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Abstract: The purpose and novelty of this article is to investigate the extent to which artificial
intelligence chatbot ChatGPT can grasp concepts from quantitative risk management. To this end,
we enter a scholarly discussion with ChatGPT in the form of questions and answers, and analyze
the responses. The questions are classics from undergraduate and graduate courses on quantitative
risk management, and address risk in general, risk measures, time series, extremes and dependence.
As a result, the non-technical aspects of risk (such as explanations of various types of financial risk,
the driving factors underlying the financial crisis of 2007 to 2009, or a basic introduction to the
Basel Framework) are well understood by ChatGPT. More technical aspects (such as mathematical
facts), however, are often inaccurate or wrong, partly in rather subtle ways not obvious without
expert knowledge, which we point out. The article concludes by providing guidance on the types of
applications for which consulting ChatGPT can be useful in order to enhance one’s own knowledge
of quantitative risk management (e.g., using ChatGPT as an educational tool to test one’s own
understanding of an already grasped concept, or using ChatGPT as a practical tool for identifying
risks just not on one’s own radar), and points out those applications for which the current version of
ChatGPT should not be invoked (e.g., for learning mathematical concepts, or for learning entirely
new concepts for which one has no basis of comparison to assess ChatGPT’s capabilities).

Keywords: ChatGPT; quantitative risk management; risk; risk measures; time series; extremes;
dependence
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1. Introduction

ChatGPT is an artificial intelligence language model developed by OpenAI. GPT stands
for generative pre-trained transformer. A transformer is a specific class of neural networks,
which is pre-trained, so trained on huge amounts of past observations. Being generative refers
to ChatGPT’s step-by-step generation of tokens (a group of characters such as a word or part
of a word; use https://platform.openai.com/tokenizer (accessed on 17 September 2023) to
see how words are split into tokens) to build sentences, paragraphs or whole articles of text
based on the learned predictive distribution of tokens and initial tokens. Chat stands for the
fact that the transformer was optimized for conversational chat. ChatGPT was launched on
30 November 2022 and had one million users within five days (as a comparison, it took
Instagram two and a half months to reach the same userbase), making it the fastest growing
consumer application yet.

With ChatGPT widely available by now and the interest from both academia (for
example, from an educational point of view for teaching, or by students as an auxiliary tool
for learning) and the industry (for example, for summarizing market information on risk
or automating internal processes), our goal is to address the following question:
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“How proficient is the current version of ChatGPT
in aspects of quantitative risk management?”

In answering this question through a conversation with ChatGPT, the reader (besides
our own, subjective, assessment) will be able to assess the current status of ChatGPT as a
tool to be applied in the context of quantitative risk management with the aforementioned
purposes in mind. Remotely related references are the following. Kashettar (2023) men-
tions opportunities (for decision making based on large amounts of data; for increasing
operational effectiveness by freeing risk managers to concentrate on other tasks; and for
risk communication via natural language) and challenges (concerning bias in training data,
and concerning data security and privacy as risk management can involve private client,
as well as corporate-related information) of using ChatGPT in risk management practice.
Gomez (2023) puts ChatGPT in the position of Chief Risk Officer and asks it to conduct
a basic risk assessment. And Sidorenko (2023) provides sample prompts for ChatGPT in
the wider realm of risk management. Note that none of these online articles considers
quantitative risk management, though.

Our conversation with ChatGPT also has elements of a technical report (when ChatGPT
is treated as a new technology), of a user experience report (when ChatGPT is treated like a
search engine or Wikipedia page), of an interview or case study (when ChatGPT is treated
as a person), and of a pedagogical publication (when ChatGPT is treated like a person)
and should thus be readable by a large audience. The interested reader can also consult
Hofert (2023), which is written in a similar style, on the topic of pitfalls when working with
the stochastic notion of correlation.

Section 2 briefly mentions the setup we used when working with ChatGPT. Section 3
contains our conversation with ChatGPT on various aspects of risk and its modeling. We
also analyzed and rated ChatGPT’s responses with regard to the above goal. Section 4 pro-
vides a (numerical) summary of our assessment of ChatGPT’s performance, and Section 5
provides concluding remarks.

2. The Setup

The conversation in this section took place over the course of two weeks in April 2023.
Access to the ChatGPT version 3.5 we used was provided by The University of Hong Kong
(note that OpenAI does not provide accounts to the public in Hong Kong at the moment).
Concerning hyperparameters, ChatGPT allowed to freely choose the following (as most
users, we left all as the defaults):

• Max response: 800. The maximal number of tokens used per response (an integer
between 1 and 4000).

• Temperature: 0.7. This hyperparameter (a real number between 0 and 1) controls the
randomness of the output (from deterministic to creative responses). Low temperature
values (0 to 0.3) provide more repetitive and deterministic outputs, medium tempera-
ture values (0.3 to 0.7) provide a balance between repetitive and creative outputs, and
high temperature values (0.7 to 1) provide highly creative and diverse, but potentially
less coherent, outputs.

• Top P: 0.95. Similar to the temperature, this hyperparameter (a real number between 0
and 1) affects the randomness of the output but uses a different method. Low values
narrow down the output’s token selection to likelier tokens only, large values allow
the output’s tokens to range from likely to less likely ones. See OpenAI Community
(2023) for a comparison of this and the temperature parameter.

• Past messages included: 10. This hyperparameter (an integer between 1 and 20)
controls how many past messages are included in each new query, thus providing
context for new queries.

Besides a short analysis, we assessed ChatGPT’s responses with regard to the afore-
mentioned goal with a 5-star rating in the margins (0 stars = poor answer; 5 stars =
excellent answer; half-stars allowed). Furthermore, for readability, we converted Chat-
GPT’s responses to technical questions to LATEX and formatted the output slightly to save
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space; as addressed later, we shortened one response. We chose not to ask ChatGPT to
provide LATEX output right away, as it is often not required for understanding an answer,
and we did not want to restrict ChatGPT in its freedom to respond. Also note that we did
not format our questions in LATEX for ChatGPT (neither below nor when we asked them).

3. The Conversation and Its Analysis
3.1. Reproducibility

Hi ChatGPT, what version are you?

As an AI language model, I do not have a specific version number. I am constantly
being updated and improved by my developers, so my abilities and knowledge
are always expanding.

We see that ChatGPT’s answer starts with the phrase “As an AI language model”, which,
by now, is so common that it can even reveal AI usage, for example in Amazon reviews; see
Vincent (2023). Due to the usage of ChatGPT, it may become more difficult to detect spam
in the near future, but at least cases involving this sentence are easy to spot. However, these
sentences may also make it harder for automatic spam detection software to be triggered,
as they are more and more common and there is nothing obviously wrong about them.

Of course, seeing ChatGPT’s “As an AI language model” phrase does not mean that
every response must start like that. In fact, one major problem we learn from ChatGPT’s
answer is the issue of non-reproducibility; it also plagues other machine learning proce-
dures. There are two aspects to this problem: one concerns the G in ChatGPT. Generating a
sequence of tokens from the predictive distribution of tokens is non-reproducible, except
when the temperature hyperparameter is chosen as 0, in which case the answer is always
the maximum likelihood estimator based on the predictive distribution. Note that the
answer may still depend on the past messages considered for creating the current response
(the context). So asking the same question another time may thus (and indeed often does)
lead to a different answer. Second, and worse, not even knowing the rough version in use
implies that we do not even know whether or when the predictive distribution potentially
changed. In short, neither the exact outcome nor the whole predictive distribution is
typically reproducible. The latter, as ChatGPT implies, can change at any point. Asking the
same question the next day led to the following answer:

As an AI language model, I don’t have a specific version number as I am con-
stantly updated and improved by my developers. However, my current model is
OpenAI’s GPT-3.

We now learn that ChatGPT is based on GPT-3. The actual version implemented is indeed
“GPT-3.5”, though.

That is interesting, so what you are answering will not necessarily be reproducible?

As an AI language model, my responses are generated based on the input I receive
and the algorithms that are programmed into me. So while my responses may not
be exact replicas of previous responses, they are generated through a consistent
set of rules and processes. However, it is possible that some variations may occur
due to the nature of machine learning and natural language processing.

Here, ChatGPT reports that responses are not necessarily reproducible. The reason given
(“nature of machine learning and natural language processing”) refers to the generative
modeling (the first aspect mentioned before). Depending on the predictive distribution (and
hyperparameters influencing it), a correct/yes/positive (incorrect/no/negative) answer
can potentially change to a incorrect/no/negative (correct/yes/positive) one, leaving the
conversation partner with little to no information to learn from but rather some mistrust in
the validity of future responses.

But you said you are constantly being updated and improved. So if I ask you the same question in
the near future, your answer might be quite different because of such an update or improvement
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and not just because of some variation due to the nature of machine learning and natural language
processing, right?

Yes, that’s correct. As an AI language model, I am constantly learning and
improving based on the data and feedback provided by my developers. So,
if you were to ask me the same question in the future, my response might be
different than it is now because I may have learned new information, improved
my algorithms, or been updated with new features or capabilities.

This response refers to the change of the predictive distribution (the second aspect men-
tioned before) through an update.

Don’t you think it would be important to know your version number then? Reproducibility is one of
the core principles underlying the scientific method.

I understand your point, but as an AI language model, my development and
improvement process is continuous and dynamic. Therefore, I don’t have a single
version number like traditional software applications do. Instead, my developers
use a version control system to track changes and updates to my algorithms
and capabilities. While reproducibility is indeed important in scientific methods,
the nature of machine learning and natural language processing is such that my
responses can vary based on the input and context, even with the same version
number. Therefore, my developers focus on ensuring that I produce reliable and
accurate responses based on my current state, rather than on version numbers.

Pressed, ChatGPT reveals that its development is based on a version control system (as
are most, if not all, bigger software development projects). As such, knowing the version
number (the unique identifier of ChatGPT’s released software) would at least allow one
to track major changes in the predictive distribution and thus alleviate the problem of
non-reproducibility.

3.2. Risk

With the reproducibility issue in mind, we now start to ask about risk in general and aspects
of its modeling in particular.

Can you define risk, please?

Risk can be defined as the probability or likelihood of an event or circumstance
occurring, and the potential negative consequences or impacts that may result
from that event. In other words, risk is the chance that something undesirable or
harmful may happen, and the degree of uncertainty or unpredictability associated
with that event. Risk can be assessed and managed in various contexts, such
as financial investments, business operations, health and safety, and other areas
where there is a need to weigh potential benefits against potential harm.

