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Abstract: Defined benefit (DB) pension plans are a primary type of pension schemes with the
sponsor assuming most of the risks. Longevity-indexed bonds have been used to hedge or transfer
risks in pension plans. Our objective is to study an aggregated DB pension plan’s optimal risk
management problem focusing on minimizing the solvency risk over a finite time horizon and
to investigate the investment strategies in a market, comprising a longevity-indexed bond and a
risk-free asset, under stochastic nominal interest rates. Using the dynamic programming technique in
the stochastic control problem, we obtain the closed-form optimal investment strategy by solving
the corresponding Hamilton–Jacobi–Bellman (HJB) equation. In addition, a comparative analysis
implicates that longevity-indexed bonds significantly reduce solvency risk compared to zero-coupon
bonds, offering a strategic advantage in pension fund management. Besides the closed-form solution
and the comparative study, another novelty of this study is the extension of actuarial liability (AL)
and normal cost (NC) definitions, and we introduce the risk neutral valuation of liabilities in DB
pension scheme with the consideration of mortality rate.

Keywords: longevity-indexed bond; DB pension plan; solvency risk management; asset allocation;
stochastic optimal control; HJB equation

MSC: 93E20; 97M30

1. Introduction and Motivation

There are two primary types of pension schemes: defined contribution (DC) plans and
DB plans (Recent works on DC and DB pension plans can be found in Ng and Chong (2023);
Guan et al. (2022), respectively). In a DC pension scheme, contributions are deterministic or
a percentage of the member’s salary (which may be stochastic), with benefits depending on
the accumulation of contributions and investment returns. In this scenario, the individual
bears the majority of the inherent risk. Conversely, in a DB pension scheme, the benefits
received upon retirement are clearly defined by the plan’s rules (typically related to salary
and years of service), with the sponsor assuming most of the risks, including investment,
inflation, longevity and solvency risks.

Longevity risk, the concern of policyholders or affiliates outliving insurers’ or pension
sponsors’ expectations, has garnered significant academic and practical interest recently. The
work of Cox et al. (2013) proposes hedging strategies for managing this risk, yet natural
hedging methods cannot mitigate all aspects of longevity risk within nonparametric mortality
models; see Zhu and Bauer (2014). Further studies on longevity risk are detailed in subsequent
research: Blake and Cairns (2021); Broeders et al. (2021); Rong et al. (2023), etc. To transfer or
hedge against longevity risk, the literature extensively discusses products related to longevity.
The work of Chen et al. (2023) investigates optimal longevity risk transfer under asymmetric
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information using indemnity longevity swaps. Moreover, the market offers longevity caps,
longevity floors and longevity-indexed bonds; see Bravo and Nunes (2021).

Longevity-indexed bonds are financial instruments linked to mortality rates, bridging
financial and actuarial risks. Blake et al. (2006) thoroughly analyzed such assets, with
Barbarin (2008) applying the Heath–Jarrow–Morton (HJM) methodology for a more realistic
market model of longevity bond prices. Wills and Sherris (2010) focused on the structuring
and pricing of longevity securities using mortgage and credit risk techniques. Other works
on longevity bond can be found in Bauer et al. (2010); Leung et al. (2018).

Longevity-indexed bonds and other longevity-linked securities are widely studied in
stochastic optimal consumption/portfolio decision problems. In order to maximize the
terminal utility function for an economic agency, Menoncin (2008) investigated the role of
a longevity-indexed bond in optimal portfolios and found that the value function in the
market with a longevity bond is equal or greater than that without a longevity bond. By
trading a longevity-linked security with continuous rate payments, Biagini et al. (2013)
examined the mean-variance hedging for insurance products through longevity-linked
securities. Further research on optimal strategies for longevity bonds is documented in
various studies; see Kort and Vellekoop (2017); Menoncin and Regis (2017).

However, for pension plans, longevity-indexed bonds and other longevity-linked
securities are not comprehensively studied in stochastic optimization problems. Usually,
the pension sponsor allocates the fund in financial market consisting of several kinds of
risky and risk-less assets; thus, it is important to consider the kind of assets to hold and the
number of shares to buy. There are a few works that study the role of longevity bonds and
longevity insurances in pension schemes. In DC pension schemes, Zhang (2018) studied
optimal investment decisions in a longevity bond, implying the optimal expected utility
in the market with a longevity bond is higher than that without it. Berstein and Morales
(2021) examined the role of longevity insurances and found that longevity insurances could
finance higher pension efficiently. In hybrid pension plans, Liu et al. (2023) examined a
longevity bond and revealed that the optimal benefit payment with a longevity-indexed
bond is higher than that without it. In DB pension schemes, Cox et al. (2013) investigated
optimal investment decisions numerically, but not analytically, and found that longevity
bonds can be used to hedge longevity risks, within a discrete time framework.

Our motivation is to find the closed-form investment decisions on longevity bonds
within a continuous time framework and examine whether longevity bonds play a positive
role or not in a DB pension plan. Theoretically, with the longevity risk increasing, the
solvency risk also increases in most cases. As longevity bonds play a positive role and
can hedge longevity risks in Zhang (2018); Liu et al. (2023); Cox et al. (2013), we think it is
reasonable to suppose that investment in longevity bond may reduce solvency risk in DB
pension plans.

This paper considers an optimization problem in an aggregated DB pension plan
which pays close attention to solvency risk. It involves continuously adjusting investment
weights within a market comprising a longevity bond and a bank account, aiming to
minimize terminal solvency risk within a finite time frame.

Our contribution is three-fold. Theoretically, our work offers closed-form investment
decisions on a longevity bond. Moreover, this research advances previous work (see Josa-
Fombellida and Rincón-Zapatero 2010) by providing an explicit form of optimal solvency
risk. Empirically, this work investigates the role of longevity bond in an aggregated DB
pension plan. Practically, we extend the definitions of AL and NC in Josa-Fombellida and
Rincón-Zapatero (2004, 2010) with the consideration of mortality rate, thereby deriving a
new actualization rate.

The remainder of this study is organized as follows: Section 2 introduces the pension
model and three assets within a stochastic interest rate framework. Section 3 identifies the
optimal investment strategy and the minimum solvency risk with investment in a complete
market consisting of a longevity-indexed bond and a risk-free asset. We derive the HJB
equation using the dynamic programming approach. Section 4 examines the case replacing
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the indexed bond with a zero-coupon bond. Section 5 conducts a sensitivity analysis and
compares the solvency risks in Sections 3 and 4. Finally, Section 6 concludes the paper and
suggests directions for further research.

