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Abstract: This paper overviews our recent results of energy market modeling, including The option
pricing formula for a mean-reversion asset, variance and volatility swaps on energy markets, applica-
tions of weather derivatives on energy markets, pricing crude oil options using the Lévy processes,
energy contracts modeling with delayed and jumped volatilities, applications of mean-reverting
processes on Alberta energy markets, and alternatives to the Black-76 model for options valuation of
futures contracts. We will also consider the clean renewable energy prospective in Canada, and, in
particular, in Alberta and Calgary.
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1. A Brief Introduction

In this paper, we provide an overview of some recent results of energy markets
modeling, and consider the clean renewable energy prospective in Canada and, in particular,
in Alberta. This brief introduction gives a quick insight into the eight papers on energy
markets modeling we published during the period of 2008–2021.

Some commodity prices, such as oil and gas, exhibit mean reversion, unlike stock price.
This means that they tend, over time, to return to some long-term mean. We presented an
explicit option pricing formula for a mean-reverting asset in the energy market in the paper
Swishchuk (2008).

We calculated the variance and volatility swaps on energy markets in Swishchuk
(2013b).

We used future contracts written on temperature to demonstrate the hedging strategies
for commodities as an application of weather derivatives in Cui and Swishchuk (2015). Our
focus was on the dynamic hedging strategy of energy futures using temperature futures
and constructing the hedge ratio.

Crude oil prices exhibit significant volatility over time and the distribution of returns
on crude oil prices show at tails and skewness, and they barely follow normal distribution.
This is the reason we use normal inverse Gaussian process, jump diffusion process, and
variance-gamma process as three Lévy processes that do not have these drawbacks, and
their tails carry heavier mass than normal distribution. Our results indicate that all these
three Levy processes have very good out-of-sample results for near-at-the-money options
compared to others (see Shahmoradi and Swishchuk 2016).

We also considered stochastic modeling and pricing of energy markets’ contracts for
stochastic volatilities with delay and jumps. Our model of stochastic volatility exhibits
jumps and also past dependence: the behavior of a stock price right after a given time t not
only depends on the situation at t, but also on the whole past (history) of the process S(t)
up to time t. The basic products in these markets are spot, futures and forward contracts
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and options written on these. We study forwards and swaps. A numerical example is
presented for stochastic volatility with delay using the Henry Hub daily natural gas data
(1997–2011); see Swishchuk (2020b).

In Lu et al. (2021), we introduced the fuel-switching price, which was designed for
encouraging power plant companies to switch from coal to natural gas when they produce
electricity and was successfully applied from the European market to the Albertan Market.
Moreover, we introduced the energy-switching price, which considers the power switch
from natural gas to wind. We modeled these two prices using five mean reverting processes
including Regime-switching processes, Levy-driven Ornstein–Uhlenbeck process and Inho-
mogeneous Geometric Brownian Motion, and estimate them based on multiple procedures
such as Maximum likelihood estimation and expectation–maximization algorithm. Finally,
this paper proves the previous result applied on the Albertan Market that showed that the
jump modeling technique is needed when modeling fuel-switching data. In addition, it not
only provides a promising conclusion on the necessity of introducing regime-switching
models to the fuel-switching data, but also shows that the regime-switching model is better
fitted to the data.

In March 2020, the prompt month WTI futures contract settled below zero for the
first time in the contract’s history. Many market participants apply the Black-76 model
or some variation when calculating the value of the options on this futures contract as a
relatively straightforward, parametric valuation method. This calculation model is hard
wired into many commodity trading and risk management systems when the prices drop
below zero, and traders and risk managers rely on its straightforward and reproducible
output. However, Black 76 requires positive underlying market prices. The negative
prompt month settlement price caused considerable consternation among energy traders
and risk managers. More generally, OTC options are also available on basis or differential
prices. These transactions are options on the difference between two published indexes
such as NYMEX Henry Hub and AECO (for natural gas) or Cushing WTI and Houston (for
crude oil). As such, these instruments frequently have negative underlying market prices.
Our task was to propose alternative models to Black-76 to valuate option prices when the
underlying future contracts can assume negative values. The paper Swishchuk et al. (2021),
considers some alternatives to Black-76 model to value European options on future con-
tracts in which the underlying market prices can be negative or/and mean reverting. We
specifically consider two models, namely Ornstein–Uhlenbeck (OU) for negative prices
and continuous-time GARCH (or inhomogeneous geometric Brownian motion) for positive
prices. We then analyze the results and compare them with Black-76, the most commonly
used model, when the underlying market prices are positive. Numerical examples are
presented using WTI and NYMEX NG datasets.

Finally, we present a vision to transition to 100% wind, water, and solar energy in
Canada. A group of U.S. civil engineering has calculated that Canada could be completely
powered by renewable energy, if they simply decide to do it. This group has said this
would save 110.1 billion CAD on health care costs every year and prevent 9884 annual air
pollution deaths. Their research is available at TheSolutionsProject (2023).

This paper organized as follows. The option pricing formula for a mean-reversion
asset is considered in Section 2. Variance and volatility swaps valuations on energy markets
are presented in Section 3. Applications of weather derivatives on energy markets are
reviewed in Section 4. Pricing crude oil options using Levy processes is considered in
Section 5. Energy contracts modeling with delayed and jumped volatilities is presented
in Section 6. Applications of mean-reverting processes on Alberta energy markets are
reviewed in Section 7. Alternatives to the Black-76 model for options valuation of futures
contracts are considered in Section 8. A vision to transition to 100% wind, water, and solar
energy in Canada is considered in Section 9. Predictions of future wind and solar energy in
Alberta are presented in Section 10. Description of the Energy Transition Centre in Calgary,
AB, Canada, is mentioned in Section 11. A discussion is presented in Section 13. Section 12
concludes the paper.
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Literature Review

Zonal and nodal models of energy market in European Union were considered in
Borowski (2020). The competitive behavior of hydroelectric power plants under uncertainty
in the spot market was studied in De Brito et al. (2022). A review of an offline and online ap-
proach to the OLTC condition monitoring was considered in Ismail et al. (2022). Modeling,
optimization, and analysis of a virtual power plant demand response mechanism for the
internal electricity market considering the uncertainty of renewable energy sources were
studied in Ullah et al. (2022). Strategies for increasing the grid-integrated share of renew-
able energy with energy storage and existing coal fired power generation in China were
considered in Zhao et al. (2022). A novel energy management optimization method for com-
mercial users based on hybrid simulation of electricity market bidding was studied in Wang
et al. (2022). Identification of generators’ economic withholding behavior based on a SCAD-
logit model in electricity spot market was considered in Sun et al. (2022). Multi-objective
optimal power flow solution using a non-dominated sorting hybrid fruit fly-based artificial
bee colony was studied in Mallala et al. (2022). Possible pathways toward carbon neutrality
in Thailand’s electricity sector by 2050 through the introduction of H2 blending in natural
gas and solar PV with BESS was considered in Diewvilai and Audomvongseree (2022).
Potential benefits for residential buildings with photovoltaic battery system participation in
peer-to-peer energy trading were studied in Zhang et al. (2022). An optimization model for
the integration of the electric system and gas network in Peru was considered in Navarro
et al. (2022). Structural and operating features of the creation of an interstate electric power
interconnection in North-East Asia with large-scale penetration of renewable energy was
studied in Podkovalnikov et al. (2022). Long-term commitments to replace electricity gen-
eration with SMRs and estimates of climate change impact costs using a modified VENSIM
dynamic integrated climate economy (DICE) model were studied in Shobeiri et al. (2022).