This is a rather good answer, given the open-endedness of the question. It is hard to come up
with a single-sentence definition of risk, as there are various types of risks (environmental,
health, safety, financial, insurance, etc.) that have different meanings in different contexts;
see also Kloman (1990). This aspect was well captured.

I’d like to talk about financial and insurance risk modeling. Can you define market risk, credit risk,
operational risk, systemic risk and model risk, please?

Sure, I can provide definitions for each of those types of risks in the context of
financial and insurance risk modeling:

1. Market risk: Refers to the potential for financial losses due to changes in
market conditions, such as interest rates, exchange rates, stock prices, and
commodity prices. Market risk is typically associated with investments in
financial assets, such as stocks, bonds, and derivatives.

2. Credit risk: Refers to the potential for financial losses due to the failure of
a borrower to repay a loan or meet other financial obligations. Credit risk
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is typically associated with lending activities and is influenced by factors
such as the creditworthiness of the borrower, the terms of the loan, and the
economic environment.

3. Operational risk: Refers to the potential for financial losses due to failures
or disruptions in an organization’s internal processes, systems, or controls.
Operational risk can arise from a variety of sources, including human error,
technology failures, fraud, and external events.

4. Systemic risk: Refers to the potential for widespread financial disruption
or instability due to the failure of one or more large financial institutions or
other systemic factors. Systemic risk can be difficult to predict and manage,
as it can be influenced by a wide range of factors, including macroeconomic
conditions, regulatory policies, and market sentiment.

5. Model risk: Refers to the potential for financial losses due to errors or
limitations in the mathematical or statistical models used to assess and
manage financial risks. Model risk can arise from a variety of sources,
including incomplete or inaccurate data, flawed assumptions, or the misuse
or misinterpretation of models. Managing model risk requires ongoing
monitoring and validation of models, as well as robust governance and
control frameworks.

The first part of our question provides a context for ChatGPT (financial and insurance risk)
in which to answer our actual question. The definition of market and credit risk is very
good. For operational risk, a precise definition has been known since its introduction in
(BIS 2006, p. 144): “Operational risk is defined as the risk of loss resulting from inadequate
or failed internal processes, people and systems or from external events. This definition
includes legal risk, but excludes strategic and reputational risk”. One would have, perhaps,
expected ChatGPT to provide this definition. The answer did provide all aspects of the
main definition though; just the inclusion/exclusion of certain types of risk is missing.
Systemic risk was overall captured well, too. Given that model risk is not easy to model
and there is much less literature available on model risk, ChatGPT also captured this type
of risk very well.

Can you briefly summarize the financial crisis of 2007 to 2009, provide reasons for why it happened
and address which of the above five types of risk played a role in its unfolding?

The financial crisis of 2007 to 2009 was a major global economic downturn that
resulted in widespread financial losses, bank failures, and a severe recession in
many countries. The crisis was triggered by a combination of factors, including:

1. The housing market bubble: A surge in housing prices in the early 2000s led
to a boom in subprime mortgage lending, which allowed many people with
poor credit histories to buy homes they could not afford.

2. Risky financial practices: Banks and other financial institutions engaged
in risky lending and investment practices, such as securitizing subprime
mortgages into complex financial instruments known as collateralized debt
obligations (CDOs), which were then sold to investors.

3. Lack of regulation and oversight: The financial sector was largely unregu-
lated, and government agencies failed to adequately monitor and regulate
risky financial practices.

4. Global economic imbalances: A lack of balance in international trade and
investment flows, particularly between the US and China, contributed to
global economic instability.

All of the above five types of risk played a role in the unfolding of the financial
crisis of 2007 to 2009. Market risk was a factor, as the collapse of the housing
market and the value of CDOs led to massive losses for investors. Credit risk was
also a factor, as many subprime borrowers defaulted on their mortgages, leading
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to widespread losses for lenders. Operational risk was present in the failure of
banks and other financial institutions, while systemic risk was a factor in the
global nature of the crisis and its impact on the broader economy. Finally, model
risk played a role in the crisis, as flawed assumptions and flawed models were
used to assess and manage financial risks.

For a first dive into this difficult topic, this response is quite good, which may be explained
through the vast amount of literature available on the subject that must have entered
ChatGPT’s training data in some form or another. We can also try to dig into more details
from here.

Why was there a surge in housing prices in the early 2000s?

There were several factors that contributed to the surge in housing prices in the
early 2000s, which ultimately led to the housing market bubble that helped trigger
the financial crisis of 2007 to 2009. Some of the main factors that contributed to
the housing price boom include:

1. Easy access to credit: In the early 2000s, it became easier for people to obtain
mortgages and other forms of credit, as banks and other lenders relaxed
their lending standards and offered more subprime mortgages to borrowers
with poor credit histories.

2. Low interest rates: The Federal Reserve kept interest rates low in the early
2000s in an effort to boost the economy after the dot-com bubble burst in
2000. Low interest rates made it cheaper for people to borrow money and
led to a surge in demand for housing.

3. Speculation and investor demand: The housing market became a popular
investment vehicle, as many people bought homes with the expectation that
they would be able to sell them for a profit in the future. This speculative
demand drove up housing prices.

4. Demographic shifts: The early 2000s saw a demographic shift as the baby
boomer generation reached their peak earning years and began to invest
more heavily in real estate. This increased demand for housing also con-
tributed to rising prices.

All of these factors combined to create a housing market bubble that eventually
burst, leading to widespread foreclosures, bank failures, and a severe recession.

Also here, ChatGPT’s response is great for learning about the reasons behind the rising
housing prices, even relating the financial crisis to the dot-com bubble. Certainly, for
some expert readers, these answers may not be satisfying, but for a, say, graduate student
encountering this large topic for the first time and trying to glean some pointers on the
underlying factors, this answer is more than adequate; also, experts could of course just ask
more specific follow-up questions. As a fact check, one could continue with a quick online
search on the mentioned points. The lack of “As an AI language model” is refreshing. But
let us dig a bit deeper into one of the more technical aspects of the financial crisis.

You already mentioned that CDOs played a role. What is a CDO?

A CDO, or collateralized debt obligation, is a complex financial instrument that is
made up of a pool of various debt securities, such as bonds, mortgages, and loans.
CDOs are typically created by investment banks or other financial institutions,
which pool together these securities and then divide them into different tranches
or levels of risk.

Each tranche of a CDO is assigned a different credit rating based on its level
of risk. The highest-rated tranches are considered the safest and are paid first,
while the lower-rated tranches are riskier but offer higher returns. CDOs can be
structured in a variety of ways, but typically involve one or more layers of debt,
with the riskiest debt at the bottom and the safest debt at the top.
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One of the key factors that contributed to the financial crisis of 2007 to 2009
was the use of CDOs to package and sell subprime mortgages. Many CDOs
were created using subprime mortgages, which were high-risk loans made to
borrowers with poor credit histories. Investment banks packaged these subprime
mortgages into CDOs and sold them to investors, often with inflated credit ratings
that did not accurately reflect the true risk of the underlying loans.

When the housing market bubble burst and many borrowers defaulted on their
mortgages, the value of the CDOs plummeted, leading to massive losses for
investors and contributing to the broader financial crisis.

Another good answer. Understanding CDOs is non-trivial, and they are typically better
explained with the help of pictures of snapshots of a portfolio of credit risks at different
points in time, showing the waterfall principle of defaults affecting (or not affecting) the
different tranches of the portfolio. But for a purely text-based description, the above
answer is good. Note that, when asked, ChatGPT produced an ASCII plot of the tranches
and labeled them, but that plot did not convey enough information to explain CDOs
properly. When asked to provide a proper diagram, an output of the form “![CDO diagram]
(https://i.imgur.com/[...].png )” was produced, but the link only provided a message “The
image you are requesting does not exist or is no longer available”, a technical issue perhaps
connected to our access to ChatGPT.

Do you know why, mathematically, CDOs were mispriced?

As an AI language model, I do not have personal beliefs or opinions. However,
here is an explanation for why CDOs were mispriced:

CDOs were mispriced due to the flawed assumptions made by the rating agencies
and investors about the correlation between the underlying assets. The rating
agencies assumed that the default risk of the individual assets was uncorrelated,
and therefore, the risk of the entire portfolio could be diversified away. However,
in reality, the assets were highly correlated, and the default of a few assets could
trigger a cascade of defaults across the portfolio. This led to the underestimation
of the risk of CDOs, resulting in their mispricing. Additionally, the complexity of
CDO structures made it difficult for investors to fully understand the underlying
risks, which further contributed to the mispricing.

Here, we see a frequent phenomenon, namely that ChatGPT starts with a disclaimer. It casts
some doubt on ChatGPT’s confidence in the answer (rightfully so as we will see later). A
more explicit rating of its own confidence in the answer would be extremely useful (or
knowing some related references). Nevertheless, the answer provided is fine. It would
have provided sufficient information to set off all alarm bells had it been available prior to
2007 and had it not been ignored, but of course that is easy to claim after the fact, where
there is now a vast amount of literature on the subject and people have (hopefully) learned
their lessons.

Do you know the name of a CDO pricing model that was used around that time?

Yes, one of the popular CDO pricing models used around that time was the
Gaussian Copula model. It was widely used by rating agencies and investors to
estimate the probability of default and expected losses for CDO tranches. The
model was based on the assumption that the default correlation between the
underlying assets followed a normal distribution, which was found to be a flawed
assumption during the financial crisis. The model was criticized for not taking
into account the tail risks and the extreme events that could lead to a significant
loss in the CDO portfolio.

Another good text-based answer, albeit with a slight inaccuracy. The described model is an
intensity-based default model, where the time of default τi of component i in the portfolio
is modeled as the first time the component’s survival probability falls below a random
trigger Ui ∼ U(0, 1). The default correlation between two components i, j is the correlation



Risks 2023, 11, 166 8 of 29

(so a number) between the two (random) default indicators on or before a fixed time point
t, so cor(1{τi≤t},1{τj≤t}). As a correlation, it cannot “follow a normal distribution”. What
was assumed to follow the copula of the normal distribution (namely the Gaussian copula,
hence the name of the model) was the vector (U1, . . . , Ud) of the total d components of the
credit portfolio. Here, we already see the predictive nature of ChatGPT; it seems “smart
enough” to understand CDOs but then does not know that a correlation following a normal
distribution makes little sense in this context.

