model formulation, with the
main price map in Section 2.1 and the input processes in Section 2.2. Then, Section 4
presents some model implementation results for two different multi-regional demand
specifications. Finally, Section 5 concludes.

2. New Approach

The proposed method captures supply and demand in the wholesale market to recover
the electricity price as the equilibrium solution of the assumed market structure. The supply
representation combines the supply from a multitude of power plants fuelled by a diverse
range of generator fuels, e.g., coal, solar, hydro, etc., through time-dependent fuel bid stack
functions. These express the supply contributed by each fuel over a range of price levels, as
implied by the bid data of the plants using the fuel. Demand is a combination of end-user
demand from the consumers, both industrial and household, in the region, export–imports,
and demand from the load leg of the two-way fuels, e.g., pumped hydro and battery.
End-user consumption plus trade (generation net of loads) is assumed perfectly inelastic
and it is subject to a number of adjustments in the model. Formulating it as a diffusion
process is generally sufficient for the model to admit a price sequence with spikes. In
addition, we propose load fuel bid stack functions to capture the uptake demand of each
two-way fuel over a range of price levels, usually with a degree of price elasticity, using the
respective plant commitment (bid) data.

A market bid stack function is then built out of the fuel bid stack functions, noting
that every fuel bid stack equation is fundamentally dependent on the typical availability
variation in the particular fuel. This temporal variation can be linked to a factor that is
physically induced, or to a factor that is both physically induced and arises out of the
market mechanism. For example, the quantity of the solar supply relies on the rate of
solar irradiance, an entirely physical component that puts an upper bound on the available
quantity domain of the solar bid stack function. In contrast, the quantity of the coal supply
usually relies on the ramp rates, a factor that is both physical and economic. The ramp-down
rate poses a lower bound and the ramp-up rate an upper bound on the available quantity
domain of the coal bid stack function. It is a physical factor, because the supply quantity
range around the initial output level is based on the technical ramping specifications of the
plants using the fuel. And it is an economic factor too, because the initial output level is
the output quantity dictated by the equilibrium solution of the preceding time interval. In
summary, the different fuel bid stack functions are defined on different quantity domains,
as determined by the appropriate availability factors, prior to being aggregated in the
market bid stack function.

The resulting market bid stack function is a time-dependent price map that transforms
the expected value of the inelastic demand quantity into the expected value of the electricity
price. Visually, the market bid stack function gives the price at the quantity where the
inelastic demand, a vertical line, intersects the market supply curve, which is an increasing
function over higher quantities. This is consistent with the merit order principles, as
end-user demand is matched with least-cost supply first.

The quantities of the fuels generated and uptaken to meet end-user demand to realise
the price result (dispatch quantities) are a consequence of the equilibrium solution, which
highlights that compliance with the dispatch targets is what makes the scheduled units
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in a fuel compatible with the proposed framework. In the NEM, by use of the dispatch
quantities at the end of the previous trade interval, the engine determines the optimal
dispatch schedule and issues quantity targets based on it for the next interval (AEMO
2022a), i.e., the targets correspond to the dispatch quantities at the end of the current
time interval provided that the plants change their dispatch precisely as prescribed. To
orchestrate this, the engine has timely technical information about the physical limitations
of the plants in all fuel types. Using that and other network data, it performs congestion
and contingency planning to find the most optimal schedule for the period and to provide
the plants with viable targets. In addition, for the purposes of a well-met congestion and
contingency protocol, the market operator also enables ancillary response services (reserves)
to maintain the operational frequency of the electric system between 49.85 and 50.15 Hz
at all times (AEMO 2021). The ancillary balancing is necessary when the fuels are unable
to change their dispatch quantities precisely as planned. However, the need for ancillary
balancing never arises under the simplifying assumptions of the proposed hyperbolic
price model. The available quantity domains of the fuel bid stack functions are presumed
fully feasible, i.e., the fuels are modelled such that they are always able (and willing) to
change their generation and uptake to any value within the available quantity domains of
their bid stack functions. This is achieved by introducing fuel-level capacity limitations
based on the unit-level available capacity limits as well as the constraint-driven capacity
limitations that capture the network-wide infeasibilities of some quantities, e.g., for thermal
overload, stability thresholds, tie-breaks, etc., subsumed under the constrained-on/off
variable. These settings are designed to promote the accuracy of the available quantity
domain in the model. Then, the fuels’ compliance, i.e., whether the units in the fuels in
fact alter their dispatch as needed to realise the price result, is immediate under the model
assumptions. Therefore, fuels that do not alter their generation and uptake at economic
command cannot be modelled through fuel bid stack functions in the proposed approach.

Moreover, the units in the fuels may forgo bidding but still supply or demand smaller
quantities. However, this only happens either when the plants are given a non-scheduled
status at registration, or when they use fixed bids to act as price takers to secure trade with
no price conditions. The model accommodates this activity using fixed bid quantity vari-
ables.

Then, perhaps the most important aspect of the equilibrium solution is the merit order
dynamic. There are three steps involved in matching end-user demand with the least-cost
supply, insofar as the availability and feasibility factors as well as the fixed bid quantities
permit, that prepare our discussion of the merit order dynamic. The first step is to calculate
the inelastic demand for the scheduled fuels to fill. For that, we take the net of the expected
value of the inelastic demand term, the fixed bid quantities, and the constrained-on/off
variable. The second step is to categorise the scheduled fuels as low-priced, mid-priced, or
high-priced, for the following purpose. The low-priced generator fuels and the high-priced
load fuels are granted complete dispatch and are netted against demand, just as, e.g.,
the fixed bid quantities are in step one. Then, the high-priced generator fuels and the
low-priced load fuels with an available quantity lower bound at nil are taken out, i.e., their
bids are removed from the merit order, as these quantities are uneconomic. If, however,
the available quantity lower bound of a high-priced (uneconomic) generator fuel is not
zero, i.e., the fuel is physically unable to shut down, then it is labelled an online fuel (a
scheduled fuel that must be kept online). It remains dispatched in its lower-bound quantity
and is netted from the demand at this time. There might be one or more online generator
fuel simultaneously. That leaves the remaining mid-priced fuels as marginal to set the price
at the adjusted inelastic demand, the demand for the marginal fuels to fill. The third step
is to express the market bid stack function that returns the price at the adjusted inelastic
demand in closed form.

The three steps in combination realise a market merit order dynamic that retains the
core mathematical apparatus and the overlapping and dynamic properties of the Carmona
et al. (2013) model, but also introduces three new price effects, which are the load effect,
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the online fuel effect, and the network constraint effect. The overlapping property allows
the different bid stack functions to overlap on price. For example, solar may bid at prices
between AUD −10 and AUD 10, coal between AUD 0 and AUD 100, and the fact that these
overlap between AUD 0 and AUD 10 is perfectly acceptable. The dynamic property allows
the fuel bid stack functions to be time-dependent, which is desirable for modelling the
variability in the bid curves due to strategic bidding. The load effect is then the price effect
that arises out of the two-way fuels entering with both a generator bid stack and a load bid
stack at the same time. The online fuel effect ensures that fuels with a minimum operating
level that cannot shut down are represented accordingly in the model. Lastly, the network
constraint effect uses the constrained-on/off variable as a demand offset to avoid using
quantities subject to curtailment but to use must-run quantities.

The regional market merit order dynamic that determines the dispatch quantities
and the marginal price in the model is also subject to the influence of export–import
between the regions in multi-regional markets. In real life, the dispatch engine of the NEM
determines the price as the cost of the incremental 1 MW change in supply in the focus
region by the end of the next 5 min trade interval, including the costs of the marginal
energy targets and the consequential marginal frequency balancing target re-arrangements
as per AEMO (2010), which involves interconnector availability as follows. When there is
free interconnector capacity for price regions that have undispatched bids at lower prices,
then the engine allows for trade and the regional prices are set at a similar level. In the
absence of interconnector flow capabilities, however, the price is set within each focus
region such that the prices of the different islanded regions are remarkably different. The
model accommodates these export–import assumptions by carefully estimating the trade
quantities between different regions within the respective interconnector capacity bounds
that then enter as adjustments to the inelastic demand level.

The model generally maps well to other electricity markets that meet the following
criteria. First and foremost, in regional markets the dual variables of the physical constraints
should not be components of the marginal price. Also, the auction scheme of the market
must be similar enough to that of the assumed market structure, i.e., to liberalised regional
markets where the participants engage in price-based bidding. Whether bidding is price-
based or cost-based in a market can impact the suitability of the model when capturing
the price levels and the temporal changes in the fuel bid stack functions. The diurnal and
seasonal shift variable of the proposed model is only concerned with strategic bidding, as is
arguably appropriate in the price-based NEM; however, this may not be the recommended
approach in cost-based markets, e.g., input fuel-price-based overlays might be needed for
certain fuels. Moreover, sufficient historical non-price data must be available for the model
to be accurately calibrated to ensure the physical feasibility of the projected equilibrium
solutions over time.

Thus, the new approach returns the electricity price as the equilibrium solution of the
assumed market structure as described. It is worth noting that the proposed hyperbolic
model can also be helpful for the purposes of market analysis, as it does not detach from
the production activity dictated by the auction scheme of the assumed market structure.

2.1. Model Formulation

The model works as a transformation map that takes inelastic demand Dt as an input
and produces price pt as an output at time t.

2.1.1. Fuel Bid Stack Functions

We denote with I = (1, . . . n) the scheduled generator fuel set of a price region, with
L = (1, . . . m) the scheduled load fuel set of the same price region, and with U = (I, L)
the complete scheduled fuel set of the region. Let fuel i ∈ I be a generator fuel and fuel
l ∈ L be a load fuel. We give two distinct fuel bid stack functions: one for the n generator
fuels and another one for the m load fuels. Both have fuel-, region-, and time-dependent
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parameters. Additionally, we also introduce the price taker fuel set F = (1, . . . f ) for the f
fuels that make small, price-independent quantity commitments.

The time t ∈ (t0, T], which partitions the pricing period from time t0 until time T into
5 min time intervals starting at t1.

At time t, the maximum registered capacity of generation fuel i is represented by c̄i,t,
and the maximum registered capacity of load fuel l by c̄l,t, both measured in MW. Then, the
maximum scheduled generation capacity c̄t of the region (in MW) is computed as the sum
of the maximum scheduled registered generation capacities in the region, i.e., c̄t = ∑n

i=1 c̄i,t.
The full capacity range of generation fuel i is [0, c̄i,t] and the full capacity range of load fuel
l is [0, c̄l,t]. When proportionate to the maximum generation capacity c̄t of the region, the
scaled full capacity range of generation fuel i is given by [0, c̄i,t

c̄t
] (in unit amounts), and the

scaled full capacity range of load fuel l is given by [0, c̄l,t
c̄t
] (in unit amounts). The bid stack

functions are fitted to data on these scaled full capacity ranges.
If the lower and upper availability generation bounds are ci,t,lower and ci,t,upper (in MW),

respectively, then the available capacity range of generation fuel i would be (ci,t,lower, ci,t,upper].
Similarly, if the lower and upper availability load bounds are cl,t,lower and cl,t,upper (in
MW), then the available capacity range of load fuel l would be [cl,t,lower, cl,t,upper). When
proportionate to the maximum generation capacity in the region c̄t, then the scaled available
capacity range of generation fuel i would be (

ci,t,lower
c̄t

,
ci,t,upper

c̄t
] (in unit amounts), and the

scaled available capacity range of load fuel l would be [
cl,t,lower

c̄t
,

cl,t,upper
c̄t

) (in unit amounts).
The bid stack functions are restricted to these scaled available capacity ranges after the
available capacity truncation.

Further, we introduce the regulatory price thresholds Pf loor for the market price floor,
which is usually negative (at around−$A1000), and Pcap for the market price cap (at around
AUD 15,000 indexed to inflation) in AUD. When proportionate to the market price cap, Pcap

at time t, the scaled price range between the regulatory thresholds would be [
Pf loor
Pcap

, Pcap
Pcap

] or

equivalently [
Pf loor
Pcap

, 1] (in unit amounts).
Let the generator fuel bid stack function be the map from the scaled available capacity

range of generation fuel i (the quantity x fuel i is able to trade) in unit amounts to the
price range of generation fuel i (the price y fuel i receives per MW after scaling) in unit
amounts as R+ : x ∈ (

ci,t,lower
c̄t

,
ci,t,upper

c̄t
] → R : y. While price y on the real codomain is a

monotonically increasing function of quantity x, price y is not necessarily within the scaled
regulatory thresholds. The economic interpretation of the map identifies it as an inverse
supply curve, or as an implied inverse supply curve, when fitted to data.

Let the load fuel bid stack function be the map from the scaled available capacity
range of load fuel l (the quantity x fuel l is able to trade) in unit amounts, to the price
range of load fuel l (the price y fuel l pays per MW after scaling) in unit amounts as
R

+ : x ∈ [
cl,t,lower

c̄t
,

cl,t,upper
c̄t

)→ R : y. While price y on the real codomain is a monotonically
decreasing function of quantity x, price y is not necessarily within the scaled regulatory
thresholds. The economic interpretation of the map identifies it as an inverse demand
curve, or as an implied inverse demand curve, when fitted to data.

In this setting, we give two separate fuel bid stack functions, one for the generator
fuels and another one for the load fuels.

First, we express the bid stack function for every generator fuel i ∈ I as a strictly
increasing hyperbolic map from quantity x ∈ R in unit amounts to price y ∈ R in unit
amounts, x → y : bḠ,i,t(x) as

bḠ,i,t(x) = αt0 sinh(βi,t0 x− γi,tβi,t0), (1)

with αt0 , βi,t0 > 0 at time t.
Then, for a left-continuous fuel bid stack map x → y : bG,i,t(x) focusing only on the

available capacity in the fuel, we define bG,i,t(x) := bḠ,i,t(x) on the scaled available capacity
quantity range R+ : x ∈ (

ci,t,lower
c̄t

,
ci,t,upper

c̄t
] of fuel i in most cases, except when the lower
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availability generation bound ci,t,lower = 0 of the fuel is nil. In that circumstance, we define
the map onR+ : x ∈ [

ci,t,lower
c̄t

,
ci,t,upper

c̄t
].

Furthermore, we introduce the bid stack function for every load fuel l ∈ L as a strictly
decreasing hyperbolic map from quantity x ∈ R in unit amounts to price y ∈ R in unit
amounts, x → y : bL̄,l,t(x), as

bL̄,l,t(x) = −αt0 sinh(βl,t0 x− γl,tβl,t0), (2)

with αt0 , βl,t0 > 0 and at time t.
Then, for a right-continuous fuel bid stack map x → y : bL,l,t(x) focusing only on the

available capacity in the fuel, we define bL,l,t(x) := bL̄,l,t(x) on the scaled available capacity
quantity rangeR+ : x ∈ [

cl,t,lower
c̄t

,
cl,t,upper

c̄t
) of fuel l.

In comparison, Carmona et al. (2013) use exponential fuel bid stack functions on the
positive real codomain for generation fuels only, making no assumptions about fuel avail-
ability.

