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Abstract: To ensure a comfortable post-retirement life and the ability to cover living expenses, it is of
utmost importance for individuals to have a clear understanding of how long their pre-retirement
savings will last. In this research, we employ a ruin-theory approach to model the inflows and the
outflows of retirees’ portfolios. We track all transactions within the portfolios of retired clients sourced
by a registered investment provider to Canada’s Financial Wellness Lab at Western University. By
utilizing an advanced ruin model, we calculate the mean and the median time it takes for savings to
be exhausted, the probabilities of exhaustion of funds within the retirees’ expected remaining lifetime
while accounting for the observed withdrawal rates, and the deficit at ruin if a retiree has used up
all of their savings. We also account for gender as well as for the risk tolerance of retired clients
using a K-Means clustering algorithm. This allows us to compare the financial outcomes for female
and male retirees and to enhance some findings in the literature. In the final phase of our study, we
compare the results obtained by our methodology to the 4% rule which is a widely used approach
for post-retirement spending. Our results show that most retirees can withdraw safely more than
they currently do (around 2.5%). A withdrawal rate of about 4.5% is proved to be safe, but it might
not provide sufficient income for most retirees since it yields approximately CAD 20,000 per year for
male retirees in the highest risk tolerance group who withdraw about 4.5% annually.

Keywords: post-retirement; safe withdrawal rate; ruin-theory approach

1. Introduction

The motivation behind this research stems from the importance of being able to afford
the expenses of life after retirement as well as the quality of life in this period. Our findings
are based on data for over 4500 retirees from a registered investment provider. The data
include the personal information of the retired clients, the initial composition of their
portfolios, and subsequent transactions for a period of about three years. Our goal is to
gain insights into how successful different investment and spending strategies are. These
insights are to be utilized subsequently for advising retired clients whether they need to
improve the way that they are spending: Are they withdrawing in a safe way or do they
need to be more conservative? Are their investment strategy appropriate for their stage in
life? We note that although this study is only based on the retired clients of this particular
registered investment provider, by comparing some of their characteristics to characteristics
of the overall Canadian population, we can conclude that our data sample is representative
in many respects for Canadians in general.

In this paper, we employ an advanced ruin-theory approach for modeling retirees’
deposits and withdrawals to obtain the mean and median time until their savings are
exhausted, i.e., until financial ruin. Moreover, our results include annual retirement in-
comes, mean and median time to exhaustion of savings, ruin probabilities, deficit at ruin
if it occurs, and annual withdrawal rates, while we consider gender differences and the
average lifespan of Canadians as well as the risk tolerance of the retirees in all our analyses.
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The model that we use is inspired by the risk-theory model proposed by Labbé and
Sendova (2009). Studies on this model provide several risk quantities from which one
can evaluate how risky the business of an insurance company is. These quantities also
suggest ways for mitigating the associated risks. Based on our data analysis, we need
to incorporate dependence between certain random variables; therefore, the risk-theory
model from Labbé and Sendova (2009) needs to be modified accordingly. In addition, as
we utilize real data, our simulations are based on non-parametric distributions in the way
they arise from the data. The methodologies that we develop here are applicable to other
data sets, which might come from private institutions or from governmental agencies,
concerning the Canadian population or the populations of other countries. One needs to
perform the analyses described in this article to reach relevant conclusions. Also, given the
body of literature in actuarial risk theory, there are other risk quantities, not included in this
paper, that have been studied and could contribute to more informed decisions for retirees.

After a literature review in next section, we conduct some preliminary analysis of
the data in Section 3. Following that, we categorize the retirees into groups based on two
crucial factors: their gender and their risk tolerance using the K-Means clustering algorithm.
In Section 4, we describe the ruin model that we propose in this paper. The simulation
algorithm, utilized distributions, and results are provided in Section 5. Ultimately, in
Section 6, we provide discussions and conclusions.

2. Literature Review

As individuals approach retirement, a crucial concern arises regarding the sustainabil-
ity of their financial resources over the long term. The determination of a safe withdrawal
rate is a pivotal aspect of financial planning, aimed at ensuring a comfortable and secure
post-retirement. Over the years, extensive research has been conducted in the fields of
Finance, Economics, Financial Mathematics, and Actuarial Science to develop models that
can accurately determine or maximize the safe withdrawal rate while minimizing the
probability of a premature exhaustion of funds.

One important paper in this area is Bengen (1994). This article marks a significant
milestone and introduces the concept of the “4% rule”. This research demonstrates that
a withdrawal rate of 4% of the initial portfolio value, adjusted annually for inflation, has
a high likelihood of sustaining a retirement portfolio for a 30-year period. Subsequent
studies have built upon this foundation, exploring alternative withdrawal strategies, incor-
porating diverse assets, and accounting for varying economic conditions to enhance the
methodology for determining a safe withdrawal rate.

Milevsky et al. (2006) combine utility maximization from insurance economics with
shortfall-minimizing investment and hedging strategies from finance and risk manage-
ment. The objective is to find the optimal investment and annuitization approach for fixed
consumption, with a focus on asset allocation and annuitization strategies to minimize
the probability of bankruptcy. The research is closely related to portfolio management.
Another study is Moore and Young (2006) where asset allocation is emphasized once again
along with a proposed method to minimize the probability of bankruptcy. It is observed
that longer-term investors should have higher allocations to riskier assets. However, the
study’s assumptions of deterministic mortality and constant, risk-free volatility, and rate of
return are not realistic for the long-term horizon.

