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Abstract: This paper proposes a new method to introduce coherent risk measures for
risks with infinite expectation, such as those characterized by some Pareto distributions.
Extensions of the conditional value at risk, the weighted conditional value at risk and other
examples are given. Actuarial applications are analyzed, such as extensions of the expected
value premium principle when expected losses are unbounded.
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1. Introduction

Risk measurement is becoming increasingly more important in economics, finance and insurance.
Although the standard deviation has many interesting properties as a risk measure in a Gaussian world,
asymmetries and heavy tails imply inconsistencies between the standard deviation and second order
stochastic dominance (or classical utility functions). This also makes it difficult to interpret the standard
deviation in terms of potential capital losses. Several recent approaches have attempted to overcome
these drawbacks. In particular, a first line of research deals with the axioms that an index of riskiness
must satisfy from a Theory of Economics perspective (Aumann and Serrano [1]), whereas a second
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line deals with the properties allowing us to interpret a risk measure as potential losses and capital
requirements (Artzner et al. [2]).

This paper focuses on the Artzner et al.’s [2] approach with a significant novelty: we allow for
risks generating unbounded expected losses. As will be seen, the inclusion of risks with unbounded
expectation (for instance, risks with a Cauchy or a Pareto distribution) presents many mathematical
problems when extending the notion of coherence (Artzner et al. [2]) or expectation boundedness
(Rockafellar et al. [3]), and previous literature has addressed this caveat by losing some desirable
mathematical properties. For instance, if we use value at risk (VaR) as a risk measure, then we lose
continuity and sub-additivity. Though there are risk measures for heavy tailed risks that can recover
sub-additivity (or convexity at least, Kupper and Svindland [4]), continuity is still lost.

This paper overcomes the mathematical problems above by extending a given coherent or expectation
bounded risk measure to a limited new setting. For instance, despite the fact that the conditional value
at risk (CVaR) cannot be continuously extended to the whole space of random risks, we will see that,
in fact, it can be continuously extended to some “smaller” spaces containing some risks with infinite
expected value. In practical situations, most of the involved risks will have a finite expected value, so
we should not find infinitely many candidates with infinite expectation. More likely, there will be just a
few, or even only one. Then, instead of extending a coherent risk measure to a “too large set of risks”,
we look for extensions that apply only if the set of heavy tailed risks is finitely generated.

The outline of the paper is as follows. Section 2 introduces the notation, the framework and the main
problem to be addressed: the extension of risk measures, so as to conserve continuity and sub-additivity
(or convexity, at least) and simultaneously include risks whose fat tails lead to unbounded expected
losses. We summarize the mathematical problems affecting this objective.

Theorem 1 is the main result of Section 3. It states the existence of the required extension if the set of
fat tailed risks has a finite generator. Furthermore, Remarks 2 and 3 show how to construct the extended
risk measure in a recursive manner.

Section 4 provides illustrative examples and applications. In particular, we extend the CVaR and the
weighted CVaR (WCVaR) by “integrating in a coherent manner” these risk measures with the VaR of
the heavy tailed risks. We have selected CVaR and WCVaR due to their additional properties, since
they are consistent with second order stochastic dominance (Ogryczak and Ruszczynski [5]) and may
be optimized by linear programming methods (Mansini et al. [6], see also Konno et al. [7]). We
also summarize some actuarial applications, such as some extensions of the expected value premium
principle. Empirical applications based on real-world data are not addressed and could be an interesting
subject for future research.

The last section of the paper summarizes the most important conclusions.

2. Preliminaries and Notations

Consider the probability space (Ω,F ,P) composed of the set of “states of the world” Ω, the σ-algebra
F and the probability measure P. Denote by E (y) the mathematical expectation of every R-valued
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random variable y defined on Ω. Let 1 ≤ p < ∞ and denote by Lp the Banach space of random
variables y on Ω such that E (|y|p) <∞,1 is endowed with the norm:

‖y‖p = (E (|y|p))1/p

According to the Riesz representation theorem, Lq is the dual space of Lp, where q ∈ (1,∞] is
characterized by 1/p+ 1/q = 1, and L∞ is the space of essentially bounded random variables endowed
with the supremum norm.