Finally, the fuel bid curve equations for generator (1) and load fuels (2) are inherently
symmetric. Before the availability truncation, the regional alpha αt0 captures the price
elasticity (positive relationship) and the fuel beta β·,t0 the width (negative relationship) of
the mid-range of the symmetric fuel curves. The regional alpha αt0 parameter is the same
for all generator fuels i and load fuels l in the price region3. The beta β·,t0 parameter, i.e.,
βi,t0 for generator fuels and βl,t0 for load fuels, is specified for every fuel independently.
However, the symmetry of the fuel bid stack equations is limited by the scope of the scaled
full capacity range of generator fuel i on which its bid stack curve will have been fitted to
the data [0, c̄i,t

c̄t
], and also by the available capacity truncation.

2.1.2. Inverse Fuel Bid Stack Functions

We also propose inverse fuel curves, first in the spirit of Carmona et al. (2013) in
general form, and then using the hyperbolic formulae to specify them.

Let the inverse fuel bid curve for fuel i ∈ I be the strictly increasing, left-continuous
hyperbolic map b−1

G,i,t(y) from price y in unit amounts to quantity x on the scaled available

capacity range, as4 y → R
+ : x ∈ (

ci,t,lower
c̄t

,
ci,t,upper

c̄t
] : b−1

Ḡ,i,t(y), giving the lowest quantity x
with bḠ,i,t(x) at or above price y, if such exists, or giving the scaled available capacity upper
bound

ci,t,upper
c̄t

otherwise as

b−1
G,i,t(y) =

ci,t,upper

c̄t
∧ inf

{
x : bḠ,i,t(x) ≥ y

}
, (3)

as inf ∅ = +∞ (see Carmona et al. 2013).
We express the inverse of the fuel bid stack function (1) for generator fuel i as

b−1
Ḡ,i,t(y) =

sinh−1
(

y
αt0

)
+ βi,t0 γi,t

βi,t0

. (4)

Analogously, let the inverse fuel bid stack function for fuel l ∈ L be the strictly
decreasing, right-continuous hyperbolic map b−1

L,l,t(y) from price y in unit amounts to

quantity x on the scaled available capacity range, as y → R
+ : x ∈ [

cl,t,lower
c̄t

,
ci,t,upper

c̄t
) :

b−1
L̄,l,t(y), giving the highest quantity x with bL̄,l,t(x) at or above price y, if such exists, or

else giving the scaled available capacity lower bound cl,t,lower
c̄t

as

b−1
L,l,t(y) =

cl,t,lower

c̄t
∨ sup

{
x : bL̄,l,t(x) ≥ y

}
, (5)

as sup ∅ = −∞.
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We give the inverse of the fuel bid stack (2) for load fuel l as

b−1
L̄,l,t(y) =

− sinh−1
(

y
αt0

)
+ βl,t0 γl,t

βl,t0

. (6)

2.1.3. Fuel Subset Definition

The fuel subsets help distinguish the type of quantity commitment made by each
scheduled fuel within U. Two strands of quantity commitment are considered, constant and
formulaic, for both generator and load fuels. Scheduled fuels are categorised as low-priced,
mid-priced, or high-priced, and the type they are allotted determines the way they usually
fill demand Dt and set the price, i.e., they might enter as price-constant amounts or with
price-dependent quantity formulae.

More specifically, every generator fuel can be CI completely dispatched (low-priced,
constant), MI marginal (mid-priced, formulaic), OI online or ZI unused (high-priced, con-
stant). In contrast, the load fuels can be CL completely dispatched (high-priced, constant), ML
marginal (mid-priced, formulaic), or ZL unused (low-priced, constant), i.e., CI , MI , OI , ZI and
CL, ML, ZL are the only legal subsets loosely following Carmona et al. (2013).

Then, every generator fuel i ∈ I is allocated to one of the following four disjoint
subsets, (CI , MI , OI , ZI) ⊆ I, as

CI := {i ∈ I : generators in fuel i are completely dispatched at ci,t,upper};
MI := {i ∈ I : generators in fuel i are partially dispatched};

OI := {i ∈ I : generators in fuel i are kept online at ci,t,lower 6= 0};
ZI := {i ∈ I : generators in fuel i are not used at ci,t,lower = 0}.

Every load fuel l ∈ L is allocated to one of the following three disjoint subsets,
(CL, ML, ZL) ⊆ L, as

CL := {l ∈ L : loads in fuel l are completely dispatched at cl,t,upper};
ML := {l ∈ L : loads in fuel l are partially dispatched};

ZL := {l ∈ L : loads in fuel l are not used}.

Furthermore, let b(MI ,ML)q∗ ,t(x) be the market bid stack function that aggregates the
fuel bid stack functions in (MI , ML) formulaically, assuming that only the fuels in (MI , ML)
contribute formulaically to the market bid stack and that the fuels in the remaining sub-
sets (CI , ZI , OI , CL, ZL) contribute to the demand quantity with price-constant quantity
adjustments. From above, the (MI , ML) set is the union of the marginal generator fuel
MI set and the marginal load fuel ML set. Then, the function b(MI ,ML)q∗ ,t(x) solves for the
market price at the adjusted demand quantity x such that the value of the applied demand
adjustment is linked to the subset specification Uq∗.5 This adjusts demand Dt by a term
encapsulating the price-constant supply contribution of the fuels in (CI , ZI , OI , CL, ZL),
which gives x = Dt −∑k∈CI

ck,t,upper
c̄t
−∑i∈OI

ci,t,lower
c̄t

+ ∑k∈CL

ck,t,upper
c̄t

. Thus, the value of x is
not equal to Dt, unless the supply contribution of the excluded fuels equals zero.

Denoting the upper price in generation fuel i at time t with b̄G,i,t := bG,i,t(
ci,t,upper

c̄t
)

and the lower price with bG,i,t := bG,i,t(
ci,t,lower

c̄t
), the merit order rule for generation gives

that max(b̄G,k∈CI ,t) < min(bG,a∈MI ,t), i.e., the highest price in any completely dispatched
generator fuel k ∈ CI is always lower than the lowest price in any marginal generator fuel
a ∈ MI . Also, max(b̄G,a∈MI ,t) < min(bG,o∈OI ,z∈ZI ,t), i.e., the highest price in any marginal
generator fuel a ∈ MI is always lower than the lowest price in any online or unused
generator fuel o ∈ OI , z ∈ ZI . Then, for n generator fuels on four subsets,6 the following
fuel categorisation defines the elements of CI (low-priced), MI (mid-priced), and OI , ZI
(high-priced):

•
{

i ∈ CI |b(MI ,ML)q∗ ,t(x) > max(b̄G,i∈CI ,t)
}

, generator fuel i is in subset CI . If the price

from the market bid stack function b(MI ,ML)q∗ ,t(x)7 at quantity x = Dt−∑i∈CI

ci,t,upper
c̄t
−



Risks 2023, 11, 147 12 of 39

∑o∈OI

co,t,lower
c̄t

+ ∑k∈CL

ck,t,upper
c̄t

, the demand net of the quantity supplied by fuels ∀i ∈
CI , ∀o ∈ OI , ∀l ∈ CL, is greater than the highest price of any completely dispatched
generator fuel ∀i ∈ CI ;

•
{

i ∈ OI |b(MI ,ML)q∗ ,t(x) < min(bG,i∈OI ,z∈ZI ,t) and ci,t,lower > 0
}

, generator fuel i is in
subset OI . If the price from the market bid stack function b(MI ,ML)q∗ ,t(x) at quantity

x = Dt−∑k∈CI

ck,t,upper
c̄t
−∑i∈OI

ci,t,lower
c̄t

+ ∑k∈CL

ck,t,upper
c̄t

, the demand net of the quantity
supplied by fuels ∀k ∈ CI , ∀i ∈ OI , ∀l ∈ CL, is lower than the lowest price of any
online and unused fuel ∀i ∈ OI , ∀z ∈ ZI , and if the lower capacity bound ci,t,lower of
fuel i is greater than 0;

•
{

i ∈ ZI |b(MI ,ML)q∗ ,t(x) < min(bG,i∈ZI ,o∈OI ,t) and ci,t,lower = 0
}

, generator fuel i is in
subset ZI . If the price from the market bid stack function b(MI ,ML)q∗ ,t(x) at quantity

x = Dt−∑k∈CI

ck,t,upper
c̄t
−∑o∈OI

co,t,lower
c̄t

+∑k∈CL

ck,t,upper
c̄t

, the demand net of the quantity
supplied by fuels ∀k ∈ CI , ∀o ∈ OI , ∀l ∈ CL, is lower than the lowest price of any
online or unused fuel ∀o ∈ OI , ∀z ∈ ZI , and if the lower capacity bound ci,t,lower of
fuel i equals 0;

• i ∈ MI otherwise.

To explain these conditions for one fuel i ∈ I at a time, first consider a setting where
the market price is already known. Given the upper b̄G,i,t and the lower bG,i,t price of
fuel i, it can be assigned to a subset immediately by arranging b̄G,i,t, bG,i,t and the market
price in ascending order. If the market price is greater than b̄G,i,t, then i ∈ CI is completely
dispatched. Or, if the market price is lower than bG,i,t, then i ∈ (OI , ZI) is online or unused,
depending on the lower capacity bound ci,t,lower. Otherwise, i ∈ MI is marginal. But,
because b(MI ,ML)q∗ ,t(x) solves for the market price using the pre-existing subset allocation
on Uq∗, one cannot pinpoint the market price until ∀i ∈ I ⊆ U are assigned to the correct
subset, i.e., the market price is typically not yet known. One can, however, show that i

always behaves online or unused on the price range [
Pf loor
Pcap

, bG,i,t), marginal on the price

range [bG,i,t, b̄G,i,t], and completely dispatched on the price range (b̄G,i,t, 1] from the given
upper b̄G,i,t and the lower bG,i,t price of fuel i and the inverse bid stack formula in (3).

By partitioning the entire price range [
Pf loor
Pcap

, 1] at the upper b̄G,i,t and lower bG,i,t price of

every fuel i ∈ I, one can obtain a string of smaller price segments8 and each segment then
has a well-defined subset configuration Uq∗ associated with it, which is the same for all
quantities within the segment, but may or may not be the same for two adjacent segments.
The two price points defining each segment can be used to obtain the correct subset
allocation Uq∗ by replacing “the market price” with the two price points and arranging
b̄G,i,t, bG,i,t and the two prices in ascending order. If the two price points are both greater
than b̄G,i,t, then i ∈ CI is completely dispatched. Conversely, if the two prices are both
lower than bG,i,t, then i ∈ (OI , ZI) is online or unused. Otherwise, i ∈ MI is marginal.

Turning to the load fuels, let us denote the upper price of load fuel l with b̄L,l,t :=
bL,l,t(

cl,t,lower
c̄t

) and the lower price with bL,l,t := bL,l,t(
cl,t,upper

c̄t
) at time t. Using the merit order

rules for load uptake, whereby min(bL,k∈CL ,t) > max(b̄L,a∈ML ,t), the lowest price for any
completely dispatched load fuel k ∈ CL is always greater than the highest price for any
marginal load fuel a ∈ ML, and min(bL,a∈ML ,t) > max(b̄L,z∈ZL ,t) the lowest price for any
marginal load fuel a ∈ ML is always greater than the highest price for any unused load
fuel z ∈ ZL. The following are the fuel category conditions for m generator fuels on three
subsets, CL (high-priced), ML (mid-priced), and ZL (low-priced):

•
{

l ∈ CL|b(MI ,ML)q∗ ,t(x) < min(bL,l∈CL ,t)
}

, generator fuel l is in subset CL. If the price

from the market bid stack function b(MI ,ML)q∗ ,t(x) at quantity x = Dt −∑k∈CI

ck,t,upper
c̄t
−

∑o∈OI

co,t,lower
c̄t

+ ∑k∈CL

ck,t,upper
c̄t

, the demand net of the quantity supplied by fuels ∀k ∈ CI ,
∀o ∈ OI , ∀l ∈ CL is lower than the lowest price for any completely dispatched load
fuel ∀l ∈ CL;
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•
{

l ∈ ZL|b(MI ,ML)q∗ ,t(x) > max(b̄L,z∈ZL ,t)
}

, generator fuel l is in subset ZL. If the price

from the market bid stack function b(MI ,ML)q∗ ,t(x) at quantity x = Dt −∑k∈CI

ck,t,upper
c̄t
−

∑o∈OI

co,t,lower
c̄t

+ ∑k∈CL

ck,t,upper
c̄t

, the demand net of the quantity supplied by fuels ∀k ∈ CI ,
∀o ∈ OI , ∀l ∈ CL is greater than the lowest price of any unused load fuel ∀l ∈ CL.

• l ∈ ML otherwise.

These conditions are perhaps more intuitive considering that a single fuel l ∈ L is

always completely dispatched on the price range [
Pf loor
Pcap

, bL,l,t), marginal on the price range

[bL,l,t, b̄L,l,t], and unused on the price range (b̄L,l,t, 1], as in the inverse bid stack formula in

(5). By partitioning the entire price range [
Pf loor
Pcap

, 1] at the upper b̄G,i,t, b̄L,l,t and the lower
prices bG,i,t, bL,l,t of every fuel i ∈ I and l ∈ L, one obtains a string of smaller price segments,
such that each segment has a particular subset configuration Uq∗ associated with it. The
subset of fuel l can then be found using the above observation and the previously described
subset process with this extended partitioning, as opposed to a more direct application of
the subset rules.

In conclusion, the subsets of the fuels determine their role in filling the adjusted
inelastic demand Dt and consequently in price formation, i.e., in the market bid stack
formula b(MI ,ML)q∗ ,t(x) that solves for the market price. The completely dispatched fuels in
CI , CL are generated or uptaken in the quantity of their upper capacity bound ci,t,upper or
cl,t,upper, which are constant in the sense that they do not depend on the exact price level
beyond what is already known about the possible range of the price level that assigned them
to CI , CL in the first place. Similarly, the online fuels in OI are generated in the quantity
at their lower capacity bound ci,t,lower, which is also constant in that sense. Moreover,
the unused fuels in ZI , ZL are not generated or uptaken any quantity. In contrast, the
marginal fuels in MI , ML are generated or uptaken in some quantity within their capacity
bounds, but the quantity has not been determined by the subset as such. Thus, from the
perspective of the market bid stack formula b(MI ,ML)q∗ ,t(x), the type of quantity commitment
the fuels must make due to being allocated to one particular subset and not to another
polarises the subsets into constant dispatch and formulaic (marginal) dispatch subsets. The
generation or uptake quantity of any fuel in the constant dispatch subsets CI , CL, OI , ZI , ZL
is determined outside b(MI ,ML)q∗ ,t(x) and enters b(MI ,ML)q∗ ,t(x) as part of an additive term,
i.e., as a demand adjustment, whereas the dispatch quantity of any fuel in the marginal
dispatch subsets MI , ML is determined by the market bid stack formula b(MI ,ML)q∗ ,t(x).

2.1.4. Market Bid Stack Formula

Let b(MI ,ML)q∗ ,t(x) be the market bid stack function that aggregates every fuel bid
curve on the complete regional fuel set under the appropriate subset allocation Uq∗ in merit
order to evaluate the market price at quantity x. To that effect, first it distinguishes the
constant dispatch fuels (in CI , CL, OI , ZI , ZL) from the formulaic–marginal or price-setter
fuels (in MI , ML).