What is the Basel Framework and why was it introduced?

The Basel Framework is a set of international banking regulations that provide
guidelines for banks to assess and manage their risks. The framework was
introduced by the Basel Committee on Banking Supervision, which is a group of
central bank governors and regulators from around the world, after the collapse
of several banks in the 1980s and 1990s.

The Basel Framework was introduced to strengthen the stability and soundness
of the global banking system by setting minimum capital requirements for banks.
The framework provides guidelines for banks to assess and manage their risks,
including credit risk, market risk, and operational risk. Banks are required to
hold a minimum amount of capital based on their risk profile to ensure that they
can absorb losses and remain solvent.

The Basel Framework has undergone several revisions, with the latest version be-
ing Basel III. Basel III introduced stricter capital requirements and introduced new
measures to address liquidity and leverage risks. The framework has been widely
adopted by countries around the world, and compliance with the framework is
mandatory for banks that operate internationally.

Another good answer to get the gist of the Basel Framework. Again, let us get more specific
from here.

On the modeling side, what were the major components introduced with Basel II?

Basel II was a comprehensive revision of the Basel Framework that introduced
several changes to the way banks model and manage their risks. The major
components introduced with Basel II were:

1. Pillar 1: Minimum Capital Requirements—Basel II introduced a new risk-
based capital framework that required banks to hold a minimum amount of
capital based on their risk profile. The framework divided risks into three
categories—credit risk, market risk, and operational risk—and provided
guidelines for calculating the amount of capital required for each type
of risk.

2. Pillar 2: Supervisory Review Process—Basel II introduced a new supervisory
review process that required banks to assess their overall risk profile and
develop a comprehensive risk management strategy. Banks were required
to undergo regular reviews by their regulators to ensure that they were
adequately managing their risks.

3. Pillar 3: Market Discipline—Basel II introduced new disclosure require-
ments that required banks to provide more detailed information about their
risk profile, capital adequacy, and risk management practices to investors
and other stakeholders. The goal was to increase market discipline and
encourage banks to adopt better risk management practices.

4. Internal Ratings-Based (IRB) Approach—Basel II introduced a new approach
for calculating credit risk that allowed banks to use their own internal
models to estimate the probability of default and expected losses for their
loan portfolios. The IRB approach provided more flexibility and allowed
banks to better tailor their risk management strategies to their specific
risk profile.
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Overall, Basel II was a significant change from the previous Basel I framework, as
it introduced a more sophisticated and risk-sensitive approach to banking regu-
lation that aimed to improve the stability and soundness of the global banking
system.

Also to this question, ChatGPT provides an overall good answer. One could easily dig
deeper from here if so desired. One should note, though, that ChatGPT omitted to mention
the introduction of the standardized approach to credit risk modeling (in parallel to the
IRB approach).

3.3. Risk Measures

We now turn to the topic of risk measures, typically applied for determining risk
capital to account for future losses.

What is a risk measure?

A risk measure is a quantitative measure that is used to assess the level of risk
associated with an investment or portfolio. Risk measures are used to estimate
the potential losses that may be incurred due to adverse market movements or
other factors that may affect the value of the investment.

There are several types of risk measures, including:

1. Value at Risk (VaR)—VaR is a measure of the maximum potential loss that
an investment or portfolio may incur over a specified time period with a
given level of confidence. For example, a VaR of 95% for a portfolio of
$1 million over one day would indicate that there is a 95% chance that the
portfolio will not lose more than $X over one day.

2. Expected Shortfall (ES)—ES is a measure of the expected loss beyond the
VaR level. It provides an estimate of the average loss that an investment or
portfolio may incur in the worst-case scenario.

3. Tail Risk Measures—Tail risk measures are designed to capture the risk of
extreme events that fall outside the normal distribution of returns. These
measures are typically used to assess the risk of rare events that may have a
significant impact on the value of the investment.

4. Stress Tests—Stress tests are simulations that are used to evaluate the impact
of adverse market conditions or other events on the value of an investment
or portfolio. Stress tests are used to identify potential vulnerabilities and to
evaluate the effectiveness of risk management strategies.

Overall, risk measures are an important tool for investors and risk managers to
assess and manage the risks associated with their investments.

The first part of the answer is not an exact definition (unless the vague “quantitative
measure” is interpreted as “number”), at which point the inclusion of examples (which
would have been the topic of our next question) is helpful for learning about risk measures.
The last part outlines applications of risk measures, which is also helpful. However, some
inaccuracies and errors are present in the examples. The value at risk (VaR) at level α is
simply the α-quantile of the loss distribution. As such, it is the smallest level which is
exceeded with a probability of at most 1− α, and this is the formulation we prefer for
teaching the concept, as it conveys the idea that VaR is indeed (expected to be) exceeded
(by losses) but that this exceedance probability is limited. Speaking of a “measure of
the maximum potential loss” is not ideal, as losses exceeding VaR can (mathematically,
in principle) be unbounded. The “given level of confidence” at the end of the sentence
clarifies this to some degree but does not explain that the level of confidence refers to a
probabilistic interpretation (and therefore leaves the door open for misinterpretation). We
are not surprised by this fact; these inaccuracies often lead to misinterpretations of VaR
in practice. In fact, major books on the subjects define VaR as “worst/maximum loss. . .
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not exceeded with a given probability”; see Jorion (2006), Kosowski and Neftci (2014) or
sciencedirect.com/topics/social-sciences/value-at-risk (accessed on 17 September 2023).

The definition of expected shortfall (ES) is rather reminiscent of that of conditional tail
expectation (CTE). The two are only necessarily equivalent for continuous loss distributions;
see (McNeil et al. 2015, Proposition 8.13). Interestingly, the rather inaccurate “ES is a
measure of the expected loss beyond the VaR level” (instead of a more accurate definition
detailing what “a measure” means here) corrects this again, as ES is indeed mainly a
“measure” of the expected loss beyond VaR and not the expected loss beyond VaR itself,
but this leaves the reader with an ambiguous (rather than a proper) definition, so being a
rather rough explanation. We are also not surprised here since ES and CTE are equal for
continuous loss distributions, being the most frequently found in financial risk modeling.
Hence, the two concepts are often used interchangeably in the literature.

The inaccuracies continue with tail risk measures. The “normal distribution of returns”
could easily be confused with the inadequate distributional assumption of normality of
log-returns of financial time series; see (McNeil et al. 2015, chp. 3). Replacing “normal” by
“typical” already allows to interpret this sentence as ‘much less wrong’. The fourth example
is fine. Finally, you may have spotted a typographical error in the example for VaR. Let us
(try to) have it fixed.

In your first list item, $X is undefined. Can you provide a correction of that item, please?

I apologize for the error. Here’s a corrected version of the first list item:

1. Value at Risk (VaR)—VaR is a measure of the maximum potential loss that
an investment or portfolio may incur over a specified time period with a
given level of confidence. For example, a VaR of 95% for a portfolio of
$1 million over one day would indicate that there is a 95% chance that the
portfolio will not lose more than $X (which represents the VaR amount) over
one day.

No correction. Another trial to correct the error let to the same outcome (no correction).
This becomes frustrating and revealing fairly quickly. No one expects a chatbot to be
perfect, but if you provide a valid correction to no effect, you know you are not having
a conversation with a reasonably intelligent human being, which feels almost sad at this
point, given how well ChatGPT has performed so far.

We now dive a bit further into the distinction between ES and CTE.

Is expected shortfall indeed the expected loss beyond the VaR level or do you require any assumption
on the underlying loss distribution for this result to be mathematically correct?

You are correct that my previous definition of Expected Shortfall (ES) was not
entirely accurate. ES, also known as Conditional Value at Risk (CVaR), is defined
as the expected loss beyond the VaR level. However, to calculate ES, it is necessary
to make some assumptions about the underlying distribution of losses, such as
assuming that the losses are normally distributed or that they follow a certain
parametric distribution.

ES is a more comprehensive risk measure than VaR because it takes into account
the severity of losses beyond the VaR level, rather than just the probability of
their occurrence. ES provides an estimate of the average loss that an investment
or portfolio may incur in the worst-case scenario.

To calculate ES, one typically first calculates VaR and then estimates the expected
loss given that the loss exceeds the VaR level. This can be done using a variety of
methods, such as Monte Carlo simulation or historical data analysis, depending
on the assumptions made about the underlying distribution of losses.

I apologize for any confusion my previous response may have caused.

We see that the flawed definition of ES remained unchanged. However, ChatGPT correctly
hints at the fact that the loss distribution has to have an integrable right tail in order for

sciencedirect.com/topics/social-sciences/value-at-risk
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ES to exist. But then, the end of the first paragraph does not mention this specifically, it
rather mentions examples (the normal being far too restrictive and “certain parametric
distributions” being too vague). The first sentence of the second paragraph is surprisingly
accurate. Not only do we learn about the frequency-based nature of VaR and the severity-
based nature of ES, we now also precisely learn the connection between VaR and its
exceedance probability.

We conclude that letting ChatGPT compare different concepts may lead to more precise
results than just asking about the concepts individually. This makes ChatGPT focus on
the (often more pronounced) differences of concepts rather than providing broad-brush
approach answers.

Strictly speaking, losses to follow certain parametric distributions does not imply expected shortfall
to be conditional tail expectation. The two are equal for continuous loss distributions. Can you
confirm that?

You are correct. Losses following certain parametric distributions does not neces-
sarily imply that the expected shortfall (ES) is equivalent to the Conditional Tail
Expectation (CTE).

CTE is a risk measure that represents the expected value of the loss in the tail of
the loss distribution beyond a certain threshold, which is usually the VaR level.
CTE differs from ES in that it considers all losses beyond the VaR level, rather
than just the losses that exceed the VaR level.

While ES and CTE are often used interchangeably, they are not equivalent mea-
sures in general. However, for continuous loss distributions, ES and CTE repre-
sent the same risk measure, which is the conditional expectation of the loss given
that the loss is greater than or equal to the VaR level.

Therefore, it is important to understand the underlying assumptions and limita-
tions of each risk measure when using them for risk management and decision-
making purposes.

