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Abstract: Financial technologies (fintechs) are continuously expanding, across different markets and
financial services. While financial technologies bring many opportunities, such as reduced costs
and extended inclusion, they also bring risks, among which include cyber risks, that are difficult to
measure. One of the difficulties that arise in the measurement of cyber risks is the interdependence
among cyber losses, a problem that has not yet been solved. To fill the gap, this paper proposes a
multivariate model for cyber risks, based on their observed time series of counts. The time-varying
intensity parameter of the model determines the probability that a cyber attack occurs, and its
specification takes not only time but also sectorial interdependence into account. The effectiveness of
the proposed model is demonstrated by means of a real cyber loss dataset, in which there exists time
and sectorial dependence among different events.

Keywords: cyber risk; contagion; autoregressive models

1. Introduction

The Financial Stability Board defines financial technologies as “technologically enabled
financial innovations that could result in new business models, applications, processes,
or products with an associated material effect on financial markets and institutions and
on the provision of financial services”. While financial technologies can bring important
opportunities, such as improved user interface, better financial inclusion, and lower costs,
they can also carry new risks, including cyber risks (see, for example, Kopp et al. 2017).

To improve the adoption of financial technologies, a framework for cyber risk manage-
ment becomes necessary. In the last few years, the number of cyber attacks on information
technology (IT) systems has surged. For example, 1460 cyber attacks have occurred in 2018
and 1127 attacks occurred in 2017, against 1050 in 2016, 1012 in 2015 and 873 in 2014, with
a growth of about 30% between 2014 and 2017. The trend in from 2020 onwards follows
a similar path, especially after the COVID-19 pandemic, although final figures are not
yet available.

In line with the growing relevance of the problem, the extant literature has recognized
the need to measure cyber risks (see, for example, Kure et al. 2021; Mazzoccoli and Naldi
2021; Paté-Cornell et al. 2017; Facchinetti et al. 2020; Ruan 2019; Florackis et al. 2023; Eling
and Wirfs 2019; Eling 2020; Giudici and Raffinetti 2021; Chande and Yanchus 2019).

Cyber risk measurement models suffer from lack of data, typically for non-disclosure
reasons. To solve this problem, cyber loss data can be modeled using ordinal variables,
following the literature on operational risk measurement (see, for example, Aldasoro et al.
2022; Chernobai et al. 2019; Curti et al. 2022; Cohen et al. 2019; Giudici and Raffinetti 2021
and the references therein).

Cyber risks are strictly related to operational risks and, therefore, may share similar
loss models, in the univariate case (see, for example, Aldasoro et al. 2022). However,
different from operational risks, cyber risks have a strong multivariate dependence, which
arises from the interdependence between cyber events. Interdependence may arise, in
particular, from the fact that cyber attacks often have multiple targets, and that most fintech
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activities employ cloud computing. The presence of interdependence can lead to a systemic
risk similar to that analyzed in financial markets, which has attracted the attention of
researchers and regulatory authorities (see, for example, Diebold and Yılmaz 2014; Tobias
and Brunnermeier 2016; Escribano and Maggi 2019; Lando and Nielsen 2010; Agosto et al.
2016, 2020; Ahelegbey et al. 2016; Billio et al. 2012; Aldasoro et al. 2022; Giudici et al. 2019;
Danielsson and Macrae 2019).

While the literature on systemic risks arising from financial markets is quite abundant,
that on systemic risk arising from cyber losses is not yet available. We propose to fill this
gap with the present paper, which aims to contribute to cyber risk measurement by means
of a methodology able to capture interdependencies among cyber losses.

More specifically, the contribution of this paper is to develop a contagion model for
cyber risks that is based on a multivariate model for count time series of cyber risk events.
The model was introduced by Agosto (2022) for credit markets and has a score-driven
specification: the time-varying intensity parameter determining the probability that an
extreme market event occurs follows the specification of generalized autoregressive score
(GAS) models, also known as dynamic conditional score models (Creal et al. 2013; Harvey
2013). In the GAS framework, time-varying parameters depend on their lagged values and
on the scaled score of the conditional observation density. GAS models belong to the class
of observation-driven models and are found to perform comparably to parameter-driven
models in terms of predictive accuracy. From a computational point of view, they can be
easily estimated through maximum likelihood optimization.

We apply the model to the daily count of cyber events in different economic sectors, from
2018 to 2021, and find significant time dependence, along with some cross-sector effects.

The next table summarizes our contribution with respect to the related literature
discussed above.

• Literature on cyber risk measurement: (see, for example, Chande and Yanchus 2019;
Eling 2020; Eling and Wirfs 2019; Facchinetti et al. 2020; Florackis et al. 2023; Giudici
and Raffinetti 2021; Kure et al. 2021; Mazzoccoli and Naldi 2021; Paté-Cornell et al.
2017; Ruan 2019).
Our contribution is a multivariate model that adds to the literature on cyber risk
measurement a measure of interdependency between cyber risks.