Let [0, T ] be a time interval. From an intuitive point of view, one can interpret that y ∈ Lp represents
the portfolio pay-off at T for some arbitrary investor (finance) or claims at T for some arbitrary insurer
(actuarial science). Throughout this paper, y will represent the random wealth at T , although other
interpretations would not modify our main conclusions. If:

ρ : Lp −→ R

is a risk measure, then ρ (y) may be understood as the “risk” associated with the wealth y. Let us assume
that ρ satisfies a representation theorem in the line of Artzner et al. [1] or Rockafellar et al. [3]. More
precisely, consider the sub-gradient of ρ:

∆ρ = {z ∈ Lq;−E (yz) ≤ ρ (y) ,∀y ∈ Lp} ⊂ Lq (1)

composed of those linear expressions lower than ρ. We assume that ∆ρ is convex and weak∗-compact2

and that ρ is its envelope, in the sense that:

ρ (y) = Max {−E (yz) ; z ∈ ∆ρ} (2)

holds for every y ∈ Lp. Furthermore, we assume the existence of Ẽρ ≥ 0, such that:

∆ρ ⊂
{
z ∈ Lq; E (z) = Ẽρ

}
(3)

These assumptions are equivalent to the well-known properties of sub-additivity, homogeneity and
translation invariance. To sum up, we have:

Assumption 1. The risk measure ρ satisfies the equivalent Conditions a and b below:
(a) The set ∆ρ given by (1) is convex and weak∗-compact, (2) holds for every y ∈ Lp, and (3) holds.
(b) ρ is continuous, sub-additive (ρ (y1 + y2) ≤ ρ (y1) + ρ (y2)), homogeneous (ρ (λy) = λρ (y) if

λ ≥ 0) and Ẽρ-translation invariant (ρ (y + k) = ρ (y)− Ẽρk if k ∈ R is zero-variance).

We will not prove the equivalence between Conditions a and b above, as similar results may be found
in several papers (see, for instance, Balbás et al. [9]).

Assumption 1 is not at all restrictive, since it is satisfied by every expectation bounded risk measure
(Rockafellar et al. [3]) with Ẽρ = 1 and by every deviation measure (Rockafellar et al. [3]) with Ẽρ = 0.

1 Therefore, E
(
|y|p

′)
<∞ if 1 ≤ p′ ≤ p. Recall that Lp

′ ⊃ Lp if 1 ≤ p′ ≤ p.
2 See Rudin [8] for further details about weak∗-compact sets in Banach spaces.
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Examples of expectation bounded risk measures are, amongst many others, the CVaR and the WCVaR.
Recall that the VaR of a random variable y with cumulative distribution function equaling F is given by:

V aRµ (y) := Inf {t ∈ R; F (t) > 1− µ}

and for y ∈ L1, the CVaR and the WCVaR are given by:

CV aRµ (y) :=
1

1− µ

∫ 1−µ

0

V aR1−t (y) dt

and:

WCV aRν (y) :=

∫ 1

0

CV aRt (y) dν (t)

0 < µ < 1 denoting the level of confidence of VaR and CVaR and ν being a probability measure on the
interval [0, 1]. Examples of deviation measures are, amongst others, the classical p-deviation:

σp (y) := [E (|E (y)− y|p)]1/p

or the upside and downside p-semi-deviations:

σ+
p (y) := [E (|Max {y − E (y) , 0}|p)]1/p

and:
σ−p (y) := [E (|Max {E (y)− y, 0}|p)]1/p

If Ẽρ = 1, then it is easy to see that ρ is also coherent in the sense of Artzner et al. [1] if and only if:

∆ρ ⊂ Lq+ = {z ∈ Lq;P (z ≥ 0) = 1}

Assumption 1 may be relaxed, and the main conclusions of this paper remain true. For instance,
sub-additivity and homogeneity may be replaced by convexity (in the line of Balbás et al. [10] or Föllmer
and Schied [11]). Besides, Ẽρ-translation invariance may be removed in (1b), in which case, the elements
in the sub-gradient of ρ do not necessarily have constant expectation equaling Ẽρ (see (3)). Nevertheless,
we prefer to impose Assumption 1 because it significantly simplifies the exposition.