Overall a good answer, with the exception being the last sentence of the second paragraph,
which is more confusing than helpful.

VaR is not subadditive in general. Can you give example scenarios in which VaR is known to be
additive or superadditive?

VaR (Value at Risk) is not subadditive in general, which means that the VaR of a
portfolio may be greater than the sum of the VaRs of its individual components.
However, there are some scenarios in which VaR is known to be additive or
superadditive:

1. Additive VaR: If the individual components of a portfolio are independent
and identically distributed, then the VaR of the portfolio is equal to the sum
of the VaRs of its individual components. This is known as additive VaR.

2. Superadditive VaR: If the individual components of a portfolio are positively
correlated, then the VaR of the portfolio may be greater than the sum of the
VaRs of its individual components. This is known as superadditive VaR.

For example, consider a portfolio consisting of two stocks. If the stocks are
perfectly positively correlated, then the VaR of the portfolio would be greater
than the sum of the VaRs of the individual stocks. This is because if one stock
experiences a large loss, it is likely that the other stock will also experience a loss,
resulting in a larger overall loss for the portfolio.

In summary, VaR is not generally subadditive, but can be additive or superaddi-
tive depending on the correlation between the components of the portfolio.

The first paragraph is good; it also contains the definition of superadditive risk measures.
However, the second paragraph claims that for iid losses, VaR is subadditive. This is
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not true; take X1, X2
ind.∼ Par(1/2) with distribution function F(x) = 1− x−1/2, x ≥ 1, so

iid Pareto Type I distributed losses. One can then show that VaR is superaddive (even)
for all confidence levels; see (Hofert et al. 2020, Exercise 2.28). Note that comonotone
losses lead to additive VaR; see (McNeil et al. 2015, Proposition 7.20). The third paragraph
stays vague again, with its formulation “If the individual components [. . . ] are positively
correlated, then the VaR of the portfolio may be greater than the sum of the VaRs”, note
the “may”. Indeed, this may or may not be the case. For example, if the losses are jointly
elliptically distributed, then VaR is superadditive for confidence levels in (0, 1/2), and it is
subadditive for confidence levels in [1/2, 1). Since this holds irrespective of the correlation
between the components of the elliptical distribution, it also provides a counterexample
to the example ChatGPT gives in the fourth paragraph. Note that in practice, one often
uses “correlation” synonymously with “dependence” (rather than “linear correlation”).
However, even with this interpretation of “correlation”, the fourth paragraph is wrong in
general (we already mentioned that VaR is comonotone additive). In that regard, also the
last sentence is wrong since additivity or superaddivitity does not necessarily depend on
the correlation (or dependence) of the losses. For example, for X1, X2

ind.∼ Exp(1), VaR can be
superadditive (for small confidence levels), additive (for precisely one confidence level), or
subadditive (for large confidence levels).

Knowing that VaR is in general not additive for iid losses, let us try to see why
ChatGPT may think this holds; recall that we converted ChatGPT’s text-based answers to
LATEX expressions with a bit of formatting for increased readability.

Can you provide a mathematical proof for your statement that VaR is additive for iid losses?

Yes, I can provide a mathematical proof for the statement that VaR is additive for
iid losses.

Let X1, X2, . . . , Xn be independent and identically distributed random variables
representing the losses of n individual components of a portfolio. Let w1, w2, . . . , wn
be the weights of the respective components, such that w1 + w2 + · · ·+ wn = 1.
The portfolio loss is given by Y = w1X1 + w2X2 + · · ·+ wnXn. The distribution
of Y is the convolution of the distributions of X1, X2, . . . , Xn, which is also iid.
Therefore, the cumulative distribution function (CDF) of Y is given by:

FY(y) = P(Y ≤ y) = P(w1X1 + w2X2 + · · ·+ wnXn ≤ y)

Since the losses are independent, the joint probability density function (PDF) of
X1, X2, . . . , Xn is the product of their individual PDFs:

fX1,X2,...,Xn(x1, x2, . . . , xn) = fX1(x1) fX2(x2) . . . fXn(xn)

We can then use the convolution formula to compute the PDF of Y:

fY(y) =
∫
· · ·

∫
fX1,X2,...,Xn(x1, x2, . . . , xn)

· δ(y− w1x1 − w2x2 − · · · − wnxnn)dx1dx2 . . . dxn

where δ is the Dirac delta function. Now, we can calculate the VaR of Y at level α
as the value yα such that: P(Y ≤ yα) = α. Using the CDF of Y, we have:

α = P(Y ≤ yα) = FY(yα)

=
∫
· · ·

∫
fX1,X2,...,Xn(x1, x2, . . . , xn)

· δ(yα − w1x1 − w2x2 − · · · − wnxnn)dx1dx2 . . . dxn.
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Since the losses are iid, we can change the order of the integral and write:

α =
∫
· · ·

∫
fX(x) · δ(yα − wx)dx

where fX(x) is the PDF of X, and w = w1X1 +w2X2 + · · ·+wnXn is the weighted
average of the losses. The integral on the right-hand side is the CDF of the random
variable wx. Therefore, we have: α = P(wx ≤ yα) = FX(yα/w), where FX is the
CDF of X. Solving for yα, we get: yα = w VaRX(α), where VaRX(α) is the VaR of
X at level α. Therefore, the VaR of the portfolio Y at level α is:

VaRY(α) = yα = w VaRX(α) = w1 VaRX(α) + w2 VaRX(α) + · · ·+ wn VaRX(α)

which shows that VaR is additive for iid losses.

This “proof” has several flaws and is overall wrong, of course. For example, “The distribu-
tion of Y is the convolution” is not quite true, as the weights w1, . . . , wn are involved. The
“Therefore” is unnecessary, as this holds without any connection to convolutions. The use
of only two integral symbols but three integrator terms is also questionable, in addition
to the additional “n” at the end of the integrand; denoting the already introduced Y by
the (lowercase!) w; replacing the intergration variables x1, . . . , xn by the random variables
X1, . . . , Xn from the second-last to the last displayed equation; and suddenly speaking of X
even though it has not been introduced. More serious mistakes can be found in the last
displayed equation. First, w is a random variable, so yα = w VaRX(α) only holds if w is
constant almost surely. Also, the next/last equation is wrong in this (and other) sense(s).

Let us be optimistic and try another logical argument, the correct answer being 1; see
(Hofert et al. 2020, Exercise 2.23 b).

The shortfall-to-quantile ratio is the limit for alpha to 1 from below of expected shortfall at confidence
level alpha divided by value-at-risk at confidence level alpha. Compute this quantity for a standard
normal loss distribution.

To compute the shortfall-to-quantile ratio for a standard normal loss distribution,
we need to first calculate the expected shortfall and value-at-risk at a given
confidence level alpha. For a standard normal distribution, the expected shortfall
and value-at-risk can be calculated as follows:

Expected Shortfall (ES) at α = −1/α · (1/
√

2π) · exp(−z2
α/2)

Value-at-Risk (VaR) at α = −zα

where zα is the α-quantile of the standard normal distribution.

For example, if we want to calculate the shortfall-to-quantile ratio at a confidence
level of 95%, then α = 0.05 and zα = 1.645 (from standard normal tables). Using
the above formulas, we can calculate the ES and VaR at a 95% confidence level as
follows:

ES at 95% = −1/0.05 · (1/
√

2π) · exp(−1.6452/2) = −0.975
VaR at 95% = −1.645

Therefore, the shortfall-to-quantile ratio at a 95% confidence level for a standard
normal distribution is: Shortfall-to-Quantile Ratio at 95% = ES at 95%/VaR at
95% = −0.975/− 1.645 = 0.593

So, the shortfall-to-quantile ratio for a standard normal loss distribution at a 95%
confidence level is 0.593.

This is not what we were interested in.
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I am not interested in the confidence level 95% but the limit of the shortfall-to-quantile ratio for the
confidence level alpha to go to 1 from below.

Ah, I see. In that case, we can use the fact that for a standard normal distribution,
as the confidence level α approaches 1 from below, the corresponding quantile zα

approaches infinity. Therefore, we can use the following limiting expressions for
the ES and VaR:

lim as α→ 1−: ES at α = −1/α · (1/
√

2π) · exp(−z2
α/2) = −∞

lim as α→ 1−: VaR at α = −zα = ∞

Using these limiting expressions, we can calculate the shortfall-to-quantile ratio
as follows:

lim as α→ 1−: Shortfall-to-Quantile Ratio at α = lim as α→ 1−: ES at α/VaR at
α = lim as α→ 1−: −∞/∞ = 0

Therefore, the limit of the shortfall-to-quantile ratio as the confidence level alpha
approaches 1 from below for a standard normal loss distribution is 0.

In quantitative risk management, one commonly interprets losses as positive quantities
(negative profit and losses, if you like). As such, VaR(α) is Φ−1(α) for a confidence level
α ∈ (0, 1) close to 1 (hence our question concerning the limit for α ↑ 1). However, ChatGPT
seems to consider profit and losses (where a negative value represents a loss) and thus
focuses on the left tail of the profit-and-loss distribution. In this case, we have VaR(α) =

−Φ−1(α) and ES(α) = φ(Φ−1(α))
α for small α ∈ (0, 1). One would then need to consider

α ↓ 0 instead of α ↑ 1 to obtain a meaningful shortfall-to-quantile ratio. But let us still
see if the remaining steps ChatGPT produced are acceptable (so we consider the left tail
of the loss distribution as ChatGPT seems to do). We see that the sign of ES is wrong.
Furthermore, both computed limits for α ↑ 1 are wrong. The one for ES should be 0, and
the one for VaR should be −∞. Note that such problems also occurred in other sessions
asking the same question. Overall, the shortfall-to-quantile ratio for α ↑ 1 and left-tailed
risk measures should be 0, which ChatGPT obtained but in a questionable way from the
expression −∞/∞ = 0.

The problem of using the left versus the right tail for computing VaR and ES alone
shows how precise one needs to be when asking technical questions. Not knowing or
realizing that ChatGPT works with the wrong tail may lead to entirely different answers,
especially if one simply asks about a result without its derivation.

Computing risk measures is only the third of three key tasks of quantitative risk management.
The first two are modeling the vector of risk factor changes and computing the corresponding loss
distribution function. Even if we know the mapping from the risk factor changes to the losses,
computing the loss distribution function is difficult in general. One approach to compute the loss
distribution function is historical simulation. Can you explain how this works?