The contribution of the former is captured in the constant term h that adds up the
constant supply sum in the generator fuels ∀i ∈ (CI , OI , ZI) with a negative sign and the
constant demand sum in the load fuels ∀l ∈ (CL, ZL) with a positive sign as

h = − ∑
i∈CI

ci,t,upper

c̄t
− ∑

i∈OI

ci,t,lower

c̄t
+ ∑

l∈CL

cl,t,upper

c̄t
. (7)

To move these quantities to the inelastic demand side of the equilibrium, the demand
quantity for the marginal fuels to fill can be expressed as Dt + h.

In contrast, every marginal fuel in MI , ML is represented by the inverse bid stack
function of the fuel. The strictly increasing left-continuous market bid stack function
b(MI ,ML)q∗ ,t(x) maps the adjusted demand quantity x = Dt + h to the highest price pt, such

that the corresponding quantity over all inverse fuel bid stack functions ∑i∈MI
b−1

Ḡ,i,t(pt)−
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∑l∈ML
b−1

L̄,l,t(pt) is still below the cleared quantity Dt + h, provided that there is at least one
marginal generator fuel |MI | ≥ 1 in the region. Then, the main structural components of
the market bid stack, the constant term h and the aggregate of the inverse fuel curves, give
the price solution of the function as

pt = b(MI ,ML)q∗ ,t(Dt) = sup
{

pt ∈ R : ∑
i∈MI

b−1
Ḡ,i,t(pt)− ∑

l∈ML

b−1
L̄,l,t(pt) < Dt + h

}
(8)

in general form, extending the market merit order dynamic of Carmona et al. (2013) (see
Proposition 1 in Carmona et al. 2013) to a new generator fuel subset OI and to load fuels.

Then, the hyperbolic specification of (8) is expressed as

pt =b(MI ,ML)q∗ ,t(Dt)

=αt0 sinh

( (
Dt + h−∑a

i=1 γi,t + ∑b
l=1 γl,t

)
∏a

i=1 βi,t0 ∏b
l=1 βl,t0

∑a
i=1

(
∏a

j=1 β j 6=i,t0 ∏b
l=1 βl,t0

)
+ ∑b

l=1

(
∏a

i βi,t0 ∏b
j=1 β j 6=l,t+0

)).
(9)

Example 1. To demonstrate the proposed method, we consider a price region at time t with four
generator and two load fuels, where the bid stack parameters αt0 , βt,i, βt,l , γt,i, γt,l and the adjusted
inelastic demand quantity Dt are already known, but remain unspecified. After careful arrangement9,
the subset configuration Uq∗ is also already given. We know that |CI | = 1 of the generator fuels is
completely dispatched, |OI | = 1 is online, and |MI | = 2 is marginal. Then, there is also |CL| = 1
completely dispatched and |ML| = 1 marginal load fuel.

We can then express h as

h = −
ci∈CI ,t,upper

c̄t
−

ci∈OI ,t,lower

c̄t
+

cl∈CL ,t,upper

c̄t
,

and denote the inverse fuel bid stack functions of the two marginal generator fuels with b−1
Ḡ,1,t(pt)

and b−1
Ḡ,2,t(pt), and the inverse fuel bid stack function of the marginal load fuel with b−1

L̄,3,t(pt).
We evaluate price pt inside the supremum in (8) as

b−1
Ḡ,1,t(pt) + b−1

Ḡ,2,t(pt) = Dt + h + b−1
L̄,3,t(pt),

sinh−1
(

pt
αt0

)
+ βt,1γt,1

βt,1
+

sinh−1
(

pt
αt0

)
+ βt,2γt,2

βt,2
= Dt + h +

− sinh−1
(

pt
αt0

)
+ βt,3γt,3

βt,3
,

then,

sinh−1
( pt

αt0

)
=

(
Dt + h− γt,1 − γt,2 + γt,3

)
βt,1βt,2βt,3

βt,2βt,3 + βt,1βt,3 + βt,1βt,2
,

and for the hyperbolic equilibrium formulation from (9)

pt = αt0 sinh
((Dt + h− γt,1 − γt,2 + γt,3

)
βt,1βt,2βt,3

βt,2βt,3 + βt,1βt,3 + βt,1βt,2

)
.

2.1.5. Price Formula

The market bid stack function (9) solves for the market price under the normal market
assumption. The value of demand Dt implies the normal market assumption when it is
between the lowest S1

t ≤ Dt ≤ S2
t and the highest available generation quantity in the

market. The values of S1
t and S2

t are specified shortly. The market price can then be written
as pt(Dt)1[S1

t ,S2
t ]

. Conversely, should the market have either a demand deficit Dt < S1
t or a

supply deficit S2
t < Dt, it is then in a system-tied state, and the corresponding prices are
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pt(Dt)1[−∞,S1
t )

= max(bG,i∈OI ,t,
Pf loor
Pcap

) = bt and pt(Dt)1S2
t ,,∞] =

Pcap
Pcap

= 1, respectively. In
general, we can express the market price as

pt = pt(Dt)1[−∞,∞] = pt(Dt)1[−∞,S1
t )
+ pt(Dt)1[S1

t ,S2
t ]
+ pt(Dt)1(S2

t ,∞], (10)

i.e., the price in any state of the system.
To find the price in a normal market, let us partition the demand domain of the normal

state [S1
t , S2

t ] into a string of quantity segments, such that one particular subset configuration
Uq∗ holds for any level of demand Dt within each segment. Finding the boundary points
of the segments involves a corresponding string of price segments as well, as the quantity
domain and the price codomain are bijective, since the fuel bid stack functions in (1) and (2)
are strictly monotonic.

The boundary points of the price segments with the property can be given by the
upper b̄G,i,t, b̄L,l,t and the lower bG,i,t, bL,l,t price points in all generation and load fuels in U.
Let (y1, y2, . . . , yj . . . , y2(n+m)) denote these prices in increasing order.

Then let, for every price yj, quantity xj be the quantity that sums the generation sum
from the left-continuous inverse fuel maps b−1

G,i,t(yj) in (3) with a positive sign, the uptake
sum from the right-continuous inverse fuel maps b−1

L,l,t(yj) in (5) with a negative sign, and
the constant quantities h in (7) with a negative sign

xj(yj) =
n

∑
i=1

b−1
G,i,t(yj)−

m

∑
i=1

b−1
L,l,t(yj)− h, (11)

giving the boundary points of the respective quantities (x1, x2, . . . , xj, . . . , x2(n+m)) also in
increasing order.

Then, S1
t := x1 and S2

t := x2(n+m). Additionally, every segment of the partitioned
quantity domain [S1

t , x2], (x2, x3], (x3, x4], . . ., (x2(n+m)−1, S2
t ] has a well-defined fuel subset

combination Uq∗ associated with it that holds for any level of demand Dt within the
segment. The market bid stack function b(MI ,ML)q∗ ,t(Dt + h) in (9) gives the price using the
subset combination q∗, which can be represented by q1∗ for segment [St, x2], by q2∗ for
segment (x2, x3], by q3∗ for (x3, x4], and so on. For the same fuel set U, the appropriate fuel
subset configuration Uq∗ changes over the different quantity segments. As a result, the
market bid stack formula b(MI ,ML)q∗ ,t(Dt + h) also has a segment-wise formulation, owing
to its dependence on the segment-wise different Uq∗.

Extending (10), we can then express price p as a segment-wise relation

pt = pt(Dt)1[−∞,S1
t )

+ pt(Dt)1[S1
t ,x2]

+ pt(Dt)1(x2,x3]
+ pt(Dt)1(x3,x4]

+ . . . + pt(Dt)1(x2(n+m)−1,S2
t ]

+ pt(Dt)1(S2
t ,∞],

(12)

where

pt(Dt)1[−∞,S1
t )
= bt

pt(Dt)1[S1
t ,x2]

= b(MI ,ML)q1∗ ,t
(Dt + h)

pt(Dt)1(x2,x3]
= b(MI ,ML)q2∗ ,t

(Dt + h)

pt(Dt)1(x3,x4]
= b(MI ,ML)q3∗ ,t

(Dt + h)

...

pt(Dt)1(x2(n+m)−1,S2
t ]
= b(MI ,ML)q2(n+m)−1∗ ,t

(Dt + h)

pt(Dt)1(S2
t ,∞] = 1,

(13)
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loosely following Carmona et al. (2013).
Lastly, we recover the market price Pt in AUD from the price pt in (12). To obtain Pt,

the price pt in unit amounts is multiplied by the market price cap Pcap and the result is
projected to the regulatory price floor Pf loor or cap Pcap, if it is exceeding either of the two.
The reason why the threshold restriction has been delayed until now is that tracing the fuel
dispatch quantities over time, i.e., computing the generation and the uptake quantities from
the inverse fuel curves based on pt, requires strictly monotonic fuel bid stack formulations,
which an untimely threshold projection could potentially impair.

Example 2. We suggest an efficient algorithm for finding the appropriate fuel subset configurations
on all segments of the partitioned demand domain and executing pricing using (12). To see how
this computation works, we consider a price region with five generator and two load fuels, where
the bid stack parameters αt0 , βt,i, βt,l , γt,i, γt,l and the demand quantity Dt are already known. The
scaled available capacity ranges ( ci,t,lower

c̄t
,

ci,t,upper
c̄t

] and [
cl,t,lower

c̄t
,

cl,t,upper
c̄t

) and the fixed net generation
quantity ct, f ixed (if any) are also already specified at the start of the algorithm as shown in Table 1.

Table 1. The fuels in the example.

Fuel Type Parameters
αt0 β·,t0 γ·, t

Generator fuels
G1 Coal Scheduled 0.001 12.4 0.192
G2 Hydro Scheduled 0.001 47.4 0.002
G3 Solar Scheduled 0.001 150.3 0.043
G4 Gas Scheduled 0.001 131.9 −0.041

G5 Biomass Price
taker - - -

Load fuels
L1 Battery Scheduled −0.001 48.9 0.000
L2 Hydro Scheduled −0.001 77.1 0.089

Fuel type Quantity range Price range
c·,t,lower c·,t,upper b·,·,t ∗ Pcap b̄·,·,t ∗ Pcap

Generator fuels
G1 Coal Scheduled 30 MW 120 MW AUD 0 AUD 10
G2 Hydro Scheduled 0 MW 25 MW AUD 0 AUD 14
G3 Solar Scheduled 0 MW 7 MW AUD −3 AUD 0
G4 Gas Scheduled 0 MW 3 MW AUD 2 AUD 15

G5 Biomass Price
taker ci,t, f ixed = 1.5 MW - -

Load fuels
L1 Battery Scheduled 0 MW 20 MW −$4 $0
L2 Hydro Scheduled 0 MW 25 MW −$2 $0

The table shows the fuels of both the regional scheduled U fuel set and the regional price taker F fuel set by type,
economic classification, parameters, and quantity (in MW), and bid price (in AUD) range. The region in this
example has a maximum registered generation capacity of c̄t = 155. The parameters αt0 and γ·, t are rounded to
two decimal places and the β·,t0 to integers for every fuel i, j ∈ U. The market in the example has a market price
floor of Pf loor = −4 and a price cap of Pcap = 14, but bids may appear outside that range, e.g., in fuel G4 we see
the upper price at AUD 15.

Table 1 shows the four scheduled generator fuels (G1–G4), the one price taker generator fuel
(G5), and the two scheduled load fuels (L1–L2) in this example. First by fuel type, which identifies
the fuel source and places the six scheduled fuels in set U = (I, L) and the one price taker fuel in
set F. It then gives the bid stack parameters of the fuels. In the third column, the table specifies
the available capacity ranges of the fuels in MW, which is subsequently scaled by the maximum
registered generation capacity c̄t = 155, which appears to coincide with the total available (scheduled)
generation capacity ∑i∈I

ci,t,upper
c̄t

= 120
155 + 25

155 + 7
155 + 3

155 = 155
155 in the region. We also have the
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lowest available generation capacity in the region as St = ∑i∈I
ci,t,lower

c̄t
= 30

155 + 0 + 0 + 0 = 30
155

10.
The fourth column shows the price ranges of the fuels, which have been calculated using the bid stack
parameters, the quantity ranges, and the maximum registered generation capacity. Finally, it is also
stated that the region has a regulatory market price floor of Pf loor = −4 and a cap of Pcap = 14.

Table 2. Market view.

Price −$5 −$4 −$3 −$2 −$1 $0 $1 $2 $3 $4 $5 $6 $7 $8 $9 $10 $11 $12 $13 $14 $15

Generation quantity
G1 30 30 30 30 30 30 91 100 105 109 111 114 116 117 119 120 120 120 120 120 120
G2 0 0 0 0 0 0 16 19 20 21 22 22 23 23 23 24 24 24 25 25 25
G3 0 0 0 1 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
G4 0 0 0 0 0 0 0 0 1 1 1 1 2 2 2 2 2 2 2 2 3
Total 30 30 30 31 32 37 114 126 132 137 141 144 147 149 151 153 153 154 154 154 155

Load uptake quantity
L1 20 20 19 18 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
L2 25 25 25 25 24 14 4 3 2 1 1 0 0 0 0 0 0 0 0 0 0

Total 45 45 44 43 39 14 4 3 2 1 1 0 0 0 0 0 0 0 0 0 0

Net market quantity (generation minus load uptake)
Total −15 −15 −13 −12 −7 23 110 123 130 136 140 144 147 149 151 153 153 154 154 154 155

The table gives a tabulated view of the market showing the contribution of each scheduled fuel to the net market
quantity (bottom line) at any price level. As the price increases, the generator fuels are contributing more and the
load fuels are demanding less. For a more concise view, the price range (in AUD) has been discretised to integers
and the quantity amounts (in MW) have been rounded to integers as well. The quantities shown in bold are
obtained from the inverse fuel bid stack functions (4) and (6). The remaining (not bold) quantities are constants,
as these are either below the available quantity lower bound c·,t,lower or above the available quantity upper bound
c·,t,upper in the given fuel as per Table 1.

Then, Table 2 carries the main operations of the algorithm, which are the following:

1. Obtain the lower and the upper available capacity bound quantities from the third column
in Table 1, i.e., every ci,t,lower, cl,t,lower, ci,t,upper and cl,t,upper in MW. Scale (divide) these by
the maximum registered generation capacity c̄t = 155. Then, use the fuel bid stack functions
in (1) and (2) to find the corresponding prices, i.e., the upper b̄G,i,t, b̄L,l,t and the lower bG,i,t,
bL,l,t price points, as shown in column four in Table 1, e.g., AUD 0 and AUD 10 for G1,
AUD 0 and AUD 14 for G2, etc. When scaled by Pcap = AUD 14 and in increasing order,
these prices correspond to (y1, y2, . . . , yj . . . , y2(n+m)) = (−4

14 , −3
14 , −2

14 , 0, 2
14 , 10

14 , 14
14 , 15

14 ). For
exposition purposes, Table 2 (unscaled view) also fills the price interval with additional prices
for an evenly spaced price interval between −AUD 5 and AUD 15 (first row). Also notice
that the prices are not yet projected to the regulatory price thresholds −AUD 4 and AUD 14.

2. Fill the table with the constant quantities (not bold) at the prices outside the price ranges of
the fuels, i.e., with ci,t,lower, cl,t,lower, ci,t,upper and cl,t,upper. See lines G1, G2, G3, G4 and L1,
L2 in Table 2. Notice how the G1 line lists 30 MW at every price level up to AUD 0. This
way, if the market price ends up below price AUD 0 (and G1 is online in OI), it would still be
accounted for and dispatched in 30 MW.