We note that some relevant papers may also be found in https://www.mdpi.com/top
ics/energy_market_power_system (accessed on 23 June 2023) and in https://www.mdpi.c
om/1996-1073/13/16/4182 (accessed on 23 June 2023).

2. Closed-Form Option Pricing Formula for a Mean-Reverting Asset on the Energy
Market (Swishchuk 2008)

A risky asset St following the mean-reverting stochastic process is given by the follow-
ing stochastic differential equation:

dSt = a(L− St)dt + σStdWt. (1)

where: W is a standard Wiener process, σ > 0 is the volatility, the constant L is called the
‘long-term mean’ of the process, to which it reverts over time, and a > 0 measures the
‘strength’ of the mean reversion.

This mean-reverting model is a one-factor version of the two-factor model made
popular in the context of energy modeling by Pilipović (1998). We call it continuous-time
GARCH or the inhomogeneous geometric Brownian motion model.

Using a change of time method, we find an explicit solution of this Equation (1), and
using this solution, we are able to find the variance and volatility swaps pricing formula
under the physical measure. Then, using the same argument, we find the option pricing for-
mula under risk-neutral measure. The option pricing formula has the following expression:

C∗T = e−(r+a∗)TS(0)N(y+)− e−rTKN(y−)
+ L∗e−(r+a∗)T [(ea∗T − 1)−

∫ y0
0 zF∗T(dz)],

(2)

where
y+ := σ

√
T − y0 and y− := −y0,

a∗ := a + λσ, L∗ :=
aL

a + λσ
,

https://www.mdpi.com/topics/energy_market_power_system
https://www.mdpi.com/topics/energy_market_power_system
https://www.mdpi.com/1996-1073/13/16/4182
https://www.mdpi.com/1996-1073/13/16/4182
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y0 is the solution of the following equation:

y0 =
ln( K

S(0) ) + ( σ2

2 + a∗)T

σ
√

T
−

ln(1 + a∗L∗
S(0)

∫ T
0 ea∗se−σy0

√
s+ σ2s

2 ds)

σ
√

T
,

and F∗T(dz) is the probability distribution FT(dz), i.e., cdf of r.v.:

η(T) =
4ae−aT

σ2 e
−2B

σ2T
4

∫ σ2T/4

0
e2((2a/σ2+1)+Ws)ds;

however, instead of a, we have to take a∗ = a + λσ, λ is a market price of risk. We note
that this cdf can be estimated and calculated with the method used in Yor (1992); see also
Yor and Matsumoto (2005). Change of time for diffusion equations was also developed in
Ikeda and Watanabe (1981).

Remark 1. When L∗ = 0 and a∗ = −r, then the explicit option pricing formula (2) is the
well-known Black–Scholes formula.

Numerical Example (AECO Natural GAS Index (1 May 1998–30 April 1999))

We shall calculate the value of a European call option on the price of a daily natural gas
contract. To apply our formula for calculating this value we need to calibrate the parameters
a, L, σ, and λ. These parameters may be obtained from futures prices for the AECO Natural
Gas Index for the period 1 May 1998 to 30 April 1999 (see Bos et al. 2002, p. 340). The
parameters pertaining to the option are presented in Table 1 below. The Figures 1 and 2
show dependence ESt and St on T, S0 and S0, T, respectively, and dependence of European
call option on T.

(a) (b)
Figure 1. (a) Dependence of ESt on T (AECO Natural Gas Index (1 May 1998–30 April 1999)).
(b) Dependence of ESt on S0 and T (AECO Natural Gas Index (1 May 1998–30 April 1999)).

From Table 1, we can calculate the values for a∗ and L∗:

a∗ = a + λσ = 4.9337,

and
L∗ =

aL
a + λσ

= 2.5690.

For the value of S0, we can take S0 ∈ [1, 6].
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Table 1. Price and option process parameters, obtained from futures prices for the AECO Natural
Gas Index for the period 1 May 1998 to 30 April 1999 (see Bos et al. 2002, p. 340).

Price and Option Process Parameters

T a σ L λ r K

6 months 4.6488 1.5116 2.7264 0.1885 0.05 3

(a) (b)

Figure 2. (a) Dependence of variance of St on S0 and T (AECO Natural Gas Index (1 May 1998–
30 April 1999)). (b) Dependence of European call option price on maturity (months) (S(0) = 1 and
K = 3) (AECO natural gas index (1 May 1998–30 April 1999)). Remark: e.g., 8E3 in the figure means
8× 103.

3. Variance and Volatility Swaps on Energy Markets (Swishchuk 2013a, 2013b)

Variance swaps are quite common in commodity, e.g., on energy markets, and they
are commonly traded. We consider the Ornstein–Uhlenbeck process for a commodity asset
with stochastic volatility following the continuous-time GARCH model or the one-factor
model Pilipović (1998). The classical stochastic process for the spot dynamics of commodity
prices, as mentioned above, is given by Schwartz’ model (see Schwartz 1997). It is defined
as the exponential of an Ornstein–Uhlenbeck (OU) process, and has become the standard
model for energy prices possessing mean-reverting features.

We consider a risky asset on energy markets with stochastic variance following a mean-
reverting stochastic process satisfying the following SDE (continuous-time GARCH(1,1)
model):

dσ2(t) = a(L− σ2(t))dt + γσ2(t)dWt. (3)

where: Wt is a standard Wiener process, L is the mean reverting level (or equilibrium level),
a is the speed of mean reversion, and γ is the volatility of volatility σ(t). Applying a change
of time method, we find an explicit solution of this equation, and using this solution, we are
able to find the variance and volatility swaps pricing formula under the physical measure.
Then, using the same argument, we find the option pricing formula under a risk-neutral
measure. We applied the Brockhaus-Long approximation (see Brockhaus and Long 2000)
to find the value of the volatility swap. A numerical example for the AECO Natural Gas
Index for the period 1 May 1998 to 30 April 1999 is presented.

The risk-neutral stochastic volatility model (compared with (3)) has the following
form:

dσ2(t) = a∗(L∗ − σ2(t))dt + γσ2(t)dW∗t . (4)

where
a∗ := a + λγ, L∗ :=

aL
a + λγ

,

W∗t := Wt + λt, and λ is the market price of risk.
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For the variance swap, we have (using (4) and the change of time method):

E∗σ2
R := EV :=

1
T

∫ T

0
Eσ2(t)dt =

(σ2(0)− L∗)
a∗T

(1− e−a∗T) + L∗.

For the volatility swap, we obtain the convexity adjustment formula:

E∗
√

V ≈
√

E∗V − Var∗(V)
8(E∗V)3/2 .

Numerical Example (AECO Natural Gas Index for the Period 1 May 1998 to 30 April 1999)

From this Table 2, we can calculate the values for risk-adjusted parameters a∗ and L∗ :

a∗ = a + λγ = 4.9337,

and
L∗ =

aL
a + λγ

= 2.5690.

For the value of σ2(0), we can take σ2(0) = 2.25.

Table 2. Parameter values.

Parameters

a γ L λ

4.6488 1.5116 2.7264 0.18

For variance swap and for volatility swap with risk-adjusted parameters, we use
the formula obtained above. Figures 3–5 below display variance and volatility swaps for
different cases.

