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Abstract: We present some new evidence on the tail distribution of commercial property
losses based on a recently constructed dataset on large commercial risks. The dataset
is based on contributions from Lloyd’s of London syndicates, and provides information
on over three thousand claims occurred during the period 2000–2012, including detailed
information on exposures. We use occupancy characteristics to compare the tail risk profiles
of different commercial property exposures, and find evidence of substantial heterogeneity
in tail behavior. The results demonstrate the benefits of aggregating granular information on
both claims and exposures from different data sources, and provide warning against the use
of reserving and capital modeling approaches that are not robust to heavy tails.
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1. Introduction

Property and business interruption risks represent roughly a third,1 or USD 175 billion, of direct
insurance premiums written in commercial insurance lines worldwide (see [1]). The latter also include
liability insurance, commercial auto insurance, and specialty lines such as off-shore energy and workers’
compensation.2 Property insurance typically includes fire insurance, which offers protection against fire
and lightning, but may also provide additional cover against natural and social perils such as wind, flood,
and vandalism. Business interruption is a complementary insurance covering the expenses and losses
incurred when business is interrupted and damages are being repaired. The demand for commercial
property insurance is dominated by medium and large corporations that need to insure complex, high
severity risks. The largest property insurance markets in the world are the US3 and the UK.4

Despite their relevance for the corporate sector and (re)insurers operating in commercial insurance
lines, large commercial property risks are poorly understood. This is due to the limited public
information available on property losses and exposures, the heterogeneity of risk characteristics of
insured values, and the complex relation between hazard events and realized losses, as small events may
often precipitate major disasters. These factors make it difficult for insurers to build reliable statistical
claims information, whereas companies that have larger insurance portfolios and more sophisticated
claims reporting systems have no incentive to disclose information for competitive reasons. The literature
on the subject is scant. The few methodological contributions available emphasize the challenges of
pricing high layers of exposure, and offer insights into the blending of exposure and experience rating
(see [2–4]). As a result, the insurance industry is overly reliant on underwriters’ judgment and recent
claims history, and finds it difficult to properly understand the true risk that it is taking on. On the demand
side, the excessive weight placed on reported claims and the variability of pricing schedules across
exposures result in a considerable degree of price volatility, which makes it challenging for corporates
to budget for insurance purchases on a systematic basis.5

In this paper, we shed some light on the tail distribution of commercial property risks by using a
recently constructed dataset on large commercial risks. This new data source is based on information
collected from two leading Lloyd’s syndicates writing a total of GBP 2.67bn gross premiums across all
lines of business in 2012, a figure representing around 10% of Lloyd’s gross premiums that year. As
Lloyd’s is predominantly a subscription market, the claims information provided by the two syndicates

1 According to the estimates reported in Swiss Re [1], 29% of direct insurance premiums in 2010 were written for property
and business interruption risks.

2 In terms of global direct premiums written in 2010, the shares of these lines of business were as follows: 25%
(liability insurance), 19% (commercial auto insurance), 17% (specialty lines such as offshore energy), and 11% (workers’
compensation); see Swiss Re [1].

3 With USD 1.1 billion of direct premiums written in 2010; see Swiss Re [1].
4 Although the domestic UK market is not as large as, for example, the German and French markets, London is the main

marketplace for international commercial (re)insurance risks. When counting foreign business, the UK jumps to second
place; see Swiss Re [1].

5 These long standing issues were already pointed out, for example, in Michaelides et al. [5].
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allows us to encompass a substantially larger fraction of business transacted, making the dataset
representative of the business written in the London market.6