We will also deal with the (metric, but not Banach) space L0. Every random variable belongs to L0,
whose usual metric is given by:

d (y1, y2) = E (Min {|y1 − y2| , 1})

It is known that Metric d above leads to “convergence in probability”, which is strictly weaker than
the Lp-convergence. As said above, d cannot be given by a norm, and L0 is not a Banach space.
Therefore, the dual space of L0 may be “too small”, and this dual actually reduces to zero if P is atomless
(Rudin [8]). In particular, if a function ρ : L0 −→ R satisfies Condition (1a), then (2) implies that ρ = 0.
In other words:

Remark 1. Assumption 1 cannot be imposed for functionals ρ : L0 −→ R, because it would imply
ρ = 0 if P were atomless.
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The latter remark implies that there are no non-null, continuous, sub-additive and homogeneous
functionals on L0 (or even on much smaller proper subspaces of L0, Delbaen [12]). Yet, in finance,
operational risk and insurance, one can find risks whose distribution does not belong to L1, i.e., it does
not have a finite expectation. For instance, the advanced measurement approach (AMA) to Pillar I
modeling of operational risk, as defined in Basel II, deals with random risks given by:

R =
k∑
i=1

Ri,

where every Ri is related to a specific business line and/or risk type as defined in the Basel II Accord
(Nešlehová et al. [13]). Several Ri usually follow the Pareto distribution with parameters α > 0 and
β > 0 and with density function:

f (x) =
βαα

(x+ β)α+1 , x > 0

The expectation of Ri is infinite if α ≤ 1.
Several authors have proposed to use VaR if tails are so heavy that it is impossible to find

sub-additive risk measures (Chavez-Demoulin et al. [14], Embrechts et al. [15], etc.). Others have
studied non-continuous sub-additive risk measures (Kupper and Svindland [4]). On the other hand, using
continuous sub-additive risk measures has many important analytical advantages, since the optimization
of such functions is much simpler and many classical financial and actuarial problems (pricing and
hedging, portfolio choice, equilibrium, optimal reinsurance, etc.) become easier to tackle (Balbás et
al. [10], among others). For these reasons, it may be worthwhile to look for partial solutions overcoming
Remark 1 above, while still preserving some kind of continuity and sub-additivity. This is the main
purpose of this paper.

Consider a finite collection of linearly independent final wealth:

{w1, w2, ..., wm} ⊂ L0

and suppose that their tails are very heavy and wi /∈ L1, i = 1, 2, ...,m (i.e., E (|wi|) = ∞,
i = 1, 2, ...,m). Consider the linear manifold L generated by {w1, w2, ..., wm} and suppose that it
does not contain non-null elements of Lp. Since L has finite dimension, it only has a unique separated
vector topology (Rudin [8]), and this is the one induced by the topology of L0. In other words, the
sequence (

∑m
i=1 xi,nwi)

∞
n=1 converges in probability to

∑m
i=1 xiwi if and only if (xi,n)∞n=1 converges to

xi, i = 1, 2, ...,m. Thus, manifold L recovers the structure of a Banach space, and we can define
non-trivial risk measures on L, that we will denote ρL.

Assumption 2. A risk measure ρL : L −→ R satisfies the equivalent Conditions a and b below:
(a) The set

∆L =

{
(ξi)

m
i=1 ∈ Rm; −

m∑
i=1

xiξi ≤ ρL

(
m∑
i=1

xiwi

)
∀ (xi)

m
i=1 ∈ Rm

}
⊂ Rm

is convex and compact, and:

ρL (w) = Max

{
−

m∑
i=1

xiξi; (ξ1, ξ2, ..., ξm) ∈ ∆L

}
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holds for every w =
∑m

i=1 xiwi ∈ L.
(b) ρL is continuous, sub-additive and homogeneous.

3. Extending the Risk Measure

As said above, L does not present the drawbacks of L0, and the risk measure ρL does satisfy the
required properties. According to Remark 1, ρL cannot be extended to the whole space L0 unless we
lose its good properties. Thus, let us propose a partial extension that allows us “to integrate” those risks
included in L and those included in Lp. In practical applications, we do not expect to find infinitely many
risks involving infinite expectations. More likely, we will just find a few (or even only one). Then, the
proposed solution may be sufficient, since we will be able to have a “global risk measure” containing
both ρ and ρL.