Subsequently, Pfau (2011) examines 109 years of financial market data from 17 devel-
oped countries to gain a broader perspective. In that study, 4% withdrawal rate is found
to be risky internationally, providing safety in only 4 out of 17 countries. Additionally, a
fixed asset allocation split between stocks and bonds fails in all countries. This research
emphasizes the significance of considering international factors when determining safe
retirement withdrawal rates. Further, Finke et al. (2011) explores the relationship between
risk tolerance and retirement income decisions. They find that the 4% withdrawal rate is
suitable for risk-averse clients with moderate guaranteed income. Risk-tolerant investors
prefer higher withdrawal rates and a riskier portfolio in retirement.
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Van Appel et al. (2021) rely on historical data and Monte Carlo simulation, with asset
allocation playing a crucial role. The probability of portfolio success is assessed based on
different asset mixes (equity, bonds, cash), highlighting the potential benefits of equity in
achieving success for higher withdrawal rates. Longevity and management fees are also
taken into consideration. A different approach in the study Van Appel and Maré (2022)
aims to determine a withdrawal rate that prevents funds from running out and maintains a
comfortable lifestyle. Instead of relying on historical data, forward-looking risk-neutral and
real-world distributions derived from option prices on South African top 40 indexes are
used. By employing this approach, a safe withdrawal rate of up to 7% is deemed feasible,
significantly higher than the commonly used 4% obtained from simulation and historical
data. Another study by Anarkulova et al. (2022) examines retirement spending rules using
a data set from 38 developed countries. They find that a 65-year-old couple willing to
accept a 5% chance of bankruptcy can only withdraw 2.26% annually, much lower than the
commonly advised 4% rule.

Also in 2022, Schabort (2022) examines the sequence of return risk (SOR risk) in South
African retirement portfolios using five asset allocation strategies. Simulations from 1991
to 2020, with 10,000 trials, assessed sustainable withdrawal rates and actuarial coverage
ratio. Geographic diversification reduced SOR risk, and the dynamic cash buffer strategy
outperformed others in mitigating this risk compared to benchmarks. Another study,
Stocker (2023), combines income from a Defined Benefit (DB) pension with an investment
portfolio to maintain constant inflation-adjusted total required income (IR). Adding income
from a DB pension without inflation protection extended the retirement income period sig-
nificantly, with the maximum safe withdrawal rate increasing by about 0.6 to 0.8 percentage
points per percentage point of DB pension income, based on the level of inflation protection.

There is also some research in the area of safe withdrawal rate based on the data from
India. For example, Saraogi (2022) determines a safe withdrawal rate (SWR) for Indian
retirement portfolios, finding it lower than the commonly used 4% SWR for the U.S. market.
For the average Indian investor, a 3% SWR is recommended, and for risk-averse investors,
it should not exceed 2.6%. In Raju and Saraogi (2024), the authors redefine safe withdrawal
rates for retirement planning in India, recommending a range of 3.0% to 3.5% instead of
the commonly cited 4% rule. Higher equity allocations can boost SWR but also raise the
risk of portfolio failure, especially beyond 3.75% withdrawal rates. Taxes on fixed deposit
interest affect all-deposit portfolios. Gold is highlighted as a diversifying asset to reduce
market-related risks in portfolios.

The modeling approach that we utilize in this paper is mainly based on the ruin
model in Labbé and Sendova (2009). There, the authors focus on ruin theory using the
expected discounted penalty function in a risk model with compound Poisson processes
for modeling premiums and claims. That research establishes equations for the penalty
function and explores their implications on quantities like the discounted deficit and the
probability of ultimate ruin. It also investigates the case of Erlang premiums and arbitrarily
distributed claims. After that, Zhang and Yang (2010) expand on the research conducted
by Labbé and Sendova (2009) regarding a compound Poisson risk model with stochastic
premium income. Their focus lies in the specific dependence structure between claim sizes,
inter-claim times, and premium sizes within this model.

Xie and Zou (2013) introduce a risk model with dependent claim occurrences, pre-
mium sizes, and claim sizes. Assuming exponential premium sizes, they derive Laplace
transforms and defective renewal equations for expected discounted penalty functions.
Solutions are represented using a compound geometric distribution. They also explore
subexponential claims and obtain asymptotic ruin probability formulas. Vidmar (2018),
studies the ruin probability in a modified Cramer–Lundberg model, which describes the
surplus process of an insurance company. The model assumes independent mixed Pois-
son processes for premium and claim arrival times, taking into account their respective
intensities. This model introduces stochastic dependence between the total premium and
claim amounts. Also, the study yields a clear expression for the ruin probability when both
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claim and premium sizes follow exponential distributions. Guan and Wang (2023) examine
the dependence between premium numbers in consecutive periods and claim numbers
in consecutive periods using integer-valued auto-regressive (IVAR(1)) and integer-valued
moving average (INMA(1)) processes. Additionally, the authors establish an asymptotic
formula for the finite-time ruin probability by studying the large deviations of the aggre-
gate claims.

Finally, actuarial science and financial risk management have commonly employed
copulas to represent the dependence between random variables. Notable papers discussing
their applications include Bregman and Klüppelberg (2005), Denuit et al. (2006), Albrecher
and Teugels (2006), Cossette et al. (2008), Albrecher et al. (2011), Chadjiconstantinidis and
Vrontos (2014), and Blier-Wong et al. (2022).

3. Data and Descriptive Analysis

In this paper, we track the transactions of retirees which are provided through Canada’s
Financial Wellness Lab from a registered investment provider. We use four different tables
with data for different purposes. One table is utilized for retirees’ personal information
such as age, gender, retirement status, etc. Two tables are related to trades and transactions
and yet another table is used for the retirees’ initial wealth. The transactions are tracked
over a period of three years and two months from the 15th of July of the year 2019 to the
15th of September of the year 2022.

3.1. Grouping the Retirees

Since in this context, risk tolerance is an important factor, we group the retirees based
on their risk tolerance. In our data, we first assign a number to each retired client based
on the risk tolerance that they have declared. The risk tolerance is stated by retirees in the
form of the asset mix that they select initially. Over time, advisors or retirees themselves
might adjust their asset mix with the purpose of maintaining the overall risk level of the
portfolio. Assets available for purchase are classified into five groups with risk levels
ranging from low to high, respectively. Thus, any retiree’s portfolio is of the format “a%
in Low-risk assets, b% Low to Medium, c% Medium, d% Medium to High, e% High”. We
assign numbers from 100 to 500 to the five levels from Low to High. Then by taking a
summation of the product of percentage in each level and the number assigned to that
level, a single number showing the risk tolerance of the retired client is obtained. The
risk tolerance number could vary from 1000 to 5000, so that 1000 means the lowest and
5000 means the highest risk tolerance.