3. Fill the table with the formulaic quantities (bold) at the prices inside the price ranges of the
fuels using the inverse fuel bid stack functions (4) and (6). See rows G1, G2, G3, G4 and L1,
L2 in Table 2.

4. Sum the quantities in rows G1, G2, G3, G4 vertically at every price for the generation quantity
total. Similarly, sum the quantities in the L1, L2 lines for the load uptake quantity total. Take
away the load uptake total from the generation total to obtain the net market total at every price
(last row), which is equivalent to the (x1, x2, . . . , xj, . . . , x2(n+m)) interval plus h (unscaled
view in Table 2).

5. Assume the constrained-on/off adjustment Xt = 0 (in MW). Obtain the inelastic end-user
demand proxied by net generation Gt (in MW), the fixed net generation quantity of the price
taker fuels ct, f ixed = 1.5 MW (see Table 1), and the maximum generation c̄t = 155 MW in

the region. Then, the adjusted inelastic demand Dt is computed as Dt =
Gt−Xt−ct, f ixed

c̄t
=

Gt−0−1.5
155 . We are going to look at two different demand levels. Firstly, Dt =

31−1.5
155 = 29.5

155
when Gt = 31 MW. Secondly, Dt =

115−1.5
155 = 113.5

155 when Gt = 115 MW.
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6. Establish the state of the market, i.e., whether St ≤ Dt ≤ ∑i∈I
ci,t,upper

c̄t
holds. From earlier,

St =
30

155 and ∑i∈I
ci,t,upper

c̄t
= 115

155 . Thereby, the market has a demand deficit at Gt = 31 and it
is in a normal state at Gt = 115.

7. If the market has a demand deficit, every scheduled fuel is SI or SL and the price pt (in
unit amounts) is set by p(Dt)1[−∞,St) = bt, which then may be multiplied by Pcap and
projected to the regulatory thresholds to obtain the market price Pt in AUD—this is the end of
the algorithm.

8. In a normal market, obtain the two quantity points (last row) nearest to Dt and obtain the
corresponding two price points too (first row). We have that Dt c̄t = 113.5 falls within 110 and
123 (last row), and price AUD 1 and AUD 2. Using the two prices, we can assign every fuel
to a subset using simple rules.

9. For generator fuels G1, G2, G3, G4, if the two prices AUD 1 and AUD 2 are both greater than
b̄G,i,tPcap, then fuel i ∈ CI is completely dispatched. Or, if the two prices are both lower than
bG,i,tPcap, then fuel i ∈ (OI , ZI) is online or unused. Otherwise, fuel i ∈ MI is marginal.

10. For load fuels L1, L2, if the two prices AUD 1 and AUD 2 are both lower than b̄L,l,tPcap, then
fuel l ∈ CL is completely dispatched. Or, if the two prices are both greater than bL,l,tPcap, then
fuel l ∈ (ZL) is unused. Otherwise, fuel l ∈ ML is marginal.

11. Obtain the price pt (in unit amounts) from the market bid stack function

b(MI ,ML)q∗ ,t(Dt + h)

in (9) using the subset configuration on Uq∗ from above. Back out the current dispatch
quantity in each fuel. Then, pt may be multiplied by Pcap and projected to the regulatory
thresholds to obtain the market price Pt in AUD—this is the end of the algorithm.

Finally, Table 3 displays the subset solutions of the algorithm for the two different demand
levels, Gt = 31 and Gt = 115, discussed in the example. For Gt = 31, the price is equal to
pt = max(bG,i∈OI ,t,

Pf loor
Pcap

) = bt in unit amounts, whereas for Gt = 115, the price can be found
computing b(MI ,ML)q∗ ,t(Dt + h) using (9).

Table 3. Subset result.

Gt = 31 MW Gt = 115 MW
Fuel Type Subset Dispatch Quantity Subset Dispatch Quantity

Generator fuels
G1 Coal Scheduled SI ci,t,lower = 30 MW MI b−1

G,i,t(pt)
G2 Hydro Scheduled SI ci,t,lower = 0 MW MI b−1

G,i,t(pt)
G3 Solar Scheduled SI ci,t,lower = 0 MW CI ci,t,upper = 7 MW
G4 Gas Scheduled SI ci,t,lower = 0 MW ZI 0 MW
G5 Biomass Price taker - ci,t, f ixed = 1.5 MW - ci,t, f ixed = 1.5 MW

Load fuels
L1 Battery Scheduled SL - ZI 0 MW
L2 Hydro Scheduled SL - MI b−1

L,l,t(pt)

Total: 31.5 MW Total: 115 MW

The table shows the appropriate subset configuration Uq∗ in demand deficit scenario with end-user demand
at Gt = 31 MW (first column) and in a normal market with Gt = 115 MW (second column). At Gt = 31 MW,
all generator and load fuels are in SI and SL, respectively, and their dispatch quantities are all shown to be
constants. The total dispatch quantity also overshoots to 31.5 MW. At Gt = 115 MW, the table shows which fuels
are marginal (coal G1, hydro G2, and hydro L2) and which fuels are contributing to the constant term for the
demand adjustment (solar G3), and the total dispatch quantity is exactly 115 MW. The price taker fuel (biomass
G5) enjoys complete dispatch in both cases.

2.2. Input Processes

The market price Formula (12) requires several input processes including the formulaic
bid stack function parameter that captures strategic bidding over time, the fuel-specific
processes of available capacity truncation, the fixed capacity input, the constrained-on/off
quantity process that encompasses network feasibility, and finally also the pre-adjustment
demand term, which we decompose into regional consumption and export–import.
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2.2.1. Fuel Gamma

The formulaic fuel gammaR : γ·,t := γ·,(tday ,ttime)
, i.e., γi,t for generator fuels and γl,t

for load fuels, expresses what proportion of the maximum fuel capacity is being offered at
negative prices for a given fuel at time t. More precisely, γi,t is the inflection point of the fuel
bid curve (1) for generator fuel i and (1− γl,t) is the inflection point of the formulaic load
bid stack (2) for load fuel l. The fact that these are time-dependent assumes that bidding
activity changes over time, i.e., the bid stack functions shift horizontally as gamma changes
over time.

For any time t ∈ (t0, T] in the pricing period, we can give t = (tday, ttime) the day and
the time can be identified precisely. Let tday ∈ N : [1, 366] be the day of year, assuming leap
years. Then, we denote with ttime ∈ N : [1, 366ñ] the time of year for ñ time points per day,
i.e., (ttime mod ñ) is the time of day. For example, for ñ = 288, ttime has 5 min increments.
Further, let t̃time be a shifted time-of-day parameter

t̃time = 10(ttime mod ñ)
1
ñ
− 5.

Further, γ·,t := γ·,(tday ,ttime)
is a sinusoidal function that captures both yearly seasonality

for the day of year tday through parameters s1, s2, s3, s4 and diurnal variation for the time of
day t̃time using d1, d2, d3, d4, d5, d6.

For a generator fuel i, we express γi,t := γi,(tday ,t̃time)
as

γi,(tday ,t̃time)
= s1 + s2 sin

( tday + s3

s4

)
+ d1e−d5(t̃time−d3)

2
+ d2e−d6(t̃time−d4)

2
. (14)

For a load fuel l, we give γl,t := γl,(tday ,t̃time)
as

γl,(tday ,t̃time)
= 1− s1 − s2 sin

( tday + s3

s4

)
− d1e−d5(t̃time−d3)

2 − d2e−d6(t̃time−d4)
2
. (15)

Note that the gamma γ·,t parameters of the fuel bid curves can take the formulaic form
γ·,t = γ·,(tday ,t̃time)

directly from (14) and (15) at time t.
An alternative to this would be estimating the initial gamma γ·,t0 parameters together

with the initial alpha and beta (αt0 , β·,t0) parameters of the fuel bid curves using the least-
squares method. Then, over time, by updating the gamma parameter by the cyclical
change ∆γ·,(tday ,t̃time)

= γ·,(tday ,t̃time)
− γ·,(t−1day , ˜t−1time)

in the formulaic form, while retaining
its estimated level from t0, we would have

γ·,t := γ·,t−1 + ∆γ·,(tday ,t̃time)
. (16)

2.2.2. Available Capacity

Available capacity truncation involves restricting bḠ,i,t(x) in (1) for generator fuel i to
quantity x on to the scaled available capacity range x ∈ (

ci,t,lower
c̄t

,
ci,t,upper

c̄t
] in unit amounts.

Also, we let bL̄,l,t(x) in (2) for load fuel l take a quantity x on the scaled available capacity
range x ∈ [

cl,t,lower
c̄t

,
cl,t,upper

c̄t
) in unit amounts for all fuels.

From a non-stop power system point of view, the available capacity range is the
range around the initial dispatch quantity at time tn that bounds the dispatch quantity at
time tn+1.

A non-zero lower capacity bound c·,t,lower
c̄t

is necessary whenever a fuel, i.e., the indi-
vidual plants in a fuel collectively, is unable to shut down immediately. Regardless of the
economic value of their activity, the units in this position are usually given appropriate
non-zero targets in the central dispatch optimisation (AEMO 2010). In the model, we have
an analogous treatment for the fuels with inflexible ramping profiles and minimum loading
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requirements, e.g., black and brown coal, in anticipation of this problem, using non-zero
lower capacity bounds and the online fuel category OI .

In addition, different upper bounds arise as the availability up to the maximum
registered capacity c·,t,upper = c̄·,t rarely holds in most fuels. First, given the ramp rate
specifications and the length of the scheduling intervals, the units in the fuel might be
too slow to ramp up to a higher, economically feasible capacity region, approaching the
maximum registered fuel capacity c̄·,t at time tn by the start of next interval at tn+1. Second,
the units of particular fuels are often unwilling or unable to be produced at their full
capacity due to external factors, such as existing ancillary commitments, planned outages,
or, more commonly, weather effects. Third, there are two-way fuels that trade both sides
of the market, i.e., act as generators or loads interchangeably over time. As any load unit,
e.g., pumped hydro or battery, would need to charge up in order to “produce” electricity,
load units are usually registered in both categories and bid on in both categories as well to
participate accordingly (AEMC 2020). In this sense, we refer to them as two-way fuels. Two-
way fuels are actively balancing a storage level, which usually determines their remaining
capacity for load uptake and generator dispatch at the same time.

Moreover, the model can capture the permanent changes in the maximum registered
fuel capacity c̄·,t of the regional fuel mix for some time ahead, e.g., at the anticipated
commissioning or decommissioning of units. The available capacity truncation is then a
subsequent layer of capacity reduction.

Let ci,tn be the dispatch quantity in generator fuel i and cl,tn be the dispatch quantity in
load fuel l, at time tn, in unit amounts. After we have the market price ptn at time tn from
(12), we can obtain the current dispatch quantity c·,tn of a fuel by passing ptn in the inverse
fuel bid stack function of the fuel ptn → ci,tn : b−1

G,i,tn
(ptn) in (4) for a generator fuel i and

ptn → cl,tn : b−1
L,l,tn

(ptn) in (6) for a load fuel l. We then give the available capacity bounds
ci,tn+1,lower < ci,tn ≤ ci,tn+1,upper and cl,tn+1,lower ≤ cl,tn < cl,tn+1,upper at time tn+1 around the
dispatch level c·,tn at the end of the previous time tn interval in a fuel-specific manner.

Base Case

Let rup
i , rdown

i denote the ramp-up and ramp-down rates in MW/5 min for every
generator fuel i and rup

l , rdown
l the ramp-up and ramp-down rates in MW/5 min for every

load fuel l. Furthermore, let m denote the regional ramp rate multiplier. This multiplier
makes an allowance for the distortions arising out of the fact that the unit ramp rates are
aggregated at fuel level to obtain the fuel-level ramp rates instead of applying unit-level
ramping directly.

Across all fuels, particularly fossil fuels, e.g., coal, gas, etc., as a base case solution we
can specify the available capacity bounds in MW using these fuel-specific ramp-up and
ramp-down rates as follows. Let the lower availability bound c·,tn+1,lower of fuel i or l at
time tn+1 be the higher value of the dispatch quantity in the previous period minus the
ramp-down rate c·,tn −mrdown

· and 0 as

c·,tn+1,lower = max
(
c·,tn −mrdown

· , 0
)
. (17)

Then let the upper availability bound c·,tn+1,upper of fuel i or l at time tn+1 be the lower
value of the dispatch quantity in the previous period plus the ramp-up rate c·,tn + mrup

·
and full as-bid fuel capacity c̄·,t

c·,tn+1,upper = min
(
c·,tn + mrup

· , c̄·,t
)
. (18)

Assuming that the ramp rate specifications are time- and dispatch-level-invariant, we
write these as averages and estimate them from the historical ramp rate data for the different
fuels, ensuring that the MW/minutes raw ramp rate data are interpreted correctly11.
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Intermittent Fuels

Across renewable fuels, such as solar and wind, as an intermittent case solution,
we can give the available capacity upper bounds in MW using fuel-specific available
capacity forecasts. This assumes either the direct or the indirect availability of some
renewable generation forecast measures via prediction models or predictive indicators. We
opt for two very simple forecast processes for the upper availability bounds of solar and
wind generation.

Let the lower availability bound ci,tn+1,lower of intermittent fuel i at time tn+1 be zero
c·,t,lower = 0. This is a reasonable approximation as the ramp-down rates are generally quite
high and not restrictive in renewable generation.

Let the upper availability bound ci,t,upper of solar energy i at time t be estimated by a
deterministic sinusoidal intraday generation function specified as

csolar,t,upper = min(max(sin (a( ˜̃ttime + c) + e) + sin (b( ˜̃ttime + d) + f ), 0), g)), (19)

where ˜̃ttime = (ttime mod ñ) is the time of day for ñ observations per day. In this formula,
the sum of two shifted sine functions is evaluated for generation between 0 and an upper
bound g.

Finally, let the upper availability bound cwind,t,upper of wind generation at time t be
estimated by a scaled Brownian motion discretised as

∆cwind,t,upper ∼ N (0, σ2∆t) (20)

such that cwind,t,upper = min(max(cwind,t−1 + ∆cwind,t,upper, ψc̄wind,t), ψ̄c̄wind,t), where we
denote with ∆t = 1 the time increment and with ψ and ψ̄ the allowed thresholds of
wind output.

Two-Way Fuels

Two-way fuels, such as hydro plants and batteries, actively balance a storage level k
over time. Generator dispatch is kc̄i,t at time t and the remaining capacity for load uptake
is (1− k) times the maximum capacity in the fuel c̄i,t.

An interesting outcome of the proposed hyperbolic market bid stack method is that
the implied storage level k can be inferred from the modelled dispatch solution at the end
of each interval when leaving the storage level unrestricted 0 ≤ k ≤ 1 at the beginning of
the interval.