In order to jointly manage the risk given by ρ and ρL, we need to deal with the space:

Lp + L =

{
y +

m∑
i=1

xiwi ∈ L0; y ∈ Lp, (x1, x2, ..., xm) ∈ Rm

}
which contains those risks included in Lp, those ones included in L and their linear combinations.

Theorem 1. There exists an extension ρ̃L : Lp + L −→ R, such that:
(a) ρ̃L is continuous, sub-additive, homogeneous and Ẽρ-translation invariant (i.e., ρ̃L (y + w + k) =

ρ̃L (y + w)− Ẽρk if y ∈ Lp, w ∈ L and k ∈ R).
(b) ρ̃L (y) = ρ (y) if y ∈ Lp and ρ̃L (w) = ρL (w) if w ∈ L.
(c) ρ̃L is minimal among the functionals Γ : Lp + L −→ R satisfying a and b.
(d) The set (sub-gradient of ρ̃L):

∆̃L =

{
(z, ξ) ;− E (yz)−

m∑
i=1

xiξi ≤ ρ̃L

(
y +

m∑
i=1

xiwi

)
∀ (y, x) ∈ Lp × Rm

}
⊂ Lq × Rm (4)

is convex and weak∗-compact.
(e)

ρ̃L (y + w) = Max

{
− E (yz)−

m∑
i=1

xiξi; (z, ξ1, ξ2, ..., ξm) ∈ ∆̃L

}
(5)

holds for every y ∈ Lp and every w =
∑m

i=1 xiwi ∈ L.3

See the Appendix. �

From an intuitive viewpoint, Theorem 1 has a simple interpretation. One can extend both ρ and ρL
in such a manner that they become “integrated” in a global measure ρ̃L, which preserves the required

3 A similar statement may be also proven if {w1, w2, ..., wm} is not linearly independent or if Lp ∩ L contains non-null
risks and ρ (y) = ρL (y) for every y ∈ Lp ∩ L. Nevertheless, we prefer to prove Theorem 1, in order to simplify the
exposition.



Risks 2014, 4 417

properties, despite the fact that Lp + L has infinitely many dimensions and the convergence in this
global space still involves convergence in probability. Therefore, one can simultaneously deal with those
standard risks y with finite expectations and those much heavier tailed risks w whose expectations are
not finite.

Theorem 1 is an existence result, but it does not indicate how to construct ρ̃L in practice. Let us
address this point.

Remark 2. Building ρ̃L in practice for a single heavy tailed risk: Suppose firstly that m = 1, i.e., L is
a linear manifold generated by only one heavy tailed risk w with no finite expected value.

Step 1: Construct the sub-gradient ∆̃L of ρ̃L in such a way that the natural projections Πq : Lq ×
Rm −→ Lq and Πm : Lq × Rm −→ Rm satisfy Πq

(
∆̃L

)
= ∆ρ and Πm

(
∆̃L

)
= ∆L. This may be

easily done as follows.
Step 2: Fix φ ∈ Lp,

− ρ (φ) = Min {E (φz) ; z ∈ ∆ρ} (6)

and:
ρ (−φ) = Max {E (φz) ; z ∈ ∆ρ} (7)

(see (2)). Choose φ in such a manner that −ρ (φ) < ρ (−φ).4 Notice that (6) and (7) obviously imply
that:

− ρ (φ) ≤ E (φz) ≤ ρ (−φ) (8)

holds for every z ∈ ∆ρ.
Step 3: Transform the interval:

[−ρ (φ) , ρ (−φ)]

into the interval
[−ρL (w) , ρL (−w)]

by means of the (one to one, unless −ρL (w) = ρL (−w)) increasing affine function 5:

[−ρ (φ) , ρ (−φ)] 3 t −→ F (t) =

−ρL (w) +
ρL (−w) + ρL (w)

ρ (−φ) + ρ (φ)
(t+ ρ (φ)) ∈ [−ρL (w) , ρL (−w)]

(9)

Step 4: ∆̃L will be chosen according to the affine function above. More precisely,

∆̃L = {(z, ξ) ; z ∈ ∆ρ and ξ = F (E (φz))} (10)

⊂ Lq × R

4 Notice that 0 = ρ (0) ≤ ρ (φ) + ρ (−φ) leads to −ρ (φ) ≤ ρ (−φ). Moreover, the existence of φ satisfying the strict
inequality holds if ρ is not linear (∆ρ is not a singleton), which is the case for all of the usual risk measures.