To measure the tail risk of commercial property exposures, we use a parsimonious model based on
approximating the tail behavior of the claims with a power law. In particular, we estimate the tail index,
a parameter describing how fast the tail of a power law decays: the lower the tail index, the greater
the probability mass in the tails. To ensure robustness relative to small sample bias, heterogeneity,
and dependence of the claims considered, we resort to the log-log rank-size method, as presented by
Gabaix and Ibragimov [6], and discussed more in detail in Section 3 below. As a robustness check,
we also apply the method of Huisman et al. [7], which is designed to address small sample issues (see
Section 3.3 for a review of alternative approaches). Estimation of the tail index offers immediate insights
for pricing, reserving, and capital modeling exercises. In particular, the value of the tail index is in
one-to-one correspondence with the maximal order of finite (centered) moments of the risks considered.
For example, the skewness only exists for values of the tail index strictly larger than three; the variance
only exists for values strictly larger than two; and the mean only exists for values strictly larger than one
(e.g., [8,9]). The tail index can be regarded as being infinite for Normal distributions, as the tail decay
is faster than exponential, and moments of an arbitrary order are then finite. In our data, we find that
commercial property risks are significantly heavy tailed. For several rating factor configurations, the
hypothesis of existence of the variance can be rejected at the 5% significance level. For some important
classes of risk, even the hypothesis of existence of the mean can be rejected.7

Existence of a finite variance is essential for the application of standard statistical methods, such as
least squares methods. It is also crucial for reserving methods based on risk margins proportional to the
standard deviation of the claims,8 meaning that such methods are inappropriate for liabilities modeled
by extrapolating available claims information far into the tails. Existence of a finite mean is important
for capital modeling and quantile-based risk measures, such as Value at Risk (VaR) in the Solvency II
framework. In particular, coherence of VaR as a risk measure in the sense of Artzner et al. [13] may be
violated, meaning that the diversification benefits on which a subscription market like Lloyd’s is based
may be limited for some classes of commercial property risks. As an example, denote by the random
variable Z(w1,...,wn) :=

∑n
i=1wiXi the risk exposure resulting from retaining fractions w1, . . . , wn (with

wi ∈ [0, 1], i = 1, . . . , n) of i.i.d. risks X1, . . . , Xn. If the risks belong to the class of stable
distributions with tail index α, for example, it can be shown that V aRq(Z(1,0,...,0)) < V aRq(Z(1/n,...,1/n))

for tail probability parameter q ∈ (0, 1/2) and tail index value α ∈ (0, 1) (see [14,15]). Regulators
should therefore be aware of the risk concentration incentives that may arise from commercial property
exposures. Similarly, (re)insurers should tread carefully with high layers of exposure in that space, as
internal capital charges may underestimate the true risk being taken on.

6 The claim overlap rate between the two syndicates is roughly 50%. We estimated that an additional large syndicate would
have led to an overlap rate higher than 70%.

7 Tail index estimates below one also arise in the context of operational risks and returns from technological innovation; see
Nešlehová et al. [10], Degen et al. [11], and Silverberg and Verspagen [12], for example.

8 Commercial property insurance providers in the London market, for example, often quantify reserves by inflating
premiums by a factor (say 30%) of the standard deviation of the losses.
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On the methodological side, we need to deal with potential issues arising from the structure of
the data. Although our dataset is large relative to extant data sources,9 we are still faced with small
sample estimation challenges, in particular when conditioning on relevant rating factors. Moreover, the
observed losses may have a dependence structure induced by the underwriting strategies pursued by the
syndicates during the sampling period. We address these issues by using the log-log rank-size regression
method with the optimal rank shift indicated by Gabaix and Ibragimov [6]. As demonstrated by these
authors, their adjustment optimally reduces the bias arising in small samples, and delivers estimates
robust to the presence of heterogeneity and dependency in the data, including common factors. For
comparison, we pair this method with the popular Hill [17] estimator, and the weighted-Hill estimator
of Huisman et al. [7], which was specifically designed to address small sample issues. The results allow
us to reject the hypothesis of existence of first or second moments at a good significance level in some
interesting cases. Finally, we explore the relative contribution of different rating factors to tail risk, by
expressing the tail index as a deterministic function of relevant covariates, and adopting a regression
approach in line with Beirlant et al. [18], Beirlant and Goegebeur [19], and Wang and Tsai [20].

The paper is organized as follows. In the next section, we provide details on the dataset. In Section 3,
we outline the statistical methodologies used. In Section 4, we provide tail estimation results for
some configurations of exposure characteristics. Section 5 concludes, offering recommendations for
future research.