Minimum Capacity Criterion

Fuels that are slow to start up often have operational capacity minima in the price
settlement and scheduling process of the market operator, i.e., minimum load amounts. We
represent this in the model for all affected generator fuel i via the lower-bound criterion
ci,lo in unit amounts, such that the available capacity lower bound ci,t,lower of the fuel is
always at or above this criterion ci,lo ≤ ci,t,lower.12

2.2.3. Net Fixed Generation by Price Takers

Apart from the basic bid types used in compulsory bidding, fixed bids are optional
for both generators and loads in the NEM (AEMC 2020). In a fixed bid, the bidder opts
to trade a predetermined amount at the regional market price as price taker. At time tn,
we denote the fixed bid quantity in generator fuel i ∈ F with ci,tn , f ixed and the fixed bid
quantity in load fuel l ∈ F cl,tn , f ixed, both measured in MW.

We also introduce ctn ,non−scheduled for the net non-scheduled generation quantity in the
region (in MW) at time tn to capture the quantity flows of the small-scale units excluded
from bidding (AEMC 2020).
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Then, we express the fixed net generation quantity ctn , f ixed as

ctn , f ixed =
n

∑
i=1

ci,tn , f ixed −
m

∑
l=1

cl,tn , f ixed + ctn ,non−scheduled, (21)

at time tn.
The price taker quantities enter the pricing mechanism in two ways. First, the fixed

net generation quantity ctn , f ixed (in MW) needs to be subtracted from the end-user demand
as an adjustment when we calculate the demand for the scheduled fuels to fill.

Second, if a generator fuel i or load fuel l has both a bid stack function and a non-zero
fixed bid quantity at time tn, i.e., i ∈ I ∩ F or l ∈ L ∩ F, respectively, then the time tn
dispatch quantity of that fuel would have to be revised accordingly. In case of a generator
fuel i that is both a scheduled and a price taker at the same time i ∈ I ∩ F, the fixed bid
quantity ci,tn , f ixed 6= 0 would have to be added to the dispatch quantity ci,tn at the end of
the tn time interval for ci,tn ← ci,tn + ci,tn , f ixed. Similarly, in such a load fuel l ∈ L ∩ F, the
fixed bid quantity cl,tn , f ixed 6= would have to be added to the dispatch quantity cl,tn for
cl,tn ← cl,tn + cl,tn , f ixed. In principle, this can impact the available capacity bounds of the
particular fuel at time tn+1.

2.2.4. Demand

The demand term Dt incorporates trade as follows. Let Gt represent the input process
for net regional generation, c̄t the maximum scheduled generation, ct, f ixed the fixed net
generation of the price taker fuels, and Xt the input process for the net constrained-on/off
quantity in the price region at time t. The quantity Dt can then be computed as Dt :=
Gt−ct, f ixed−Xt

c̄t
in unit amounts, where Gt can be expressed as a deterministic function with

yearly seasonality for the day of year tday through parameters s1, s2, s3, s4 and diurnal
variation for the time of day t̃time using d1, d2, d3, d4, d5, d6

Gt = s1 + s2 sin
( tday + s3

s4

)
+ d1e−d5(t̃time−d3)

2
+ d2e−d6(t̃time−d4)

2
, (22)

and ct, f ixed is from (21) and Xt is introduced in Section 2.2.5.

2.2.5. Constrained-On/Off Quantity

In practice, price settlement is performed by a linear programming (LP) engine subject
to thousands of security constraints. Often, the binding constraints force the dispatch of
some bid quantities and prevent the dispatch of some others. These are referred to as
constrained-on and constrained-off quantities, respectively.

Let XI,on,t denote the constrained-on (must-run) generator quantity sum in the region.
This is the quantity extent to which the generators are dispatched in the bids offered
at prices above the realised market price, i.e., the generators in the region collectively
receive higher targets by XI,on,t than what is expected on a price basis. When parsing
the supply data in merit order, we want to take into account the effect of using these
expensive bids, which can be achieved by reducing end-user demand by XI,on,t. Note that
this term refers to all must-run generator quantities in the system, which is broader than the
ramp-rate-implied must-run quantity ∑

co∈OI ,t,lower
c̄t

over all fuels in set OI . More specifically,

XI,on,t = ∑
co∈OI ,t,lower

c̄t
+ X−I,on,t.

Let XI,o f f ,t denote the constrained-off (curtailed) generator quantity sum in the region.
This is the quantity extent to which the generators are not fully dispatched in the bids
offered at prices below the realised market price, i.e., the generators in the region collectively
receive lower targets from XI,o f f ,t that what is expected on a price basis. When parsing the
supply data in merit order, we want to skip over these unused inexpensive bids, which can
be achieved by incrementing end-user demand with XI,o f f ,t.
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Let XL,on,t denote the constrained-on (must-run) load quantity sum in the region. This
is the quantity extent to which the loads are dispatched in the bids offered at prices below
the realised market price, i.e., the loads in the region collectively receive higher targets from
XL,on,t than what is expected on a price basis. When parsing the supply data in merit order,
we want to take into account the effect of exceedingly high targets for the price, which can
be achieved by incrementing end-user demand with XL,on,t.

Let XL,o f f ,t denote the constrained-off (curtailed) load quantity sum in the region.
This is the quantity extent to which the loads are not fully dispatched in the bids offered
at prices above the realised market price, i.e., the loads in the region collectively receive
lower targets from XL,o f f ,t than what is expected on a price basis. When parsing the supply
data in merit order, we want to skip over these missed expensive load bids, which can be
achieved by reducing end-user demand with XL,o f f ,t.

It follows that the constrained-on/off quantity is the sum of the above introduced
variables

Xt = X−I,on,t − XI,o f f ,t − XL,on,t + XL,o f f ,t, (23)

which is expressed stochastically as

dXt = −κXtdt + σdZ, (24)

and is subtracted from demand before adjustments.

3. Model Implementation

The implementation of the proposed approach is now described. The results are from
three 31-day periods between t0 4:00 A.M. 1 January 2022 and T 4:00 A.M. 1 February 2022,
t0 4:00 A.M. 1 May 2022 and T 4:00 A.M. 1 June 2022, and t0 4:00 A.M. 1 October 2022
and T 4:00 A.M. 1 November 2022 for 5 min time intervals t ∈ (t0, T] (8928 observations
each period).

For both model variations A and B, the implementation begins by obtaining the fuels
on the regional fuel set U in full capacity c̄·,t13, and initialising the ramp rates rup

· , rdown
· and

the fixed bid quantities c·,tn , f ixed. The hyperbolic fuel bid stack formulae are then fitted to
the stacked fuel bid data to acquire the fuel bid curve parameters α·,t0 , β·,t0 , γ·,t0 at time t0.

The time-dependent input processes are initialised for t ∈ (t0, T]. First, strategic
bidding is captured by altering the value of the intercept variable of every fuel bid curve
γ·,t, i.e., by shifting the bid curves over time. Moreover, available capacity truncation is
executed to restrict the fuel bid stack functions to their available capacity quantity domains
defined between a lower c·,t,lower and an upper capacity threshold c·,t,upper for each trading
interval. The upper capacity bounds of the renewable fuels follow formulaic relations and
ramp rates are applied around the initial dispatch quantity in other fuels to obtain both
the lower and the upper bounds. Furthermore, the physical feasibility of the fuels overall
under the binding network constraints is also time-dependent. This enters the model via
the constrained-on/off variable Xt, which adjusts demand over time. Then, demand given
as generation Gt is also updated using the applicable time-dependent formulae.

The fuel set allocation and price calculation are performed as in Section 2, noting
that because the wind availability cwind,t,upper and the constrained-on/off variable Xt are
stochastic, one must also iterate the model a number of times for every time point. The
current implementation takes 25 iterations before averaging those for the model result.

3.1. Data Source

A source summary of the data used to estimate the input process (14)–(22) parameters
is shown in Table 4.

3.2. Fuel Summary

All plants present within the Bidmove Complete file (AEMO 2023b) with a dispatch-
able unit identifier (DUID) at time t0

14 are mapped to fuel types using the market operator’s
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mapping in AEMO (2022b) to retrieve the regional fuel sets. Each fuel type with a non-zero
full bid capacity c̄·,t is included15 as shown in Tables 5–7.

Table 4. Input data.

Model Parameter/Variable Source (File) Source (Field) Data as of Type

α·,t0 , β·,t0 in (1) and (2) AEMO (2023b) PRICEBAND1-10,
BANDAVAIL1-10 See Tables 5–7 Fitted

γ·,t in (1) and (2) from (14)–(16) AEMO (2023b) PRICEBAND1-10,
BANDAVAIL1-10 5 working days before t0 Fitted

rup
· , rdown

· in (17) and (18) AEMO (2023b) ROCUP, ROCDOWN t0 (t−288 in May) Read off
m in (17) and (18) - - - Arbitrary

c̄·,t in (18) AEMO (2023b) MAXAVAIL, reg. cap.* t0 (t−288 in May) Read off
csolar,t,upper from (19) AEMO (2023a) EnergyTarget 5 working days before t0 Randomly generated
cwind,t,upper from (20) AEMO (2023a) EnergyTarget 5 working days before t0 Randomly generated

ctn , f ixed from (21) AEMO (2023b) FIXEDLOAD t0 (t−288 in May) Read off
Xt from (23) AEMO (2023a) Price, Bids, EnergyTarget 5 working days before t0 Computed, fitted
Gt from (22) NEOPoint (2023) Dispatchable Gen 31 days a year earlier Fitted

* This is calculated as the minimum of the maximum availability (MAXAVAIL in AEMO 2023b) and the registered
capacity (as in AEMO 2022b) of all scheduled DUIDs in the fuel. The table shows the source of the input data
together with the parametric interpretation of each field in the price algorithm.

Table 5. Regional fuel sets—January 2022.

Fuel Full Bid
Capacity Ramp Speed, Multiplier Fixed

Bids Fitting Date, Range

c̄·,t rup
· rdown

· m c·,t, f ixed

NSW
G1 Black coal Slow-start 6340 MW 0.05 0.05 4 - t−144, [$0,$500]
G2 Gravity hydro Quick-start 2553 MW 0.80 0.80 4 65 MW t−144, full range
G3 Natural gas Quick-start 1085 MW 0.62 0.62 4 - t−144, full range

G4 Pumped
hydro Two-way 160 MW - - - - t−144, full range

G5 Battery Two-way 49 MW - - - - t−144, full range
L1 Battery Two-way 46 MW - - - - t−144, full range
G6 Solar Intermittent 2382 MW - - - - t−144, full range
G7 Wind Intermittent 2237 MW - - - - t−144, full range

QLD
G1 Black coal Slow-start 6472 MW 0.07 0.07 4 - t−144, [$0,$500]
G2 Coal seam gas Quick-start 1034 MW 0.30 0.30 4 - t−144, [$0,$500]
G3 Kerosene Quick-start 395 MW 0.41 0.41 4 - t−144, full range
G4 Natural gas Quick-start 697 MW 0.53 0.53 4 - t−144, full range
G5 Run of hydro Quick-start 154 MW 0.91 0.91 4 - t−144, [$0,$500]

G6 Pumped
hydro Two-way 570 MW - - - - t−144, full range

G7 Solar Intermittent 1692 MW - - - - t−144, full range
G8 Wind Intermittent 509 MW - - - - t−144, full range

VIC
G1 Brown coal Slow-start 3825 MW 0.07 0.07 4 - t−144, [$0,$500]
G2 Gravity hydro Quick-start 2165 MW 0.62 0.62 4 - t−144, [$0,$500]
G3 Natural gas Quick-start 1758 MW 0.48 0.48 4 - t−144, full range
G4 Battery Two-way 33 MW - - - - t−144, full range
L1 Battery Two-way 80 MW - - - - t−144, full range
G5 Solar Intermittent 973 MW - - - - t−144, full range
G6 Wind Intermittent 3271 MW - - - - t−144, full range

SA
G1 Diesel oil Quick-start 253 MW 1.44 1.44 1 - t−144, [$0,$500]
G2 Natural gas Quick-start 1029 MW 1.05 1.05 1 - t−144, [$0,$500]
G3 Oil products Quick-start 553 MW 0.32 0.32 1 - t−144, [$0,$500]
G4 Battery Two-way 135 MW - - - - t−144, full range
L1 Battery Two-way 112 MW - - - - t−144, full range
G5 Solar Intermittent 365 MW - - - - t−144, full range
G6 Wind Intermittent 1923 MW - - - - t−144, full range

TAS
G1 Gravity hydro Quick-start 2008 MW 1.13 1.13 1 - t−144, [$0,$500]
G2 Natural gas Quick-start 30 MW 5.50 5.50 1 - t−144, full range
G3 Wind Intermittent 422 MW - - - - t−144, full range

The table shows the scheduled fuel set of each of the five NEM regions, New South Wales (NSW), Queensland
(QLD), Victoria (VIC), South Australia (SA), and Tasmania (TAS) for the third sample.
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Table 6. Regional fuel sets—May 2022.

Fuel Full Bid
Capacity Ramp Speed, Multiplier Fixed

Bids Fitting Date, Range

c̄·,t rup
· rdown

· m c·,t, f ixed

NSW
G1 Black coal Slow-start 5360 MW 0.05 0.05 4 - t−432, [$0,$500]
G2 Gravity hydro Quick-start 2454 MW 0.82 0.82 4 49 MW t−432, [$0,$500]
G3 Natural gas Quick-start 1099 MW 0.61 0.61 4 - t−432, full range

L1 Pumped
hydro Two-way 160 MW - - - - t−288, full range

G4 Battery Two-way 49 MW - - - - t−432, full range
L2 Battery Two-way 46 MW - - - - t−432, full range
G5 Solar Intermittent 2502 MW - - - - t−432, full range
G6 Wind Intermittent 2225 MW - - - - t−432, full range

QLD
G1 Black coal Slow-start 5823 MW 0.07 0.07 4 - t−432, [$0,$500]
G2 Coal seam gas Quick-start 870 MW 0.36 0.36 4 - t−432, [$0,$500]
G3 Kerosene Quick-start 396 MW 0.40 0.40 4 - t−432, full range
G4 Natural gas Quick-start 719 MW 0.51 0.51 4 - t−432, full range
G5 Run of hydro Quick-start 132 MW 1.06 1.06 4 - t−432, full range

G6 Pumped
hydro Two-way 285 MW - - - - t−432, full range

L1 Pumped
hydro Two-way 244 MW - - - - t−288, full range

G7 Solar Intermittent 1739 MW - - - - t−432, full range
G8 Wind Intermittent 549 MW - - - - t−432, full range

VIC
G1 Brown coal Slow-start 3058 MW 0.08 0.08 4 - t−432, [$0,$500]
G2 Gravity hydro Quick-start 1584 MW 0.85 0.85 4 - t−432, [$0,$500]
G3 Natural gas Quick-start 1813 MW 0.47 0.47 4 - t−432, full range
G4 Battery Two-way 240 MW - - - - t−432, full range
L1 Battery Two-way 268 MW - - - - t−432, full range
G5 Solar Intermittent 1001 MW - - - - t−432, full range
G6 Wind Intermittent 2874 MW - - - - t−432, full range

SA
G1 Diesel oil Quick-start 269 MW 1.36 1.36 1 - t−432, full range
G2 Natural gas Quick-start 773 MW 0.97 0.97 1 - t−432, full range
G3 Oil products Quick-start 537 MW 0.33 0.33 1 - t−432, full range
G4 Battery Two-way 98 MW - - - - t−432, full range
L1 Battery Two-way 112 MW - - - - t−432, full range
G5 Solar Intermittent 381 MW - - - - t−432, full range
G6 Wind Intermittent 2152 MW - - - - t−432, full range

TAS
G1 Gravity hydro Quick-start 2044 MW 1.02 1.02 1 - t−432, [$0,$500]
G2 Natural gas Quick-start 92 MW 1.79 1.79 1 - t−432, [$0,$500]
L1 Battery Two-way 16 MW - - - - t−432, full range
G3 Wind Intermittent 422 MW - - - - t−432, full range

The table shows the scheduled fuel set of each of the five NEM regions, New South Wales (NSW), Queensland
(QLD), Victoria (VIC), South Australia (SA), and Tasmania (TAS) for the third sample.