5 Once again, 0 = ρL (0) ≤ ρL (w) + ρL (−w) leads to −ρL (w) ≤ ρL (−w).
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According to (8), the construction of ∆̃L is correct and its weak∗-compactness follows from the
weak∗-compactness of ∆ρ and the continuity of F and E. It may be also proven that Πq

(
∆̃L

)
= ∆ρ

and Πm

(
∆̃L

)
= ∆L hold, though this proof is trivial and therefore omitted.

Step 5: Once ∆̃L is known, ρ̃L is given by (5), which becomes now:

ρ̃L (y + xw) = Max {− E (yz)− xF (E (φz)) ; z ∈ ∆ρ} (11)

for every y ∈ Lp and every x ∈ R. Manipulating,

E (yz) + xF (E (φz)) =

E (yz) + x

(
−ρL (w) +

ρL (−w) + ρL (w)

ρ (−φ) + ρ (φ)
(E (φz) + ρ (φ))

)
=

E
(
z

(
y + x

(
ρL (−w) + ρL (w)

ρ (−φ) + ρ (φ)
φ

)))

+x

(
−ρL (w) +

ρL (−w) + ρL (w)

ρ (−φ) + ρ (φ)
ρ (φ)

)
and (2) and (11) imply that:

ρ̃L (y + xw) =

ρ

(
y + x

(
ρL (−w) + ρL (w)

ρ (−φ) + ρ (φ)
φ

))

+

(
ρL (w)− ρL (−w) + ρL (w)

ρ (−φ) + ρ (φ)
ρ (φ)

)
x

(12)

Notice that (12) leads to ρ̃L (y) = ρ (y) if x = 0, and ρ̃L (w) = ρL (w) if y = 0 and x = 1.
Furthermore, ρ̃L (xw) = ρL (xw) if y = 0 and x ∈ R. In other words, ρ̃L really extends ρ and ρL.

The selection of φ (Step 2) is only constrained by the inequality −ρ (φ) < ρ (−φ), which generates
many degrees of freedom. In other words, we really have a choice when computing in practice the
extension ρ̃L of Theorem 1, since it is not unique. The next section gives some rules to select φ, mainly
related to the specific risk ρ̃L (y + xw) that one would like to associate with some reachable strategies
y + xw of Lp + L.

The selection of F in (9) is not unique, since the decreasing affine surjective function:

[−ρ (φ) , ρ (−φ)] 3 t −→ G (t) =

ρL (−w)− ρL (−w) + ρL (w)

ρ (−φ) + ρ (φ)
(t+ ρ (φ)) ∈ [−ρL (w) , ρL (−w)]

may play the role of F . Thus, if G replaces F , one will find a second extension of ρ and ρL still satisfying
Theorem 1. Nevertheless, bearing in mind Condition c in Theorem 1, F and G are the unique valid
choices. Other functions will make Condition c fail. We will not prove this result, because the proof is
complex and beyond the scope of this paper.
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Notice that (12) leads to:
ρ̃L (y + xw) = ρ (y + k1xφ) + k2x (13)

where the parameters k1 and k2 must satisfy k1 ≥ 0 and other additional constraints. If φ may be
selected in such a way that ρ (φ) = ρL (w) and ρ (−φ) = ρL (−w), then (12) implies hat k1 = 1 and
k2 = 0. Thus, (13) becomes:

ρ̃L (y + xw) = ρ (y + xφ) (14)

for every x ∈ R. An “intuitive interpretation” of (14) could be like this: pick an integrable random
variable φ ∈ Lp that corresponds to the same risks as ρL (w) and ρL (−w), and then combinations
y + xw may be “identified” with combinations y + xφ in terms of risk.