(a) (b)
Figure 3. (a) Variance Swap. (b) Volatility Swap.
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(a) (b)
Figure 4. Variance and volatility swaps on energy markets: Figures Swishchuk (2013b). (a) Variance
swap (risk-adjusted parameters). (b) Volatility swap (risk-adjusted parameters).

(a) (b)
Figure 5. Variance and volatility swaps on energy markets: Figures Swishchuk (2013b). (a) Compari-
son: adjusted and non-adjusted price. (b) Convexity adjustment.

4. Weather Derivatives on Energy Markets (Swishchuk and Cui 2013 and Cui and
Swishchuk 2015)

For the weather derivatives market, contracts written on weather indices first appeared
over the counter (OTC) in July 1996 between Aquila Energy and Consolidated Edison Co.
from the United States. After that, companies accustomed to trading weather contracts
based on electricity and gas prices in order to hedge their price risks realized by weather
during the end of 1990s and the beginning of 2000s. Thus, the market grew rapidly and
expanded to other industries and to Europe and Japan. Following the prosperous boom
of the weather financial market, many academic papers, such as Considine (2000) and
Hamisultane (2006), started to put their attention on the modeling and pricing of weather
derivatives. The earliest references written in the field of the weather derivatives are
Ellen (1998) and Kaminski (1998).

Weather affects different entities in different ways. In order to hedge these different
types of risks, weather derivatives are written on different types of weather variables or
weather indices. The most commonly used weather variable is temperature. Widely used
temperature indices include cumulative average temperature (CAT), heating degree days
(HDD), and cooling degree days (CDD). They are originated from the energy industry, and
designed to correlate well with the local demands for heating or cooling.

CAT is defined as the sum of the daily average temperature over the period [τ1, τ2]
of the contract, where the index CAT: = ∑τ2

t=τ1
T(t) =

∫ τ2
τ1

T(t)dt, where T(t) is the daily
average temperature. It is mainly used in Europe and Canada. In winter, HDD is used
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to measure the demand for heating, i.e., it is a measure of how cold the weather is and is
usually used in the United States, Europe, Canada, and Australia. In contrast, CDD is used
in summer to measure the demand of energy used for cooling and as a measure of how hot
the weather is. It is usually used in the United States, Canada, and Australia.

The definitions for HDD and CDD are given by HDD: = max(T(t) − c, 0) and
CDD: = max(c− T(t), 0), where the constant c denotes the threshold, say 65◦ F (18◦ C).
Since most air conditioners are switched on when temperatures are above or below c.

With respect to our model, consider the weather index T(t), which is the daily average
temperature (DAT). We suppose the DAT has a generalization of the Ornstein–Uhlenbeck
dynamics:

dT(t) = ds(t) + k(T(t)− s(t))dt + σ(t)dL(t),

where L(t) is a Lévy process (jump-diffusion), s(t) is the seasonal mean level, and k is the
speed in which the temperature reverts to s(t). σ(t) is assumed to be a measurable and
bounded function represents the seasonal volatility of temperature. In the simplest case,
L(t) = W(t)—a standard Wiener process.

This model was first introduced by Dornier and Queruel (2000) with Brownian motion
as the random noise. Benth and Šaltytė-Benth (2005) has successfully applied this model
with a generalized hyperbolic Lévy process to the Norwegian temperature data. We applied
this model to our Canadian temperature data (Swishchuk and Cui 2013).

We define the temperature futures prices written on CAT, CDD, and HDD, which
constitute the three main classes of futures products at the CME market. Consider the price
dynamic of future written on CAT over specific time period [τ1, τ2], with τ1 < τ2. Firstly,
assume the daily average temperature follows stochastic differential equation, with L(t)
being a Lévy process and a constant continuously compounding interest rate r.

The future price FCAT(t, τ1, τ2) at time 0 ≤ t ≤ τ1 based on CAT under risk-neutral
probability measure Q is:

FCAT(t, τ1, τ2) = EQ[
∫ τ2

τ1

T(s)ds|Ft],

where Q is the risk-neutral measure (specified through Esscher transform) and Ft is σ-
algebra generated by L(t).

Similarly, the risk-neutral CDD and HDD future prices are defined as:

FCDD(t, τ1, τ2) = EQ[
∫ τ2

τ1

max(T(s)− c, 0)ds|Ft],

and
FHDD(t, τ1, τ2) = EQ[

∫ τ2

τ1

max(c− T(t), 0)ds|Ft],

The relationship between futures prices of CAT, CDD, and HDD is defined as:

FCAT(t, τ1, τ2) + FHDD(t, τ1, τ2) = c(τ2 − τ1)− FCDD(t, τ1, τ2).

We use future contracts written on temperature to demonstrate the hedging strategies
for commodities as an application of the weather derivative.

Within several forms of weather derivatives, the future contract does not require cost
to enter a position, since when entering a future contract, the probability of weather event
being lower or higher than the threshold is the same on both sides, where either side has
the same chance of receiving payoff from the counter party.

There are two types of hedging strategies using temperature futures in the following
contents: the first strategy is (a) static hedging, mainly focusing on mitigating the volume
risk of commodity sales using temperature futures; the other strategy considers (b) the
dynamic hedging strategy of commodity future using temperature futures:
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(a) In a static hedge, the number of hedging contracts is not changed over the course of
the hedge in response to any movement in the values of the hedging instrument or
the hedged asset.

(b) In a dynamic hedge, on the other hand, more hedging contracts are bought or sold
to bring back the hedge ratio to the target hedge ratio.

A hedge ratio is the ratio of exposure to a hedging instrument to the value of the
hedged asset. A ratio of 1 or 100% means that the position is fully hedged and a ratio of
0 means it is not hedged at all.

Without loss of generality, we choose the energy market as the one to hedge using
temperature futures.

Therefore, our focus will be on the dynamic hedging strategy of energy futures using
temperature futures. In the spirit of Broadie and Jain (2008), consider a portfolio at time
t containing one unit of energy (e.g., heating oil) future FE and βt (βt is the hedge ratio
for energy future FE) units of weather futures FW , both with maturity (delivery) at time T.
Assume the portfolio has value Π(t) at time t and a constant risk-free interest rate r, then:

Π(t) = e−r(T−t)[FE(t) + βtFW(t)].

The portfolio is self-financing, so the change in this portfolio in a small amount of time
dt is given by:

dΠ(t) = rΠ(t)dt + e−r(T−t)[dFE(t) + βtdFW(t)].

Hence, in order to dynamically hedge the energy future FE with maturity T, the
stochastic component of portfolio vanishes, and the hedge ratio βt could be defined as:

βt = −
dFE(t)
dFW(t)

, (5)

with an assumption that dFW(t) 6= 0. Therefore, from the last equation, to hedge energy
futures, we are required to hold βt units in (5) of the temperature future at time t.

Therefore, we need to specify two models for energy and temperature futures so that
we could obtain the explicit dynamics of energy and temperature futures, and hence, obtain
a closed form of the hedge ratio βt. For futures pricing purpose, these models will be
built on the underlings of futures, namely the energy spot price and the daily average
temperature.