2. Model Assumptions and Notations

We let (Ω, F ,F,P) be a filtered probability space. Filtration F = {Ft}t∈[0,T0]
sat-

isfies the usual conditions, i.e., {Ft}t∈[0,T0]
is right continuous and F0 contains all the

P-negligible events in F . Here, T0 is a constant terminal time (which is shown later in
Section 2.2). We let E be the expectation with respect to probability measure P, and E(·|Ft)
denotes conditional expectation with respect to probability measure P given by information
available up to time t.

2.1. The Pension Model

In an aggregated DB pension plan, with the purpose of delivery of benefits to the affil-
iates after retirement time, the plan sponsor withdraws time-varying funds continuously.
We use the following notations of elements for the pension plan:

AL(t): Actuarial liability at time t, that is, the level of reserve to be detained by the
pension fund and fixed by the chosen funding method, which is the liability part of the
pension plan;
F(t): Fund at time t, which is the market value of assets covering the actuarial liability
(asset part);
UAL(t): Unfunded actuarial liability at time t, which is the difference between the actuar-
ial liability (reserve that we should have) and the fund (reserve that we really have). This
amount can be positive (deficit or underfunding) or negative (surplus or overfunding);
P(t): Benefits promised to affiliates at time t;
C(t): Contribution rate at time t;
NC(t): Normal cost at time t;
SC(t): Supplementary contribution rate, which satisfies C(t) = NC(t) + SC(t);
M(x): Percentage of promised benefits accumulated up to age x ∈ [a, d], a, d ∈ R+; hence,
we have M(a) = 0 and M(d) = 1. We assume that M is differentiable;
m(x): The probability density of M;
δ(t): Technical rate of actualization;

λ(t): Force of mortality, which is defined by λ(t) = lim
△t→0

P(τx<t+△t | τx>t)
△t , where τx is the

future residual lifetime of a life who survives to age x.

Remark 1. Force of mortality λ is deterministic in the context. There are lots of different assump-
tions on the form of λ. For simplicity, λ has a form of ω

ω−t in Guan and Liang (2014), where ω is
the largest survival age.

For analytical tractability, we have two assumptions following in the work of Josa-
Fombellida and Rincón-Zapatero (2010) and the work of Liang et al. (2014):

Assumption 1. Benefit P follows a drifted Brownian Motion:

dP(t) = µPP(t)dt + σPdWP(t), (1)

with initial liability P(0) = P0. µP, σP ∈ R+ and WP is a standard Brownian Motion under
probability measure P.

Assumption 2. Supplementary contribution is proportional to the unfunded actuarial liability, so
the total contribution satisfies

C(t) = NC(t) + k(AL(t)− F(t)), (2)
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where k ∈ [0, 1] is a constant.

We extend the definitions of the actuarial functions AL and NC in Josa-Fombellida
and Rincón-Zapatero (2004) (with deterministic interest rate) and Josa-Fombellida and
Rincón-Zapatero (2010) (with stochastic interest rate), with consideration of mortality rate
in Definition 1.

Definition 1. For every t ≥ 0, AL(t) and NC(t) are defined as follows:

AL(t) = E
{∫ d

a
e−

∫ t+d−x
t δ(s)ds M(x)P(t + d − x)d−x pt dx

∣∣∣∣Ft

}

= E
{∫ d

a
e−

∫ t+d−x
t [δ(s)+λ(s)]ds M(x)P(t + d − x)dx

∣∣∣∣Ft

}
;

NC(t) = E
{∫ d

a
e−

∫ t+d−x
t δ(s)dsm(x)P(t + d − x)d−x pt dx

∣∣∣∣Ft

}

= E
{∫ d

a
e−

∫ t+d−x
t [δ(s)+λ(s)]dsm(x)P(t + d − x)dx

∣∣∣∣Ft

}
,

where t px is the probability that a life aged x will survive at least t years. AL(t) is the total expected
benefits accumulated by percentage M(x) with consideration of mortality rate λ(t), discounted at
technical rate δ(t). Analogous explanation can be given to NC(t) according to probability density
function m(x).

Remark 2. If we set λ = 0 in AL and NC in Definition 1, it degenerates into the case given by
Josa-Fombellida and Rincón-Zapatero (2010) without consideration of mortality rate.

Using basic properties of conditional expectation, AL and NC in Definition 1 can be
rewritten as

AL(t) =
∫ d

a
E
{

e−
∫ t+d−x

t [δ(s)+λ(s)]dsP(t + d − x)
∣∣∣∣Ft

}
M(x)dx;

NC(t) =
∫ d

a
E
{

e−
∫ t+d−x

t [δ(s)+λ(s)]dsP(t + d − x)
∣∣∣∣Ft

}
m(x)dx.

The identities of AL and NC and the connection between them are given in Proposition 1.

Proposition 1. Actuarial functions AL and NC satisfy AL = ψALP and NC = ψNCP, and the
connection of AL and NC is given by[

µP − δ(t)− λ(t) +
ξAL(t)
ψAL(t)

]
AL(t)− NC(t) + P(t) = 0,

where ψAL, ψNC and ξAL are the following stochastic processes:

ψAL(t) =
∫ d

a
e−

∫ t+d−x
t [µP−δ(u)−λ(u)]du M(x)dx,

ψNC(t) =
∫ d

a
e−

∫ t+d−x
t [µP−δ(u)−λ(u)]dum(x)dx,

ξAL(t) =
∫ d

a
e−

∫ t+d−x
t µP−δ(u)−λ(u)du[µP − δ(t + d − x)− λ(t + d − x)

]
M(x)dx −

(
µP − δ(t)− λ(t)

)
ψAL(t).
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Moreover, the actuarial liability satisfies

dAL(t) =
[
µP +

ξAL(t)
ψAL(t)

]
AL(t)dt + σP AL(t)dWP(t), (3)

with AL(0) = ψAL(0)P0 ≜ AL0.

Proof of Proposition 1. The proof is similar to that in the work of Josa-Fombellida and
Rincón-Zapatero (2010), so it is omitted here.