First of all, we examine whether clustering of our dataset is statistically meaningful
or not. For this purpose, based on Hopkins and Skellam (1954), Gastner (2005), and Cross
and Jain (1982), we use the p-value for Hopkins statistic under the null hypothesis of
spatial randomness. Then, based on Kassambara (2017), we employ the K-Means clustering
algorithm and after examining all features and obtaining the silhouette coefficient for all of
them, we find that using only the feature of “risk tolerance” produces the best clustering
for our purposes. The Elbow method and the silhouette coefficient suggest four clusters for
male and four clusters for female retirees. The results of the Hopkins statistic and silhouette
coefficient based on the feature “risk tolerance” and four clusters for each gender of male
and female are shown in Table 1.

Table 1. The results of Hopkins statistic and Silhouette Coefficient for clustering based on “risk
tolerance” feature and 4 clusters.

Gender Hopkins Statistic Hopkins Statistic p-Value Silhouette Coefficient

Male 0.9896 0.0 0.7392
Female 0.9928 0.0 0.7283

The results of Hopkins statistic p-value equal 0 for both male and female retirees,
which shows that clustering based on the feature “risk tolerance” for both male and female
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retirees is highly relevant. Also, the silhouette coefficient, shows numbers above 0.5 and
as it is closer to 1, implying a stronger clustering algorithm performance. Considering
that 0.7392 and 0.7283 are the resulting silhouette coefficients for male and female retirees,
respectively, we may conclude that risk tolerance and gender are the most important
features of our data. We have four clusters for each gender. (see Rousseeuw (1987) for
more information about the silhouette coefficient). Therefore, the descriptive analysis of the
data including the retirees’ personal information, trades, transactions, and initial wealth
indicate that gender and risk tolerance are the factors that should determine how retirees
should be grouped. As a result, we have eight groups of retirees in total (four groups of
male and four groups of female). As we explained previously, we assigned a single number
indicating the risk tolerance to each retiree, and then by grouping them using clustering
and the feature of risk tolerance, depending on their risk tolerance, they belong to different
groups. In Table 2, one finds the risk tolerance ranges for each group and the number of
retirees who fall into the relevant group. It is noteworthy that the ranges for each risk
tolerance level are produced by the clustering algorithm and they are not the same for both
genders. Additionally, as it might be expected, the average age of retirees in each group is
inversely related to the risk tolerance level of the group.

Table 2. Descriptive analysis for male and female retirees based on different groups of risk tolerance.

Group Risk Tolerance Counts Average of Age Average of Initial
Wealth

Male 1 (1000,1600) 105 78 CAD 288,646
2 (1700,2600) 353 77 CAD 293,678
3 (2650,3500) 1344 75 CAD 353,021
4 (3600,5000) 365 74 CAD 424,103

Female 1 (1000,1600) 135 78 CAD 372,890
2 (1660,2550) 412 76 CAD 364,195
3 (2600,3200) 1305 74 CAD 342,971
4 (3250,5000) 527 73 CAD 481,644

3.2. Retirees’ Information and Initial Wealth

We have access to the retirees’ personal information such as their retirement status,
gender, age, risk tolerance, etc. We only use the retired clients in this paper. A brief
descriptive analysis of different groups is given in Table 2. There, it can be seen that the
retirees in the highest risk tolerance group 4 for both male and female are the youngest as
well as the wealthiest, while the lowest risk tolerance groups of male and female retirees
are the oldest ones. These observations are consistent with guidance provided by financial
advisors: younger retirees should have more wealth and take higher risk compared to older
retirees who should have exhausted some of their wealth and reduced their risk tolerance.

3.3. Trades and Transactions

After analyzing the tables containing trades and transactions, two completely different
patterns are detected: the table with trades shows less frequent but larger amounts, while
the table with transactions shows more frequent but smaller amounts. These patterns are
illustrated in Figures 1 and 2. The former provides the average annual number of trades
and transactions (deposits and withdrawals) split by gender, while the latter exhibits the
average annual amounts of trades and transactions (deposits and withdrawals) again split
by gender.

Since trades and transactions are performed in a specific succession over time, time
might be a meaningful notion in the present context. Thus, one might want to interpret the
data as a time series. We then need to verify whether accounting for the timing of deposits
and withdrawals, i.e., considering the data as time series, provides us with more insights
or we can consider the data just like regular datasets without missing any important
information despite not accounting for the exact timing of deposits and withdrawals.
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Following Ali (1987), we utilize the Durbin–Watson test to determine whether there is
auto-correlation in the data. Since the results from the test reject the hypothesis of the
existence of auto-correlation, it means that we can confidently consider the data as regular
datasets and not like time series. The results of the Durbin–Watson test for male and female
retirees are provided in Tables 3 and 4, respectively. We note that in the tables, by series
of data X1i and X2k, we mean the data related to the amounts of deposits in trades and
transactions, respectively, whereas by series of data Y1j and Y2l , we mean the data related to
the amounts of withdrawals in trades and transactions, respectively. Figures 1 and 2 show
that trades are less frequent but of larger amounts while transactions are more frequent but
of smaller amounts.

(a) Trades (b) Transactions
Figure 1. Average annual number of deposits and average annual number of withdrawals.

(a) Trades (b) Transactions
Figure 2. Average amount of deposits and withdrawals.

Table 3. Results of Durbin–Watson test for male retirees.

Series of Data Test Statistic Series of Data Test Statistic
(Random
Variable)

(Random
Variable)

Group 1 X1i 1.5 Group 3 X1i 1.7
Y1i 1.6 Y1i 1.7
X2k 1.8 X2k 1.6
Y2k 2 Y2k 1.8

Group 2 X1i 1.5 Group 4 X1i 1.9
Y1i 1.5 Y1i 1.9
X2k 1.6 X2k 1.7
Y2k 1.9 Y2k 2
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Table 4. Results of Durbin–Watson test for female retirees.