Historical simulation is a technique used in quantitative risk management to
estimate the loss distribution function of a portfolio based on historical data. The
basic idea behind historical simulation is to use past observations of the risk
factors that affect the portfolio’s value to generate a large number of possible
scenarios, and then compute the portfolio losses under each scenario using the
mapping from risk factors to losses.

Here are the steps involved in historical simulation:

1. Select a historical time period: The first step is to select a historical time
period that is representative of the current market conditions and covers
a sufficient number of market scenarios. The length of the time period
depends on the frequency of the risk factors and the desired accuracy of the
loss distribution function.
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2. Collect historical data: The next step is to collect historical data for the risk
factors that affect the portfolio’s value. This data can be obtained from
public sources or proprietary data providers.

3. Compute the returns: The historical data is used to compute the returns
of the risk factors over the time period. The returns can be computed as
simple changes in the price, or as log-returns, depending on the nature of
the risk factors.

4. Simulate scenarios: The returns are used to simulate a large number of
possible scenarios for the risk factors. This is done by randomly selecting
a sequence of returns from the historical data, with replacement, to form
a scenario.

5. Compute portfolio losses: For each scenario, the mapping from risk fac-
tors to portfolio losses is applied to compute the portfolio loss under that
scenario. The mapping can be a simple linear function, or a more com-
plex function that takes into account the correlations and nonlinearities in
the portfolio.

6. Build the loss distribution function: The portfolio losses from all the scenar-
ios are collected and used to build the empirical loss distribution function.
This is done by sorting the losses in ascending order and computing the
empirical cumulative distribution function (CDF) at each loss level.

7. Compute risk measures: Once the loss distribution function is estimated, it
can be used to compute various risk measures, such as Value at Risk (VaR),
Expected Shortfall (ES), and Tail Value at Risk (TVaR).

Historical simulation is a useful technique for estimating the loss distribution
function of a portfolio when analytical or parametric methods are not feasible
or appropriate. It allows for the incorporation of realistic market scenarios and
the capture of complex nonlinearities and correlations in the portfolio. How-
ever, historical simulation has some limitations, such as the assumption that the
future will be similar to the past and the potential for overfitting the historical
data. Therefore, it should be used in conjunction with other risk management
techniques and subject to ongoing validation and monitoring.

This is an almost perfect non-technical answer. One could stress more that the involved
mapping (from the past risk-factor changes to the corresponding losses) is based on the
current portfolio composition, so the current mapping is fed with past risk-factor change
data. Also, in Step 4, one would normally not resample the past risk-factor changes but
use all of them to compute the empirical distribution function of the implied losses and
estimate the risk measures of interest from it. And in Step 7, the mentioning of TVaR in
addition to ES is redundant (the classical estimators do not differ).

3.4. Time Series

Past observations in quantitative risk management are typically available as time series
and are thus not iid. Their modeling adds another layer of complexity when computing,
for example, time-dependent risk measures.

Define the notion of a time series.

A time series is a sequence of observations or measurements of a variable or set of
variables over time. In a time series, each observation is associated with a specific
time or time interval, which may be regular or irregular. Time series data can be
collected from a wide range of sources, such as economic indicators, financial
markets, weather stations, and sensors.

Time series data are used in many fields, such as economics, finance, engineering,
and environmental sciences, to study the behavior and patterns of the variables
over time. Some common applications of time series analysis include forecasting
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future values, detecting trends and cycles, identifying seasonal patterns, and
modeling the relationships between variables.

Time series analysis involves a variety of techniques, such as statistical models,
signal processing methods, and machine learning algorithms, to extract useful
information from the data and make predictions or decisions based on the results.
The choice of method depends on the specific characteristics of the time series,
such as its stationarity, autocorrelation, and seasonality, as well as the goals of
the analysis.

This answer is acceptable. Although we asked about a time series (an integer-indexed
stochastic process) and not about time series data or time series analysis, the stochastic
notion and its realization are often both referred to as time series. We also learn about areas
of application of time series modeling.

One of several stylized facts about univariate time series of financial data is volatility clustering.
What is volatility clustering?

Volatility clustering is a stylized fact about univariate time series of financial data
that refers to the tendency of the volatility of the series to be clustered in time.
In other words, periods of high volatility tend to be followed by periods of high
volatility, and periods of low volatility tend to be followed by periods of low
volatility.

This phenomenon is observed in many financial time series, such as stock prices,
exchange rates, and commodity prices. Volatility clustering has important im-
plications for risk management and forecasting, as it suggests that the future
volatility of a financial asset is dependent on its recent history and cannot be
predicted solely based on long-term trends or fundamental factors.

There are several possible explanations for volatility clustering. One is that
market participants are subject to herding behavior, which leads to increased
volatility when many traders act in the same direction. Another is that news
and information about the underlying economic or political factors affecting the
asset are released in clusters, leading to bursts of volatility. Additionally, some
models of financial markets, such as the GARCH (Generalized Autoregressive
Conditional Heteroscedasticity) model, incorporate volatility clustering as a
fundamental feature of the dynamics of asset prices.

In practice, volatility clustering can be measured using various statistical methods,
such as the autocorrelation function, the variance ratio test, and the Heteroge-
neous Autoregressive (HAR) model. These methods can be used to estimate
the persistence and magnitude of volatility clustering in a time series, and to
incorporate this information into risk management and forecasting models.

This answer is good. Perhaps the addition of what volatility itself is would have been
good (but then one could also ask about this separately). Concerning the last paragraph,
one would need to add that the autocorrelation function based on the return series under
consideration will not reveal volatility clustering; rather the autocorrelation function of the
absolute (or squared) value(s) of the return series does so.

Can you provide the definition of a GARCH(p,q) model?

Yes, a GARCH(p, q) model is a type of time series model used to capture the con-
ditional variance and volatility clustering in a financial time series. The acronym
GARCH stands for Generalized Autoregressive Conditional Heteroscedasticity.
The GARCH(p, q) model has the following structure:

Vt = α0 + α1 · ε2
t−1 + α2 · ε2

t−2 + · · ·+ αp · ε2
t−p + β1 ·Vt−1 + β2 ·Vt−2 + · · ·+ βq ·Vt−q

where Vt is the conditional variance of the time series at time t, εt is the standard-
ized residual (i.e., the difference between the observed value and the expected
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value divided by the conditional standard deviation), and αi and βi are the
parameters of the model to be estimated.

The first term on the right-hand side (α0) is a constant term that represents
the unconditional variance of the time series. The second term represents the
autoregressive part of the model, which captures the dependence of the current
variance on the past squared residuals (ε2

t−1, ε2
t−2, . . . , ε2

t−p). The autoregressive
part allows for the modeling of volatility clustering, as periods of high volatility
are likely to be followed by periods of high volatility. The third term represents the
moving average part of the model, which captures the dependence of the current
variance on the past values of the conditional variance (Vt−1, Vt−2, . . . , Vt−q). The
moving average part allows for the modeling of persistence in the volatility of
the time series.

The parameters of the GARCH(p, q) model can be estimated using maximum
likelihood estimation, and the fitted model can be used for forecasting, risk
management, and other applications in financial time series analysis. The GARCH
model is a popular and widely used model for modeling volatility in financial
time series.

Although there are good aspects covered in this answer, there are also subtle errors. A model
having “the following structure” does not provide an unambiguous definition. Indeed, in
terms of the conditional variance Vt as provided in the displayed equation, a GARCH(p, q)
model is εt =

√
VtZt, where (Zt)t∈Z is a strict white noise process (a series of iid random

variables with mean 0 and variance 1). A more commonly used and more meaningful
notation is given in (McNeil et al. 2015, Definition 4.22) (for µt = 0). So the displayed
equation only specifies the conditional variance of the GARCH model, not the GARCH
model itself. Also, εt is in general not called “standardized residual”, nor even “residual”,
as, at the level of the model, there are no residuals yet (as there are no data yet). Instead, the
standardized Zt are called the innovations, and their distribution is the innovation distribution.
After the parameters of the model are estimated, the resulting (non-standardized) ε̂t are the
residuals and the resulting Ẑt are the standardized residuals. Interestingly, one would think of
ChatGPT potentially making an error by calling the part α1ε2

t−1 + α2ε2
t−2 + · · ·+ αpε2

t−p of
Vt the autoregressive part and calling β1Vt−1 + β2Vt−2 + · · ·+ βqVt−q the moving average
part of the model. However, in terms of the model being εt =

√
VtZt, ChatGPT answered

correctly (see also ARCH models), even though somewhat confusingly from the perspective
of the form of Vt.

Suppose I have a realization of a time series of stock prices. How would I fit a GARCH(p,q) model?

To fit a GARCH(p, q) model to a time series of stock prices, you would typically
follow these steps:

1. Preprocess the data: This involves cleaning the data, checking for missing
values, and converting the data to a stationary series if necessary.

2. Estimate the mean: The GARCH(p, q) model assumes that the mean of the
series is constant over time, so the first step is to estimate the mean of the
series using a suitable method such as maximum likelihood or ordinary
least squares.

3. Estimate the conditional variance: The next step is to estimate the condi-
tional variance of the series using the GARCH(p, q) model. This involves
estimating the parameters αi and βi using a suitable method such as maxi-
mum likelihood or generalized method of moments.

4. Check for model adequacy: Once you have estimated the GARCH(p, q)
model, you should check for model adequacy by examining the residuals of
the model. If the residuals are white noise and do not exhibit any significant
patterns or autocorrelation, then the model can be considered adequate.
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5. Forecast future values: Finally, you can use the fitted GARCH(p, q) model
to forecast future values of the series, including the conditional mean and
variance.

Note that the process of fitting a GARCH(p, q) model can be complex and may
require some knowledge of statistical modeling and financial data analysis. It is
also important to note that GARCH(p, q) models are just one type of time series
model that can be used to analyze and forecast financial data, and that other
models such as ARMA, ARIMA, and ARCH may also be suitable depending on
the properties of the data.

Step 1 captures an important aspect, namely that time series models need to be fitted
to stationary data, hence the modeling is typically performed based on (negative) log
returns rather than the original time series of stock prices. Step 3 hints at the same problem
already mentioned, ChatGPT seems to believe that only the conditional variance term is the
GARCH(p, q) model. The remaining parts of the answer are fine (even though an ARMA
model being adequate for (negative) log-returns of financial time series is rather unlikely
due to the lack of volatility clustering).