Table 7. Regional fuel sets—October 2022.

Fuel Full Bid
Capacity Ramp Speed, Multiplier Fixed

Bids Fitting Date, Range

c̄·,t rup
· rdown

· m c·,t, f ixed

NSW
G1 Black coal Slow-start 6365 MW 0.04 0.04 4 - t−144, [$0,$500]
G2 Gravity hydro Quick-start 2449 MW 0.82 0.82 4 58 MW t−144, [$0,$500]
G3 Natural gas Quick-start 712 MW 0.94 0.94 4 - t−144, full range

G4 Pumped
hydro Two-way 240 MW - - - - t−144, full range

L1 Pumped
hydro Two-way 20 MW - - - - t−144, full range

G5 Battery Two-way 50 MW - - - - t−144, full range
L2 Battery Two-way 51 MW - - - - t−144, full range
G6 Solar Intermittent 2617 MW - - - - t−144, full range
G7 Wind Intermittent 2221 MW - - - - t−144, full range
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Table 7. Cont.

Fuel Full Bid
Capacity Ramp Speed, Multiplier Fixed

Bids Fitting Date, Range

c̄·,t rup
· rdown

· m c·,t, f ixed

QLD
G1 Black coal Slow-start 5858 MW 0.07 0.07 4 - t−144, [$0,$500]
G2 Coal seam gas Quick-start 712 MW 0.44 0.44 4 - t−144, full range
G3 Kerosene Quick-start 276 MW 0.58 0.58 4 - t0, full range
G4 Natural gas Quick-start 702 MW 0.52 0.52 4 - t−144, full range
G5 Run of hydro Quick-start 132 MW 1.06 1.06 4 - t−144, full range

G6 Pumped
hydro Two-way 524 MW - - - - t−144, full range

G7 Battery Two-way 20 MW - - - - t−144, full range
L1 Battery Two-way 75 MW - - - - t−144, full range
G8 Solar Intermittent 2294 MW - - - - t−144, full range
G9 Wind Intermittent 661 MW - - - - t−144, full range

VIC
G1 Brown coal Slow-start 3615 MW 0.07 0.07 4 - t−144, [$0,$500]
G2 Gravity hydro Quick-start 1792 MW 0.75 0.75 4 - t−144, [$0,$500]
G3 Natural gas Quick-start 1204 MW 0.70 0.70 4 - t−144, full range
G4 Battery Two-way 295 MW - - - - t−144, full range
L1 Battery Two-way 285 MW - - - - t−144, full range
G5 Solar Intermittent 1015 MW - - - - t−144, full range
G6 Wind Intermittent 3124 MW - - - - t−144, full range

SA
G1 Diesel oil Quick-start 204 MW 1.18 1.18 1 - t−144, full range
G2 Natural gas Quick-start 822 MW 0.91 0.91 1 - t−144, full range
G3 Oil products Quick-start 40 MW 3.75 3.75 1 - t−144, full range
G4 Battery Two-way 117 MW - - - - t−144, full range
L1 Battery Two-way 130 MW - - - - t−144, full range
G5 Solar Intermittent 386 MW - - - - t−144, full range
G6 Wind Intermittent 2294 MW - - - - t−144, full range

TAS
G1 Gravity hydro Quick-start 2044 MW 1.08 1.08 1 - t−144, [$0,$500]
G2 Natural gas Quick-start 148 MW 1.11 1.11 1 - t−144, full range
G3 Wind Intermittent 422 MW - - - - t−144, full range

The table shows the scheduled fuel set of each of the five NEM regions, New South Wales (NSW), Queensland
(QLD), Victoria (VIC), South Australia (SA), and Tasmania (TAS) for the third sample.

3.3. Fuel Bid Curves

The fuel bid stack functions are then fitted to the bid data as of t−144 or t0 (or t−432
or t−288 as for the May sample, where the last day of the previous month falls on a
weekend) as shown in the last column of Tables 5–7.16 First, the parameters (αt0 , βi,t0 , γi,t0 )
and (−αt0 , βl,t0 , γl,t0) are estimated using a squared error cost function with a number of
tweaks.17 The fitted function is projected to the regulatory maximum and minimum price
levels when it would otherwise exceed those. Also, underestimation is penalised five times
as much as overestimation. Furthermore, only an arbitrarily chosen price interval of the bid
data is fitted, usually the mid-range prices, as also shown in the last column of Tables 5–7.18

Finally, to have the same αt0 in all fuels in a region, a helper function is used to calculate
what value of αt0 minimises the fitting error in all fuels at time t0 when fitting the bid data.
Then, (βi,t0 , γi,t0 ) and (βl,t0 , γl,t0 ) are estimated, keeping |αt0 | fixed. Table 8 (left side) shows
the parameter results.

Table 8. Fuel bid curve parameters—January, May, and October 2022.

January May October
αt0 β·,t0 γ·,t0 αt0 β·,t0 γ·,t0 αt0 β·,t0 γ·,t0

NSW
NSWBlack coalGENERATOR 1.99999 0.1 0.08379 0.35548 0.92 0.07641 1.09017 0.22 0.08624
NSWNatural gasGENERATOR 1.99999 159.79 0.0068 0.35548 1.44 −0.00553 1.09017 244.67 0.00125
NSWPumped
hydroGENERATOR 1.99999 333.12 −0.00127 0.35548 19.86 −0.08223 1.09017 981.21 −0.00003

NSWPumped hydroLOAD — — — 0.35548 2367.99 0.00371 −1.09017 0.02 1
NSWSolarGENERATOR 1.99999 1851.45 0.05241 0.35548 1497.17 0.05159 1.09017 2285.51 0.05873
NSWWindGENERATOR 1.99999 185.48 0.04655 0.35548 434.47 0.04547 1.09017 1090.43 0.04805
NSWGravity hydroGENERATOR 1.99999 18.66 0.00239 0.35548 1.55 −0.01212 1.09017 0.33 −0.04448
NSWBatteryGENERATOR 1.99999 476.4 −0.00003 0.35548 2136.83 −0.00004 1.09017 570.82 −0.00026
NSWBatteryLOAD −1.99999 0 1 0.35548 0.16 0.98906 −1.09017 1915.19 0.24422
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Table 8. Cont.

January May October
αt0 β·,t0 γ·,t0 αt0 β·,t0 γ·,t0 αt0 β·,t0 γ·,t0

QLD
QLDBlack coalGENERATOR 0.614 0.9 0.10642 0.54915 1.48 0.09741 1.73724 0.48 0.09323
QLDCoal seam gasGENERATOR 0.614 8.42 0.00036 0.54915 5.73 −0.00122 1.73724 1679.01 0.00745
QLDNatural gasGENERATOR 0.614 285.07 0.01253 0.54915 787.26 0.01101 1.73724 201.29 0.00711
QLDRun of hydroGENERATOR 0.614 17.09 −0.00003 0.54915 983.36 0.00163 1.73724 4358.63 0.00215
QLDSolarGENERATOR 0.614 1875.17 0.03681 0.54915 3827.84 0.03899 1.73724 405.74 0.04834
QLDKeroseneGENERATOR 0.614 12.41 −0.0884 0.54915 130.63 −0.00104 1.73724 9.07 −0.05116
QLDPumped
hydroGENERATOR 0.614 189.77 0.00631 0.54915 321.04 0.00343 1.73724 151.03 −0.0003

QLDPumped hydroLOAD — — — 0.54915 1915.19 0.24422 — — —
QLDWindGENERATOR 0.614 181.07 0.00463 0.54915 194.75 0.00520 1.73724 1736.17 0.0138
QLDBatteryGENERATOR — — — — — — 1.73724 2300.41 −0.0002
QLDBatteryLOAD — — — — — — −1.73724 1915.19 0.24422

VIC
VICBatteryGENERATOR 0.37907 2032.06 −0.00004 1.30902 341.47 0.00357 0.38197 421.3 0.00209
VICBatteryLOAD −0.37907 5.26 0.03187 1.30902 12.59 0.01019 −0.38197 0.05 1
VICBrown coalGENERATOR 0.37907 0.09 0.07338 1.30902 0.44 0.05840 0.38197 1.08 0.06282
VICNatural gasGENERATOR 0.37907 682.82 0.01303 1.30902 0.30 −0.00715 0.38197 8.67 −0.19373
VICSolarGENERATOR 0.37907 1775.27 0.01987 1.30902 482.08 0.02075 0.38197 752.42 0.02082
VICWindGENERATOR 0.37907 1039.12 0.06728 1.30902 441.68 0.05243 0.38197 364.33 0.06292
VICGravity hydroGENERATOR 0.37907 1.33 0.00041 1.30902 2.73 0.00090 0.38197 4.22 −0.00066

SA
SABatteryGENERATOR 0.32016 550.24 −0.00023 0.21425 779.41 0.00019 3.29586 95.13 −0.00017
SABatteryLOAD −0.32016 0.13 1 0.21425 0.22 1.00000 −3.29586 0.01 −1
SADiesel oilGENERATOR 0.32016 8.29 −0.0072 0.21425 8.05 −0.01433 3.29586 266.18 −0.00035
SANatural gasGENERATOR 0.32016 6.13 0.01037 0.21425 23.68 0.00489 3.29586 81.33 0.00391
SAOil productsGENERATOR 0.32016 17.42 0.00426 0.21425 306.95 0.00261 3.29586 88.88 0.00081
SAWindGENERATOR 0.32016 823.46 0.03962 0.21425 387.09 0.04007 3.29586 208.4 0.05053
SASolarGENERATOR 0.32016 5428.98 0.00787 0.21425 9997.15 0.00843 3.29586 1852.37 0.00855

TAS

TASNatural gasGENERATOR 5.377 ×
10−7 6176.97 −0.00188 1.32753 865.44 0.00188 18.66066 90.66 0.00276

TASWindGENERATOR 5.377 ×
10−7 2690.81 0.00397 1.32753 205.33 0.00624 18.66066 169.04 0.00623

TASGravity hydroGENERATOR 5.377 ×
10−7 169.49 −0.0254 1.32753 0.58 0.00571 18.66066 0.09 0.00849

TASBatteryLOAD — — — 1.32753 0.01 −0.99899 — — —

The table shows the fuel bid stack function parameters ( αt0 , β·,t0 , γ·,t0 ) given a regional |αt0 | in a NEM-wide
breakdown.

3.4. Strategic Bidding

It is assumed that some fuels are bid on following a particular dynamic bidding
strategy rather than bidding the same strategy (bid curve) all the time, i.e., some bid curves
are not time-constant. This strategy involves a reallocation of all quantities onto more (less)
expensive prices along the bid curve that is achieved by shifting the fuel bid stack to the
left (right) along the quantity axis. The shift is achieved by changing the value of the fuel
bid curve intercept γ·,t.

In this implementation, we take the γi,t−144 value from the parameter estimation via
least-squares fitting and apply an initial update of +(γ·,(t0day ,t0time)

− γ·,(t−144day ,t−144time)
) to

reflect the time differential and obtain γi,t0 . After that, the value of the intercept changes
according to Formula (16).19

By fitting the Formulae (14) and (15) for (16), some proportion of the full bid capacity
of the particular fuel c̄·,t is returned (on [0, 1]) for γ·,t. This value is then multiplied by c̄·,t
and divided by 44, 000 MW, the approximate full bid capacity sum of every generation
fuel in the NEM, to recover γ·,t on the correct scale. The parameters of the fit are shown in
Tables 9–11.
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Table 9. Gamma γ·,t formula inputs—Jan 2022.

Fuel s1 d1 d2 d3 d4 d5 −d6 R2

NSW
NSWBlack coalGENERATOR 0.70 0.18 −0.13 −0.84 −0.86 0.05 −4.84 0.17
NSWNatural gasGENERATOR 0.19 −0.19 −0.10 0.29 −1.85 0.15 −1.64 0.49
NSWPumped
hydroGENERATOR - - - - - - - -

NSWSolarGENERATOR - - - - - - - -
NSWWindGENERATOR - - - - - - - -
NSWGravity
hydroGENERATOR 0.01 0.10 0.13 3.76 2.37 0.37 −6.00 0.27

NSWBatteryGENERATOR - - - - - - - -
NSWBatteryLOAD - - - - - - - -

QLD
QLDBlack coalGENERATOR 0.89 0.02 0.02 −0.78 2.81 0.38 −1.44 0.28
QLDCoal seam gasGENERATOR - - - - - - - -
QLDNatural gasGENERATOR 0.36 −0.34 −0.29 −1.00 −3.86 0.17 −0.98 0.68
QLDRun of hydroGENERATOR 0.01 0.44 0.30 2.55 1.48 2.47 −6.00 0.27
QLDSolarGENERATOR - - - - - - - -
QLDKeroseneGENERATOR - - - - - - - -
QLDPumped
hydroGENERATOR - - - - - - - -

QLDWindGENERATOR 0.35 −0.43 0.43 −3.40 −3.41 3.00 −3.10 0.16

VIC
VICBatteryGENERATOR - - - - - - - -
VICBatteryLOAD 0.01 0.39 0.42 0.71 −0.29 3.00 −3.49 0.35
VICBrown coalGENERATOR 0.76 1.04 −1.11 −2.20 −2.06 0.14 −0.13 0.38
VICNatural gasGENERATOR 0.00 −1.27 1.33 2.95 2.95 1.24 −1.16 0.24
VICSolarGENERATOR 1.00 −0.10 −0.04 0.88 −1.77 0.24 −4.24 0.51
VICWindGENERATOR - - - - - - - -
VICGravity hydroGENERATOR 0.04 0.07 −0.05 3.25 0.91 1.14 −0.02 0.24

SA
SABatteryGENERATOR 0.00 0.01 −0.01 0.09 −1.06 0.46 −4.73 0.01
SABatteryLOAD 0.02 0.52 −0.39 −0.56 −0.32 1.19 −6.00 0.16
SADiesel oilGENERATOR 0.00 0.06 −0.05 0.90 0.97 2.47 −3.99 0.32
SANatural gasGENERATOR 0.22 0.08 −0.20 2.77 −1.31 0.28 −0.24 0.21
SAOil productsGENERATOR 0.00 0.35 0.23 1.01 3.00 1.20 −0.92 0.26
SAWindGENERATOR −0.20 1.20 −0.03 3.82 2.19 0.00 −5.81 0.13
SASolarGENERATOR - - - - - - - -

TAS
TASNatural gasGENERATOR - - - - - - - -
TASWindGENERATOR 0.66 0.00 −0.01 0.90 1.19 1.92 −5.23 0.01
TASGravity hydroGENERATOR 0.58 −0.20 −0.09 0.91 −1.12 1.49 −0.43 0.20

The table shows the inputs of the intraday gamma variation Formulae (14)–(16) for all fuels in the NEM.