Series of Data Test Statistic Series of Data Test Statistic
(Random
Variable)

(Random
Variable)

Group 1 X1i 1.5 Group 3 X1i 1.5
Y1i 1.3 Y1i 1.5
X2k 1.9 X2k 1.7
Y2k 1.9 Y2k 1.8

Group 2 X1i 1.3 Group 4 X1i 1.3
Y1i 1.5 Y1i 1.3
X2k 1.5 X2k 1.6
Y2k 1.7 Y2k 1.7

The test statistic of the Durbin–Watson test is a number between 0 and 4, where the
test statistic equal to 2 in Tables 3 and 4 means that there is not statistically significant
auto-correlation in the series of data. Since in rare cases it occurs that the test statistic is
exactly equal to 2, it is common to consider an interval around 2 to say that there is no
auto-correlation in the data.

When it comes to model trades and transactions, an important issue that can play
a crucial role is the correlation between the number of deposits and the number of with-
drawals as well as the correlation between the amounts of deposits and withdrawals. Hence,
we need to quantify the relevant correlations and evaluate whether they are significant.
Figures 3 and 4 display the results of Pearson correlations between the number of deposits
and the number of withdrawals and the Pearson correlations between the amounts of them
in different groups for males and females, respectively. Also, according to the p-value of the
performed test with the null hypothesis that the underlying distributions of the samples
are uncorrelated, all the correlations are statistically significant.

(a) Male retirees (b) Female retirees
Figure 3. Correlation between the annual frequencies of deposits and withdrawals.

(a) Male retirees (b) Female retirees
Figure 4. Correlation between the total amount of annual deposits and withdrawals.

On the one hand, Figure 3 shows that the correlations between the number of deposits
and the number of withdrawals within trades are consistently higher than the correspond-
ing correlations within transactions. On the other hand, Figure 4 demonstrates that we
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cannot make such a conclusion regarding the amounts of trades and transactions as for
some groups the correlations for trades are higher while for other groups the correlations
for transactions are higher.

In any case, our conclusion here is that both trades’ and transactions’ numbers and
amounts are highly correlated and thus, this correlation should be implemented into the
stochastic model that we choose to employ.

4. Methodology

In this section, we propose a stochastic model that describes the evolution of the
wealth of retirees. Namely, denote by {U(t); t ≥ 0} the amount of wealth that a retiree has
at time t. We adapt the model in Labbé and Sendova (2009):

U(t) = u +
N(t)

∑
i=1

Xi −
M(t)

∑
j=1

Yj, t ≥ 0. (1)

where the initial surplus of a particular insurance company is u ≥ 0, and the premiums
{Xi}∞

i=1 and the claims {Yj}∞
j=1 occur in time according to homogeneous Poisson processes

N(t) and M(t) with intensities λ > 0 and µ > 0, respectively. Each of the premium sizes
and the claim sizes are assumed independent and identically distributed (i.i.d.).

In this model, if no premiums or no claims occurred up to time t, then N(t) = 0 or
M(t) = 0 and in this case, obviously, ∑

N(t)
i=1 Xj = 0 or ∑

M(t)
j=1 Yj = 0. The other assumptions

of this model are the independence of the random variables N(t), M(t), X1, X2, . . . and
Y1, Y2, . . . , and the finite expectations of the premiums and the claims such that µE(X1) >
λE(Y1).

In this paper, we modify model (1) and interpret it differently. Namely, U(t) is a
retiree’s wealth at time t and due to the two different patterns that trades and transactions
follow, we have separate summations for trades and transactions. Hence,

U(t) = u +
A1(t)

∑
i=1

[(1 − f )X1i − (1 + f )Y1i] +
B1(t)

∑
j=1

Z∗
1j

+
A2(t)

∑
k=1

(X2k − Y2k) +
B2(t)

∑
l=1

Z2l − (1 + r)tc, t ≥ 0. (2)

Here, u is used for the retiree’s initial wealth. The annual number of deposits for trades
and transactions are modeled by the random variables N1(t) and N2(t), respectively,
while M1(t) and M2(t) are utilized for the annual number of withdrawals for trades
and transactions, respectively. The sequences of i.i.d. random variables X11, X12, . . . and
X21, X22, . . . are used for the amounts of deposits according to the trades and transactions
patterns, whereas the sequences of i.i.d. random variables Y11, Y12, . . . and Y21, Y22, . . . are
employed for modeling the amounts of withdrawals based on trades and transactions
patterns, respectively. f ∈ [0, 1) denotes the proportion of fee associated with trades and
since it is an added cost, we need to deduct that from the deposits and add that to the
withdrawals. c ≥ 0 is a constant denoting the annual commission fee subject to an annual
increase rate of r. Finally, we define the remaining processes A1(t), B1(t), A2(t), and B2(t),
and random variables Z1j and Z2l as follows:
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A1(t) =min(N1(t), M1(t))

A2(t) =min(N2(t), M2(t))

B1(t) =max(N1(t), M1(t))− min(N1(t), M1(t))

B2(t) =max(N2(t), M2(t))− min(N2(t), M2(t))

Z∗
1j =


(1 − f )X1i, N1(t) > M1(t)
0, N1(t) = M1(t)
(1 + f )Y1i, N1(t) < M1(t)

Z2l =


X2k, N2(t) > M2(t)
0, N2(t) = M2(t)
Y2k, N2(t) < M2(t)

Therefore, in model (2), the first two summations are associated with the trades, while
the other two summations are related to the transactions.

Based on the preliminary analysis in Section 3, we know that there are significant
correlations between the annual numbers of deposits and withdrawals as well as between
their amounts in both trades and transactions. Due to the different context in which the
ruin model (1) is used, dependence between the random variables N(t) and M(t) has not
been taken into account. In contrast, in the present context, it is logical (and confirmed
by the data) to consider such dependence. In this paper, we incorporate the observed
correlations between the random variables in our model by utilizing Frank copulas, which
are employed for symmetric dependence structures.

On the one hand, the use of copulas to model dependence between random variables
is very popular in actuarial science and financial risk management. For example, Albrecher
and Teugels (2006) employ copulas to define the joint distribution of inter-claim times
and claim amounts and the authors of Blier-Wong et al. (2022) investigate collective risk
models using a copula approach, specifically focusing on cases where the dependence
structure is determined by a Farlie–Gumbel–Morgenstern (FGM) copula. Other relevant
studies for applications include Frees and Valdez (1998), Wang (1998), Bouyé et al. (2000),
Denuit et al. (2006), and McNeil et al. (2015). Also, general references on copulas are Joe
(1997) and Nelsen (2007) among others. On the other hand, in Zhang and Yang (2010), Xie
and Zou (2013), Vidmar (2018), and Guan and Wang (2023), some dependency structures
and different approaches to consider them are investigated.