Our energy and temperature models under risk-neutral measure Q are:

dX(t) =

(
θσE + κE

(
µ−

σ2
E

2κE
− X(t)

))
dt + σEdWθ

E(t), (6)

and
dT(t) = ds(t) + (θσW(t) + κW(T(t)− s(t)))dt + σW(t)dWθ

T(t), (7)

where θ is the market price of risk and X(t) = ln S(t), Wθ
E(t) and Wθ

T(t) are Brownian
motions (with correlation ρ) w.r.t. Q.

The combined Q dynamics system for energy futures FE and CAT futures FW is:

dFE(t, T) = σEe−κE(T−t) exp
(

µX(T) + 1
2 σ2

X(T)
)

dWθ
E(t);

dFW(t, τ1, τ2) = κ−1
W (eκW (τ2−t) − eκW (τ1−t))σW(t)dWθ

W(t);

dWθ
E(t)dWθ

W(t) = ρdt,
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where µX(T) and σ2
X(T) are the expectation and variance of the log-spot price X(t). There-

fore:

βt = −
c1(t)
c2(t)

ρ,

where c1(t) and c2(t) are time-dependent constants defined as:
c1(t) := σEe−κE(T−t) exp

(
µX(T) + 1

2 σ2
X(T)

)
;

c2(t) := κ−1
W (eκW (τ2−t) − eκW (τ1−t))σW(t).

We choose crude oil (the world’s most actively traded commodity, and the NYMEX
(CME) division light, sweet crude oil futures contract is the world’s most liquid forum for
crude oil trading) futures as the one that we want to hedge using CAT futures. Followed by
the calibration method described in Schwartz (1997), the log-future prices ln FE(t, T) need
to be rewritten as the standard state-space form and then applied to the Kalman filter to
obtain the parameter set ΘE = {κE, µE, σE, and θE}, and spot price series S(t).

The data used to calibrate the energy future consist of daily generic observations of
WTI light, sweet crude oil futures prices (these data are obtained from the Bloomberg
financial service) with delivery periods in the first two front months. The WTI crude oil
futures data used in calibration cover the CME exchange daily settlement prices ranging
from 2 January 2001 to 31 December 2010, resulting in 2508 records for each future contracts
set (this choice of dataset is consistent with that in Swishchuk and Cui (2013), which is
10 years of temperature data from 1 January 2001 to 31 December 2010 in Calgary, AB,
Canada). There is no exact delivery date for each contract; instead, the CME contract
specification defines a delivery period ranging from the first calendar day to the last
calendar day of the delivery month. Thus, we simply assume that the delivery date for each
contract is the first calendar day in the delivery month to calculate the time to maturity
value Ti − t.

The Table 3 below presents the estimation results for the energy model applied to the
WTI crude oil future price data. The last two parameters ξ1 and ξ2 are the diagonal entries
of matrix H := Var(εt) with random noise εt.

Table 3. Estimation results for the energy model applied to the WTI crude oil future price data.

Parameter µ σE κE θ ξ1 ξ2

Estimation 3.9187 0.0215 0.0025 0.2009 0.0003 0.0123

For the temperature market, we follow the calibration procedure described
in Swishchuk and Cui (2013) to obtain the parameter set ΘW = {κW , σW}. For illustration
purposes, we choose the estimated parameters in Calgary as the ones under the temperature
market to calculate the hedge ratio. Recall the calibration results for Calgary in Swishchuk
and Cui (2013); we could obtain the parameter set ΘW = {κW , σW} in Calgary as follows:

κW = −0.2411 and annual seasonal volatility;
σW = 4.424 + 1.633 cos(0.0167t) + 0.1912 sin(0.0167t).

To calculate the correlation parameter ρ, we use the correlation between the filtered
log-spot price and daily average temperature as a natural approximation to ρ. By taking all
the daily average temperature on the dates with future prices available, and calculating the
correlation coefficient between log-spot prices and average temperature of these days over
10 years (from 2 January 2001 to 31 December 2010), we have the correlation ρ = 0.1058.
This correlation indicates a positive correlation between the log-spot price of crude oil
and daily average temperature. With the calibrated parameters in energy model and
temperature model, we could then calculate the dynamic hedge ratio βt explicitly. In
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Figure 6, below, we plot the initial hedge ratio β0 along the crude oil future delivery time
(in days) and initial log-spot price dimensions.
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Figure 6. Initial Hedge Ratio.

From Figure 6, we could find that if a person holds crude oil futures, initially, they
need to short some CAT futures in the portfolio depending on the spot price of the crude oil
and the time to delivery (trade termination) length. Basically, the number of temperature
futures someone needs to hold will be more with longer time to delivery and higher spot
price of crude oil. Moreover, we could conclude that the same effect holds for other energy
commodities, such as heating oil, gas, and so on, since they are usually positively correlated
with the crude oil market movement.

5. Pricing Crude Oil Options Using Lévy Processes (Shahmoradi and Swishchuk 2016)

Crude oil prices exhibit significant volatility over time and the distribution of returns
on crude oil prices show fat tails and skewness, and they barely follow normal distribution.
This is the reason we use the normal Gaussian process (NIG), jump diffusion process
(JD), and variance-gamma process (VG) as three Levy processes that do not have these
drawbacks and their tails carry heavier mass than normal distribution. We use fractional
fast Fourier transform to calibrate parameters in an optimization setup, using data on
European-style options on crude oil futures in NYMEX for the settlement date of 24th April
2015. Our results indicate that all these three Levy processes have very good out of sample
results for near at the money options than others. Askari and Krichene (2008) used WTI
crude oil spot prices from 2 January 2002 to 7 July 2006 in order to model oil price returns
by employing Merton (1976) jump diffusion and VG processes. Crosby (2008) applied the
jump-diffusion model for crude oil options on futures, while Madan and Seneta (1990) and
Carr and Madan (1998) replicated this for stocks, where all forward option contracts had
the same spot price.

We consider:

Merton’s Jump diffusion model (JDM) (see Merton 1976):
dSt

St
= µdt + σdWt + (eα+βε − 1)dNt, (8)
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where Brownian motion Wt and Poisson process Nt are independent, ε ≈ N(0, 1).

Normal inverse Gaussian (NIG) model:

St = S0 exp{µQt + Xt}, (9)

where µQ is the drift under Q measure,

Xt = βδ2 It + δWIt

is an NIG process, and It is the inverse Gaussian process. The NIG process has three
parameters, tail-heaviness α, skewness β, and scale δ.

Variance gamma (VG) model:

St = S0 exp{µQt + Xt}, (10)

where Xt is a VG process such that:

Xt = θ It + σWIt ,

and It is a gamma process with parameter v.
Figures, Tables, and Estimations are shown below. All Figures and Tables are cited from

Shahmoradi and Swishchuk (2016), thus contains the captions from this paper. Figure 7
shows dependence of ESt on T (AECO Natural Gas Index (1 May 1998–30 April 1999)).

Figure 7. Empirical Distribution of Returns on WTI Spot Crude Oil Prices. See Shahmoradi and
Swishchuk (2016).

Tables 4–6 below describe WTI crude oil futures and options prices and calibrated
parameters.
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Table 4. WTI Crude Futures and Options Prices with Strikes. See Shahmoradi and Swishchuk (2016).