2. Data

The Imperial-IICI dataset contains claim and exposure information obtained from two leading
syndicates of Lloyd’s of London. As the latter is a subscription market, the data span business written
by a number of other syndicates. Granular information on claims and exposures was obtained from
brokers’ submissions. These are documents informing the ‘lead’ underwriter of any claims occurring
under a policy; the information is then shared with the market, in order to allocate the losses to each
‘follower’, depending on the individual retentions of the syndicates that co-insured the risk underwritten
by the ‘lead’. Brokers’ submissions are fundamental in our analysis, as they allow us to determine claims
from the ground up (FGU). It is in general very difficult to recover FGU claims from the losses incurred
by individual syndicates, due to the complex layering and coinsurance arrangements characterizing large
commercial property insurance. All data were anonymized and aggregated by using fictitious claims
and policy identifiers. Internal validation of the data was carried out by looking at individual claims
narratives and policy schedules, which are documents listing the asset values insured under a policy.
External macro-validation was carried out by using data from fire protection agencies as compiled by
ISO Verisk.10

9 As an example, consider the well-known dataset of Danish fire losses presented in McNeil [16]; it provides information on
2157 fire losses occurred between 1980 and 1990, with a 1985-equivalent value above 1 million Danish Krone (GBP 197k
in current, RPI-adjusted money terms). Data were made available by Copenhagen Re with a breakdown of total loss data
into building, content, and profit losses.

10 We are grateful to John Buchanan and Chris Kent at ISO Verisk for making this validation exercise possible. The exercise
demonstrates consistent results in terms of average excess severity of losses above USD 1m and 5m across occupancy
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The Imperial-IICI FGU claims provide aggregate information on indemnities for physical damage
and business interruption, as well as claims assessment and settlement fees. Both claims and exposures
are expressed in 2012 USD terms;11 the normalization is obtained by trending claims and exposures at
an average rate of 2.5% per annum across the two syndicates. An example of data record is presented
in Table 1. The record reports location information, and classifies the risk type according to the Lloyd’s
risk codes (a selection of these codes is presented in Table 2). The claim can be further understood by
using occupancy type information, which has three levels of increasing granularity. The first one broadly
classifies exposures into commercial (e.g., offices, banks, stores), manufacturing (e.g., utilities, food
processors, mines), and residential property (e.g., hotels, hospitals). The second level provides some
more detail according to the definitions reported in Table 3, allowing one to distinguish, for example, a
hotel from a hospital, or metals from food producers. The third occupancy level offers a more granular
view of the exposures, distinguishing for example between large vs. small hotels, heavy vs. light
fabrication infrastructure, and food & drugs vs. chemicals vs. metal & minerals processing plants.
Finally, occupancy information is complemented by the claim narrative, which may also provide some
indications on the hazard event (e.g., burst of waterpipe, electrical failure, fire from hotel restaurant).

Table 4 gives an idea of the geographical distribution of the losses. Although the dataset has global
scope, the largest subsample is represented by North American data. The Worldwide data class is
currently being analyzed at a deeper level, and might result in the allocation of claims to more precise
locations in the future. In Figure 1, we give an idea of the claim counts and average FGU losses in
excess of different thresholds. Information on claim counts by year and occcupancy level 2 information
is reported in Table 5.

Table 1. Example of data record, with three levels of occupancy information.

Region Country Risk Code Occupancy 1 Occupancy 2 Occupancy 3

NoA US P2 RE R 51
(Physical damage; (residential) (residential) (Large Hotels)

primary layer property;
USA; excluding binders)

types (see Figure 1). The Imperial-IICI dataset provides larger coverage of manufacturing exposures, which give rise to
the largest losses also in the data compiled by ISO Verisk.

11 Claims are available in original currency. For comparability, we converted claims in USD by using Lloyd’s year-end
currency conversion rates.
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Table 2. Selection of Lloyd’s risk codes with relevant definitions.

Risk Code Definition

B2 Physical damage; private property; USA; binder
B3 Physical damage; commercial property; USA; binder
B4 Physical damage; private property; excluding USA; binder
B5 Physical damage; commercial property; excluding USA; binder
P2 Physical damage; primary layer property; USA; excluding binders
P3 Physical damage; primary layer property; excluding USA; excluding binders
P4 Physical damage; full value of property; USA; excluding binders
P5 Physical damage; full value of property; excluding USA; excluding binders
P6 Physical damage; excess layer property; USA; excluding binders
P7 Physical damage; excess layer property; excluding USA; excluding binders
PG Operational power generation, transmission, and utilities; excluding construction

Table 3. Occupancy Level 2 definitions.