5. Simulation and Results

In this section, we first describe the simulation algorithms which are based on our
model given in Equation (2), as well as all relevant inputs such as fitted distributions
for random variables and the initial wealth. After that, we present the obtained results
including mean and median time to exhaustion of funds, probability of (financial) ruin,
annual retirement income based on mean and median time to exhaustion of funds, deficit
at ruin, and finally the annual withdrawal rates for each group of male and female retirees.

5.1. Simulation

We perform the simulations based on the described data in Section 3 and the model
given in Equation (2).

After careful consideration of many parametric distributions such as the Pareto, the
Log-normal, the Weibull, the Gumbel, the Burr, the Log-logistic (also known as Fisk distri-
bution in Economics), the Dagum Type I and Type II (also known as Mielke Beta-Kappa
distribution) and the Inverse Weibull, spliced distributions, and mixture distributions for
modeling the amounts of deposits and withdrawals and using Kolmogorov–Smirnov (K-S)
test to verify the goodness of fit, we found that none of these distributions give appropriate
fit for our data. Consequently, we choose to employ non-parametric distributions for
the random variables X1i, Y1i, X2k, and Y2k, which represent the amounts of deposits and
withdrawals for both trades and transactions. Also, for the annual number of deposits and



Risks 2024, 12, 70 10 of 21

the annual number of withdrawals, i.e., N1(t), M1(t), N2(t), and M2(t), since the variance
is much greater than the mean, the Poisson distribution could not be appropriate. Trying to
fit a Negative Binomial distribution because the variance is greater than the mean, does
not show a suitable result based on the p-value of the K-S test, because it does not perform
well for the right tail. Hence, for these random variables and each risk tolerance group of
each gender, we fit non-parametric distributions using “rv_histogram” from “Scipy.stats”
in Python.

Since we have to fit a total of eight distributions in each group of the eight groups
of retirees that we have, in Figures 5 and 6, we only show the relevant graphs for groups
3 of male and female retirees which group contains about a half of all retirees. From
Figures 5 and 6, it can be seen that this kind of non-parametric distribution gives us a
precise fitting at zero, as well as at the right tail. We utilize the fitted non-parametric
distributions for generating all random variables that we have in the simulations.

(a) N1(t): Annual number of deposits for
trades

(b) M1(t): Annual number of withdrawals
for trades

(c) N2(t): Annual number of deposits for
transactions

(d) M2(t): Annual number of withdrawals
for transactions

Figure 5. Histograms of non-parametric densities for group 3 of male retirees.

(a) N1(t): Annual number of deposits for
trades

(b) M1(t): Annual number of withdrawals
for trades

Figure 6. Cont.
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(c) N2(t): Annual number of deposits for
transactions

(d) M2(t): Annual number of withdrawals
for transactions

Figure 6. Histogram and non-parametric fitted density curve of distribution for group 3 of female retirees.

The simulation algorithms that we design to obtain the time to exhaustion of funds,
the (financial) ruin probabilities, and the deficit at ruin are shown in Algorithms 1, 2 and 3,
respectively.

Algorithm 1 Simulation algorithm for time to exhaustion of funds
Time-to-ruin = [ ]
U(t) = U(0) = u(retiree’s age) ▷ The initial wealth based on the age of retiree which is
an input
for i in (0, 10, 000) do

k = [ ]
for i in (0, 1000) do

if U(t) ≥ 0 then

1. Generating two pairs of joint random variables shown with (Ñ1(t), M̃1(t)) and

(Ñ2(t), M̃2(t)) using the non-parametric distributions of input data for the frequen-
cies and Frank Copula with input Thetas,

2. Generating joint random variables in two 2-dimensional vectors showing with
(X̃1i, Ỹ1i) and (X̃2k, Ỹ2k) using the non-parametric distributions of input data for the

amounts, Frank Copula with input Thetas, with the size of min(Ñ1(t), M̃1(t)) and

min(Ñ2(t), M̃2(t)), respectively.
3. Generating independent random variables in two 1-dimensional vectors show-

ing with X̃1i and Ỹ1i using the non-parametric distributions coming from input

data with the size of Ñ1(t) − min(Ñ1(t), M̃1(t)) and M̃1(t) − min(Ñ1(t), M̃1(t)),
respectively.

4. Generating independent random variables in two 1-dimensional vectors show-
ing with X̃2k and Ỹ2k using the non-parametric distributions coming from input

data with the size of Ñ2(t) − min(Ñ2(t), M̃2(t)) and M̃2(t) − min(Ñ2(t), M̃2(t)),
respectively.

5. Calculating U(t) = U(t) + ∑
A1(t)
i=1 [(1 − f ) × X1i − (1 + f ) × Y1i] + ∑

B1(t)
j=1 Z∗

1j +

∑
A2(t)
k=1 (X2k − Y2k) + ∑

B2(t)
l=1 Z2l − (1 + r)tc using the numbers f = 0.007, c = 4000

and the rate r = 0.06
6. Adding the value of U(t) to the vector of k

else if U(t) < 0 then
Break the loop

end if
end for
Adding the “length of k vector minus 0.5” to the vector of Time-to-ruin

end for
Return The mean (or the median in the other case) of the vector Time-to-ruin
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Algorithm 2 Simulation algorithm for ruin probabilities
Ruin-probs = 0
U(t) = U(0) = u(retiree’s age) ▷ The initial wealth based on the age of retiree which is
an input
for i in (0, 10, 000) do

k = 0
for i in (0, life expectancy for retiree’s age) do

if U(t) ≥ 0 then

1. Generating two pairs of joint random variables shown with (Ñ1(t), M̃1(t)) and

(Ñ2(t), M̃2(t)) using the non-parametric distributions of input data for the frequen-
cies and Frank Copula with input Thetas,

2. Generating joint random variables in two 2-dimensional vectors showing with
(X̃1i, Ỹ1i) and (X̃2k, Ỹ2k) using the non-parametric distributions of input data for the

amounts, Frank Copula with input Thetas, with the size of min(Ñ1(t), M̃1(t)) and

min(Ñ2(t), M̃2(t)), respectively.
3. Generating independent random variables in two 1-dimensional vectors show-

ing with X̃1i and Ỹ1i using the non-parametric distributions coming from input

data with the size of Ñ1(t) − min(Ñ1(t), M̃1(t)) and M̃1(t) − min(Ñ1(t), M̃1(t)),
respectively.