Days to Expriy After Market Close on April 24, 2015
18 52 113 205 297 387 417

Settlements of Each Contracts
Strike Jun 2015 July 2015 Sep 2015 Dec 2015 Mar 2016 Jun 2016 July 2016

WTI
Crude

Futures
Options

50.00 7.36 9.60 11.78 13.86 14.94 15.61 15.61
51.00 6.43 8.73 10.96 13.06 14.31 15.04 15.04
52.00 5.53 7.89 10.15 12.28 13.38 14.29 14.29
53.00 4.68 7.08 9.37 11.52 12.80 13.55 13.55
54.00 3.87 6.30 8.62 10.78 11.88 12.83 12.83
55.00 3.11 5.54 7.89 10.07 11.16 11.88 11.88
56.00 2.44 4.84 7.19 9.37 10.65 11.19 11.19
57.00 1.86 4.19 6.52 8.70 9.77 10.52 10.52
58.00 1.35 3.58 5.88 8.05 9.11 9.87 9.87
59.00 0.96 3.01 5.27 7.42 8.48 9.24 9.24
60.00 0.67 2.51 4.69 6.81 7.87 8.63 8.63
61.00 0.45 2.07 4.15 6.23 7.29 8.05 8.05
62.00 0.31 1.67 3.66 5.67 6.73 7.48 7.48
63.00 0.21 1.35 3.21 5.16 6.19 6.94 6.94
64.00 0.15 1.08 2.79 4.67 6.00 6.43 6.43
65.00 0.11 0.85 2.40 4.22 5.24 5.95 5.95
66.00 0.09 0.68 2.07 3.79 5.10 5.80 5.80
67.00 0.07 0.53 1.78 3.40 4.39 5.05 5.05
68.00 0.06 0.42 1.53 3.05 4.00 4.64 4.64

Futures 57.15 58.90 60.50 62.03 62.98 63.57 63.68

Table 5. WTI Crude Futures and Options Prices with Money-Ness. See Shahmoradi and Swishchuk
(2016).

Days to Expriy After Market Close on April 24, 2015
18 52 113 205 297 387 417

At the Moneyness of Option Contracts
Strike Jun2015 July2015 Sep2015 Dec2015 Mar2016 Jun2016 July2016

WTI
Crude

Futures
Options

50.00 13% 15% 17% 19% 21% 21% 21%
51.00 11% 13% 16% 18% 19% 20% 20%
52.00 9% 12% 14% 16% 17% 18% 18%
53.00 7% 10% 12% 15% 16% 17% 17%
54.00 6% 8% 11% 13% 14% 15% 15%
55.00 4% 7% 9% 11% 13% 13% 14%
56.00 2% 5% 7% 10% 11% 12% 12%
57.00 0% 3% 6% 8% 9% 10% 10%
58.00 −1% 2% 4% 6% 8% 9% 9%
59.00 −3% 0% 2% 5% 6% 7% 7%
60.00 −5% −2% 1% 3% 5% 6% 6%
61.00 −7% −4% −1% 2% 3% 4% 4%
62.00 −8% −5% −2% 0% 2% 2% 3%
63.00 −10% −7% −4% −2% 0% 1% 1%
64.00 −12% −9% −6% −3% −2% −1% −1%
65.00 −14% −10% −7% −5% −3% −2% −2%
66.00 −15% −12% −9% −6% −5% −4% −4%
67.00 −17% −14% −11% −8% −6% −5% −5%
68.00 −19% −15% −12% −10% −8% −7% −7%

Futures 57.15 58.90 60.50 62.03 62.98 63.57 63.68
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Table 6. Calibrated Parameters of JDM, VG, and NIG Processes. See Shahmoradi and Swishchuk
(2016).

Parameters JDM VG NIG

θ NA 0.1820 NA

δ 0.4628 NA 2.5327

α 0.1247 NA −18.5203

λ 0.3318 NA NA

σ 0.4272 0.4104 NA

ν NA 0.0823 NA

β NA NA −7.4572

Figures 8–10 below visualize dependence ESt on S0, T, variance of St on S0 and
European call option price on T, respectively.

(a) (b)
Figure 8. (a) Dependence of ESt on T (AECO Natural Gas Index (1 May 1998–30 April 1999)).
(b) Dependence of ESt on S0 and T (AECO Natural Gas Index (1 May 1998–30 April 1999)). See
Shahmoradi and Swishchuk (2016).

(a) (b)

Figure 9. (a) Dependence of the variance of St on S0 and T (AECO Natural Gas Index (1 May
1998–30 April 1999)). (b) Dependence of European call option price on maturity (months) (S(0) = 1
and K = 3) (AECO Natural Gas Index (1 May 1998–30 April 1999)). See Shahmoradi and Swishchuk
(2016).

The volatility of crude oil prices is very important for policy makers, crude oil produc-
ers, and refineries. We used the most recent data starting from April 2016 from crude oil
futures and options markets to model the dynamics of crude oil prices. Our results indicate
that crude oil prices show significant jumps that are very frequent. Crude oil price returns
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show skew as well. These findings are consistent across all three models we used in this
research.

In the case of JDM (see (8)), the volatility of size of the jumps is bigger than volatility
of the diffusion part. The VG process (see (10)) results in slightly smaller volatility than
JDM. The mean of the jump component size implied by JDM and the skew parameter of
the VG process both indicate the existence of right-skew in crude oil price returns, but the
NIG process (see (9)) implies that the density of returns are skewed to the left.

Figure 10. Dependence of European call option price on maturity (months) (S(0) = 1 and K = 3)
(AECO Natural Gas Index (1 May 1998–30 April 1999)). See Shahmoradi and Swishchuk (2016).

6. Energy Market Contracts with Delayed and Jumped Volatilities (Swishchuk 2020b)

We consider in this section stochastic modeling and pricing of energy markets’ con-
tracts for stochastic volatilities with delays and jumps. Our model of stochastic volatility
exhibits jumps and also past dependence: the behavior of a stock price right after a given
time t not only depends on the situation at t, but also on the whole past (history) of the
process S(t) up to time t. The spot price process S(t) is modeled by the OU process driven
by independent increments process. The basic products in these markets are spot, futures,
and forward contracts and options written on these. We study forwards and swaps. A nu-
merical example is presented for stochastic volatility with delay using the Henry Hub daily
natural gas data (1997–2011). Definition of IIP:(see Skorokhod 1991 and Benth et al. 2008a):
An adapted RCLL stochastic process I(t) starting at zero is an IIP(independent Increment
process) if it satisfies the following two conditions:

1. The increments I(t0), I(t1)− I(t0), . . . , I(tn)− I(tn−1) are independent r.v. for any
partition 0 ≤ t0 < t1 < . . . < tn, and n ≥ 1;
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2. It is continuous in probability, that is, for every t ≥ 0 and ε > 0:

lim
s→t

P(|I(s)− I(t)| > ε) = 0.

If we add the condition that increments are stationary, then I(t) is called a Lévy process
(see Sato 1999; Schoutens 2003).

Let the stochastic process S(t) be denoted as (we call it geometric models with stochas-
tic delayed and jumped volatility):

ln S(t) = ln Λ(t) +
m

∑
i=1

Xi(t) +
n

∑
j=1

Yj(t), (11)

where for i = 1, . . . , m

dXi(t) = (µi(t)− αi(t)Xi(t))dt + σi(t, Xi(t + θ))dB(t), (12)

and for j = 1, . . . , n

dYj(t) = (δj(t)− β j(t)Yj(t))dt + ηj(t, Yj(t + θ))dIj(t). (13)

where θ ∈ [−τ, 0], τ > 0, is the delay, and on the interval [−τ, 0], Xi(t) = φi(t) and Yj(t) =
ψj(t), where φi(t) and ψj(t) are deterministic functions, i = 1, . . . , m, and j = 1, . . . , n.