Remark 3. Building ρ̃L in practice (the general case): Let us apply the induction method on the number
m of heavy tailed risks. Suppose that we have an extension ρ̃L of ρ and ρL on Lp+Lm−1, Lm−1 denoting
the linear manifold generated by {w1, w2, ..., wm−1}. In such a case, we have to extend ρ̃L to one more
dimension, and it is obvious that the methodology described in Step 1–Step 5 above applies again. Thus,
bearing in mind (12), we can select φm ∈ Lp with −ρ (φm) < ρ (−φm), and the global risk measure ρ̃L
will be given by:

ρ̃L (y +
∑m

i=1 xiwi) =

ρ̃L

(
y + xm

(
ρL (−wm) + ρL (wm)

ρ (−φm) + ρ (φm)
φm

)
+
∑m−1

i=1 xiwi

)

+

(
ρL (wm)− ρL (−wm) + ρL (wm)

ρ (−φm) + ρ (φm)
ρ (φm)

)
xm

(15)

4. Examples

Expressions (12) and (15) provide us with the continuous, sub-additive, homogeneous and
Ẽρ-translation invariant extensions for which we were looking. Moreover, they may be easily computed
in practice, because we have closed formulas, and they are easily optimized (minimized), because we
have a convex and weak∗-compact sub-gradient (see (4), (5), (10) and (11)). Let us show some examples
whose sole objective is to illustrate how ρ̃L is in practice.

Example 1. Suppose that we would like to use the conditional value at risk ρ = CV aRµ with the level
of confidence 0 < µ < 1, but one of the risks w has a Pareto distribution with unbounded expectation.
Obviously, ρ (w) = CV aRµ (w) = ∞, which means that CV aRµ is not continuous any more, and
therefore, the computation and optimization of risks, such as CV aRµ (y + xw), with y ∈ L1 and
x ∈ R, is quite difficult to address from a mathematical perspective (Balbás et al. [10]). Then, following
Embrechts et al. [15], one can deal with the value at risk in order to measure the risk of the heavy tailed
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distribution w and then integrate this risk measure with the conditional value at risk. In such a case,
(12) leads to the risk measure:

C̃V aRµ (y + xw) =

CV aRµ

(
y + x

(
V aRµ (−w) + V aRµ (w)

CV aRµ (−φ) + CV aRµ (φ)
φ

))

+

(
V aRµ (w)− V aRµ (−w) + V aRµ (w)

CV aRµ (−φ) + CV aRµ (φ)
CV aRµ (φ)

)
x

(16)

for y ∈ L1 and x ∈ R. Expression (16) provides us with a continuous, sub-additive, homogeneous
and one-translation-invariant risk measure that extends CV aRµ and applies to the Pareto distribution
w and its linear combinations with risks of bounded expectation. Furthermore, according to Remark 2,
(4) and (5), and bearing in mind that the CV aRµ-sub-gradient is (Rockafellar et al. [3]):{

z ∈ L1;E (z) = 1, 0 ≤ z ≤ 1

1− µ

}
(16) may be represented by its convex and weak∗-compact sub-gradient, composed of those couples
(z, ξ) ∈ L1 × R, such that:

E (z) = 1

0 ≤ z ≤ 1
1−µ

ξ = −V aRµ (w) +
V aRµ (−w) + V aRµ (w)

CV aRµ (−φ) + CV aRµ (φ)
(E (φz) + CV aRµ (φ))

. (17)

As already said, we have a choice for φ ∈ L1, and the selection of this risk affects the final extension
C̃V aRµ in (16). In practice, φ may be chosen in such a manner that the risk of some selected heavy
tailed distributions still matches their value at risk, since V aRµ has a nice economic interpretation in
terms of potential capital losses. Formally, one can select a collection of risks {y1, y2, ..., yk} ⊂ L1 with
bounded expectation and then choose φ ∈ L1, so as to satisfy:

C̃V aRµ (yi + w) = V aRµ (yi + w)

i = 1, 2, ..., k. �

Example 2. According to Remark 3, Example 1 may be easily extended for more than one Pareto
(or other heavy tailed) distribution. In other words, if {w1, w2, ..., wm} are independent Pareto
distributions whose non-trivial linear combinations have unbounded expectations, then one can
construct a continuous, sub-additive, homogeneous and one-translation-invariant C̃V aRµ, such that
C̃V aRµ (y) = CV aRµ (y) if the expectation of y is bounded, and C̃V aRµ (wi) = V aRµ (wi),
i = 1, 2, ...,m. Expression (15) provides us with the effective construction in a recursive manner.
Besides, the role of CVaR may be played by many other coherent risk measures (Wang measure,
dual power transform, risk measures given by concave distortions, WCV aR, etc.), and the role of
VaR may be played by alternative selections of every risk ρL (wi) (ad hoc selections based on expert
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opinions, such that −ρL (wi) ≤ ρL (−wi), VaR with a much higher level of confidence than µ if the
tails are too fat, etc.). Finally, if the role of the coherent risk measure is replaced by a deviation
measure (absolute deviation, standard deviation, semi-deviations, etc.), then we will be creating its
continuous, sub-additive, homogeneous and zero-translation-invariant extensions (deviations) that also
apply for some risks with unbounded expectation (and therefore, unbounded first order central moment,
unbounded second order central moment, etc.) and their linear combinations with risks with finite
mean value. �

Example 3. Actuarial application: extending the expected value premium principle: Many classical
financial and actuarial problems (portfolio choice, optimal reinsurance, operational risk, etc.)
have been revisited with coherent risk measures. Our extension permits us to involve risks with
unbounded expectation.

Let us deal with a particular application whose purpose is just illustrative. Consider a random
wealth w whose expectation is infinite. w endows R with a probability measure P on its Borel σ-algebra
F . Obviously, here:

E (|w|) =

∫ ∞
−∞
|u| dP (u) =∞ (18)

and, therefore, E (w) and CV aRµ (w) do not exist. According to Example 1, we can consider the risk
measure C̃V aRµ, which satisfies C̃V aRµ (w) = V aRµ (w).

There are many derivatives f (w) of w belonging to L1, and therefore, the expected value premium
principle (EV PP ) applies for them all. If λ ≥ 0 is the loading rate, then the price of f (w) will be
given by:

EV PPλ (f (w)) = (1 + λ)E (f (w)) = (1 + λ)

∫ ∞
−∞

f (u) dP (u) (19)

Interesting particular cases for f (w) may be the “call-spreads with thresholds a < b”, given by:

f (w) =


0, if w < a

w − a, if a ≤ w ≤ b

b− a, if w > b

but there are many more examples. Since (19) applies to price for every f (w) ∈ L1, we can use the
pricing method of Balbás et al. [16] in order to overcome the caveat implied by (18), and therefore, we
can extend (19) and create the pricing rule EV PP(λ,µ,φ) for risks being linear combinations of w and
L1. Actually, EV PP(λ,µ,φ) (w) will be the optimal value of the following optimization problem:

Min (1 + λ)
[
C̃V aRµ (y − w) + E (y)

]
y = f (w) ∈ L1

where y is the decision variable. According to Balbás et al. [16], EV PPλ will be extended to
EV PP(λ,µ,φ) in such a manner that it is still continuous on L1 + {xw;x ∈ R}, sub-additive and
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homogeneous. Moreover, bearing in mind (10), (17) and the duality results of Balbás et al. [16], it may be
proven that:

EV PP(λ,µ,φ) (w) =

(1 + λ)

[
−V aRµ (w) +

V aRµ (−w) + V aRµ (w)

CV aRµ (−φ) + CV aRµ (φ)
(E (φ) + CV aRµ (φ))

]
�

5. Conclusions

This paper proposes a constructive way to extend risk measures beyond L1 and simultaneously
preserve good mathematical properties, such as continuity, sub-additivity, homogeneity and translation
invariance. This may be very useful to integrate risks with unbounded expectation (for instance, some
Pareto distributions) with more standard risks in a global framework. The good properties of the
extended risk measure have favorable implications, in the sense that many classical actuarial and financial
problems (pricing, hedging, portfolio selection, equilibrium, optimal reinsurance, operational risk, etc.)
may be revisited even when some expectations are infinite. Illustrative practical examples are presented,
such as extensions for the conditional value at risk or for the expected value premium principle.
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Appendix: Proof of Theorem 1

Consider the family C of convex and weak∗-compact subsets C ⊂ Lq × Rm, such that the natural
projections Πq : Lq × Rm −→ Lq and Πm : Lq × Rm −→ Rm satisfy Πq (C) = ∆ρ and Πm (C) = ∆L.
C is non-void since:

∆ρ ×∆L = {(z, ξ); z ∈ ∆ρ, ξ ∈ ∆L} ∈ C.