4. Generating independent random variables in two 1-dimensional vectors showing

with X̃2k and Ỹ2k using the non-parametric distributions with the size of Ñ2(t)−
min(Ñ2(t), M̃2(t)) and M̃2(t)− min(Ñ2(t), M̃2(t)), respectively.

5. Calculating U(t) = U(t) + ∑
A1(t)
i=1 [(1 − f ) × X1i − (1 + f ) × Y1i] + ∑

B1(t)
j=1 Z∗

1j +

∑
A2(t)
k=1 (X2k − Y2k) + ∑

B2(t)
l=1 Z2l − (1 + r)tc using the numbers f = 0.007, c = 4000

and the rate r = 0.06
6. Adding the value of U(t) to the vector of k

else if U(t) < 0 then
Break the loop
k = k + 1 ▷ Finally, k equals 0 or 1

end if
end for
Adding the value of k to Ruin-probs

end for
Return Ruin−probs

10,000

From Algorithms 1 and 3, it can be seen that the simulations are repeated 10,000 times
and they calculate the time to exhaustion of funds and deficit at ruin assuming an “infinite
time horizon”. According to Algorithm 2, the simulation to obtain the probabilities is
performed again 10,000 times, while it is based on a “finite-time” assumption which is the
life expectancy for the retiree’s age, because obviously, with infinite time assumption, the
ruin probability would be equal to 1. It is also important to note that, Algorithms 1–3, are
run for each age from 65 to 85 based on the initial wealth and the life expectancy (only for
the ruin probability) associated with that age.
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Algorithm 3 Simulation algorithm for deficit at ruin
Deficit-at-ruin = [ ]
U(t) = U(0) = u(retiree’s age) ▷ The initial wealth based on the age of retiree which is
an input
for i in (0, 10, 000) do

for i in (0, 1000) do
if U(t) ≥ 0 then

1. Generating two pairs of joint random variables shown with (Ñ1(t), M̃1(t)) and

(Ñ2(t), M̃2(t)) using the non-parametric distributions of input data for the frequen-
cies and Frank Copula with input Thetas,

2. Generating joint random variables in two 2-dimensional vectors showing with
(X̃1i, Ỹ1i) and (X̃2k, Ỹ2k) using the non-parametric distributions of input data for the

amounts, Frank Copula with input Thetas, with the size of min(Ñ1(t), M̃1(t)) and

min(Ñ2(t), M̃2(t)), respectively.
3. Generating independent random variables in two 1-dimensional vectors show-

ing with X̃1i and Ỹ1i using the non-parametric distributions coming from input

data with the size of Ñ1(t) − min(Ñ1(t), M̃1(t)) and M̃1(t) − min(Ñ1(t), M̃1(t)),
respectively.

4. Generating independent random variables in two 1-dimensional vectors showing

with X̃2k and Ỹ2k using the non-parametric distributions with the size of Ñ2(t)−
min(Ñ2(t), M̃2(t)) and M̃2(t)− min(Ñ2(t), M̃2(t)), respectively.

5. Calculating U(t) = U(t) + ∑
A1(t)
i=1 [(1 − f ) × X1i − (1 + f ) × Y1i] + ∑

B1(t)
j=1 Z∗

1j +

∑
A2(t)
k=1 (X2k − Y2k) + ∑

B2(t)
l=1 Z2l − (1 + r)tc using the numbers f = 0.007, c = 4000

and the rate r = 0.06
6. Adding the value of U(t) to the vector of k

else if U(t) < 0 then
Break the loop

end if
end for
Adding the value of U(t) to Deficit-at-ruin

end for
Return The mean of the vector Deficit-at-ruin ▷ Or the median of the vector
Deficit-at-ruin

The final step in this subsection is showing the retirees’ initial wealth based on ages
of male and female retirees and different groups of risk tolerance. In Figure 7, the initial
wealth for male and female retirees for ages 65 to 85 are shown. From Table 2, we know
that male and female retirees in group 4 (the highest risk tolerance group) are wealthier in
total, and now from Figure 7, it can be seen that, for male retirees, across all ages, group
4 is the wealthiest one and for female retirees, across all ages except 68, 69, 74, and 80,
group 4 is the wealthiest group. The final point regarding Figure 7 is that, since in some
groups, for certain ages, we do not have enough retirees, they are combined with the next
age group(s). For example, for group 1 in both male and female retirees, all the retirees
before age 75 are grouped together and all the retirees after age 75 are grouped together. In
the next subsection, the obtained results using the algorithms explained in this subsection,
are provided.



Risks 2024, 12, 70 14 of 21

(a) Female retirees (b) Male retirees
Figure 7. Retirees’ initial wealth for female and male retirees for ages 65 to 85 and different groups of
risk tolerance.

5.2. Results

Based on the simulation algorithms given in Section 5.1, in this subsection, the results
of mean and median time to exhaustion of funds, ruin probability within the retirees’ life
expectancy, retirement annual income based on mean and median times to exhaustion of
funds, deficit at ruin, and, finally, the withdrawal rates are provided. Figure 8, displays the
mean and median time to exhaustion of funds for all groups of male and female retirees,
respectively. In order to have a better comparison, the life expectancy by gender (taken
from www150.statcan.gc.ca, Statistics Canada’s Website, accessed on 30 July 2023) and the
remaining time to the age 110 (which is considered to be the maximum age in this paper)
are shown. It can be seen that overall, the median time to exhaustion of funds is longer
than the mean time to exhaustion of funds.