We remark that two factors, Xi(t), i = 1, . . . , m, and Yj(t), j = 1, . . . , n, (see (12) and
(13)), represent the long- and short-term fluctuations of the spot dynamics, respectively,
which may be correlated. We suppose that jumps components Ij are independent, which is
an obvious restriction of generality.

The deterministic seasonal price level is modeled by the function Λ(t), (seasonal
function), which is assumed to be continuously differentiable. The coefficients µi, αi, δjβ j
are all continuous functions. We suppose that volatilities σik(t) and ηj(t) are stochastic
volatilities with delay and jumps. We consider two cases in this situation:

dσ2
i (t,Xi(t+θ))

dt = γ1
i Vi +

α
τ [
∫ t

t−τ σi(u, Xi(u + θ)dB(u)
+

∫ t
t−τ σi(u, Xi(u + θ)dÑ1(t)]2

− (ai + bi)σ
2
i (t, Xi(t + θ))

and
dη2

j (t,Yj(t+θ))

dt = γ2
j Wi +

α
τ [
∫ t

t−τ ηj(u, Xj(u + θ)dB1(u)

+
∫ t

t−τ σi(u, Xi(u + θ)dÑ2(t)]2

− (cj + dj)η
2
j (t, Xi(t + θ)

where B(t) and B1(t) are two independent Brownian motions and Ñ1(t) and Ñ2(t) are two
independent compensated Poisson processes with intensities λ1 and λ2, independent of
B(t) and B1(t).

We note that in Benth et al. (2008a), it was considered only deterministic σi(t) and
ηj(t).

Let the stochastic process S(t) be defined as (we call it arithmetic models with stochas-
tic delayed and jumped volatility):

S(t) = Λ(t) +
m

∑
i=1

Xi(t) +
n

∑
j=1

Yj(t), (14)

where Xi(t), i = 1, . . . , m, and Yj(t), j = 1, . . . , n, are defined for the geometric models
above and the seasonality function Λ(t) is the same.

We suppose that for this model the volatilities σ2
i (t, Xi(t + θ)) and η2

j (t, Yj(t + θ)) in
(14) satisfied the same equations as for the case of the geometric models in (11)–(13).
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We study the pricing of forwards and swaps for the above-mentioned model with
delayed and jumped volatilities.

When entering the forward contract, one agrees on a future delivery time and the
price to be paid for receiving the underlying. Suppose that the delivery time is T, with
0 ≤ t ≤ T < +∞, and that the agreed price to pay upon delivery is f (t, T) :

f (t, T) = EQ[S(T)|Ft]−

which is the fundamental pricing relation between the spot and forward price. Since the
energy markets are incomplete, the choice of martingale measure Q is open.

Let us consider swaps, using the electricity market as the typical example. The buyer of
an electricity futures receives power during a settlement period (physically or financially),
against paying a fixed price per MWh. Let F(t, τ1, τ2) be the electricity futures price at time
t for the delivery period [τ1, τ2] with τ1 ≤ τ2.

In general, we can write the link between a swap contract and the underlying spot as:

F(t, τ1, τ2) = EQ[
∫ τ2

τ1

w(u, τ1, τ2)S(u)du|Ft],

where w is a weight function.
The dynamics of forward price, t→ f (t, T), wrt Qθ in the geometric model case is:

d f (t,T)
f (t,T) = {∑m

i=1 σi(t, Xi(t + θ)) exp(−
∫ T

t αi(u)du)}dBθ(t)

+ ∑n
j=1{

∫
R exp(zηj(t, Yj(t + θ))e−

∫ τ
t β j(u)du)− 1}Ñθ

j (dt, dz).

The risk-neutral dynamics of the swap price F(t, τ1, τ2) in the geometric models case
is given by:

dF(t,τ1,τ2)
F(t−,τ1,τ2)

= ∑m
i=1 σi(t, Xi(t + θ))dBθ(t)

+ ∑n
j=1
∫

R(e
ηj(t,Yj(t+θ))z − 1)Ñθ

j (dz, dt).

The risk-neutral dynamics of the swap price F(t, τ1, τ2) in the arithmetic models case
is given by:

dF(t, τ1, τ2) = ∑m
i=1 σi(t, Xi(t + θ))

∫ τ2
τ1)

w(u, τ1, τ2)e−
∫ u

v αi(s)dsdudBθ(t)
+ ∑n

j=1
∫

R zηj(t, Yj(t + θ))

×
∫ τ2

τ1
w(u, τ1, τ2)e−

∫ u
v β j(s)dsduÑθ

j (dt, dz).

Numerical Example: Henry Hub Natural Gas Daily Spot Prices (1997–2011)

This numerical example and figures are borrowed from Otunuga and Ladde (2014).
In this paper, the authors used the model for spot price with delayed stochastic volatility
from the paper Kazmerchuk et al. (2005), and applied it to the Henry Hub daily natural gas
dataset for the period 1 February 2001–30 September 2004. The data were collected from
the United State Energy Information Administration website (www.eia.gov, accessed on 30
August 2020). From Figure 11 below, we can see the properties of the gas daily spot prices:
randomly driven, non-negative, mean reversion, jumps (spikes), and unpredictable spot
price volatility.

Table 7 below gives descriptive statistics of Henry Hub Daily Natural Gas spot prices
(1997–2011):

As we can see from Table 7 above, the logarithmic price is better than the raw price
data because the variance for log is the smallest.

A simple model for the spot price is considered:

ln S(t) = X(t),

www.eia.gov
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where
dX(t) = γ(k− X(t))dt + σ(t, X(t))dB(t),

and
σ2(t, X(t))

dt
= [α + β

∫ t

t−τ
σ(s, X(s))dB(s)]2 + cσ2(t, X(t)).

The model for σ2(t, X(t)) above is the same as the model for stochastic volatility with
delay that we considered in Kazmerchuk et al. (2005).

A discrete scheme is implemented: l = 2 = [ τ
∆ ], where ∆ is the size of the mesh of the

discrete-time grid and [, ] is the floor function. Descriptive statistics are in Table 7.

Table 7. Descriptive statistics of Henry Hub Daily Natural Gas spot prices (1997–2011) (Otunuga
and Ladde 2014).

Mean Variance Skewness Kurtosis Minimum Maximum

St 4.9519 2.4966 1.0391 4.3491 1.05 18.48

St+1 − St −0.0001142 0.3189 −0.7735 191.8911 −8.01 6.50

ln(St) 1.4754 0.5048 −0.0465 2.1540 0.0488 2.9167

ln[St+1/St] 2.8485e− 5 0.0473 0.4814 22.0473 −0.56 0.5657

Figure 11. Plot of Henry Hub Daily Natural Gas spot prices (1997–2011) (Otunuga and Ladde 2014).

Estimated Parameters are in Table 8 (Otunuga and Ladde 2014):

Table 8. Estimated parameters (Otunuga and Ladde 2014).

Parameter γ k τ α β c

Estimation 1.8943 1.5627 0.008 0.433 −0.07 −1.5

The graph below, Figure 12, includes the real, simulated spot prices and simulated
expected spot price (Henry Hub Daily Natural Gas Dataset (1 February 2001–30 September
2004)):
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Figure 12. Real, simulated spot prices and simulated expected spot price (Otunuga and Ladde 2014).