• Literature on operational risk measurement: (see, for example, Aldasoro et al. 2022;
Chernobai et al. 2019; Cohen et al. 2019; Curti et al. 2022).
Our contribution is a multivariate model that adds to the literature on operational
risks the consideration of multivariate dependence between count data.

• Literature on systemic risk: (see, for example, Agosto et al. 2016, 2020; Aldasoro et
al. 2022; Danielsson and Macrae 2019; Escribano and Maggi 2019; Giudici et al. 2019;
Lando and Nielsen 2010).
Our contribution is a systemic risk model for cyber risks that adds to the literature the
employment of generalized autoregressive score models.

2. Materials and Methods

A well-known distribution for non-negative integer variables is the negative binomial,
which generalizes the Poisson distribution. The negative binomial distribution is derived
from the Poisson-gamma mixture and is characterized by a location parameter µ—also
defined as the intensity of the count process—and a dispersion parameter α. The higher
α, the higher the overdispersion in the data. Indeed, when α = 0, the negative binomial
distribution reduces to the Poisson one, where the variance is equal to the mean. The
negative binomial distribution is known to be particularly suitable for modeling the count
time series of rare events, such as the number of cyber attacks analyzed in this paper.
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Following Agosto (2022), we assume that the observations in each count time series
of cyber events i follow a negative binomial distribution with a time-varying location
parameter µit > 0 and a static dispersion parameter αi ≥ 0:

Xit ∼ NB(µit, αi) (1)

First, we reparametrize the location parameter through an exponential link: ft = log(µt).
This is a common choice in the specification of generalized linear models, as it ensures strict
positivity of the time-varying parameter without imposing restrictions on the coefficients.
Then, to model the time-varying location parameters ft = log(µt), we use a generalized
autoregressive score (GAS) specification (Creal et al. 2013; Harvey 2013). In the general GAS
specification, the dynamics of filtered parameters ft+1 = ( f1, . . . , ft) are captured by an
autoregressive term and by the scaled score (gradient) of the conditional observation density
through the recursions

ft+1 = C + B ft + A S( ft)∇(xt, ft) (2)

where ft = ( f1t, . . . , fkt) is the vector of time-varying parameters, C = (c1, . . . , ck) are the
constant parameters, B = diag(b1, . . . , bk) is the k× k diagonal matrix of autoregressive
parameters, A is the k× k matrix of coefficients associated to the scaled score and S( ft) is a
scaling function for the score ∇(xt, ft). Moreover, we assume

A = diag(e) + γδ′ (3)

where e, γ, and δ ∈ Rk are column vectors. In addition, to identify the model and estimate
the values of γ and δ, following Heinen and Rengifo (2007), we impose δk = 1−∑k−1

i=1 δi.
The score∇(xt, ft) is a k× 1 vector corresponding to the first derivative of the negative

binomial log-likelihood function. It can easily be shown that it can be calculated through
the following formula:

∇(xt, ft) =
xt − exp( ft)

α exp( ft) + 1
(4)

Without loss of generality, we use a unit scaling, that is, we assume S( ft) = Ik.
In the context of our cyber risk application, the coefficients in the A matrix express

in-sector and cross-sector dependence through the score. Indeed, as it can be seen from
Formula (4), the score is calculated as the scaled difference between the observed and
expected number of events (i.e., the shock) at the previous time. Thus, the A coefficients
determine the impact of unexpected cyber losses that occurred in t− 1 on the expected cyber
losses in t in the same sector (diagonal effects) and in other sectors (off-diagonal effects).
Formulation (3) gives further insight into the interpretation of parameters: e measures
the own effect of shock events in sector i, while the γ and δ vectors act as multipliers of
the off-diagonal elements of A. The B coefficients express, instead, the dependence of the
expected number of cyber losses on past expectations, while the C constant parameters
determine the unconditional and long-term mean of the number of events.

The model coefficients can be estimated through maximum likelihood optimization
(see Agosto (2022) for details).

3. Results
3.1. Data

We apply our modeling approach to the daily cyber attack data collected by an
international data provider in an agnostic and independent manner, which essentially
involves transforming each news of cyber attacks into a severity scale that goes from “low”
to “high” values. The data, which can be publicly visualized at www.hackmanac.com
(accessed on 28 February 2023).

The data have already been analyzed by means of rank regression models in Giudici
and Raffinetti (2021). Here, we extend the work, taking into account time and sectorial
dependence.

www.hackmanac.com
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For each day in the analyzed time period, we count the number of cyber attacks in
each of the following sectors: education, government, healthcare, financial, information
and communication technology (ICT), and trade. We consider only high-severity events,
corresponding to “high” or “critical” losses. Thus, we end up with six count time series of
extreme events.