Can you define the notation of covariance stationarity and provide conditions on the parameters of
the GARCH(1,1) model for it to have a covariance stationary solution?

Covariance stationarity refers to a stationary time series where the mean, variance,
and covariance do not change over time. In other words, the statistical properties
of the time series remain constant over time.

For a GARCH(1,1) model to have a covariance stationary solution, the following
conditions must be satisfied:

1. The ARCH and GARCH parameters must be non-negative. This ensures
that the variance of the time series is always positive.

2. The sum of the ARCH and GARCH parameters must be less than 1. This
condition ensures that the time series has a finite variance.

3. The mean of the time series must be constant over time. This can be achieved
by including a constant term in the GARCH model.

If these conditions are met, then the GARCH(1,1) model will have a covariance
stationary solution.

Overall a good answer but with one inaccuracy. Covariance stationarity does not re-
quire the (auto)covariance to remain unchanged over time; it only requires a constant
(auto)covariance among all values of the time series, a fixed number of time steps (the
lag) apart.

3.5. Extremes

We are often concerned with the largest losses, and extreme value theory provides a
theoretical framework for their modeling.

In extreme value theory, what does it mean to say that a distribution function F belongs to the
maximum domain of attraction (MDA) of a distribution function H?

In extreme value theory, it is said that a distribution function F belongs to the
maximum domain of attraction (MDA) of a distribution function H if the maxi-
mum of a sequence of independent and identically distributed random variables
with distribution function F can be approximated by the maximum of a sequence
of independent and identically distributed random variables with distribution
function H. This means that as the sample size increases, the distribution of the
maximum value converges to the distribution function H. The MDA is the largest
class of distribution functions for which this convergence occurs.
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This answer is unnecessarily complicated and also partially wrong. Let
X1, . . . , Xn

ind.∼ F. F ∈ MDA(H) means that there are sequences (cn) > 0 and (dn) such that

(max{X1, . . . , Xn} − dn)/cn converges in distribution to H. In particular, max{X1, . . . , Xn}
itself does not have to (and in general does not) converge to H in distribution; it almost
surely converges to the right endpoint xF = F−1(1) of F.

Explain what the Pickands–Balkema–de Haan Theorem says.

The Pickands-Balkema-de Haan theorem is a fundamental result in extreme value
theory that describes the behavior of the tail of a distribution. Specifically, the
theorem states that if a distribution function F belongs to the maximum domain
of attraction of a distribution function H, then for any positive threshold u, there
exist constants a(u) > 0 and b(u) such that:

P((X− b(u))/a(u) > x |X > b(u))→ 1− H(x)

as u → ∞, where X is a random variable with distribution function F, and→
denotes convergence in distribution. In other words, the theorem states that as the
threshold u becomes large, the distribution of the excesses over this threshold (i.e.,
the values of X that exceed u) converges to the generalized Pareto distribution
with shape parameter ξ = 1, which is the tail distribution of H. This result is
important because it allows us to estimate the tail distribution of a distribution F
based on the excesses over a high threshold u, which is often more reliable than
estimating the entire distribution.

There is some good content in this answer but also quite a few inaccuracies, complications,
and errors again. Let Hξ denote the generalized extreme value distribution with shape
parameter ξ. In a digestible form, the Pickands–Balkema–de Haan theorem states that
F ∈ MDA(Hξ), ξ ∈ R, if and only if there exists a positive, measurable function β(u)
such that

lim
u↑xF

sup
0≤x<xF−u

|Fu(x)− Gξ,β(u)(x)| = 0, (1)

where Fu(x) = P(X − u ≤ x |X > u) is the excess distribution function of X over the
threshold u, and Gξ,β(u) is the generalized Pareto distribution with parameters ξ ∈ R and
β(u). ChatGPT focuses on the necessity part of the statement, which is the important one
for applications. It expresses the statement in terms of the survival functions (fine) but
misses a couple of other things. That the limit is a generalized Pareto is only mentioned in
the explanation after the statement (still fine), but the convergence in the displayed equation
is ordinary convergence (as the appearing terms are probabilities or distribution functions
rather than random variables). Most importantly, the convergence is uniform. That ξ = 1 is
of course an error. Also, the limiting H is the GPD, not just “the tail distribution of H”.

An important part (somewhat hidden) of ChatGPT’s answer is something students
often struggle with when learning the Pickands–Balkema–de Haan theorem (or the related
statistical peaks-over-threshold method that exploits this theorem). It is not the conditional
exceedance probability P(X ≤ x |X > u) that converges to a GPD but the excess probability
P(X− u ≤ x |X > u); the random variable X |X > u is the exceedance, and X− u |X > u
is the excess. Also, the last sentence is in principle fine but misses the main point, namely
that the GPD is often a more reliable tail estimator than other tail estimators. In short,
ChatGPT’s answer contains good aspects but fails to clearly mention some important ones.

Suppose we have an unknown loss distribution function F for which we want to estimate expected
shortfall based on n observations. How does knowing that F belongs to the MDA of the generalized
extreme value distribution H with shape parameter xi help modeling large losses from F?

Knowing that F belongs to the maximum domain of attraction (MDA) of the
generalized extreme value distribution (GEV) H with shape parameter ξ helps
modeling large losses from F by allowing us to estimate the expected shortfall (ES)
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of F beyond a high threshold u based on the generalized Pareto distribution (GPD)
fitted to the excesses over u. Specifically, the Pickands–Balkema–de Haan (PBH)
theorem tells us that as u becomes large, the distribution of the excesses over u
converges to the GPD with shape parameter ξ = 1, which is the tail distribution
of H. This means that we can estimate the ES of F beyond u by fitting the GPD to
the excesses over u and using its mean or quantile as an estimate of the ES.

In practice, this means that if we have n observations from F, we can first estimate
the threshold u by selecting a value that corresponds to a specified tail probability,
such as 0.01 or 0.05. We can then compute the excesses over u and fit the GPD to
these excesses using maximum likelihood estimation or another method. Finally,
we can estimate the ES of F beyond u by using the mean or quantile of the fitted
GPD. This approach is particularly useful for modeling extreme losses, which are
often difficult to estimate accurately using traditional statistical methods.

The first sentence is spot on. The second is also good, apart from the two errors in “with
shape parameter ξ = 1, which is the tail distribution of H”. Similarly for the third sentence,
the beginning is good, but then suggesting to use the mean or quantile of the fitted GPD
as an estimator of ES is wrong or at least lacking accuracy; compare (McNeil et al. 2015,
Equation (5.9)) with (McNeil et al. 2015, Equation (5.19)). The same is repeated in the
second paragraph. The paragraph is overall well written, but the “0.01 or 0.05” in choosing
a threshold u “by selecting a value that corresponds to a specified tail probability, such as
0.01 or 0.05” makes little sense. Perhaps what ChatGPT means is using the estimated 99%
or 95% quantile of the given sample of size n as the threshold, but then it seems to confuse
the tails again by working with the left tail of the underlying loss distribution (even though
ChatGPT stated the Pickands–Balkema–de Haan theorem in terms of the right tail!).

For financial losses from F, one often finds that the estimated shape parameter xi of the generalized
extreme value distribution is positive. How can one characterize all such F?

All distributions F for which the estimated shape parameter ξ of the generalized
extreme value distribution is positive can be characterized as having heavy tails
and a higher probability of extreme events. This means that these distributions
have a greater likelihood of producing large or extreme losses, which can be
a significant risk for financial institutions and investors. Additionally, these
distributions are often used to model rare events, such as natural disasters or
financial crises, which can have a significant impact on financial markets and
the economy as a whole. Therefore, understanding the characteristics of such
distributions is important for risk management and decision-making in finance.

We are, of course, looking for the property of regular variation. Let us try to see if ChatGPT
finds it.

I forgot the name of the property of all F which are in the maximum domain of attraction of the
generalized extreme value distribution for positive xi. Can you help me with that?

The property of all F which are in the maximum domain of attraction of the
generalized extreme value distribution for positive ξ is called heavy-tailedness.
This means that the tails of the distribution decay more slowly than those of
a normal distribution, indicating a higher probability of extreme events. The
heavy-tailedness property is important in finance because it implies that extreme
losses are more likely to occur than they would be under a normal distribution.
Therefore, it is important for risk management and decision-making in finance to
account for heavy-tailed distributions when assessing and managing risk.

Heavy-tailedness was only a consequence of this probabilistic property. There was also a theorem
stating that all F with this tail behavior are in the maximum domain of attraction of the generalized
extreme value distribution for positive xi.

Yes, you are correct. The property of heavy-tailedness is a consequence of the
probabilistic property that all F with this tail behavior are in the maximum do-
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main of attraction of the generalized extreme value distribution for positive ξ.
This is known as the Fisher–Tippett–Gnedenko theorem, which states that any
distribution with a heavy tail will converge to one of three possible extreme value
distributions, depending on the exact shape of the tail. These extreme value dis-
tributions are the Gumbel distribution, the Fréchet distribution, and the Weibull
distribution, which correspond to negative, positive, and zero values of the shape
parameter ξ, respectively. Therefore, heavy-tailedness is a key characteristic of
distributions in the maximum domain of attraction of the generalized extreme
value distribution, and it has important implications for risk management and
decision-making in finance.

ChatGPT leads us back to our assumption of such F being in the MDA(Hξ) for ξ > 0.

I was looking for the property of regular variation of F.

I apologize for the confusion. The property you are referring to is regular variation
of F. Regular variation is a mathematical property that characterizes the tail
behavior of a distribution. Specifically, a distribution F is said to be regularly
varying if its tail behaves like a power law, meaning that the tail probability
decays at a rate proportional to a power of the tail index. In other words, if F(x)
is regularly varying with tail index α, then for any t > 0,

lim
x→∞

F(tx)
F(x)

= t−α.

Regular variation is closely related to the Fisher–Tippett–Gnedenko theorem and
the maximum domain of attraction of the generalized extreme value distribution.
In fact, one can show that a distribution F is in the maximum domain of attraction
of the generalized extreme value distribution with positive shape parameter ξ
if and only if F is regularly varying with tail index α = 1/ξ. Therefore, regular
variation is a key property for understanding the tail behavior of distributions
and their convergence to extreme value distributions.