Code Definition Code Definition

A Miscellaneous Q Offices/Banks
B Manufacturers/Processors R Residential
C Chemicals/Pharmaceuticals T Transport
D Bridges/Dams/Tunnels/Piers U Utilities
E Conglomerates V Telecoms and Data Processing
F Food W Woodworkers (Sawmills, Papermills)
G Grain X Onshore Crude
H General Mercantile/Shops Y Onshore GasPlants
J Mines Z Onshore Construction
K Crops 2 Hospital/Health care centres
L Auto 4 Semiconductor/Fabs
M Metals 5 Motor Manufaturers
O Municipal Property 6 Warehouses
P Energy (Oil Refineries/Petrochemicals)

Table 4. Claim counts and regional breakdown.

Lloyd’s Code Description

AF Africa 22
AS Asia - Pacific 54
CA Central Asia 21
EU Europe 78
LA Latin America - Carribean 78
ME Middle East 13
NA North America 1576
OC Oceania 71
WW World Wide 1258

Total 3171
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Figure 1. Claims breakdown by Occupancy Level 1 and by excess FGU above
different thresholds.

All FGU claims.

FGU claims in excess of USD 1 m.

FGU claims in excess of USD 5 m.
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Table 5. Claim counts by year and occupancy: Residential (RE), Commercial (CO),
Manufacturing (MA).

Years RE CO MA

2000 5 116 69
2001 20 110 58
2002 17 97 92
2003 69 105 138
2004 41 96 112
2005 12 129 89
2006 22 74 55
2007 143 105 153
2008 51 76 100
2009 154 55 83
2010 110 97 108
2011 23 60 51
2012 2 4 0

Total 669 1124 1108

3. Methodology

We use a simple yet effective method to estimate the tail index, which relies on the log-log rank-size
(LLRS) OLS regression. The method is severely biased in small samples and has often been applied
with an incorrect formulation for the standard errors. We apply the optimal bias correction and
the correct formula for the standard errors indicated by Gabaix and Ibragimov [6]. Application of
the method with an optimal ranks shift is very robust to heterogeneity and dependence of the data,
including common factor structures. For comparison, we pair the method with the popular Hill estimator,
which suffers from significant bias in small samples, and with the weighted Hill estimator developed
by Huisman et al. [7] to deal with small sample issues. Readers interested in the empirical results may
skip the next sections and go directly to Section 4.

3.1. Hill Estimator.

Hill [17] proposed a simple method for estimating the tail index from a sequence of i.i.d. observations.
Let l(i) denote the i-th order statistic of losses, such that l(i) ≥ l(i− 1) for i = 2, . . . , n, with n the size
of the sample. Let us focus on the losses in excess of the k-th order statistic, and assume a conditional
Pareto distribution for the random loss L in excess of the threshold l(k). We have

Pk(L > z) = Cz−α(k),
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where α(k) := γ(k)−1 is the tail index and C a positive constant. The Hill estimator for the parameter
γ(k) is the maximum likelihood estimator

γ̂(k) =
1

k

k∑
i=1

ln

(
l(n− i+ 1)

l(n− k)

)
. (1)

The standard error for the Hill estimate of the tail index, α̂(k), is s.e.Hill = α̂(k)/
√
k. To understand the

bias affecting Equation (1) in small samples, consider the class of distribution functions (see [21,22]):

Pk(L ≤ z) = 1− az−α(1 + bz−β),

for positive parameters α, β, and real a, b (the case a = 1 and b = 0 corresponding to a Pareto
distribution). Dacorogna et al. [22] showed that the above is the second order expansion of the
cumulative distribution function of a vast class of heavy tailed distributions, and provided the following
approximations for the expected value and variance of the estimator γ̂(k) in Equation (1):

E(γ̂(k)) ∼=
1

α
− bβ

α(α + β)
a

−β
α

(
k

n

) β
α

V ar(γ̂(k)) ∼=
1

kα2
, (2)

for n, k and l(k) going to infinity. The above show how the choice of threshold l(k) introduces an
important trade-off between bias and efficiency.