The graph below, Figure 13, shows the simulated σ(t, X(t)) from the Henry Hub Daily
Natural Gas Dataset (1 February 2001–30 September 2004)).

Figure 13. Simulated σ(t, X(t)) (Otunuga and Ladde 2014).

7. Mean-Reverting Processes in Alberta Energy Markets Modeling (Lu et al. 2021)

The paper Lu et al. (2021) is a bridge between fossil fuel energy research papers
mentioned above (Swishchuk 2008, 2013b; Swishchuk and Cui 2013; Cui and Swishchuk
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2015; Shahmoradi and Swishchuk 2016; Swishchuk 2020b) and clean energy research papers
which will be produced in the near future.

In paper Lu et al. (2021), we:

1. Introduced a fuel-switching price to the Alberta market, which is designed for encour-
aging power plant companies to switch from coal to natural gas when they produce
electricity, which has been successfully applied to the European market;

2. Considered an energy-switching price which considers power switch from natural
gas to wind;

3. Modeled these two prices using five mean reverting processes including a regime-
switching processes, Lévy-driven Ornstein–Uhlenbeck process, and inhomogeneous
geometric Brownian motion, and estimate them based on multiple procedures such
as the maximum likelihood estimation and expectation–maximization algorithm;

4. Proved previous results applied to the Albertan market, where the jump modeling
technique is needed when modeling fuel-switching data;

5. Explained the necessity of introducing regime-switching models to the fuel-switching
data by showing that the regime-switching model is better fitted to the data.

Thus, we considered five mean-reverting processes in this paper:

• Inhomogeneous geometric Brownian motion (IGBM):

dSt = a(L− St)dt + σStdWt, (15)

where a, L, σ > 0, Wt is a standard Brownian motion.
• OU process (OU):

dXt = k(θ − Xt)dt + σdWt, (16)

where k, θ > 0, Wt is a standard Brownian motion.
• Lévy-driven OU process (LDOU):

dXt = k(θ − Xt)dt + σdLt, (17)

where k, θ > 0, Lt is a Lévy process.
• Regime-switching OU process (RSOU)

dXt = κ(Zt)(θ(Zt)− Xt)dt + σ(Zt)dWt, (18)

where Zt is a continuous-time finite-state Markov chain, and k(z), θ(z) > 0 is a
bounded function of z.

• Regime-switching Lévy-driven OU process (RSLDOU):

dXt = κ(Zt)(θ(Zt)− Xt)dt + σ(Zt)dLt, (19)

After a comparison of models in (15)–(19), we were able to:

(1) Conclude that the RSOU process and OU process are the best models for fuel-
switching price and energy-switching price, respectively;

(2) See that for the fuel-switching price, the regime-switching model largely increases the
goodness of fit compared to other models, which indicates the important property of
regime-switching for this price.

(3) Conclude that jump modeling techniques are also important, as they increase the
performance of the OU process, and this finding is similar to the previous results from
North American and European markets.

The fuel-switching price in the Albertan market includes jumps and regime-switching,
as reflected by the stochastic models. However, as the natural gas price keep decreasing
in Alberta, more and more companies switched their power plant to natural gas, which is
why we need to further consider energy-switching prices. The best fit of the OU process on
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energy-switching price reflects the steadiness of wind price, since it is a uniform distributed
process.

8. Alternatives to Black-76 Model for Options Valuations of Futures Contracts
(Swishchuk et al. 2021; Swishchuk 2020a)

In March 2020, the prompt month WTI futures contract settled below zero for the
first time in the contract’s history. Many market participants apply the Black-76 model
or some variation when calculating the value of the options on this futures contract as
a relatively straightforward, parametric valuation method. However, Black 76 requires
positive underlying market prices. The negative prompt month settlement price caused
considerable consternation among energy traders and risk managers.

More generally, OTC options are also available on basis or differential prices. These
transactions are options on the difference between two published indexes such as NYMEX
Henry Hub and AECO (for natural gas) or Cushing WTI and Houston (for crude oil). As
such, these instruments frequently have negative underlying market prices.

Thus, our task was to propose alternative models to Black-76 to valuate option prices
when the underlying future contracts can assume negative values.

In Swishchuk et al. (2021), we proposed some alternatives to the Black-76 model to
value European options on future contracts in which the underlying market prices can be
negative or/and mean reverting. We specifically consider two models, namely Ornstein–
Uhlenbeck (OU) for negative prices and continuous-time GARCH (or inhomogeneous
geometric Brownian motion) for positive prices. We then analyze the results and compare
them with Black-76, the most commonly used model, when the underlying market prices
are positive. Numerical examples are presented using WTI and NYMEX NG datasets.

Our methodology is the following one:

1. Take data (prices) and sketch their behavior, i.e., their evolution in time;
2. If the prices are positive and not mean-reverting, then use the geometric Brownian

motion (GBM) model for their evolution and Black-76 formula for option valuation of
futures (see also formulas (BlCall) and (BlPut) in Swishchuk (2020a);

3. If the prices are positive and mean-reverting, then use continuous-time GARCH (or, in
other words, the inhomogeneous GBM model) model Swishchuk (2020a) and option
pricing Formula (35) from Swishchuk (2008), Theorem 5.1;

4. If the prices are both positive and negative, but not mean-reverting, then use the
Bachelier model and their formula (see formulas (Ba_1) and (Ba_2) below and in
Swishchuk (2020a);

5. If the prices are both positive and negative, and mean-reverting with mean-reverting
level 0, then use the Ornstein–Uhlenbeck model and the formulas (OUCall_1) and
(OUCall_2) below and from Swishchuk (2020a);

6. If the prices are both positive and negative, and mean-reverting with mean-reverting
level non-zero, then use Vasicek model and the formulas (VasCall_1) and (VasCall_2)
below and from Swishchuk (2020a).

In this paper, we have shown how this methodology works on datasets presented by
Scott Dalton (Ovintiv Services Inc.); namely, we used the WTI and NYMEX NG datasets.

Remark 2. Bachelier (1900) was the first one who proposed to use Brownian motion as a model for
stock price. He also presented the option Pricing formula. Good reference on stochastic modeling of
electricity and related energy markets is Benth et al. (2008b). Black (1976) was the first to proposed
to use the option pricing Black–Scholes approach (see Black and Scholes 1973) to option on futures
pricing. An excellent reference on options, futures, and other derivatives is the book by Hull (1997).

9. A Vision to Transition to 100% Wind, Water, and Solar Energy in Canada
(TheSolutionsProject 2023)

A group of U.S. civil engineering has calculated that Canada could be completely
powered by renewable energy, if the country simply decides to do it. They say this would
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save 110.1 billion CAD on health care costs every year and prevent 9884 annual air pollution
deaths. Their research is available at TheSolutionsProject (2023).

2050 projected energy mix:

– Onshore wind: 27.5%;
– Offshore wind: 22.9%;
– Hydroelectric: 14.5%;
– Concentrated solar plants: 9.8%;
– Commercial & government rooftop solar: 9.1%;
– Solar plants: 6.9%;
– Residential rooftop solar: 5.3%;
– Wave devices: 2.2%;
– Geothermal: 1.7%;
– Tidal turbines: 0.2%.