2.2. The Financial Market

We assume that the nominal instantaneous interest rate follows the Vasicek model,
which satisfies the stochastic differential equation (henceforth SDE):

dr(t) = (a − br(t))dt + σrdWr(t), (4)

with initial value r(0) = r0, where Wr is a standard Brownian Motion under P, and a, b and
σr are all positive constants. In the context of this work, we assume that Wr is correlated
with WP and the correlation coefficient is ρ, since inflation has effects on both interest rate
and salary, and P(t) is usually related to the salary at the moment of retirement.

Now, we define W0(t) such that

dWP(t) = ρ(t)dWr(t) +
√

1 − ρ2(t)dW0(t),

with W0(0) = 0. Thus, Wr and W0 are independent Brownian motions transforming
Equations (1) and (3) into the following forms:

dP(t) = µPP(t)dt + σP

[
ρ(t)dWr(t) +

√
1 − ρ2(t)dW0(t)

]
,

dAL(t) =
[
µP +

ξAL(t)
ψAL(t)

]
AL(t)dt + σP AL(t)

[
ρ(t)dWr(t) +

√
1 − ρ2(t)dW0(t)

]
. (5)

We assume that there are three continuously tradable and perfectly divisible under-
lying instruments in the financial market. Moreover, we suppose that borrowing and
short-selling are permitted.

a. A risk-less asset S0(t) is modeled by

dS0(t)
S0(t)

= r(t)dt, (6)

with S0(0) = 1.
b. A zero-coupon bond (or a T-bond) pays one dollar at its expiration time T0 which

can be thought of as a derivative of interest rate. Its value B(t, T0) at time t can be written as
the expected present value of its future cash flow under the equivalent martingale measure

Q, under which the present value process, e−
∫ t

0 r(u)duB(t, T0), is a local martingale:

B(t, T0) = EQ

{
e−

∫ T0
t r(u)du

∣∣∣Ft

}
,

where EQ denotes the expectation with respect to measure Q.

By the martingale property of the discounted process, e−
∫ t

0 r(u)duB(t, T0), and following
the work of Menoncin (2008), we obtain

dB(t, T0) = B(t, T0)r(t)dt +
∂B(t, T0)

∂r(t)
σrdWQ

r (t),
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with terminal condition B(T0, T0) = 1, where WQ
r (t) is a standard Brownian motion under

measure Q. By the Girsanov theorem, we have dWQ
r (t) = ζrdt + dWr(t), where ζr is

the market price for interest rate risk. The corresponding Radon–Nikodym derivative is
Λ(T0) = dQ/dP = exp[−ζrWr(T0)− 1

2 ζ2
r T0]. Consequently, we have the SDE of B(t, T0)

under physical measure P:

dB(t, T0)

B(t, T0)
= (r(t) +∇B

r σrζr)dt +∇B
r σrdWr(t),

where ∇B
r = ∂B(t,T0)

∂r(t)
1

B(t,T0)
is the semi-elasticity of bond price B(t, T0) with respect to

interest rate r. ∇B
r is negative because bond price usually negatively reacts to fluctuates

in interest rate. It has an explicit form of e−b(T−t)−1
b under the Vasicek model given by

Equation (4). Thus, ζr is negative, because the bond has positive premium compared with
the bank account.

Remark 3. The explicit formula of the zero-coupon bond process (B(t, T0))t∈[0,T0]
with Vasicek’s

interest rates is B(t, T0) = A1(t, T0)e−A2(t,T0)r(t), with

A1(t, T0) = exp
{[ a

b
− σ2

r
2b2

][
A2(T0 − t)− (T0 − t)

]
− σ2

r
4b

A2(t, T0)
2
}

,

and
A2(t, T0) =

1
b
(
1 − e−b(T0−t)).

c. A longevity-indexed bond is defined with the same terminal time T0, from which
the investor can obtain lT0 /lt at the maturity time, where lt is the amount of people of a
given population (whose ages are all x at initial time 0) who have survived from time 0 to
time t. By the fundamental theorem of asset pricing, we obtain the price of the longevity
bond at time t:

L(t, T0) = EQ

{
lT0

lt
e−

∫ T0
t r(u)du

∣∣∣Ft

}
= EQ

{
T0−t px+t e−

∫ T0
t r(u)du

∣∣∣Ft

}

= EQ

{
e−

∫ T0
t λ(u)du e−

∫ T0
t r(u)du

∣∣∣Ft

}
= e−

∫ T0
t λ(u)du B(t, T0).

Following Zhang (2018), we have

dL(t, T0)

L(t, T0)
= λ(t)dt +

dB(t, T0)

B(t, T0)

= (λ(t) + r(t) +∇B
r σrζr)dt +∇B

r σrdWr(t)

(7)

with terminal condition L(T0, T0) = 1. Thus, we obtain a correlation between the prices of
a longevity bond and a zero-coupon bond.

Remark 4. If we set λ = 0, the SDE of the longevity bond degenerates to the SDE of the zero-coupon
bond; thus, the latter can serve as a special case of the former.

Remark 5. The market may also consist of stocks or other kind of assets, but the purpose of this
work is to investigate the behavior of the longevity bond in solvency risk management, so it makes
little sense for our problem.
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3. DB Pension Fund Management with Investment of the Longevity Bond

In this section, we attempt to find the optimal proportion of fund assets put into a
risk-less asset and a longevity-indexed bond in an aggregated DB pension scheme in order
to minimize the solvency risk at terminal time T (T ≤ T0).

3.1. Risk-Neutral Valuation of Liabilities

As mentioned in Josa-Fombellida and Rincón-Zapatero (2010), it is significant to derive
a fair valuation of the liability by a technical rate of actualization, which can be served as a
modification of the short interest rate. It is given in Proposition 2.

Proposition 2. The instantaneously technical rate of actualization δL satisfies:

δL(t) = r(t) + µP − νL(t)− λ(t),

where νL(t) = µP − ζrσPρ(t)− λ(t)
σPρ(t)
∇B

r σr
.

Proof of Proposition 2. The proof is similar to that of Josa-Fombellida and Rincón-Zapatero
(2010), so it is omitted.

3.2. The Wealth Process and Optimization Problem

The pension plan manager invests the fund wealth in a portfolio consisting of risk-less
asset S0(t), which is given in Equation (6), and longevity-indexed bond L(t, T0), which is
given in Equation (7), in which case the market is complete. The dynamics of returns on
the fund process is

dF(t) = ωL(t)L(t, T0)
dL(t, T0)

L(t, T0)
+

(
F(t)− ωL(t)L(t, T0)

)dS0(t)
S0(t)

+
(
C(t)− P(t)

)
dt, (8)

with initial value F(0) = F0 > 0, where ωL(t) is the number of the longevity bond held in
the portfolio at time t.