3.2. LLRS Regression

A popular alternative to more complex estimators for the tail index is to run the OLS regression

ln(i− η) = a− b ln l(i),

with i = 1, . . . , k. The tail index is given by the OLS estimator b̂. The procedure is typically applied
with η = 0, hence the name LLRS. Unfortunately, this approach is strongly biased in small samples, as
can be seen from the following asymptotic expansions for the OLS estimator b̂(η, k) (see [6]):

E

(
b̂(η, k)

α
− 1

)
=

(2η − 1) ln2 k

4k
+ o

(
ln2 k

k

)
,

b̂(η, k)

α
= 1 +

√
2

k
N (0, 1) +OP

(
ln2 k

k

)
,

where N (0, 1) denotes a standard Normal random variable. When using the LLRS method, one should
therefore apply the optimal rank shift η = 1/2. We will refer to this case as the LLRS-1/2 method.
The relevant standard error of the OLS estimator of the slope coefficient b̂(1/2, k) is then given by
s.e.LLRS = b̂(1/2, k)

√
2/k; again, we refer to Gabaix and Ibragimov [6] for a discussion of this result.
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3.3. Alternative Methodologies

There are several alternative methods to estimate the tail index or its inverse.12 As a robustness
check, we consider the method proposed by Huisman et al. [7] to deal with small samples, and the
bias-efficiency trade-off formalized in Equation (2). Huisman et al. [7] note that, for small enough k, the
bias can be approximated by a linear function, suggesting the use of the regression

γ(k) = β0 + β1k + ε(k). (3)

They then compute Hill estimates for different values of k = 1, . . . , k, where the upper bound k is the
largest value for which the linear approximation of γ(k) holds, and use the resulting vector of γ̂(k)’s to
estimate the parameters of (3). As k goes to zero, the intercept in (3) provides an unbiased estimate of the
parameter γ. Note that β0 and β1 cannot be estimated by OLS for two reasons. First, from Equation (1)
we see that the variance of γ̂(k) depends on k, and hence the error term ε(k) is heteroskedastic. Second,
for all i, j ∈ {1, . . . , κ}, the estimators γ(i) and γ(j) are correlated. Huisman et al. [7] therefore use
Weighted Least Squares (WLS) combined with an appropriate method to compute the standard errors to
deal with the overlapping data problem. They obtain the following weighted Hill estimator,

γw(κ) =
κ∑
k=1

w(k)γ(k), (4)

where we refer to Huisman et al. [7] for details on the weights w(k).

4. Empirical Evidence

In this section we provide tail index estimates for the subset of the Imperial-IICI dataset covering
commercial property claims and exposures.13 Let us first provide a comparison of the two estimation
methods outlined in Sections 3.1–3.2 by looking at property exposures classified as RE (residential)
according to Occupancy Information Level 1. These include hotels, condos, and municipal property such
as council houses, universities, and colleges. Figure 2 reports tail index estimates and 90% confidence
bands for the Hill and LLRS-1/2 methods. Estimates are based on subsamples obtained by considering
between 10% and 40% of the largest losses. The results suggest considerable heaviness of the tail
distribution: both estimation methods indicate a tail index close to one; the existence of a finite variance
can be rejected at the 5% significance level.

12 These include kernel estimators (e.g., [23,24]), moment estimators (e.g., [25]), probability weighted moment estimators
(e.g., [26]), and weighted least squares estimators (e.g., [27]). See also Gomes et al. [28] for weighted log-excesses,
Nguyen and Samorodnitsky [29] for the multivariate case, and the monographies by Embrechts et al. [8], Beirlant et al. [9]
for a general overview.

13 We exclude on-shore energy exposures, and do not study the split between physical damage and business interruption in
our claims.
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Figure 2. Tail index estimates and 90% confidence bands for Occupancy Level 1 RE
(residential): comparison of Hill and LLRS-1/2 regression methods for different estimation
thresholds (from 10-th to 40-th percentile of the data).