Table 10. Gamma γ·,t formula inputs—May 2022.

Fuel s1 d1 d2 d3 d4 d5 −d6 R2

NSW
NSWBlack coalGENERATOR 0.7 −0.06 0.09 −1.38 −3.93 0.9 −1.26 0.23
NSWNatural gasGENERATOR 0.04 0.21 0.42 −4 2.49 1.46 −1.3 0.19
NSWPumped
hydroGENERATOR - - - - - - - -

NSWPumped hydroLOAD - - - - - - - -
NSWSolarGENERATOR −0.86 0 1.83 −2.6 2.42 0.95 0 0.08
NSWWindGENERATOR 0.99 −0.09 −0.02 4 −2.61 0 −3.53 0.13
NSWGravity
hydroGENERATOR −0.24 −1.93 2.21 −2.16 −2.65 0.04 −0.02 0.12

NSWBatteryGENERATOR - - - - - - - -
NSWBatteryLOAD 0.02 0.23 0.2 −0.34 −4 2.37 −0.63 0.12

QLD
QLDBlack coalGENERATOR 0.76 0.13 −0.16 −2.67 −2.32 0.11 −0.74 0.32
QLDCoal seam gasGENERATOR - - - - - - - -
QLDNatural gasGENERATOR 0.51 −0.31 -0.25 −1.98 0.72 0.32 −5.1 0.21
QLDRun of hydroGENERATOR −0.95 0.03 1.51 −1.49 2.35 1.24 0 0.02
QLDSolarGENERATOR 0.92 −0.03 −0.02 2.76 −2.51 0.07 −1.31 0.12
QLDKeroseneGENERATOR −0.29 −1.75 2.08 −2.23 −2.81 0.04 −0.02 0.13
QLDPumped
hydroGENERATOR - - - - - - - -

QLDWindGENERATOR 0.32 0.15 -0.11 −4 −2.81 0.34 −2.22 0.16
QLDBatteryGENERATOR - - - - - - - -
QLDBatteryLOAD - - - - - - - -
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Table 10. Cont.

Fuel s1 d1 d2 d3 d4 d5 −d6 R2

VIC
VICBatteryGENERATOR 0 0.23 −0.14 -4 −2.87 0.42 −2.36 0.16
VICBatteryLOAD - - - - - - - -
VICBrown coalGENERATOR −0.14 0.86 0.08 0.16 −3.93 0 −2.19 0.14
VICNatural gasGENERATOR 0.3 0.27 0 2.33 0.31 0.52 0.19 0.12
VICSolarGENERATOR −0.84 0.01 1.75 −4 0.79 1.6 0 0.17
VICWindGENERATOR −0.98 −0.01 1.85 1.73 1.22 2.07 0 0.12
VICGravity hydroGENERATOR 1 −1.03 0.29 1.26 2.62 0.01 −1.74 0.13

SA
SABatteryGENERATOR 0.5 −1.51 1.03 1.57 1.6 0.04 −0.06 0.14
SABatteryLOAD 1 −0.99 −0.11 1.66 −2.31 0.01 −1.56 0.11
SADiesel oilGENERATOR 1 −1.01 −0.12 2.39 −2.31 0.01 −0.81 0.15
SANatural gasGENERATOR - - - - - - - -
SAOil productsGENERATOR 1.00 −0.88 −0.18 1.50 −2.90 0.00 −4.14 0.05
SAWindGENERATOR 0.88 0.12 −0.12 −1.89 −2.10 0.11 −0.23 0.11
SASolarGENERATOR −0.96 1.94 −0.10 −2.13 0.13 0.00 −6.00 0.16

TAS
TASNatural gasGENERATOR - - - - - - - -
TASWindGENERATOR 0.65 −0.01 0.08 -2.06 −4.00 0.22 −0.94 0.14
TASGravity hydroGENERATOR 0.17 0.15 −0.16 −4.00 −2.85 0.45 −2.63 0.10
TASBatteryLOAD - - - - - - - -

The table shows the inputs of the intraday gamma variation Formulae (14)–(16) for all fuels in the NEM.

Table 11. Gamma γ·,t formula inputs—October 2022.

Fuel s1 d1 d2 d3 d4 d5 −d6 R2

NSW
NSWBlack coalGENERATOR −0.65 1.28 0.10 0.21 2.26 0.00 −0.71 0.31
NSWNatural gasGENERATOR 0.54 −0.55 0.05 −0.73 2.60 0.01 −4.61 0.36
NSWPumped
hydroGENERATOR - - - - - - - -

NSWPumped hydroLOAD - - - - - - - -
NSWSolarGENERATOR - - - - - - - -
NSWWindGENERATOR - - - - - - - -
NSWGravity
hydroGENERATOR 0.07 0.04 0.06 −3.92 0.06 1.04 −0.27 0.37

NSWBatteryGENERATOR 0.00 −0.17 0.31 2.62 2.62 3.00 −6.00 0.24
NSWBatteryLOAD 0.00 0.02 0.09 −0.83 −0.09 1.88 −6.00 0.09

QLD
QLDBlack coalGENERATOR 0.73 −0.04 −0.05 0.49 −1.00 1.64 −1.86 0.36
QLDCoal seam gasGENERATOR 0.00 0.14 0.27 4.00 2.84 0.44 −1.94 0.61
QLDNatural gasGENERATOR 0.40 −0.37 −0.30 −2.83 0.56 0.15 −1.33 0.42
QLDRun of hydroGENERATOR 0.68 −0.79 −0.75 −4.00 −0.15 0.71 −0.52 0.74
QLDSolarGENERATOR - - - - - - - -
QLDKeroseneGENERATOR - - - - - - - -
QLDPumped
hydroGENERATOR - - - - - - - -

QLDWindGENERATOR 0.93 −1.27 1.08 −0.42 −0.44 1.05 −0.97 0.47

VIC
VICBatteryGENERATOR 0.00 0.00 0.00 0.41 1.74 2.47 −5.20 0.04
VICBatteryLOAD 0.00 0.17 0.18 0.19 −3.55 1.06 −2.04 0.21
VICBrown coalGENERATOR 0.77 0.06 0.06 0.72 −0.56 0.64 −2.93 0.11
VICNatural gasGENERATOR 0.01 2.25 −2.06 2.30 2.19 0.43 −0.45 0.65
VICSolarGENERATOR - - - - - - - -
VICWindGENERATOR - - - - - - - -
VICGravity hydroGENERATOR −0.35 −0.30 0.99 1.88 0.17 0.74 −0.02 0.20

SA
SABatteryGENERATOR −0.72 −1.62 2.34 −3.17 −3.81 0.00 0.00 0.02
SABatteryLOAD 0.01 0.07 0.09 −3.23 1.04 2.60 −0.89 0.12
SADiesel oilGENERATOR 0.00 0.04 0.03 1.00 −0.62 3.00 −6.00 0.25
SANatural gasGENERATOR 0.20 −3.00 2.79 1.02 1.13 0.25 −0.20 0.62
SAOil productsGENERATOR - - - - - - - -
SAWindGENERATOR - - - - - - - -
SASolarGENERATOR - - - - - - - -

TAS
TASNatural gasGENERATOR 0.25 −0.21 0.13 −3.04 −0.01 0.34 −1.03 0.14
TASWindGENERATOR 0.65 −0.01 0.01 1.43 1.62 2.02 −5.26 0.01
TASGravity hydroGENERATOR 0.49 0.04 −0.07 −0.24 2.93 0.32 −0.54 0.32

The table shows the inputs of the intraday gamma variation Formulae (14)–(16) for all fuels in the NEM.
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3.5. Fuel Availability Updates
3.5.1. Ramp Rates

Restrictive ramp rates apply to slow-start and quick-start fuels to determine their
lower and upper capacity bounds around the starting dispatch level in the trade interval,
e.g., a ramp rate of 0.05 in the case of black coal in NSW signifies an MW amount equal
to 5% of the full bid capacity of the fuel c̄·,t. These are shown in Tables 5–7, where we see
that the ramp rates of the slow-start fuels are typically much lower and therefore more
restrictive than those of the quick-start fuels.

3.5.2. Renewable Fuels

By contrast, only the upper availability bounds are calculated for renewable fuels as
their lower bounds are kept at nil. Table 12 shows the parameter estimation for the upper
threshold of solar generation csolar,t,upper in (19).20 The function parameters are not very
dissimilar for the fuels across time periods, except for the value of g which is somewhat
lower in May for NSW and QLD.

Table 12. Solar availability formula inputs.

January 2022
Region a b c d e f g

NSW 0.0000 0.0150 −1.0000 −0.9920 0.0000 −0.5818 0.8
QLD −0.0007 0.0152 −0.5354 −0.3525 −0.1253 −0.5746 0.5
VIC −3.18 × 10−4 1.78 × 10−2 1.16 × 10−1 −5.36 × 10−1 −4.73 × 10−2 −8.92 × 10−1 0.2
SA −0.0020 0.0119 −0.0184 0.1870 −0.2785 −0.1330 0.1

May 2022
Region a b c d e f g

NSW −1.35 × 10−5 1.55 × 10−2 1.81 × 10−1 −9.57 × 10−1 −1.95 × 10−1 −2.49 × 10−1 0.5
QLD −0.0008 0.0152 −0.2712 −0.1369 −0.1450 −0.5905 0.35
VIC −4.10 × 10−4 1.86 × 10−2 4.36 × 10−1 −4.02 × 10−1 −6.09 × 10−2 −8.61 × 10−1 0.15
SA −0.0021 0.0058 0.4605 −0.3066 −0.2906 −0.1429 0.1

October 2022
Region a b c d e f g

NSW −5.00 × 10−4 1.55 × 10−2 −9.99 × 10−1 −9.99 × 10−1 −4.36 × 10−6 −9.99 × 10−1 0.75
QLD −4.67 × 10−4 1.53 × 10−2 −3.19 × 10−1 −9.49 × 10−2 −3.55 × 10−6 −4.58 × 10−21 0.6
VIC −3.76 × 10−4 1.83 × 10−2 3.15 × 10−1 −4.53 × 10−1 −5.57 × 10−2 −8.73 × 10−1 0.2
SA −0.0020 0.0119 −0.2359 0.0365 −0.2785 −0.1078 0.125

The table shows the solar generation upper bound quantity (19) inputs of the relevant NEM regions: New South
Wales (NSW), Queensland (QLD), Victoria (VIC), and South Australia (SA).

Next, Table 13 shows the parameter estimation for the upper threshold of wind
generation cwind,t,upper in (20). While the σ parameters are relatively close regardless of the
fitting period, the ψ̄ and the ψ thresholds are maintained at the exact same level in all of
them.

Table 13. Wind availability formula inputs.

January 2022 May 2022 October 2022
Region σ ψ̄ ψ σ ψ̄ ψ σ ψ̄ ψ

NSW 18.205 0.6 0.2 14.964 0.6 0.2 20.404 0.6 0.2
QLD 11.288 0.6 0.2 11.466 0.6 0.2 13.872 0.6 0.2
VIC 42.212 0.6 0.2 25.255 0.6 0.2 30.155 0.6 0.2
SA 21.921 0.4 0.2 25.077 0.4 0.2 21.354 0.4 0.2

TAS 6.162 0.6 0.2 7.687 0.6 0.2 6.027 0.6 0.2

The table shows the wind generation upper bound quantity (20) inputs of the five NEM regions: New South
Wales (NSW), Queensland (QLD), Victoria (VIC), South Australia (SA), and Tasmania (TAS).

3.6. Demand Process

The modelled price paths Pt are considered under a generation-based process for

demand Dt =
Gt−ct, f ixed−Xt

c̄t
. This requires the Ornstein–Uhlenbeck process for the feasibility

adjustment Xt and the deterministic formulae with intraweek and intraday variation for
generation Gt as inputs.
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3.6.1. Feasibility Adjustment

The constrained-on/off quantity Xt in (24) constitutes the feasibility adjustment in the
model. It is computed as the sum of the unused low-price (constrained-off) and the used
high-price (constrained-on) bid quantities. The path of this process can be drawn from a
distribution with mean zero and variance σ2

2κ (1− e−2κt), where the values of σ and κ are
estimated from the data. Table 14 shows these values for the three sample periods.

Table 14. Constrained-on/off Xt formula inputs.

January 2022 May 2022 October 2022
Region κ σ κ σ κ σ

NSW 0.1 4.60 0.1 5.68 0.1 7.11
QLD 0.1 5.25 0.1 5.43 0.1 5.30
VIC 0.25 9.84 0.25 3.02 0.25 3.17
SA 0.1 1.20 0.1 0.65 0.1 0.79

TAS 0.25 4.68 0.25 3.80 0.25 7.00

The table shows the inputs of the constrained-on/off quantity Xt in (24) over the three periods for the five NEM
regions: New South Wales (NSW), Queensland (QLD), Victoria (VIC), South Australia (SA), and Tasmania (TAS).

As in Table 14, the κ values are stable for all regions, but there is some slight variation
in the σ values.

3.6.2. Deterministic Component

The formulae for generation Gt is given by the sinusoidal function (22) that captures
both weekly and diurnal variation. This is fitted to the data to recover the function
parameters as in Table 15. The quantity data are divided by 7000 MW in all five regions
before fitting for a more tractable scale. There is quite a bit of variation in the fitted
generation function parameters between the different data windows.

Table 15. Generation Gt formula inputs.

January 2022
Fuel s1 s2 s3 s4 d1 d2 d3 d4 d5 −d6 R2

NSW 0.83 −0.06 0.64 1.10 0.48 −0.25 1.65 0.76 0.13 −0.43 0.53
QLD 0.88 −0.03 0.56 1.14 0.26 0.00 2.62 0.87 0.24 1.43 0.75
VIC 0.74 −0.02 1.46 1.19 0.15 −0.01 2.81 1.09 0.53 −0.91 0.26
SA 0.14 −0.01 1.02 1.04 0.06 0.00 3.02 0.78 0.56 1.05 0.22

TAS 0.09 0.00 1.01 1.14 0.05 0.00 3.01 0.78 0.68 1.05 0.22

May 2022
Fuel s1 s2 s3 s4 d1 d2 d3 d4 d5 −d6 R2

NSW 0.90 −0.05 −10.78 1.16 0.61 −0.54 1.28 0.77 0.12 −0.43 0.56
QLD 0.84 0.03 −2.39 1.13 0.24 0.00 2.88 0.82 0.59 1.27 0.55
VIC 0.72 0.04 −2.43 1.13 0.19 0.00 2.90 0.91 0.83 1.02 0.42
SA 0.16 −0.01 1.01 1.28 0.09 0.00 3.02 0.78 0.97 1.05 0.32

TAS 0.16 −0.02 1.01 1.27 0.10 0.00 2.94 0.78 0.59 1.05 0.37

October 2022
Fuel s1 s2 s3 s4 d1 d2 d3 d4 d5 −d6 R2

NSW 0.82 −0.06 −27.91 1.15 0.57 −0.57 1.30 0.65 0.15 −0.31 0.59
QLD 0.80 0.03 1.49 1.17 0.25 0.00 2.82 0.85 0.47 1.38 0.69
VIC 0.67 0.03 −13.05 1.11 0.16 −0.11 3.00 0.34 1.08 −0.58 0.57
SA 0.14 −0.02 1.01 1.27 0.02 0.00 3.18 0.78 1.01 1.05 0.09

TAS 0.16 0.01 1.01 1.27 0.08 0.00 3.18 0.78 0.88 1.05 0.24

The table shows the inputs of the generation quantity Gt in (22) over the three periods for the five NEM regions:
New South Wales (NSW), Queensland (QLD), Victoria (VIC), South Australia (SA), and Tasmania (TAS).