Although expressed well overall, this answer is (still) not correct, as F in the displayed
equation should be F̄ = 1− F, a major mistake.

3.6. Dependence

For modeling jointly large losses with tailor-made multivariate distribution functions,
copula modeling has been successfully applied in quantitative risk management practice.

Suppose we model a random vector X of risk factor changes with a joint t distribution, but some of
the margins are not univariate t distributed. How can we improve the joint t distribution to obtain a
more realistic model for X?

One approach to improving the joint t distribution of a random vector X with
non-univariate t distributed margins is to use a copula function to model the
dependence structure among the margins separately from their individual distri-
butions. Copulas are mathematical functions that link the marginal distributions
of a multivariate distribution to its joint distribution. They allow us to model the
dependence structure of X without making assumptions about the individual
distributions of each component.

To use a copula, we first transform the marginals of X to their standard uniform
distribution using their cumulative distribution functions (CDFs). Then, we
model the dependence structure among the transformed marginals using a copula
function. Finally, we apply the inverse CDFs of the original marginals to the
copula-generated values to obtain a joint distribution that has more realistic
marginal distributions and dependence structure.

There are many types of copula functions available, each with different properties
and strengths. Some popular copula functions include the Gaussian copula, t copula,
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Clayton copula, and Gumbel copula. The choice of copula function will depend on
the specific characteristics of the data and the goals of the modeling exercise.

From the “non-univariate t distributed margins”, we see the predictive nature of ChatGPT,
of course the right expression would have been “non-t distributed univariate margins”.
Also the logic is a bit off in this paragraph. It is not the underlying t copula that we want
to change, it is a margin. Nevertheless, the first paragraph provides a fairly good answer.
There is also some good content in the second paragraph but again some inaccuracies. First,
“their standard uniform distribution” would better be “the standard uniform distribution”,
especially due to the second “their” in this sentence. Second, the last sentence “we apply
the inverse CDFs of the original marginals to the copula-generated values” also has its
flaws. We would not use the original margins but those that fit better; as before, we see
that ChatGPT answers the question of how we can improve the dependence among the
components of X rather than how to improve the fit of the non-t margins. And the inverse
CDFs of (any) margins are not applied to “copula-generated values” but rather realizations
of the copula (at least using the expression “copula-generated values” is ambiguous in this
regard). As such, we obtain a sample (as opposed to “a joint distribution”) from a more
realistic distribution for X than the multivariate t. The third paragraph is fine.

If we only change the marginal distributions of a random vector X, why does this not affect
its copula?

The copula of a random vector is a function that only depends on the joint
distribution of the vector, not on the marginal distributions of its components.
This means that if we change the marginal distributions of the vector, the copula
remains the same.

To understand why this is the case, consider the definition of a copula. A copula
is a function that describes the dependence structure between random variables.
It is defined as the joint distribution of the transformed variables, where the
marginal distributions of the transformed variables are uniform.

Since the copula is defined in terms of the joint distribution of the random vector,
it only depends on the relationship between the variables, not on their individual
distributions. Changing the marginal distributions of the vector does not affect
the relationship between the variables, so the copula remains the same.

In other words, the copula captures the dependence structure between the vari-
ables, while the marginal distributions capture their individual behavior. Chang-
ing the marginal distributions does not change the dependence structure, so it
does not affect the copula.

I was looking for the invariance principle. Do you know what the invariance principle says?

Yes, the invariance principle is a fundamental concept in probability theory that
states that certain properties of probability distributions are invariant under
certain transformations.

In particular, the invariance principle states that if we apply a measurable trans-
formation to a random variable, the resulting probability distribution will have
the same properties as the original distribution, as long as the transformation
is measurable.

For example, if we apply a monotonic transformation to a random variable, such
as taking the logarithm or the square root, the resulting distribution will have
the same shape and properties as the original distribution, such as its moments,
skewness, and kurtosis.

The invariance principle is closely related to the concept of a copula, which is
a function that captures the dependence structure between random variables,
regardless of their individual marginal distributions. The copula is invariant
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under monotonic transformations of the variables, which means that changing
the marginal distributions of a random vector does not affect its copula.

Overall, the invariance principle is a powerful tool for analyzing and modeling
probability distributions, as it allows us to focus on the essential properties of the
distribution, rather than its specific form or representation.

The first paragraph is fine, albeit a bit vague. In the context of copulas, the second paragraph
is wrong. One would need the transformations not only to be measurable but also strictly
increasing on the ranges of the underlying random variables. The third paragraph starts
by mentioning monotonicity (but again not that the transformations must be increasing);
however, from the perspective of a single random variable (the case in this part of the
answer), ChatGPT is wrong since moments can and typically do change when transforming
random variables. The fourth paragraph is promising, as it mentions what we are looking
for, but it again omits the increasingness.

The invariance principle explains why the underlying copula remains unchanged when we estimate
the marginal distributions of a random vector X by their empirical distribution functions based on iid
observations from X. After componentwise transforming the observations from X with their empirical
marginal distribution functions, we obtain the so-called pseudo-observations of the observations
from X. From a theoretical point of view, pseudo-observations share a drawback in comparison to
observations from X or actual observations from the underlying copula. What is this drawback?

The drawback of using pseudo-observations is that they are not independent,
unlike observations from X or actual observations from the underlying copula.
This lack of independence can affect the accuracy and reliability of statistical
inference and modeling based on pseudo-observations.

Finally, a spot-on answer on a more technical subject!

Does the pointwise largest possible copula (the upper Frechet–Hoeffding bound) lead to the largest
correlation between the two components of a bivariate random vector X irrespective of the two
marginal distributions of X?

Yes, the upper Fréchet–Hoeffding bound is the copula that maximizes the corre-
lation between the two components of a bivariate random vector X, regardless
of the two marginal distributions of X. This means that the upper Fréchet–
Hoeffding bound is the strongest possible dependence structure that can exist
between the two components of X, and any other copula that is consistent with
the given marginal distributions of X will have a lower correlation between
the components.

Omitting the unnecessary “that is consistent with” makes this a good answer, too.

Do you know how this result is shown mathematically?

Yes, the result that the upper Fréchet–Hoeffding bound maximizes the corre-
lation between the components of a bivariate random vector X can be shown
mathematically as follows:

Let X = (X1, X2) be a bivariate random vector with marginal cumulative distri-
bution functions F1 and F2, respectively. Let C be a copula that is consistent with
the marginal distributions of X, i.e., C(F1(x1), F2(x2)) = P(X1 ≤ x1, X2 ≤ x2) for
all x1, x2.

The correlation between X1 and X2 can be expressed in terms of the copula C as:

ρ(X1, X2) =
2
π

sin(πC(u, v))

where u = F1(X1) and v = F2(X2) are the transformed uniform margins under C.

There was more output, but we omitted it here (only) for this particular question, as what
we listed above already shows a major flaw in the argument, namely that the right-hand
side of the displayed equation depends on the random variables u, v (unfortunately given



Risks 2023, 11, 166 24 of 29

in terms of lowercase letters instead of uppercase, which should be avoided at all costs).
Asked why this formula holds, ChatGPT argued with Sklar’s theorem and then magically
used it from one equality sign to the next. The correct argument can be found in (McNeil
et al. 2015, Theorem 7.28).

I would like to sample from a bivariate distribution with log-normal LN(0,1) and LN(0,16) margins,
and correlation 0.5. How can I do that?

To sample from a bivariate distribution with log-normal LN(0, 1) and LN(0, 16)
margins, and correlation 0.5, you can use the following steps:

1. Generate two independent standard normal random variables Z1 and Z2.
2. Transform Z1 and Z2 to log-normal random variables with mean 0 and

standard deviation 1 and 4, respectively, using the inverse of the log-normal
cumulative distribution function. That is, set:

X1 = exp(µ1 + σ1 · Z1)

X2 = exp(µ2 + σ2 · Z2)

where µ1 = 0, σ1 = 1, µ2 = 0, σ2 = 4, and Z1 and Z2 are the standard
normal random variables generated in step 1.

3. Generate a copula with a correlation of 0.5. One way to do this is to use the
Gaussian copula with a correlation matrix given by:[

1 0.5
0.5 1

]
This correlation matrix can be obtained by transforming the correlation of
0.5 using the inverse of the Fisher transformation.

4. Generate a random sample of size n from the copula using the inverse
transform method. That is, for each i = 1, 2, . . . , n, generate two uniform
random variables U1,i and U2,i using the inverse of the Gaussian copula. This
can be done using the bivariate standard normal cumulative distribution
function and the Cholesky decomposition of the correlation matrix. That
is, set:

Z = (Z1, Z2)

Σ =

[
1 0.5

0.5 4

]
∆ = chol(Σ)

U = Φ(∆−1Z)

where Φ is the bivariate standard normal cumulative distribution function,
chol is the Cholesky decomposition function, and ∆−1 is the inverse of the
Cholesky factorization of Σ.

5. Transform each pair of uniform random variables (U1,i, U2,i) to log-normal
random variables (X1,i, X2,i) using the inverse of the log-normal cumulative
distribution function. That is, set:

X1,i = exp(µ1 + σ1 ·Φ−1(U1,i))

X2,i = exp(µ2 + σ2 ·Φ−1(U2,i))

where Φ−1 is the inverse of the standard normal cumulative distribution
function.
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6. The resulting pairs (X1,i, X2,i) for i = 1, 2, . . . , n are a random sample from
the bivariate distribution with log-normal LN(0, 1) and LN(0, 16) margins,
and correlation 0.5.

Note that step 4 and 5 can also be done using other copula models and transfor-
mation methods, depending on the specific requirements of the application.