To demonstrate the importance of occupancy type, we then compare the tail behavior of Occupancy
Information Level 1 types RE (residential), CO (commercial), and MA (manufacturing). Figure 3 depicts
the results obtained with the LLRS-1/2 method. They indicate considerable variation in tail behavior
across occupancy types. Based on our data, in particular, all types have tail indices lower than two at
the 95% confidence level; commercial losses have the highest tail index estimates, residential losses
the lowest, whereas manufacturing claims are somewhere in the middle. Although losses in our dataset
are on average substantially larger for manufacturing than residential exposures, the results suggest that
the latter may be more dangerous from a distributional perspective. We must bear in mind, however,
that residential exposures are underrepresented in our dataset, as shown for example in Figure 1. As a
robustness check, in Table 6 we report the results obtained by applying the method of Huisman et al. [7]
to the three occupancy types. The results show broad agreement with the LLRS-1/2 method, in particular
for MA and CO exposures.
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Figure 3. Tail index estimates and 90% confidence bands (LLRS-1/2 regression method) for
all Occupancy Level 1 types (CO, MA, RE).

The use of Occupancy Information Level 3 gives us the opportunity to explore variations in tail
behavior within a specific occupancy class. Let us consider RE (residential) exposures, for example,
and distinguish between Large Hotels and Dwellings, the latter including condos, housing associations,
and institutional housing. Figures 4 and 5 show that the second type of exposures is lighter tailed than
Large Hotels. We report results for both the Hill and LLRS-1/2 estimation methods, which provide
similar implications. It is well known that hotel exposures have different risk profiles, depending for
example on the presence of a restaurant (increasing the risk of fire), and may be more or less risky than
condos and apartment complexes. Although the dataset does not allow us to explore this dimension at
the moment (including the presence of sprinklers), our results suggest that the Large Hotels occupancy
class may subsume the presence of serious sources of risk (such as restaurants), thus explaining the
lighter tail behavior of Dwellings. Finally, in Figure 6 we report the tail index estimates for the case of
aggregate Occupancy Level 2 types C (chemicals), J (metals), and M (mines). Again, the results show
considerable tail heaviness, which is comparable to Dwellings, but lighter than Large Hotels across
different thresholds and estimation methods.
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Table 6. Comparison of estimates and 90% confidence bands for the Hill estimator given in
Equation (1), for the LLRS-1/2 estimator obtained from the OLS estimate d̂ of the regression
ln l(i) = c − d ln(i − 1/2), and for the weighted Hill estimator γ̂w given in Equation (4).
Occupancy Level 1 data: RE (residential), CO (commercial), and MA (manufacturing).

RE CO MA

Obs. 5% γ̂Hill 95% 5% γ̂Hill 95% 5% γ̂Hill 95%
10% 0.905 1.225 1.546 0.593 0.731 0.868 0.829 1.055 1.281
15% 1.014 1.292 1.570 0.676 0.798 0.920 1.006 1.219 1.432
20% 1.129 1.388 1.646 0.703 0.811 0.918 0.877 1.032 1.188
25% 1.219 1.463 1.706 0.759 0.861 0.963 0.899 1.039 1.180
30% 1.271 1.498 1.725 0.820 0.919 1.018 1.084 1.237 1.389
35% 1.278 1.486 1.695 0.840 0.933 1.027 1.155 1.304 1.453
40% 1.417 1.632 1.846 0.881 0.972 1.063 1.322 1.480 1.638

Obs. 5% γ̂LLRS−1/2 95% 5% γ̂LLRS−1/2 95% 5% γ̂LLRS−1/2 95%
10% 0.572 0.908 1.244 0.486 0.662 0.838 0.493 0.707 0.920
15% 0.745 1.071 1.396 0.556 0.709 0.863 0.639 0.848 1.057
20% 0.840 1.140 1.440 0.598 0.736 0.873 0.723 0.919 1.115
25% 0.912 1.193 1.473 0.629 0.755 0.881 0.760 0.939 1.119
30% 0.976 1.242 1.509 0.658 0.777 0.895 0.809 0.980 1.150
35% 1.024 1.278 1.531 0.685 0.798 0.911 0.855 1.019 1.184
40% 1.070 1.314 1.559 0.708 0.816 0.924 0.906 1.067 1.228