Substituting Equations (2), (6) and (7) into Equation (8), we have

dF(t) =

[
F(t)r(t) + ωL(t)L(t, T0)

(
λ(t) +∇B

r σrζr
)
+

[ ξAL(t)
ψAL(t)

+ µP − δL(t)− λ(t)
]

AL(t)

+k
(

AL(t)− F(t)
)]

dt + ωL(t)L(t, T0)∇B
r σrdWr(t),

(9)

with consideration of Proposition 2.
Next, we restrict investment strategy ωL to fulfill some technical conditions:

Definition 2. Strategy ωL is called admissible if the following three conditions are satisfied:
a. ωL(t) is progressively measurable with respect to {Ft}t∈[0,T0]

;

b. E
{∫ T

0

(
ωL(t)L(t, T0)∇B

r σr
)2dt

}
< ∞;

c. Equation (9) has a unique strong solution for the initial value
(
0, F0, AL0, r0

)
.

The set of all admissible controls is denoted by Π.

By setting X = F − AL and inserting Equation (5) into dX, we have

dX(t) =
[
(r − k)X(t) +

(
r − δL(t)− λ(t)

)
AL(t) + ωL(t)L(t, T0)

(
λ(t) +∇B

r σrζr
)]

dt

+
[
ωL(t)L(t, T0)∇B

r σr − σPρ(t)AL(t)
]
dWr(t)− σP

√
1 − ρ2(t)AL(t)dW0(t),

(10)

with initial condition X(0) = F0 − AL0 ≜ X0.
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The preference of the pension fund sponsor is to minimize the terminal solvency risk.
The objective function is given by

J((X0, AL0, r0); ωL) = EX0,AL0,r0 X2(T).

The dynamic programming approach is used to solve the problem. We denote

V(t, X, AL, r) = min
{ωL∈Π}

{
J((t, X, AL, r); ωL) : subject to (10), (5), (4)

}
as the value function of this optimization problem, which is non-negative and strictly
convex (which is shown in Appendix A). In optimal control problem, value function and
optimal investment strategy can be obtained by solving the corresponding HJB equation;
see Fleming and Soner (1993) or Yong and Zhou (1999):

min
{ωL∈Π}

Ψ(ωLL) = 0, (11)

where

Ψ(ωLL) = Vt +
[
(r − k)X + (r − δL − λ)AL + ωLL(λ +∇B

r σrζr)
]
VX +

[ ξAL
ψAL

+ µP

]
AL VAL + (a − b r)Vr

+
1
2

[
(ωLL∇B

r σr − σPρAL)2 + σ2
P(1 − ρ2)AL2

]
VXX +

1
2

σ2
P AL2VAL,AL +

1
2

σr
2Vrr

+
[
ωLL∇B

r σrσPρAL − σ2
P AL2

]
VX,AL + σr(ωLL∇B

r σr − σPρAL)VX,r + σrσPρAL VAL,r = 0,

(12)

with
V(T, X, AL, r) = X2, (13)

where Vt, VX , VAL, Vr, VXX , VAL,AL, Vrr, VX,AL, VX,r and VAL,r are the first- and second-order
partial derivatives of V with respect to t, X, AL and r, respectively.

ωLL is the amount invested in the longevity-indexed bond. Then, min
{ωL∈Π}

Ψ(ωLL) can

be obtained by utilizing the following two necessary conditions satisfied by the optimal
amount ωL∗L:

Ψ(ωL∗L) = 0,

dΨ
d(ωLL)

(ωL∗L) = 0.

The optimal investment amount ωL∗L in terms of derivatives of the value function is
given by

ωL∗L = −
[

λ

∇B
r

2
σr2

+
ζr

∇B
r σr

]
VX

VXX
− σPρAL

∇B
r σr

VX,AL

VXX
− 1

∇B
r

VX,r

VXX
+

σPρAL
∇B

r σr
. (14)

Substituting Equation (14) into Equations (11) and (12), we finally obtain the explicit
form of the optimal investment strategy and the minimized solvency risk. The results are
shown in the following theorem.

Theorem 1. We denote the value function by V(t, X, AL, r) ≜ VL(t, X, AL, r) and let τ ≤ T.
The minimum terminal solvency risk is given by

VL(t, X, AL, r) = gL(t)eγL(t)r · X2 +

[∫ T

t
εL(t; τ)eηL(t;τ)rdτ

]
AL2. (15)
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The optimal investment strategy is

ωL∗L(t) = −
[

λ

∇B
r

2
σr2

+
ζr

∇B
r σr

− 2
b

[
1 − e−b(T−t)

] 1
∇B

r

]
X +

σPρ

∇B
r σr

AL, (16)

where

γL(t) =
2
b
(1 − e−b(T−t));

gL(t) = e
∫ T

t hL(s)ds;

hL(t) = −2k − (λ +∇B
r σrζr)2

∇B
r

2
σr2

+
[

a − 2σr
( λ

∇B
r σr

+ ζr
)]

γL(t)− 1
2

σr
2γL2

(t);

ηL(t; τ) = γL(τ)e−b(τ−t);

εL(t; τ) = σ2
P(1 − ρ2)gL(τ)e

∫ τ
t yL(s;τ)ds;

yL(t; τ) = 2
[ ξAL

ψAL
+ µP

]
+ σ2

P +
(
a + 2σrσPρ

)
ηL(t; τ) +

1
2

σ2
r ηL2

(t; τ).

(17)

Proof. See Appendix A.

Remark 6. Note that short-selling is permitted in the context. From Equation (16), ωL∗L(t) might
be negative. This may occur when X(t) is positive, i.e., the pension is overfunded. On one hand,
longevity bonds can be used to hedge longevity risks according to Cox et al. (2013), but perhaps it is
unnecessary to hedge this kind of risk when it is overfunded. On the other hand, a longevity bond is
a kind of risky asset itself. When funds are much larger than liabilities, the pension sponsor may
attempt to hold more bank account, say, more that 100% since there is no constraint in the market,
thus the amount held in the longevity bond might be negative.

Substituting the optimal investment strategy ωL∗L(t) into X(t), we obtain the correspond-
ing X∗(t). Here, we offer a possible path of ωL∗L(t) and X∗(t) in Figures 1 and 2, respectively.