For deciding on which one of the two statistics, mean or median time, to rely on, we
calculate the probabilities of ruin within the life expectancy of our retired clients for all
groups of male and female retirees. Figure 9 displays the results as well as a horizontal line
at 0.05 for ease of comparison. We see there that the ruin probabilities are such that they
support using the median for the time to exhaustion of funds instead of the mean. This is
due to how we estimate the ruin probabilities (see Algorithm 2). It is consistent with the
definition of percentiles and the most common percentile that is clearly interpreted is the
median. Also, it can be seen that group 3 of male retirees have the lowest ruin probability
within the life expectancy at all ages, while the ruin probabilities within the life expectancy
for female retirees in groups 3 and 4 are the lowest ones. Lastly, we note that group 4 of
male retirees have the highest ruin probabilities almost at all ages.

(a) Mean time to exhaustion of funds for
female retirees

(b) Mean time to exhaustion of funds for
male retirees

Figure 8. Cont.

https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=1310011401
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(c) Median time to exhaustion of funds for
female retirees

(d) Median time to exhaustion of funds for
male retirees

Figure 8. Mean and median time to exhaustion of funds for female and male retirees for ages 65 to 85
and different groups of risk tolerance.

(a) Female retirees (b) Male retirees
Figure 9. Ruin probabilities during the life expectancy for female and male retirees for ages 65 to 85
and different groups of risk tolerance

Figure 10 shows the annual retirement income based on mean and median time to
exhaustion of funds for male and female retirees from age 65 to 85 and for all groups of risk
tolerance, respectively. Because the median time to exhaustion of funds is greater than the
mean time to exhaustion of funds at all ages and for all groups of risk tolerance, in Figure 10,
we see that the annual retirement income based on mean time to exhaustion of funds are
greater than the annual retirement income based on mean time to exhaustion of funds
although the difference between them can be considered negligible. Group 4 of male and
female retirees have the highest annual retirement incomes which can be more interesting
when we look at the ruin probabilities in Figure 9 where the ruin probability for female
retirees in group 4 is almost the lowest probability among other groups of female retirees
and it can be due to the higher initial wealth that the retired clients in this group have.

(a) Annual retirement income based on mean
time to exhaustion of funds for female retirees

(b) Annual retirement income based on mean
time to exhaustion of funds for male retirees.

Figure 10. Cont.
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(c) Annual retirement income based on
median time to exhaustion of funds for

female retirees

(d) Annual retirement income based on
median time to exhaustion of funds for male

retirees
Figure 10. Annual retirement income based on mean and median time to exhaustion of funds for
female and male retirees for ages 65 to 85 and different groups of risk tolerance.

In Figure 11, the mean and median deficit at ruin for female and male retirees in
different groups of risk tolerance are shown. On the one hand, for the mean deficit at
ruin, it is seen there that whenever ruin occurs, the deficit for group 4 of male retirees
is much larger than for the other groups. This is a consequence of the pattern of their
transactions which are shown in Figure 2. By looking at transactions in this figure, we can
see that the average amount of withdrawals is roughly three times greater than the average
amount of deposits for group 4 of male retirees which is the reason that in the case of ruin,
the deficit for male retirees in group 4 is quite large compared to other groups. Among
different groups of risk tolerance of female retirees, those in group 1 have the largest deficit
at ruin which is again due to the pattern of their transactions which can be seen in Figure 2
that they have a much larger average of withdrawals in comparison with the average of
deposits which eventually cause larger deficit at ruin. We note that although the average
amount of deposits might be greater than the average of withdrawals in trades for some
groups (such as group 4 of male retirees and group 1 of female retirees that are discussed),
the less frequency of trades and high frequency of transactions leads to higher impact of
transactions compared to trades in case of ruin and the mean deficit at ruin. On the other
hand, it can be seen that the median deficit at ruin for all groups of female and male retirees
is significantly lower than the mean at ruin. The median at ruin for all groups of both
genders is around CAD 50,000 which by considering the annual retirement income that we
obtained, we can conclude that is much more reliable compared to the mean deficit at ruin.

(a) Mean deficit at ruin for female retirees (b) Mean deficit at ruin for male retirees
Figure 11. Cont.
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(c) Median deficit at ruin for female retirees (d) Median deficit at ruin for male retirees
Figure 11. Mean and median deficit at (financial) ruin for female and male retirees for ages 65 to 85
and different groups of risk tolerance.

Lastly, in Table 5, the withdrawal rates (as percentages of the initial wealth) based
on median time to exhaustion of funds are shown for male and female retirees and all
groups of risk tolerance. As seen in Table 5, group 4 of male retirees who are in the highest
risk tolerance group has the highest withdrawal rate which is 4.6% and group 1 of female
retirees who are in the lowest risk tolerance group has the lowest withdrawal rates which
is 2.1%.

Table 5. Withdrawal rates for male and female retirees and for all groups of risk tolerance.

Gender Group 1 Group 2 Group 3 Group 4

Male 2.8% 2.7% 2.3% 4.6%
Female 2.1% 2.7% 2.2% 2.3%

Remark 1. In Finke et al. (2011), it is concluded that risk-tolerant clients, tend to withdraw more
money. In this research, by segregating retirees by gender, we can enhance the findings of Finke et al.
(2011) by suggesting that the assertion “risk-tolerant clients tend to withdraw more" might apply
specifically to male clients.

Remark 2. Some studies, like those by Pfau (2011), Anarkulova et al. (2022), Saraogi (2022),
and Raju and Saraogi (2024), deem the 4% rule risky, while others such as Finke et al. (2011) and
Van Appel and Maré (2022) find it too conservative. Our analysis of the initial wealth and portfolio
returns of our retired clients suggests that a 4.5% withdrawal rate maintains an acceptable risk level.