We remark that all the considered series show a high frequency of zeros and are
overdispersed, i.e., their variance is higher than the mean. These features motivate the use of
count data models for rare events, allowing for possible zero-inflation and overdispersion.

3.2. Empirical Findings

We now present the results of fitting the negative binomial score-driven model pre-
sented in Section 2 to the time series of cyber attacks to different economic sectors in the
2018–2021 period (see Section 3.1). By letting the α coefficients equal to those estimated
at the univariate level and maximizing the log-likelihood, we estimate the parameters
entering the score-driven dynamics and obtain predictions for the counts.

The coefficients entering the score-driven dynamics (2)—estimated through likelihood
maximization—are shown in Tables 1 and 2. In particular, Table 1 reports the c constant
parameters entering the C matrix in Formula (2), as well as the b diagonal entries of the
B matrix, which express the dependence of each count time series on its previous values.
Table 2 shows, instead, the coefficients entering the A matrix in Formula (2), expressing the
cross-sector impacts of the cyber attack counts.

The values in Table 1 indicate, along with significant constant parameters, the presence
of significant in-sector time dependence (expressed by the b autoregressive coefficients) for
all sectors and, particularly, for the education one. This is in line with the observation that,
during the COVID-19 period, on-line educational services have substantially increased and,
along with them, cyber attacks to educational institutions.

On the other hand, Table 2 captures the sectorial dependence among cyber attacks.
In particular, coefficients in row i in Table 2 express the impact that shocks to the number
of cyber attacks in other sectors (along the columns) have on sector i, while coefficients
in column j measure the extent to which cyber attacks in sector j affect the others (along
the rows). The value of the off-diagonal elements, capturing cross-sector dependence, is
determined by the γ and δ parameters entering specification (3). Based on this interpretation
of coefficients, which arises from our model specification, the row sum of non-diagonal
coefficients in the A matrix for a given sector can be considered a measure of its in-strength
centrality, while the column sum of non-diagonal coefficients can be read as a measure of
the sector’s out-strength centrality.

The diagonal elements of the A matrix can be instead interpreted as in-sector channels
of contagion, that is, the impact of shocks to the number of cyber attacks in a sector on
the expected number of cyber attacks in the same sector. Their value is determined by the
estimated e parameters, according to (3).

Based on our results, the sector that affects others most strongly turns out to be ICT,
followed by government, both particularly impacting the educational sector. In fact, the
columns corresponding to the ICT and the government sectors in Table 2, containing the
coefficients that express the impact of cyber attack counts among ICT and government
companies to cyber attacks counts in other sectors, show two significant values (marked in
bold) in the education row, meaning that the latter sector is significantly impacted by the
ICT (with higher magnitude) and government sectors in terms of cyber risk. The result is in
line with the intuition that the ICT sector, being more dependent on technology, is also more
subject to attacks, whereas the government sector, being strategic for a country, plays a
rather central role. Looking instead at “in-strength” centrality, the sector most impacted by
cyber attacks in other sectors is the educational one. Indeed, the row corresponding to the
educational sector in Table 2, which reports the coefficients associated with the impact of
other sectors’ counts on educational institutions, is the only one that shows two significant
non-diagonal coefficients, corresponding to the effect of the government and ICT sectors.
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This is in line with the intuition that the educational sector is often among the most open to
innovations and the least protected. The educational sector is also the one that shows the
highest in-sector dependence, as it shows the highest diagonal coefficient in the A matrix.

Table 1. Maximum likelihood estimates of parameters for the multivariate negative binomial score-
driven model applied to the daily count of “high” and “critical” severity cyber risk events in the
2018–2021 period (*** denotes statistical significance at the 1% level).

Sector c b

Education −1.9443 *** 0.1547 ***
(0.0639) (0.0202)

Government −0.3891 *** 0.1086 ***
(0.0417) (0.0963)

Healthcare −0.3833 *** 0.1086 ***
(0.0504) (0.0619)

Financial −0.3864 *** 0.1085 ***
(0.0952) (0.0707)

ICT −0.3881 *** 0.1086 ***
(−0.0612) (0.0906)

Trade −0.3868 *** 0.1085 ***
(0.0345) (0.0504)

Table 2. Maximum likelihood estimate of the A matrix, expressing the in-sector and cross-
sector impacts of shocks on the expected daily number of cyber risk events (EDU = education,
GOV = government, HLT = healthcare, FIN = financial, ICT = information and communication tech-
nology, and TRD = trade). The bold numbers denote statistical significance at least at the 10% level.