0 0.5 1 1.5 2 2.5 3

t

-4

-3

-2

-1

0

1

2

L*
L

Figure 1. A possible path of the optimal investment strategy ωL∗L(t).
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t
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-1.5

-1

-0.5

0

0.5

1

1.5

X
*

Figure 2. A possible path of X∗(t).

4. Special Case: DB Pension Fund Management with Investment of Zero-Coupon Bond

This section considers a similar optimal problem with an absent mortality rate, i.e.,
λ ≡ 0, which makes the dynamic of the longevity-indexed bond degenerates to the dynamic
of a normal zero-coupon bond. Compared with the work of Josa-Fombellida and Rincón-
Zapatero (2010), we find the explicit form of the value function. Here, we abuse the notation
F(t) to represent the pension wealth at time t. The market consisting of a zero-coupon
bond and a bank account is again complete. As the counterpart of Proposition 2, we state
the technical rate in this special case in Proposition 3 to define a fair liability.

Proposition 3. The technical rate of actualization is

δB(t) = r(t) + µP − νB(t),

where νB(t) = µP − ζrσPρ(t).

Similarly, the dynamic of the wealth process is

dF(t) = ωB(t)B(t, T0)
dB(t, T0)

B(t, T0)
+

(
F(t)− ωB(t)B(t, T0)

)dS0(t)
S0(t)

+
(
C(t)− P(t)

)
dt

=

[(
r(t)− k

)(
F(t)− AL(t)

)
+

[
r(t) +

ξB
AL(t)

ψB
AL(t)

+ µP − δ(t)
]

AL(t) + ωB(t)B(t, T0)∇B
r σrζr

]
dt

+ωB(t)B(t, T0)∇B
r σrdWr(t),

with initial value F(0) = F0 > 0, where ωB is the number of the zero-coupon bond held in
the portfolio. Here,

ψB
AL(t) =

∫ d

a
e−

∫ t+d−x
t [µP−δ(u)]du M(x)dx,

ξB
AL(t) =

∫ d

a
e−

∫ t+d−x
t µP−δ(u)du[µP − δ(t + d − x)

]
M(x)dx −

(
µP − δ(t)

)
ψB

AL(t).

A strategy is called admissible if it satisfies similar conditions in Definition 2, and the
set of all admissible controls is again denoted by Π.
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Setting X = F − AL, we have

dX(t) =
[
(r − k)X(t) +

(
r − δ(t)

)
AL(t) + ωB(t)B(t, T0)∇B

r σrζr

]
dt

+
[
ωB(t)B(t, T0)∇B

r σr − σPρ(t)AL(t)
]
dWr(t)− σP

√
1 − ρ2(t)AL(t)dW0(t),

with X(0) = X0.
Here, the objective function and the optimal problem are the same as those in Section 3,

except that the longevity-indexed bond is changed into a normal zero-coupon bond. Anal-
ogously, denoting VB(t, X, AL, r) as the value function, we offer the optimal results in
Theorem 2 without any proof.

Theorem 2. We set τ ≤ T and denote the value function in Section 4 by VB(t, X, AL, r). The
minimum terminal solvency risk is given by

VB(t, X, AL, r) = gB(t)eγB(t)r · X2 +

[∫ T

t
εB(t; τ)eηB(t;τ)rdτ

]
AL2. (18)

The optimal investment strategy is

ωB∗B(t) = −
[

ζr

∇B
r σr

− 2
b

(
1 − e−b(T−t)

) 1
∇B

r

]
X +

σPρ

∇B
r σr

AL,

where
γB(t) =

2
b
(1 − e−b(T−t)) = γL(t) ≜ γ(t);

gB(t) = e
∫ T

t hB(s)ds;

hB(t) = −2k − ζ2
r + (a − 2σrζr)γ(t)−

1
2

σr
2γ2(t);

ηB(t; τ) = γB(τ)e−b(τ−t) = ηL(t; τ) ≜ η(t; τ);

εB(t; τ) = σ2
P(1 − ρ2)gB(τ)e

∫ τ
t yB(s;τ)ds;

yB(t; τ) = 2
[ ξB

AL
ψB

AL
+ µP

]
+ σ2

P + (a + 2σrσPρ)η(t; τ) +
1
2

σ2
r η2(t; τ).

5. Sensitivity Analysis

This section investigates the influence of the employed parameters of the model on
optimal control and value function. We mainly explore the impacts of mortality rate λ and
terminal time T on optimal investment decision ωL∗L and value function VL.

In the pension model, k ∈ [0, 1] represents the surplus (or deficit) amortized rate. Here,
we choose 0.5. Parameter σP(> 0) is the volatility of benefit, which is 8% in Josa-Fombellida
and Rincón-Zapatero (2010). Here, σP = 30%, since we try to investigate the influence
of the employed parameters under relative high risks. Due to the matching of risks and
returns, i.e., appreciation rate growing with volatility increasing, we set µP = 0.1, which
is also a bit higher than 0.04 in Josa-Fombellida and Rincón-Zapatero (2010). Parameter
ρ is the correlation coefficient between WP and Wr. In the market, if inflation rate grows,
both the nominal interest rate and salary grow, and the promised benefits also grow, since
benefits are usually positively correlated with the salary at the moment of retirement. Thus,
it is rational to assume that ρ ∈ [0, 1] and here we choose ρ = 0.5.

In the interest rate model, σr > 0 is the volatility of interest rate; here, we choose
30% since we attempt to conduct the sensitivity analysis under high risks. Parameter
b represents the mean reversion coefficient, while a/b is the long-run mean of interest
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rate. In the work of Han and Hung (2017), the speed of mean-reversion is 0.0395 and the
long-run mean is 0.0369. Here, we choose almost the same speed of mean-reversion, which
is 0.03, but a bit higher long-run mean, which is 0.05, since our volatility is also higher
than that in Han and Hung (2017). Parameter ζr is the market price of interest rate risk,
i.e., the bond’s excess return divided by volatility, which should be negative. Theoretically,
bonds’ return rate is usually higher than risk-less return rate, for example, 5%, and bonds’
volatility should not excess stocks’ volatility. So it is reasonable to assume that, for instance,
ζr ∈ [−0.01,−2]. The value of ζr is −0.46 in Menoncin (2008). Here, we choose −0.5
without loss of generality. The parameters are given in Table 1.

Table 1. Parameters of the model.