6. Conclusions

This research aims to help retirees afford post-retirement expenses and maintain their
quality of life. We analyze data from over 4500 retirees to assess different investment
and spending strategies. Our purpose is to provide insights to advise retirees on safe
withdrawal practices, conservative approaches, and appropriate investment strategies
based on their life stage. In this section, we discuss the results outlined in Section 5. We
obtained the mean and the median time to exhaustion of funds and subsequently, the
annual retirement income based on the mean and the median times. From Figure 8, it can
be seen that the simulated data for time to exhaustion of funds, based on the mean and
the median for all groups of male and female retirees does not show significant difference
while both are considerably higher than the life expectancy. Although there is no significant
difference between mean and median times, the ruin probabilities (see Figure 9) in life
expectancy perfectly support the median time to ruin that is obtained, so for the time to
ruin and consequently the annual retirement income, we rely on median time instead of the
mean time. For the population that we study, the ruin probabilities within the retirees’ life
expectancy are not low: in most cases exceeding 5% and for female and male retirees below
20% and 30%, respectively. In Figure 9, we can see that the ruin probability for males in
group 4 at the age of 65 is pretty high, around 0.5, which drops dramatically for following
ages and this high ruin probability matches what we see in the plots related to median time
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to ruin in Figure 8 and the time to ruin for male retirees in group 4 that is even less than the
life expectancy at age 65.

Male retirees in group 4 and female retirees in group 2 have the lowest time to
exhaustion of funds at all ages and the highest ruin probabilities at almost all ages. Although
we expect that the shortest time to ruin is associated with the highest annual retirement
income, this is only the case for male retirees in group 4 of risk tolerance which is completely
reasonable due to their initial wealth that is at least 30% higher than other groups of male
retirees. Considering the highest initial wealth and the lowest time to ruin that male retirees
in group 4 have, by looking at Figure 10, we can see that the highest annual retirement
income, belongs to this group of retired clients. For female retirees in group 2, due to the
lower initial wealth that they have, although their time to ruin is the shortest one among all
groups of female retirees, they do not have the highest annual retirement income, while
the female retirees in group 4 do, because of their highest initial wealth compared to other
groups of male and female retirees.

In some research conducted in this area, such as Finke et al. (2011), it is found that the
risk-tolerant clients tend to withdraw more which is exactly the case for male retirees in
our research. In Finke et al. (2011), the authors do not take into account gender in their
investigations of withdrawal rates and income, while in this paper we consider gender as
an important factor. By separating the retirees based on their gender, we can refine the
result in the mentioned paper by specifying that the statement “the risk-tolerant clients
tend to withdraw more” might be true only for males.

In our study, 5%, 16%, 62%, and 17% of male retirees belong to groups 1 to 4, respec-
tively. Across all groups, about 60% of male retirees have a ruin probability that is less than
10%, which is still a high probability within one’s life expectancy. For female retirees, 6%,
17%, 55%, and 22% belong to groups 1 to 4, respectively. In total, for about 80% of them, the
ruin probability is less than 10%. About 60% and 80% of male and female retirees have time
to ruin (exhaustion of funds) higher than the remaining time for their age to the maximum
age (we consider the maximum age to be 110 here) which shows that they are withdrawing
in a very safe way that might not be necessary. If we look at Table 5, we can see that the
unnecessarily low withdrawal rates are around 2.5%, so it might be advisable for those
retired clients who withdraw around 2.5%, by considering their risk tolerance group, to
withdraw more.

We now address the question of what a safe withdrawal rate would be. In the litera-
ture, the 4% rule is considered risky in some research (for instance, see Anarkulova et al.
2022; Pfau 2011; Raju and Saraogi 2024; Saraogi 2022) and too low in others (for example,
see Finke et al. 2011; Van Appel and Maré 2022). Given the initial wealth of our retired
clients and the returns that their portfolios generate, our data suggests that a withdrawal
rate of around 4.5% of the initial wealth will result in an acceptable ruin probability and
time to ruin. Nevertheless, this corresponds to a yearly income of less than CAD 10,000
for most of the male and female retirees, which is obviously inadequate to meet expenses,
while withdrawing around 4.5% leads to approximately CAD 20,000 annual retirement
income for males in group 4.

Note that the amounts of initial wealth that we observe in our data (see Figure 7) are some-
what representative of the retirement savings of Canadians in general, see www.statcan.gc.ca,
accessed on 1 September 2023 . We note that in Canada the calculated annual retirement in-
comes are often supplemented by Old Age Security (OAS) and Canada Pension Plan (CPP).
According to www.canada.ca-OAS (accessed on 1 September 2023) and www.canada.ca-
CPP (accessed on 1 September 2023), these two governmental plans for retirees provide:

• OAS: Maximum monthly payments of CAD 698.60 for ages 65 to 74 and CAD 768.46
for 75 and over;

• CPP: Maximum monthly amounts of CAD 1306.57 and the monthly average amount
is CAD 760.07 for retirement at age 65.

Therefore, OAS and CPP add total maximum annual payments of CAD 23,970.84 for
ages 65 to 74 and CAD 24,798.84 for 75 and over for retirement at age 65. In particular, this

https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=1110001601
https://www.canada.ca/en/services/benefits/publicpensions/cpp/old-age-security/payments.html#h2.1
https://www.canada.ca/en/services/benefits/publicpensions/cpp/cpp-benefit/amount.html
https://www.canada.ca/en/services/benefits/publicpensions/cpp/cpp-benefit/amount.html
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can reduce significantly the ruin probabilities while extending the time to exhaustion of
funds for Canadians. In conclusion, about CAD 24,000 to CAD 25,000 annually will be
added to the annual retirement income for the average Canadian, which, although safe,
still seems on the lower end for meeting daily expenses. As the final point, we note that
according to www.statcan.gc.ca (accessed on 9 September 2023) the median after-tax of
Canadian families and unattached individuals was CAD 68,400 in the year 2021 which is
reasonably close to the annual retirement income that we estimate for our retired clients
and it shows that our retirees are somehow representative of Canadians retirees.

Naturally, the model that we are proposing in this paper has certain limitations.
Although it may be utilized for other datasets and countries, all simulation assumptions
highly depend on the specific dataset which we are applying our methodology. For instance,
the correlations between the frequencies and the amounts of deposits and withdrawals
could be quite different for another dataset, regardless of whether it concerns a private
company or a governmental agency. Thus, the outcome of the analysis might differ from
what we observe in this research. In fact, all the parameters and distributions that are used
in the simulations of the model need to be deduced carefully from the data at hand. Finally,
one may extend our methodology further to pre-retirement savings while market shocks
and long-term return on investments are also accounted for.
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