If we show that C is inductive, then Zorn’s lemma will guarantee the existence of a minimal element
∆̃L ∈ C (Kelly [17]). In order to see that C is inductive, consider a totally ordered chain {Ci; i ∈ I}⊂ C
and let us show that:

C = ∩i∈ICi

is a lower bound of {Ci; i ∈ I} that belongs to C. Since C is obviously convex and weak∗-compact, it is
sufficient to see that Πq (C) = ∆ρ and Πm (C) = ∆L. Let us show that Πq (C) = ∆ρ, and the second
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equality will be analogous (and therefore omitted). Πq (C) ⊂ Πq (Ci) = ∆ρ for every i ∈ I is obvious,
so let us show the opposite inclusion. Suppose that z ∈ ∆ρ, and take the net (hi)i∈I , such that hi ∈ Ci
and Πq (hi) = z for every i ∈ I . Fix i0 ∈ I . Since Ci0 is weak∗-compact, there exists an agglomeration
point h ∈ Ci0 of (hi)i≥i0 (Kelly [17]), and Πq (h) = z is obvious, because Πq is weak∗-continuous. It
only remains to see that h ∈ Ci1 for every i1 ≥ i0, which is a trivial consequence of (hi)i≥i1 ⊂ Ci1 ,
because Ci1 is weak∗-compact and, therefore, weak∗-closed.

Once the existence of a minimal element ∆̃L ∈ C has been proven, define ρ̃L : Lp+L −→ R according
to (5). The results of Balbás et al. [9] show that ρ̃L satisfies Conditions a, d and e of Theorem 1. Let us
show Condition b. We will show that ρ̃L (y) = ρ (y) if y ∈ Lp, and the second equality will be omitted
because it is similar. Bearing in mind Πq

(
∆̃L

)
= ∆ρ, (5) and (2), we have:

ρ̃L (y) = Max
{
− E (yz) ; (z, ξ) ∈ ∆̃L

}
= Max

{
− E (yΠq (z, ξ)) ; (z, ξ) ∈ ∆̃L

}
= Max {− E (yz) ; z ∈ ∆ρ} = ρ (y) .

Let us finally show Condition c. According to Balbás et al. [9], there is a bijection:

D ↔ Γ (20)

between the family D of convex and weak∗-compact subsets C ⊂ Lq × Rm and the family Γ of
continuous, sub-additive and homogeneous functionals f : Lp + L −→ R. Moreover, if C ∈ D,
then its associated functional of Γ is given by:

f (y + w) = Max

{
− E (yz)−

m∑
i=1

xiξi; (z, ξ1, ξ2, ..., ξm) ∈ C

}
,

whereas for f ∈ Γ, the associated set of D is given by:

C = {(z, ξ) ;− E (yz)−
∑m

i=1 xiξi ≤ f (y +
∑m

i=1 xiwi) ∀ (y, x) ∈ Lp × Rm}

⊂ Lq × Rm.

(21)

Suppose that f : Lp + L −→ R satisfies Conditions a and b of Theorem 1 and f (y + w) ≤ ρ̃L (y + w)

for every y+w ∈ Lp +L. Since the identification (20) is increasing, the set C of (21) satisfies C ⊂ ∆̃L.
If we show that Πq (C) = ∆ρ and ΠL (C) = ∆L, then we will have C ∈ C, and ∆̃L being minimal,
we will have that C = ∆̃L; and, therefore, f = ρ̃L. Hence, it remains to see that Πq (C) = ∆ρ and
Πm (C) = ∆L, and let us prove the first equality only, since the second one is similar. Condition b
implies that:

Max {− E (yΠq (z, ξ)) ; (z, ξ) ∈ C}
= Max {− E (yz) ; (z, ξ) ∈ C} = f (y)

= ρ (y) = Max {− E (yz) ; z ∈ ∆ρ}

for every y ∈ Lp. Hence, the identification (20) applying for Lp rather than Lp+L implies that Πq (C) =

∆ρ, because both Πq (C) and ∆ρ are obviously convex and weak∗-compact subsets of Lq. �
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