X0 AL0 κ µP σP ρ ζr σr a b r0

1 1 0.5 0.1 0.3 0.5 −0.5 0.3 0.0015 0.03 0.05

When the mortality rate is high, the longevity risk is usually low. Likewise, ωL∗L might
be low because the sponsor may not need a lot of longevity bonds to hedge longevity risk.
From another aspect, when the mortality rate is high, the price of longevity bond is low,
thus ωL∗L might be low, too. To test this point of view, Figure 3 demonstrates the effect of
mortality rate λ on optimal investment strategy ωL∗L. When the mortality rate becomes
larger, the investment amount becomes smaller. Figure 3 also shows that with the same
λ, ωL∗L becomes larger with a longer T. A rational explanation is that the DB pension
scheme faces higher risks in the long run, so investment amount in the risky bond (in a short
position) becomes smaller in order to reduce risk, which is more clear in Figure 4.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

-4

-3.8

-3.6

-3.4

-3.2

-3

-2.8

-2.6

L*
L

T = 3.00

T = 3.05

T = 3.10

Figure 3. This figure plots the relationship between mortality rate λ and optimal investment strategy
ωL∗L with different T.

If longevity risk is hedged by the longevity-indexed bond, we may have a lower
solvency risk with a lower mortality rate. Figure 5 demonstrates the effect of mortality rate
λ on value function VL, and it shows that the pension scheme has a lower value function
(which means lower solvency risk) with a lower mortality rate (which may cause higher
longevity risk). It seems that investments in the longevity bond reduce the solvency risk in
a DB pension plan. In addition, Figure 5 also shows that the solvency risk is lower with
a smaller λ in a longer period. It shows that the hedging strategy is more efficient in the
long run.
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0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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-45

-40

-35
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-10

-5

L*
L

Figure 4. This figure plots the relationship between terminal time T and optimal investment strategy
ωL∗L with λ = 0.1.

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

0

1

2

3

4

5

6

V
L

T = 3.00

T = 3.15

T = 3.30

Figure 5. This figure plots the relationship between mortality rate λ and value function VL with
different terminal time T.

In addition, if longevity risk is reduced by the longevity bond, we may have a lower
solvency risk in the market with the longevity bond than that with a normal zero-coupon
bond. VL and VB denote the value function in Section 3 (with investment in the longevity
bond) and Section 4 (with investment in the zero-coupon bond), respectively. To test this,
Figure 6 demonstrates the performance of VL/VB with different λ values. The ratio VL/VB

is lower than 1 with λ from 0.1 to 0.8, implying the solvency risk in Section 3 is lower than
that in Section 4.
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Figure 6. This figure plots the relationship between mortality rate λ and ratio VL/VB with different
terminal time T.

6. Conclusions

This paper investigates, by means of dynamic programming technique, an optimal
control problem for an aggregated DB pension plan in a stochastic interest rate framework.
The pension sponsor’s objective is to minimize the terminal solvency risk by managing the
fund wealth in finite time horizon through a portfolio comprising a longevity-indexed bond
and a risk-less asset. The explicit investment policy is derived by solving the corresponding
HJB equation. By replacing the longevity-indexed bond with a normal zero-coupon bond,
we find that the value function in the market with a longevity bond is lower than that
with a zero-coupon bond, i.e., a longevity bond plays a positive role and has a strategic
advantage in hedging solvency risk in such DB pension scheme.

It may be significant to consider the benefit process with the influence of mortality rate
in the future, which may generate more realistic sample paths of the benefit. Mortality rate
may be stochastic. It is also interesting to consider constrained control variable ω ≥ 0, i.e.,
short-selling is prohibited, which is consistent with some regulations and risk management
policies. This makes the value function unsmooth; thus, the technique of viscosity solutions
in the dynamic programming approach might be applied. We leave these two points for
future study.
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Appendix A

The proof of Theorem 1. Substituting Equation (14) into Equations (11) and (12), we
determine that the value function V satisfies

Vt +

[
(r − k)X + (r − δL − λ)AL +

σPρ

∇B
r σr

(λ +∇B
r σrζr)AL

]
VX +

[ ξAL
ψAL

+ µP

]
AL VAL + (a − b r)Vr

+
1
2

σ2
P(1 − ρ2)AL2VXX +

1
2

σ2
P AL2VAL,AL +

1
2

σ2
r Vrr − σ2

P(1 − ρ2)AL2VX,AL + σrσPρAL VAL,r

− 1
2
(λ +∇B

r σrζr)2

∇B
r

2
σr2

V2
X

VXX
− σPρ

[ λ

∇B
r σr

+ ζr

]
AL

VXVX,AL

VXX
− 1

2
σ2

Pρ2 AL2
V2

X,AL

VXX
− σr

[ λ

∇B
r σr

+ ζr

]VXVXr
VXX

− 1
2

σ2
r

V2
Xr

VXX
− σrσPρAL

VX,ALVXr

VXX
= 0,

(A1)

with the final value given in Equation (13). The structure of the HJB equation suggests a
quadratic form as follows:

V(t, X, AL, r) = fXX(t, r)X2 + fAL,AL(t, r)AL2 + fX,AL(t, r)X AL, (A2)

where fXX(·, ·), fAL,AL(·, ·) and fX,AL(·, ·) are undetermined functions with terminal values
fXX(T, r) = 1, fAL,AL(T, r) = 0 and fX,AL(T, r) = 0.

Differentiating Equation (A2), we obtain

Vt = ( fXX)tX2 + ( fAL,AL)t AL2 + ( fX,AL)tX AL, VX = 2 fXXX + fX,AL AL,
VAL = 2 fAL,AL AL + fX,ALX, Vr = ( fXX)rX2 + ( fAL,AL)r AL2 + ( fX,AL)rX AL,
VXX = 2 fXX , VAL,AL = 2 fAL,AL, VX,AL = fX,AL, VX,r = 2( fXX)rX + ( fX,AL)r AL,
VAL,r = 2( fAL,AL)r AL + ( fX,AL)rX, Vrr = ( fXX)rrX2 + ( fAL,AL)rr AL2 + ( fX,AL)rrX AL,

(A3)

where ( fXX)t, ( fXX)r, ( fXX)rr are the first- and second-order partial derivatives of fXX with
respect to t and r, respectively. Other partial derivatives in Equation (A3) are defined similarly.