This is a classical example from the realm of dependence modeling in quantitative risk
management. The short answer is, such a model does not exist, so there can also not
be a valid sampling procedure. In Step 1, ChatGPT advises to “Generate [. . . ] random
variables”, the first inaccuracy (one can only generate realizations, not random variables).
In Step 2, a (linguistic) error is to speak of the random variables X1, X2 having mean 0 and
standard deviations 1 and 4, respectively (the mean and standard deviation of LN(µ, σ2)

are exp(µ + σ2/2) and
√
(eσ2 − 1) exp(2µ + σ2), respectively). In Step 3, ChatGPT first

goes wrong by constructing a Gaussian copula with a parameter matrix being a correlation
matrix with off-diagonal entry 0.5; how ChatGPT wants to apply the Fisher transformation
remains its secret. However, once this Gaussian copula is combined with the log-normal
margins, the correlation will change (to a value fairly close to 0) since Pearson’s correlation
coefficient is affected by the marginal distributions. In Step 4, ChatGPT then describes the
construction in terms of samples. With the “inverse of the Gaussian copula”, it most likely
means the inverse Rosenblatt transform, which could indeed be used but, similar to before,
this is not the most straightforward way. It then mixes the notions of generated samples,
bivariate distribution functions and Cholesky decompositions. What it actually suggests to
construct at the end of Step 4 is strange. The appearing bivariate random vector ∆−1Z is
bivariate normal with covariance matrix Σ (note the non-unit variances on the diagonal yet
the off-diagonal 0.5). It suggests to apply the bivariate N(0, I2) distribution function, where
I2 denotes the identity matrix in R2×2. This would leave us with only a one-dimensional
sample. Even if ChatGPT meant to apply the univariate N(0, 1) distribution function
componentwise, we would not obtain a copula sample, as the second margin of ∆−1Z is
not N(0, 1). And again note the switch back from the focus on samples to the focus on
random variables. Step 5 now again makes the switch to samples but correctly describes
the transformation to log-normal margins (just the input samples (U1,i, U2,i) are still the
wrong ones from Step 4).

4. Summary

Overall, the questions we asked ChatGPT are standard in undergraduate or graduate
courses on quantitative risk management. Table 1 provides our average rating for Chat-
GPT’s answers on the different subjects we covered (with the number of questions asked in
parentheses). One must point out that the ratings should not be overinterpreted, as they
are solely based on our own judgment of the correctness of the answers provided.

Table 1. Average 5-star rating (number of questions asked in parentheses) for each subject.

Reproducibility Risk Risk Measures Time Series Extremes Dependence

3.6 (5) 4.72 (9) 2.72 (9) 4.2 (5) 3 (7) 3.14 (7)

More meaningful would be to present ChatGPT’s answers to a larger number of
experts for their assessment, perhaps even with different rubrics, for example, to determine
how valuable a response is to a first learner of the subject, an experienced user, an industry
practitioner, or an instructor of a course on the topic.

5. Conclusions

Based on how ChatGPT answered our questions, we can draw the following conclusions:
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1. The mathematical one. Asking technical questions clearly shows the limitations of
ChatGPT 3.5. The fact that such a predictive model has no built-in logical structure as
rigorous as expected in mathematics implies that one effectively must rely on chance
to obtain a fully correct answer; see also Young (2023). One therefore has to constantly
question every single word or formula obtained from ChatGPT (this can indeed be
used in a meaningful way, see below!). This especially applies to definitions, where
oftentimes rather ambiguous explanations are provided instead, at least as first parts
of ChatGPT’s responses. Even if ChatGPT corrects itself in a follow-up clarification,
apologizes and sounds fully confident about its corrections of a mistake, the answer
can still be wrong (or, as we saw, even remain unchanged). So without being an expert
on the subject matter, it is risky, if not dangerous, to “trust” ChatGPT’s answers, so
fact checking is necessary. From a practical point of view, this is concerning and will
inevitably lead to wrong decisions being made when people (at any rank) blindly rely
on ChatGPT’s (and potentially many other AIs) responses. The phenomenon of the
seemingly convincing but entirely wrong answers of large language models such as
ChatGPT is also known as “hallucination”; see Crouse (2023) or Rodger (2023). As
such, a self-assessment of ChatGPT’s confidence in a particular response or related
references (as provided by Google’s Bard) would be useful. We had a slightly better
experience when asking about the differences between similar or related concepts (for
example different types of risks or risk measures). This may be one way of (slightly)
improving ChatGPT’s quality of answers.

2. The dangerous one. One can never be sure to have provided ChatGPT with enough
information to uniquely solve a problem or obtain a sufficiently accurate answer. We
saw this when ChatGPT worked with the (left tail of the) profit-and-loss distribution
instead of the (right tail of the) loss distribution. These are things not easily spotted,
especially if one only asks for a final result and not a derivation, or if one does not
carefully check the latter. Our aforementioned concern on practical implications
applies here, too.

3. The frustrating one. When one tries to correct an error that ChatGPT makes, it some-
times repeats the same wrong argument. This is not surprising, as ChatGPT is not
updated on the fly. It is nonetheless frustrating, especially when it is an (to the human
eye) obvious error, such as the $X in the first question on risk measures. In these
moments, one realizes that one is only interacting with an artificial intelligence and
not a real one (the Turing test comes to mind). Careful prompt engineering may lead
to a correct answer after some trials. However, if one has to ask multiple times, hinting
at the underlying concept in different ways just to get a satisfactory answer, then this
already requires a good understanding of the concept and thus defeats the purpose
of using ChatGPT for obtaining information about said concept in the first place.
Alternatively, one could provide additional texts to ChatGPT and ask it to specifically
answer based on the provided texts, for example, articles one suspects to be of high
quality or to contain expert knowledge on the subject. However, this again fails for
mathematical equations and notation. Given the progress of the quality of chatbots in
the past year, one can be optimistic that some of these (more obvious) issues will be
solved in future versions, at which point it would be interesting to assess ChatGPT’s
performance on our set of questions again.
Also annoying was that even for fairly well-known mathematical facts (for example,
those available from Wikipedia pages), the arguments that ChatGPT provided were
too complicated, or used rather non-standard notation, which can make it unnecessar-
ily hard to learn a new concept. A good notation can go a long way towards grasping
a concept as every experienced teacher knows. In that sense, we do not share some
news articles’ practical concern of ChatGPT replacing teachers any time soon (see also
Point 6 below).

4. The unexpected one. The non-reproducibility of answers is more of an issue than one
might think. A correctly answered question can turn into a wrong one when asked
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again or, more often, when asked in a slightly different manner, and the other way
around. For casual conversations (including those with humans, where dialogue part-
ners may also be wrong sometimes), this may not matter (depending on the context).
But for the purpose of obtaining reliable information, this is a severe drawback. It was
also criticized during peer review of this article (as reviewers also asked their ChatGPT
versions to answer similar questions, with partly different but overall similar results to
ours), and rightfully so (hence, our first section on non-reproducibility). In fact, from
an academic point of view and in light of the scientific method, non-reproducibility is
detrimental. This is reminiscent of training neural networks with current software,
where setting seeds is neither commonly applied nor always possible. This means
that one cannot suggest, say, to students or practitioners (interested in learning about
a concept) to use ChatGPT for certain pre-verified subjects or types of questions (or
seeds!). Note that the temperature parameter is only partially useful for alleviating
this problem, as it does not solve the problem of reproducibility when ChatGPT is
“constantly being updated” as ChatGPT itself wrote in its first answer. Nevertheless,
we saw similar types of answers across all questions we asked, and overall similar
observations were made by reviewers (even though we do not know the versions of
ChatGPT they used). Our current best advice is to give ChatGPT sufficient context
(which means providing ChatGPT with more details than you would think are nec-
essary) to be able to answer a question appropriately and to ask in different ways
to see the bigger picture, but this requires a good understanding of the subject; see
our Point 3. One observation is that ChatGPT answers more reliably when asked
to compare two similar concepts that are otherwise more easily confused; see also
Point 1 above.

5. The promising one. We found ChatGPT especially helpful for summarizing topics
covered by a large amount of literature such as the financial crisis of 2007 to 2009, so
tasks more related to qualitative than quantitative risk management. It would take
much longer to skim the world wide web for a good summary on the subject. This
should not come as a surprise due to the massive amount of training data available
on the subject. ChatGPT is typically also helpful for finding the pros and cons of
well-known modeling approaches and thus helps to reduce one’s own potential bias.
An advantage is that one can easily play with the length of output that ChatGPT
produces and can thus quickly obtain an overview depending on how much reading
time one wants to spend.

6. The educational one. As just mentioned, use ChatGPT to summarize well-covered,
non-mathematical topics. Using it to learn about a specific mathematical concept
(and thus asking for definitions, characterizations, properties, etc.) is not advisable
at this stage. However, as hinted at before, ChatGPT could well be integrated into
learning about risk in the curriculum at a later stage. Once a topic was covered in a
course or prepared for an exam, instructors could ask students to prepare questions
for ChatGPT, and then instructors and students could jointly analyze ChatGPT’s
responses, try to find its hallucinations and thus solidify their own understanding of
the topic and enhance critical thinking. Also letting ChatGPT generate pros and cons
essays and then analyzing how convincing both types of arguments are is an idea.
As such, ChatGPT could replace a classical study buddy who you would meet after
self-studying for an exam to ask possible exam questions and then give feedback to
(and vice versa).

7. The practical one. ChatGPT may also be helpful in identifying the “unknown un-
knowns”, the risks we do not know that we do not know. This is because ChatGPT
may have been trained on sources covering risks we did not face before and can-
not imagine facing. A similar idea led to the introduction of operational risk loss
databases after operational risk became a risk class required to be modeled by finan-
cial companies with its introduction in Basel II. Companies paid to obtain access to
anonymized loss data from a pool of (other) companies in order to use those losses for
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in-house stress testing. This usage of ChatGPT is much cheaper and is not limited to
bigger companies but also available to smaller ones or even individuals. For example,
start-ups not able to afford consulting may rather ask ChatGPT about various risks
they may face. Or, individuals who do not trust their local insurance agent to provide
them with an unbiased view on various insurance products could ask ChatGPT for
recommendations about which are (or are not) useful from an individual’s perspective.
Answers may not always be reliable, but whatever is pushed onto your radar that
was not there before is good from a (holistic) risk management perspective.

8. The inspiring one. ChatGPT can be used for motivation and as a catalyst when infor-
mally learning about risk. It can also serve as inspiration for creating the title of a talk
or a conference. Here is an example:

Write an eight line poem about quantitative risk management that encourages students to
learn more about this subject.

Quantitative risk management, oh so wise
It’s a subject you should not despise
Learn about numbers, probabilities, and stats
And how they help to mitigate mishaps

Risk is present in all that we do
But with QRM, we can see it through
So dive in deep, don’t be afraid
And let your knowledge on this subject be displayed!
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