Sector EDU GOV HLT FIN ICT TRD

EDU 0.9548 0.0097 0.0015 0.0067 0.0105 0.0434
GOV 0.0039 0.3834 0.0000 0.0034 0.0052 0.0217
HLT 0.0061 0.0075 0.3798 0.0052 0.0081 0.0336
FIN 0.0123 0.0152 0.0023 0.3910 0.0164 0.0680
ICT 0.0000 0.0000 0.0012 0.0000 0.3788 0.0000
TRD 0.0016 0.0020 0.0000 0.0014 0.0021 0.3890

We now evaluate the performance of the proposed model by comparing the observed
and fitted counts. In particular, Figures 1–6 compare, for each time series, the observed
counts against the 95% confidence bands for the fitted ones, calculated by applying the
negative binomial distribution function with the estimated parameters. It can be seen
that the model predicts the actual number of cyber attacks in the education, government,
healthcare, financial and ICT sectors in a satisfactory way. Indeed, for these sectors, the
observed value is nearly always included in the predicted interval. For the trade sector,
instead, the model constantly overfits the count of attacks: probably due to the limited
number of observed events, the prediction provided for this sector is poor and nearly always
equal to the mean number of events in the series. This is connected to the autoregressive
nature of our model, which “learns” from past shocks in the number of events and, thus,
can easily be wrong when the counts are very low for long periods, with peaks lasting for a
single day.
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Figure 1. Real (blue) and predicted (95% confidence interval, red) cyber attack counts to education
counterparties.

Figure 2. Real (blue) and predicted (95% confidence interval, red) cyber attack counts to government
counterparties.

One of the most relevant issues when performing risk analyses is to evaluate the model
capability of signaling highly critical outcomes. In our application, a model should predict
the peaks in the number of cyber attacks, thus avoiding risk underestimation, but, at the
same time, it should not overestimate the risk by predicting a number of events significantly
higher than that observed. To shed light on this aspect using an approach typical of financial
value-at-risk analyses, Table 3 reports, for each analyzed sector, the percentage of cases
(days) in which the observed count exceeds the upper confidence band of our prediction.
The second column of Table 3 reports the p-value of the binomial test comparing the
obtained percentage with the nominal one (2.5%). It can be seen that, in all cases, the
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percentage of cases in which the observed value exceeds the estimated upper confidence
band is lower than the nominal one, meaning that our model does not underestimate cyber
risk. Nevertheless, for three sectors (healthcare, financial and trade), the binomial test
p-value is lower than 1%, meaning that the number of violations of the predicted interval
is excessively lower than the nominal one and, thus, the model overestimates the level
of cyber risk. This encourages further research efforts in the definition of zero-inflated
models and time-varying coefficient specifications, which could better capture the peculiar
dynamics of cyber attack count time series.

Figure 3. Real (blue) and predicted (95% confidence interval, red) cyber attack counts to healthcare
counterparties.

Figure 4. Real (blue) and predicted (95% confidence interval, red) cyber attack counts to financial
counterparties.
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Figure 5. Real (blue) and predicted (95% confidence interval, red) cyber attack counts to ICT counter-
parties.

Figure 6. Real (blue) and predicted (95% confidence interval, red) cyber attack counts to trade
counterparties.

Table 3. Percentage of violations of the upper 95% confidence interval and p-value of binomial test to
compare it with the nominal percentage.

Sector % of Upper Confidence Interval Violations Binomial Test p-Value

EDU 0.0171 0.0272
GOV 0.0335 0.9817
HLT 0.0144 0.0035
FIN 0.0041 0.0000
ICT 0.0157 0.0106
TRD 0.0014 0.0000
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4. Conclusions

This paper contributes to the measurement of cyber risk, an important risk that
affects financial technologies. Specifically, the paper proposes a model to take into account
interdependence among losses arising in different economic sectors.

The model is based on a multivariate negative binomial score-driven model for count
time series. The use of negative binomial distribution allows dealing with overdispersion,
a common feature in count time series of rare events, such as cyber attacks.

The effectiveness of the proposal is illustrated by means of a real database of daily
cyber losses.

The presented model is very suitable to study contagion in financial losses. In the
proposed specification, the interdependence between extreme event counts arises indeed
from the effect of shocks in a sector on the probability that new events occur in others.

The application of the model to daily cyber loss data in the 2018–2021 period reveals
high time dependence and significant cross-sector effects.

This study has focused on cyber risk deriving from ordinal loss data. A possible exten-
sion would be to consider continuous loss data, when available, as in Aldasoro et al. (2022).

Further research should take into account other types of extreme events, such as
climate-change impacts.

We believe that this paper can contribute to encouraging the development and growth
of financial technologies, making them sustainable and minimizing their possible negative
impacts on consumers and investors. This can be achieved by means of appropriate risk
management methods, whose compliance burden can be limited by the technology itself.
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