Substituting Equation (A3) into Equation (A1) and rearranging it by the order of X2,
AL2 and X AL, three PDEs are obtained together with boundary conditions:

( fXX)t +

[
2(r − k)− (λ +∇B

r σrζr)2

∇B
r

2
σr2

]
fXX +

[
(a − b r)− 2σr

[ λ

∇B
r σr

+ ζr

]]
( fXX)r +

1
2

σ2
r ( fXX)rr − σ2

r
( fXX)

2
r

fXX
= 0,

fXX(T, r) = 1,

(A4)

( fAL,AL)t +

[
2
[ ξAL

ψAL
+ µP

]
+ σ2

P

]
fAL,AL +

(
(a − b r) + 2σrσPρ

)
( fAL,AL)r +

1
2

σ2
r ( fAL,AL)rr + σ2

P(1 − ρ2) fXX = 0,

fAL,AL(T, r) = 0,
(A5)



( fX,AL)t +

[
(r − k)− (λ +∇B

r σrζr)2

∇B
r

2
σr2

+
[ ξAL

ψAL
+ µP

]
− σPρ

∇B
r σr

(λ +∇B
r σrζr)

]
fX,AL +

[
(a − b r)− σr

[ λ

∇B
r σr

+ ζr

]
− σrσPρ

]
( fX,AL)r +

1
2

σ2
r ( fX,AL)rr −

[
σr

[ λ

∇B
r σr

+ ζr

]
− σrσPρ

]
fX,AL( fXX)r

fXX
− σ2

r
( fX,AL)r( fXX)r

fXX

+ 2
[
(r − δL − λ) +

σPρ

∇B
r σr

(λ +∇B
r σrζr)

]
fXX = 0,

fX,AL(T, r) = 0,

(A6)
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since Equation (A1) satisfies for every X2, AL2 and X AL.
To solve Equation (A4), we conjecture that fXX(t, r) = g(t)eγ(t)r, with terminal

conditions g(T) = 1 and γ(T) = 0. So we have ( fXX)t = [g
′
(t)/g(t) + rγ

′
(t)] fXX,

( fXX)r = γ(t) fXX and ( fXX)rr = γ2(t) fXX. Substituting ( fXX)t, ( fXX)r and ( fXX)rr
into Equation (A4), we obtain the following equation:

r
[
γ

′
(t)− bγ(t) + 2

]
+

g
′
(t)

g(t)
− 2k − (λ +∇B

r σrζr)2

∇B
r

2
σr2

+

[
a − 2σr

[ λ

∇B
r σr

+ ζr

]]
γ(t)− 1

2
σ2

r γ2(t) = 0. (A7)

From Equation (A7), we have

γ
′
(t)− bγ(t) + 2 = 0,

and

g
′
(t)

g(t)
− 2k − (λ +∇B

r σrζr)2

∇B
r

2
σr2

+

[
a − 2σr

[ λ

∇B
r σr

+ ζr

]]
γ(t)− 1

2
σ2

r γ2(t) = 0.

For convenience, we denote g = gL and γ = γL in Theorem 1 in order to draw
comparison with the results given in Section 4. gL(t) and γL(t) are given in Equation (17).

The method solving Equation (A4) cannot be used to find an analytical solution of
Equation (A5) due to the nonhomogeneous term σ2

P(1 − ρ2) fXX. By Proposition 2 in the
work of Yao et al. (2013), we can derive the solution of Equation (A5) by solving the
associated homogeneous PDE in the following:υt(t, r; τ) +

[
2
[ ξAL

ψAL
+ µP

]
+ σ2

P

]
υ(t, r; τ) + ((a − b r) + 2σrσPρ)υr(t, r; τ) +

1
2

σ2
r υrr(t, r; τ) = 0,

υ(τ, r; τ) = σ2
P(1 − ρ2)g(τ)eγ(τ)r,

(A8)

with τ ≤ T; then, the analytical solution of Equation (A5) is

fAL,AL(t, r) =
∫ T

t
υ(t, r; τ)dτ.

The analytical solution of Equation (A8) can be derived easily by using the same
method as in solving fXX(t, r). We try solution υ(t, r; τ) = ε(t; τ)eη(t;τ)r, with terminal
values ε(τ; τ) = σ2

P(1 − ρ2)g(τ) and η(τ; τ) = γ(τ). ε and η are obtained after substituting
the first- and second-order derivatives of υ with respect to t and r into Equation (A8). We
denote ε = εL and η = ηL, in order to make comparison with results given in Section 4.
εL(t) and ηL(t) are given in Equation (17).

Using Proposition 2, we find that the first equation in Equation (A6) is homogeneous.
So it is easy to prove that fX,AL = 0, since its terminal condition is 0.

It is obvious that VXX = 2 fXX(t, r) = gL(t)eγL(t)r > 0. The optimal investment
strategy ωL∗L given in Equation (16) is obtained by substituting the derivatives of the value
function into Equation (14).

References
Barbarin, Jérôme. 2008. Heath-Jarrow-Morton modelling of longevity bonds and the risk minimization of life insurance portfolios.

Insurance: Mathematics and Economics 43: 41–55. [CrossRef]
Bauer, Daniel, Matthias Börger, and Jochen Ruß. 2010. On the pricing of longevity-linked securities. Insurance: Mathematics and

Economics 46: 139–49. [CrossRef]
Berstein, Solange, and Marco Morales. 2021. The role of a longevity insurance for defined contribution pension systems. Insurance:

Mathematics and Economics 76: 233–40. [CrossRef]
Biagini, Francesca, Thorsten Rheinländer, and Jan Widenmann. 2013. Hedging mortality claims with longevity bonds. ASTIN Bulletin

43: 123–57. [CrossRef]
Blake, David, and Andrew J. G. Cairns. 2021. Longevity risk and capital markets: The 2019–2020 update. Insurance: Mathematics and

Economics 99: 395–439.

http://doi.org/10.1016/j.insmatheco.2007.09.008
http://dx.doi.org/10.1016/j.insmatheco.2009.06.005
http://dx.doi.org/10.1016/j.insmatheco.2021.03.020
http://dx.doi.org/10.1017/asb.2013.12


Risks 2024, 12, 49 17 of 17

Blake, David, Andrew J. G. Cairns, and Kevin Dowd. 2006. Living with mortality: Longevity bonds and other mortality-linked
securities. British Actuarial Journal 12: 153–97. [CrossRef]