Obs. 5% γ̂w 95% 5% γ̂w 95% 5% γ̂w 95%
10% 0.328 0.436 0.544 0.61 0.657 0.704 0.493 0.707 0.92
15% 0.5 0.656 0.813 0.544 0.586 0.628 0.639 0.848 1.057
20% 0.691 0.883 1.075 0.596 0.639 0.683 0.723 0.919 1.115
25% 0.793 0.986 1.18 0.623 0.668 0.713 0.76 0.939 1.119
30% 0.836 1.024 1.212 0.617 0.664 0.71 0.809 0.98 1.15
35% 0.906 1.088 1.269 0.618 0.665 0.712 0.855 1.019 1.184
40% 0.91 1.092 1.275 0.635 0.681 0.727 0.906 1.067 1.228
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Figure 4. Occupancy level 3 type “Large Hotel”: tail index estimation (both Hill and
LLRS-1/2 regression methods), with 90% confidence bands.

Figure 5. Occupancy level 3 types corresponding to dwellings (single family and multi
family), institutional housing, condos, housing associations, : tail index estimation (both
Hill and LLRS-1/2 regression methods), with 90% confidence band.
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Figure 6. Occupancy level 2 types C (chemicals), J (metals), and M (mines) aggregated: tail
index estimation (both Hill and LLRS-1/2 regression methods), with 90% confidence band.

A more robust way of comparing the tail characteristics of different occupancy types is to regress
the tail index on a number of relevant covariates (or rating factors). Following Beirlant et al. [18],
Beirlant and Goegebeur [19], and Wang and Tsai [20], we assume that the tail index can be expressed
as a deterministic function of rating factors, which in the examples below are represented by occupancy
types, but more generally could include Total Insurable Value (TIV) bands and/or locations. Using the
notation of (3.1), we assume

Pk(L > z|X) = C(z;X)z−α̃(X;k), (5)

where X = (X1, . . . , Xp)
′ is a vector of covariates, and the tail index is assumed to take the form

α̃(X; k) = exp (θ′X). We estimate the exponential regression coefficient θ ∈ Rp by using the
approximate maximum likelihood estimator of Wang and Tsai [20], as well as their methodology to
select the optimal threshold k.

The approach can be used to quantify the relative contribution to tail risk of different property
characteristics. We provide an example using as covariates dummy variables for Occupancy Level 1
classes RE, CO, and MA. Assuming that the Imperial-IICI dataset is representative of a diversified
portfolio of commercial property risks insured in the London market, one can use the results reported in
Table 7 to suggest that on average occupancy MA provides a positive contribution to portfolio tail risk,
while occupancy types RE and CO provide a negative contribution. These results should be interpreted
bearing mind that MA exposures are overrepresented in our sample, and associated with higher excess
loss severity (see Figure 1).
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Table 7. Tail regression results for the exponential model α̃ = exp(θ′X). The vector
of covariates, X = (X1, X2, X3)

′, includes Occupancy Level 1 indicators for classes RE
(residential), CO (commercial), and MA (manfacturing). The corresponding estimated
loadings are indicated by θ̂ = (θ̂1, θ̂2, θ̂3)

′. Following Wang and Tsai [20], the optimal sample
fraction corresponds to 10% of the largest losses in the entire dataset. We set α̂i := exp(θ̂i)

for the tail index estimate resulting from considering only the loading estimate θ̂i pertaining
to each individual occupancy type.

5% θ̂i 95% α̂i

CO 0.177 0.196 0.215 1.217
RE 0.070 0.082 0.093 1.085
MA −0.032 −0.019 −0.006 0.981

5. Conclusions

In this article we have provided some new evidence on the tail behavior of commercial property
losses. Using a new dataset based on London market claim and exposure information, we have
provided tail estimates for different occupancy types, finding considerable variability of tail behavior
across exposures. The results suggest significant heaviness of the tails, in particular for residential
and manufacturing property exposures. We have also demonstrated the gains in estimation precision
delivered by aggregating information collected from several data sources. The matching of reliable
exposure information to observed claims is crucial to develop a sound statistical basis that can inform
decision makers in pricing, reserving, and capital modeling exercises. Our findings represent a first
step towards a better understanding of the statistical characteristics of large commercial risks, and
towards the development of risk models that are less reliant on subjective assumptions driven by limited
claims experience.
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