4. Model Results

The model result analysis starts with the hyperbolic map before turning to assess the
full model.

4.1. An Assessment of the Hyperbolic Map

The hyperbolic map is dynamic in that it captures the changes in the strategic bidding
activity, the fuel availability, and the fuel feasibility every 5 min for t ∈ (t0, T]. These
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features unequivocally improve the model’s performance although their execution is
susceptible to slight inaccuracies.

First, strategic bidding is modelled with diurnal variation only. This presumes that
the units of the fuels allocate their MW quantities mostly on the same price domain during
the day,21 but that they are shifting their quantities onto the next more (less) expensive
price points every 5 min as the day progresses. More precisely, the bid curves slide to the
right (left) due to strategic bidding in a pattern that repeats every day the same way. Yet
this is a rather restrictive way of bidding and the actual bidding profiles are somewhat
more changeable in the NEM in comparison. Therefore, the model is prone to errors when
the fuels are shifting their quantities more or less aggressively than anticipated. This is
indicated by the imperfect R2 scores for the fit of the dynamic intercept γi,t in Tables 9–11.

Second, regarding the fuel availability features, the fact that their focus is inherently fuel-
specific also poses some problems. Amassing the available quantities in the different units
within a fuel for the fuel-level availability sometimes misrepresents what unit bids correspond
to the available fuel quantities, e.g., when the ramp-rate-based availability truncation deems
extremely priced bids unavailable before deeming those priced closer to the current price level
so. The lowest-price quantities are then erroneously filled first in merit order even if those
were not in fact available as, e.g., the high ramp rates correspond to higher priced quantities
falsely tagged unavailable in the model, or due to locational differences in generation in the
case of renewables, which are physical factors independent of the merit order principle. If
one such misrepresented fuel receives higher targets at falsely deemed available lower prices
than it would have received in real life, then another fuel is receiving lower targets than it
would have in the actual, real-life run. What can then happen is a sharp increase in price if
the other low-target fuel subsequently cannot ramp up to, i.e., its fuel curve is cut off too
low to be able to ramp up to, a higher target in the next round, and a remaining quantity
has to be filled by the next, considerably more expensive fuel in merit order. This erroneous
mid-price spike effect could be mitigated by using ramp rate multipliers.

Third, related to the previous argument, negative spikes also arise when a slow-start
fuel receives relatively low targets and it operates at its lower capacity bound as a must-run
fuel. In this case, the remaining flexible demand sets the price, but because this demand is
lower than it would have been in the absence of the lower bound, the price is also lower,
hence the negative spikes. This effect is, too, mitigated by the ramp rate multiplier m > 1.

Furthermore, there is an overlap between the constrained-on and the must-run quan-
tities. The first are forced on due to physical constraints disallowing their disuse, while
the latter must stay online due to the supply-side availability truncation. However, the
constrained-on/off data ultimately also encapsulate the must-run quantity data. Separating
out the unavailable sum can be performed by running the map a few times at differ-
ent levels of demand and computing the average ∑

co∈OI ,t,lower
c̄t

, but this has been omitted
from the current implementation. The possible consequences of such double counting
include a suppressed price level and an increased proportion of fuels in subset OI , since
the constrained-on/off variable is overestimated.

4.2. An Assessment of the Full Model

The main difference between the transformation map and the full-blown model is
that the map is agnostic to the way demand is defined. Indeed, a keystone assumption
of the proposed approach is that modelling regional net generation might be a more
appropriate input for the price map than modelling regional consumption. That is because
net generation (net of storage load) assimilates trade between the regions, after which the
post-trade price level can be determined from the market bid stack function at that quantity
level, which is congruent with the trade assumption. In practice, too, the marginal quantity
being priced is understood to be the post-trade quantity.

Therefore, the generation-based formulation takes the the post-trade quantity as the
demand to be fed into the transformation map to obtain the modelled price. Fitting the
generation data for the process Gt gives back the historical quantity of export–import over
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time. This estimation is error-prone to the extent that the historical generation quantities,
on which Gt is based, might deviate from the current ones, and also to the extent of the
general imprecision of the fit.

4.3. Evaluation Metric

The distributional fit by the model is evaluated using the Wasserstein metric, which
represents the similarity between the actual and the modelled price distribution in that it
measures the “work” required to transform one into the other. This “distance to model” is
then benchmarked against the distributional variation in the actual price data measured
as the Wasserstein distances between the three different samples pairwise. Comparing
the distributional inaccuracy of the model to the magnitude of the ex ante uncertainty
in the actual price data, if the distance to model is approximately the same or less than
the distances between the empirical distributions, then representing the electricity price
risk using the model is reasonably accurate, i.e., the distributional fit produced by the
model is adequate. The rationale for this is that the model distribution is then no further
(in the Wasserstein sense) from the empirical distribution than the empirical distributions
themselves vary over time. Table 16 shows these results.

Table 16. Wasserstein distances.

Actual Prices Modelled Prices
Region January–May May–October January–October January May October

NSW 243.6 169.4 81.6 153.5 115.0 92.4
QLD 211.3 194.0 79.7 132.7 183.4 571.7
VIC 189.7 135.5 68.9 56.4 122.9 80.1
SA 223.8 219.4 74.7 251.5 913.6 1089.6

TAS 154.1 104.9 71.6 59.0 41.4 231.9

The table shows the Wasserstein distances between the actual price series (first column) and between the modelled
price averages of 25 iterations and the actual price series. Cases where the distance to model is approximately the
same or less than the distances between the empirical distributions are highlighted in bold.

4.4. Results

In each of the five modelled NEM price regions, the price path from using the
generation-based demand measure can, to some degree, be characterised to display the
required empirical properties, including price negativity and price spikes. Figure 1 shows
the full view of the average price path result (between the regulatory price thresholds),
while Figure 2 displays the distributional accuracy of the average results over the mid-range
prices only. In addition, we refer to the overall distributional distance for the modelling
using the numerical values in Table 16.

The New South Wales (NSW) region has a relatively good mid-range fit and correct
diurnal patterns most of the time. However, the modelled price series (red) over-delivers
on mid-size price spikes in Jan in that these spikes are too frequent, also driving a higher
Wasserstein metric in May. In contrast, the modelled prices for October do not exhibit any
spikes, contrary to the fact that the sample does have a couple of large spikes. In terms of
price negativity, the average results omit negative prices, which is problematic in October,
but the individual iterations allow for them.

The modelled prices (red) in Queensland (QLD) are, to a lesser extent, also reasonably
close to the actual price path (black) distributionally. The Wasserstein distance is below the
benchmark for January and May. During these months, the main issue is an over-emphasis on
near-nil prices, which can be traced back to inadequate bid curve shifts. Despite this, however,
the intraday pattern is largely correct. Regarding the large spikes present in the actual price
sample, the model does not emulate them in Jan, but it does in May and October, although
with a slight overemphasis in October, which drives the high distance to model in that period.
Price negativity is rare and the model replicates this aspect of the price sufficiently.

With the best Wasserstein metrics amongst the regions, the modelled price paths (red)
in Victoria (VIC) reflect the actual price distribution (black) reasonably well, although there
are issues around supressed price volatility in the modelled sample for January and May.
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The fit is overall not good in South Australia (SA), with ballooned Wasserstein metrics
in May and October, due to excessive volatility in the modelled paths (red). That is with
the exception of January, when the modelled price path is more limited due to the [AUD
0,AUD 500] fit of the bid curves of multiple quick fuels. However, in this instance the actual
spikes (black) are not captured at all.

The modelled price paths (red) for Tasmania (TAS) struggle maintaining the correct price
levels (black) in January and October, as seen in the mid-range distributions. But because price
spikes are infrequent and the model does not produce them at all, the Wasserstein distance to
model remains moderate. Furthermore, the diurnal patterns are mostly correct.

NSW: 153.5, 115.0, 92.4

QLD: 132.7, 183.4 , 571.7

VIC: 56.4, 122.9, 80.1

SA: 251.5, 913.6, 1089.6

TAS: 59.0, 41.4, 231.9

Figure 1. Modelled paths: A full-range view. The figure shows the pathwise differences on the
complete price range between the average of the simulated 5 min prices (red) with αt0 and the sample
(black) for the five NEM regions for the three sample periods January, May, and October (left to right).
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NSW: 153.5, 115.0, 92.4

QLD: 132.7, 183.4 , 571.7

VIC: 56.4, 122.9, 80.1

SA: 251.5, 913.6, 1089.6

TAS: 59.0, 41.4, 231.9

Figure 2. Distributional results: A mid-range view. The figure shows the mid-range distributional
differences between AUD −1000 and AUD 1000 of the average of the simulated 5 min prices (red)
and the sample prices (black) for the three sample periods January, May, and October (left to right).
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5. Conclusions

In nodal markets, equilibrium prices include the shadow prices of the binding physical
network constraints, but equilibrium prices in zonal markets, such as the Australian NEM,
do not. Therefore, in zonal markets, demand can be adjusted for the constrained-on/off
quantities to account for the as-bid quantities that are either necessary for dispatch schedule
feasibility (constrained-on) or unfeasible for security-constrained dispatch (constrained-off)
to capture the price effects of the binding security constraints. After these region-wide
demand adjustments, and after another minor adjustment for the fixed bids, regional
markets, including the NEM, lend themselves readily to bid-stack-type price modelling.

The current work proposes a semi-structural bid-stack-type approach. The novel
parametric price model has primarily been developed to match features of the multi-
regional Australian NEM, as the existing fuel-specific bid stack models from the literature
seldom reflect the market design and the empirical price properties of this market. The
proposed model allows for five interconnected regions where bidding is price-based,
renewable technology penetration is high, and battery storage is an increasingly integral
part of the daily operation. Moreover, due to its modular structure, the model can easily be
adapted to any interconnected zonal market designs with similar features.

The inclusion of the renewable fuels is achieved by a departure from modelling the
intertemporal changes in the generator and load fuel bid stack (inverse supply) functions
in connection to the input fuel, e.g., gas, coal, etc., prices. We recommend shifting the fuel
supply curves by some fuel-specific quantities that follow seasonal and diurnal patterns
to capture the strategic bidding behaviour in the different fuels regardless of the input
fuel prices.

We then suggest a trade specification built on the assumption that the as-bid price
at the marginal regional dispatch amount sets the price. This treats the demand before
adjustments as the net local generation in the region (net of storage loading), which is
the sum of end-user consumption and trade, i.e., export–import flows. The specification
estimates the sum with a deterministic function with intraweek and diurnal changes. The
size and direction of the trade flow between any two regions can be inferred from this sum
as well. Randomness comes from the stochastic constrained-on/off demand adjustment in
this case.

Once truncated to the available capacity, the generator and load fuel bid stacks are
coalesced into the market bid stack map, which then transforms the demand after adjust-
ments into a stochastic price process that allows for negativity and extreme values, i.e.,
price spikes, to realistically capture the spot price path in the NEM and other markets. One
remaining limitation is that in reality, the fuel bid curves change every 5 min. The intraday
and seasonal changes (intercept shifts) in the fuel bid curves are capturing some, but not all
of this variation: the shifts are too regular and restrictive compared to what actual bidding
looks like. This shape-constant setup is the main limitation of the proposed model in its
current form.

The potential applications of this type of modelling include market modelling for
scenario analysis, e.g., for commissioning and capacity planning, the introduction of
new network constraints, changing the rules of bidding, etc., and the computation of the
expected value of the electricity price for cash flow analysis. Forthcoming work would
apply the model in one of these directions.
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Notes
1 When using parametric bid curve formulae, the variable quantities are usually estimated from the appropriate non-price data, as

the equilibrium formulation has a way of converting the non-price data into the expected value of the price. This is valuable for
modelling the electricity price in scenarios that are in some way unprecedented, e.g., in anticipating the highest rates of green
generation on record, or shutting down a historically relevant coal plant. Furthermore, the model can then be tested on historical
price data, without having to split the price data between calibration and testing, as explained in Eydeland and Wolyniec (2003).

2 See Carmona and Coulon (2014) for a summary.
3 The alpha and beta (αt0 , β·,t0 ) parameters are estimated by least-squares from data at time t0. Note, however, that one should

evaluate whether the quality of the fit would suffer significantly by this restriction on alpha, and if so, it may be worth opting for
different values for alpha per fuel per region and a numerical solution in place of a closed-form solution.

4 Or onR+ : x ∈ [
ci,t,lower

c̄t
, ci,t,upper

c̄t
] when the lower availability generation bound ci,t,lower = 0 of the fuel is nil.

5 Note that the allocation of the fuels into fuel subsets Uq∗ is anterior to the market bid stack function.
6 For the two-fuel case on three subsets see Table 1 in Carmona et al. (2013).
7 Using the market bid stack formula as specified in the upcoming Section 2.1.4.
8 The present discussion ignores load fuels l ∈ L, but the subset and price algorithm in the example in Section 2.1.5 does not.

Where then more generally, the string of smaller price segments (the extended partitioning) is obtained by dissecting the price
range [

Pf loor
Pcap

, 1] at the upper b̄G,i,t, b̄L,l,t and the lower prices bG,i,t, bL,l,t of every fuel ∀i, ∀l on U = (I, L).
9 Using the subset and price algorithm as in the example in Section 2.1.5.

10 The fact that St does not include the load fuels (therefore always non-negative St ≥ 0) is acceptable, because the electric system is
always a net generator, but not without drawbacks, as it sometimes leads to underestimating the must-run price, see demand
between 23 and 30 in Table 2.

11 Multiplied by 5 for the 5-min ramping limits.
12 Data for the minimum load amounts are not used in the present model implementation.
13 The bid data is truncated to the maximum availability of the units, i.e., the full registered capacity of the fuel c̄·,t is proxied by the

maximum available capacity in it, as indicated by the units at the time.
14 Or at time t−288 in case of the May sample where the last day of the previous month falls on a weekend.
15 In addition, if only the zero maximum availability of a load fuel prevents it from being included then that load fuel is included in

20 MW full capacity.
16 Note that αt−144 = αt0 , βi,t−144 = βi,t0 and we detail the approach for γi,t−144 6= γi,t0 in Section 3.4.
17 The data is scaled before fitting, i.e., the prices are divided by the regulatory price cap at $15, 000 and the MW amounts by

44,000 MW, which is an approximation of the full bid capacity sum of every generation fuel in the NEM.
18 More precisely, the slow-start and quick start fuels are sought to be fitted on the [$0,$500] price range only. However, if there is

fewer than two bid points within that range then the fuel is fitted on the full price range instead.
19 Note, however, that the intrayear seasonality of gamma is ignored as the fitting interval is only 5-days long.
20 The generation data is divided by 2300 MW in all five regions before fitting for a more tractable scale.
21 It is a market requirement that they use the same ten price buckets over the same trading day as observed in AEMO (2023b).
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