Figure 14 shows 2050 projected energy mix.

Figure 14. 2050 projected energy mix.

40-year jobs created (number of jobs where a person is employed for 40 consecutive
years):

– Construction jobs: 315,138
– Operation jobs: 367,889

Figure 15 shows 40-year jobs created.

Figure 15. 40-year jobs created.

Reducing energy demand: −38% (by improving energy efficiency and powering the
grid with electricity from the wind, water, and sun, the overall energy demand is positively
reduced).

Figure 16 shows reducing energy demand.
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Figure 16. Reducing energy demand.

Health cost savings:

– Avoided health costs per year: 110.12B CAD (3.94% of the country’s GDP);
– Lives lost to air pollution that could be saved each year: 9884.

Figure 17 shows health cost savings.

Figure 17. Health cost savings.

Land usage (percentage of Canada land needed for all new wind, water, and solar
generators):

– Footprint Area: 0.03%
– Spacing Area: 0.25%

Figure 18 shows land usage.
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Figure 18. Land usage.

Average energy costs in 2050:

– Fossil Fuels & Nuclear Energy: 7.96¢
– Wind, Water & Solar: 9.71¢

Figure 19 shows average energy costs in 2050.

Figure 19. Average energy costs in 2050.

Money in your pocket:

– Energy cost savings per person: 40.70 CAD;
– Energy, health, and climate cost savings per person: 10, 618 CAD

Figure 20 shows money in your pocket.
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Figure 20. Money in your pocket.

10. Wind and Solar Energy in Alberta (Dunn 2021)

Alberta could lead Canada in wind and solar power by 2025, experts say. It has been
forecasted that 83% of the combined utility-scale wind and solar capacity built in Canada
over the next five years will be in Alberta. This would not include smaller renewable
development such as residential rooftop solar.

According to the data that Rystad tracks, Alberta’s current renewable capacity includes
0.1 gigawatt (GW) of solar energy and 1.8 GW of wind energy. By 2025, this is expected
to grow to 1.8 GW of solar energy and 6.5 GW of wind energy. Rystad forecasts Ontario
will have about 1.8 GW solar energy and 5.8 GW wind energy in 2025. Tan said Alberta’s
commitment to stop burning coal to generate electricity by 2030 “opens the door” for wind
and solar energy to play a larger role.

We have 7693 solar PV systems in Alberta; 77% residential, 11% commercial, 11% farm,
1% other. Alberta now ranks third in Canada for installed wind energy capacity. Wind
represents 9% of Alberta’s total generation. Alberta’s hydro electric facilities represent 5.5%
of the market capacity of installed generation.

The travers solar project in Alberta is the size of 1600 football fields and is making
Alberta a leader in green energy. Amazon announced in June 2021 that it will purchase
power from a massive new solar farm in Alberta, marking the e-commerce giant’s second
renewable energy investment in Canada.

Construction began in the fall of 2020 on Travers Solar, a 700-million CAD, 465-MW
project southeast of Calgary, which its developers say will be the largest solar photovoltaic
project in Canada and one of the largest in the world.

Privately held Greengate Power Corp. of Calgary has been working on the project for
four years and is expected to have it completed by 2022. “It’ll consist of 1.3 million solar
panels spread over more than 3000 acres (1215 hectares) of farmland”, said Dan Balaban,
CEO of Greengate Power. “Furthermore, it’ll produce a sustainable source of energy for
more than 150,000 homes” .

Remark 3. Alberta is on track to meet its 2030 renewable energy goal ahead of schedule. An update
for 2023 may be found ay https://thenarwhal.ca/alberta-renewable-energy-2030/ (accessed on 23
June 2023) (see Anderson 2022).

https://thenarwhal.ca/alberta-renewable-energy-2030/
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11. Energy Transition Center in Calgary, AB, Canada (Witzel 2022)

An investment of 2.14M CAD was announced to support energy transition collab-
oration between the Calgary ecosystem and energy industry. The Energy Transition
Centre (ETC) is a three-year project with a budget of 17.5 million. The Energy Transi-
tion Centre in downtown Calgary will support clean energy startup companies (see the
Figures 21 and 22).

The University of Calgary ecosystem is poised to lead the energy transition with an
investment announced this week from the Government of Canada. Prairies Economic
Development Canada (PrairiesCan) is investing 2,140,205 CAD to support the Energy
Transition Centre (ETC) in downtown Calgary.

The Energy Transition Centre is expected to support innovative clean energy devel-
opment and generate economic activity through new business opportunities and research
and development, while also assisting the commercialization of technologies for industry.
Over the next three years, the initiative expects to create 25 new small- and medium-sized
firms while assisting an additional 25 existing firms in accelerating their technologies for
the clean technology sector. The ETC is a collaboration between the University of Calgary,
Innovate Calgary, Avatar Innovations, and the energy industry. It is expected that pro-
gramming at the ETC will engage highly qualified personnel from both the academic and
industry sectors through career development, as well as technology development in areas
of emerging technologies crucial for the energy transition. This includes engaging and
supporting diverse industry employees as well as those involved in university research.

The ETC is designed to encourage energy transition solutions by providing program-
ming that focuses on a mass upskilling of energy workers. This will be achieved through a
training curriculum that cultivates cross-learning between energy professionals and univer-
sity postdocs. Programs will also nurture transformative technologies through curriculum
that entwines both business and technology de-risking components and provides access to
technical experts and capital markets for commercialization.

Figure 21. Ampersand building in downtown Calgary, site of the Energy Transition Centre.
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Figure 22. Gathering space at the Energy Transition Centre.

12. Conclusions and Future Work

The paper provides an overview of our recent results of energy market modeling,
including option pricing formula for a mean-reversion asset, variance and volatility swaps
on energy markets, applications of weather derivatives on energy markets, pricing crude
oil options using Levy processes, energy contracts modeling with delayed and jumped
volatilities, applications of mean-reverting processes on Alberta energy markets, and
alternatives to the Black-76 model for options valuation of futures contracts. We have also
considered the clean renewable energy prospective in Canada, and, in particular in Alberta
and Calgary.

Future research will be devoted to the renewable energy markets modeling, including
wind, solar, and water energy modeling, weather derivatives modeling, and applications
of Hawkes processes on energy markets.

13. Discussion

The paper reviews the author’s papers on energy markets modeling and many other
related papers. More literature and archival contributions may be found in the referred
papers (see References). Some relevant papers may also be found in https://www.md
pi.com/topics/energy_market_power_system (accessed on 23 June 2023) and in https:
//www.mdpi.com/1996-1073/13/16/4182 (accessed on 23 June 2023).

The main contributions of the paper consist of new models and results in modeling of
energy markets prices and data, and the paper may be considered as a handbook in this
area. The current paper/overview will help in modeling not only oil, gas, and electricity,
but also in modeling renewable and clean energy data, e.g., Lu et al. (2021) shows how to
model transition/switching from fossil energy to clean energy, e.g., from natural gas to
wind. The future of this paper is promising; to name a few, weather derivatives will have
an important application associated with climate change and alternatives to the Black-76
method and formula will have an application associated with negative prices, if it happens.

https://www.mdpi.com/topics/energy_market_power_system
https://www.mdpi.com/topics/energy_market_power_system
https://www.mdpi.com/1996-1073/13/16/4182
https://www.mdpi.com/1996-1073/13/16/4182
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