Bravo, Jorge M., and João Pedro Vidal Nunes. 2021. Pricing longevity derivatives via Fourier transforms. Insurance: Mathematics and
Economics 96: 81–97. [CrossRef]

Broeders, Dirk, Roel Mehlkopf, and Annick van Ool. 2021. The economics of sharing macro-longevity risk. Insurance: Mathematics and
Economics 99: 440–58. [CrossRef]

Chen, An, Hong Li, and Mark B. Schultze. 2023. Optimal longevity risk transfer under asymmetric information. Economic Modelling
120: 106179. [CrossRef]

Cox, Samuel H., Yijia Lin, Ruilin Tian, and Jifeng Yu. 2013. Managing capital market and longevity risks in a defined benefit pension
plan. The Journal of Risk and Insurance 80: 585–619. [CrossRef]

Fleming, Wendell H., and Halil Mete Soner. 1993. Controlled Markov Processed and Viscosity Solutions. New York: Springer.
Guan, Guohui, and Zongxia Liang. 2014. Optimal management of DC pension plan in a stochastic interest rate and stochastic volatility

framework. Insurance: Mathematics and Economics 57: 58–66. [CrossRef]
Guan, Guohui, Jiaqi Hu, and Zongxia Liang. 2022. Robust equilibrium strategies in a defined benefit pension plan game. Insurance:

Mathematics and Economics 106: 193–217. [CrossRef]
Han, Nan-Wei, and Mao-Wei Hung. 2017. Optimal consumption, portfolio, and life insurance policies under interest rate and inflation

risks. Insurance: Mathematics and Economics 73: 54–67. [CrossRef]
Josa-Fombellida, Ricardo, and Juan Pablo Rincón-Zapatero. 2004. Optimal risk management in defined benefit stochastic pension

funds. Insurance: Mathematics and Economics 34: 489–503. [CrossRef]
Josa-Fombellida, Ricardo, and Juan Pablo Rincón-Zapatero. 2010. Optimal asset allocation for aggregated defined benefit pension

funds with stochastic interest rates. European Journal of Operational Research 201: 211–21. [CrossRef]
Kort, Jan, and Michel H. Vellekoop. 2017. Existence of optimal consumption strategies in markets with longevity risk. Insurance:

Mathematics and Economics 72: 107–21.
Leung, Melvern, Man Chung Fung, and Colin O’Hare. 2018. A comparative study of pricing approaches for longevity instruments.

Insurance: Mathematics and Economics 82: 95–116. [CrossRef]
Liang, Xiaoqing, Lihua Bai, and Junyi Guo. 2014. Optimal time-consistent portfolio and contribution selection for defined benefit

pension schemes under mean-variance criterion. The ANZIAM Journal 56: 66–90. [CrossRef]
Liu, Zilan, Huanying Zhang, and Lei He. 2023. Optimal assets allocation and benefit adjustment strategy with longevity risk for target

benefit pension plans. Journal of Industrial and Management Optimization 19: 3931–51. [CrossRef]
Menoncin, Francesco. 2008. The role of longevity bonds in optimal portfolios. Insurance: Mathematics and Economics 42: 343–58.

[CrossRef]
Menoncin, Francesco, and Luca Regis. 2017. Longevity-linked assets and pre-retirement consumption/portfolio decisions. Insurance:

Mathematics and Economics 76: 75–86. [CrossRef]
Ng, Kenneth Tsz Hin, and Wing Fung Chong. 2023. Optimal investment in defined contribution pension schemes with forward utility

preferences. Insurance: Mathematics and Economics 114: 192–211. [CrossRef]
Rong, Ximin, Cheng Tao, and Hui Zhao. 2023. Target benefit pension plan with longevity risk and intergenerational equity. ASTIN

Bulletin 53: 84–103. [CrossRef]
Wills, Samuel, and Michael Sherris. 2010. Securitization, structuring and pricing of longevity risk. Insurance: Mathematics and Economics

46: 173–85. [CrossRef]
Yao, Haixiang, Zhou Yang, and Ping Chen. 2013. Markowitz’s mean-variance defined contribution pension fund management under

inflation: A continuous-time model. Insurance: Mathematics and Economics 53: 851–63. [CrossRef]
Yong, Jiongmin, and Xun Yu Zhou. 1999. Stochastic Controls: Hamiltonian Systems and HJB Equations. New York: Springer.
Zhang, Xiaoyi. 2018. The role of longevity bond in DC pension plan during both accumulation and decumulation phases. Chinese

Journal of Engineering Mathematics 37: 347–69.
Zhu, Nan, and Daniel Bauer. 2014. A cautionary note on natural hedging of longevity risk. North American Actuarial Journal 18: 104–15.

[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1017/S1357321700004736
http://dx.doi.org/10.1016/j.insmatheco.2020.10.008
http://dx.doi.org/10.1016/j.insmatheco.2021.03.024
http://dx.doi.org/10.1016/j.econmod.2022.106179
http://dx.doi.org/10.1111/j.1539-6975.2012.01508.x
http://dx.doi.org/10.1016/j.insmatheco.2014.05.004
http://dx.doi.org/10.1016/j.insmatheco.2022.07.003
http://dx.doi.org/10.1016/j.insmatheco.2017.01.004
http://dx.doi.org/10.1016/j.insmatheco.2004.03.002
http://dx.doi.org/10.1016/j.ejor.2009.02.021
http://dx.doi.org/10.1016/j.insmatheco.2018.06.010
http://dx.doi.org/10.1017/S1446181114000212
http://dx.doi.org/10.3934/jimo.2022117
http://dx.doi.org/10.1016/j.insmatheco.2007.05.001
http://dx.doi.org/10.1016/j.insmatheco.2017.07.002
http://dx.doi.org/10.1016/j.insmatheco.2023.12.001
http://dx.doi.org/10.1017/asb.2022.27
http://dx.doi.org/10.1016/j.insmatheco.2009.09.014
http://dx.doi.org/10.1016/j.insmatheco.2013.10.002
http://dx.doi.org/10.1080/10920277.2013.876911

	Introduction and Motivation
	Model Assumptions and Notations
	The Pension Model
	The Financial Market 

	DB Pension Fund Management with Investment of the Longevity Bond
	Risk-Neutral Valuation of Liabilities
	The Wealth Process and Optimization Problem

	Special Case: DB Pension Fund Management with Investment of Zero-Coupon Bond
	Sensitivity Analysis
	Conclusions
	Appendix A
	References

