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Abstract: We investigate a portfolio optimization problem under the threat of a market crash,
where the interest rate of the bond is modeled as a Vasicek process, which is correlated with
the stock price process. We adopt a non-probabilistic worst-case approach for the height and
time of the market crash. On a given time horizon [0, T ], we then maximize the investor’s
expected utility of terminal wealth in the worst-case crash scenario. Our main result is an
explicit characterization of the worst-case optimal portfolio strategy for the class of HARA
(hyperbolic absolute risk aversion) utility functions.
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1. Introduction

Since Merton [1] published his pioneering work on continuous time portfolio optimization, there has
been a vast stream of literature on generalization methods, models and tasks in this area. To mention all
of them is far beyond the scope of this paper.

We will focus on the recent aspect of worst-case portfolio optimization in the framework of Korn
and Wilmott [2]. There, as a non-standard feature, a market crash is modeled as an uncertain event,
rather than a risky event, without any assumptions on the distributions of the crash height and crash
time. They also introduced the notion of a worst-case optimal portfolio under the threat of such a crash.
This portfolio, which maximizes the expected logarithmic utility of terminal wealth in the worst-case
crash scenario, is then found by an indifference argument. In [3], the assumption of a logarithmic
utility function was relaxed by considering a more general class of utility functions, so-called HARA
(hyperbolic absolute risk aversion) utility functions. Korn and Steffensen [4] applied a method based on
quasi-variational inequalities to determine optimal portfolios in an n-market crash model.

Recently, a new martingale approach that is based on interpreting the worst-case problem as a
controller vs. stopper game has been introduced by Seifried in [5], where the method is applied to a
worst-case portfolio problem for rather general asset price dynamics. This approach is as used in [6] and
especially in [7], where a worst-case life-time consumption problem is completely solved.

In the current paper, we build on the martingale approach and the ideas in [5] and [7] and consider
the situation when the underlying interest rates are stochastic. For this, we can also use results from
standard continuous-time portfolio optimization, such as Korn and Kraft [8], who investigated optimal
portfolios in a financial market with stochastic interest rates given by both the Ho–Lee model and the
Vasicek model (see [9]) for the short rate. A related paper to our current one is [10], where a worst-case
optimization model over an infinite time horizon with logarithmic utility was considered, but where the
interest rate is stochastic only after the market crash.

Our main findings are an explicit characterization of the worst-case optimal portfolio strategy and
the analysis of its actual form. While the optimal strategy after the crash is similar to the optimal one
in [8] or [11], the pre-crash strategy differs from the ones in, e.g., [6] or [5], due to the influence of the
stochastic interest rates. The reason for this is the correlation between the Brownian motions driving the
interest rate and the stock prices, respectively, although the interest rate dynamics are not subject to the
market crash.

The rest of the paper is organized as follows. In Section 2, we introduce the financial market model
and the worst-case optimization problem for the class of HARA utility functions. By applying the
dynamic programming principle, we determine the optimal post-crash strategy, valid immediately after
the market crash, and the corresponding value function in an explicit form in Section 3. Reformulating
the original problem as a controller vs. stopper game, we state our main theorem in Section 4, which
provides a sufficient optimality condition for a pre-crash strategy, valid before and including the crash
time. In Section 5, we illustrate some numerical examples. Finally, in Section 6, we draw a conclusion
and give aspects for further research.
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2. The Worst-Case Optimization Problem

For T > 0, let [0, T ] be the fixed time horizon on which the investor is allowed to trade. (Ω,F ,P)

denotes a complete probability space endowed with a filtration (Ft)t∈[0,T ] in F . We consider a financial
market model, where the investor has the possibility to invest in a risky asset with price (Pt)t∈[0,T ] or in
a savings account with price (Bt)t∈[0,T ]. As Korn and Wilmott [2] proposed, we model the market crash
as an uncertain event (τ, l), where the [0, T ]∪ {∞}-valued stopping time τ stands for the crash time and
l ∈ [0, l∗] denotes the crash size. l∗ ∈ [0, 1) is the maximal crash size, which is assumed to be given. We
refer to ([7], p. 6) for a more detailed description of the crash scenario. For the abbreviation, we define:

C := {(τ, l) : τ ∈ [0, T ] ∪ {∞}, stopping time, l ∈ [0, l∗]Fτ - measurable random variable}.

We assume that the price of the risky asset evolves as:

dPt = Pt [µ+ rt] dt+ Ptσ1 dw1,t, t ∈ [0, τ) ∪ (τ, T ], P0 = p0 > 0,

Pτ = (1− l)Pτ− ,

where the excess return µ > 0 and the volatility σ1 > 0 are given constants. The evolution of the savings
account is given by:

dBt = Btrt dt,

where (rt)t∈[0,T ] denotes the stochastic interest rate. We assume that rt follows a Vasicek process [9]
for t ∈ [0, T ]:

drt = a(rM − rt) dt+ σ2 dw̃t, r0 = r0 > 0, (1)

dw̃t := ρ dw1,t +
√

1− ρ2dw2,t, ρ ∈ [−1, 1],

where a > 0 represents the speed of reversion to the long-term mean level rM > 0 and σ2 > 0 is the
volatility of the process. We assume that these parameters are given constants. Note that the evolution
of the price Pt and the interest rate rt may be correlated with correlation coefficient ρ. Moreover, we
assume that the stochastic interest rate is not affected by the market crash. Let kt = (kt, kt) be the
fraction of wealth invested in the risky asset, where the pre-crash strategy kt is valid for t ∈ [0, τ ] and
the post-crash strategy kt is valid for t ∈ (τ, T ]. By this definition, we obtain that the investor’s wealth
(Xk

t )t∈[0,T ] fulfills the following equations:

dXk
t = Xk

t [rt + µ kt] dt+Xk
t σ1kt dw1,t, t ∈ [0, τ),

Xk
τ = (1− lkτ )Xk

τ− ,

dXk
t = Xk

t

[
rt + µ kt

]
dt+Xk

t σ1kt dw1,t, t ∈ (τ, T ],

Xk
0 = x0 > 0.

This wealth equation was already used in the literature in [7] and [5], but with a constant interest rate
rt ≡ r. Here, for the case of a stochastic interest rate, we want to identify a strategy kt that maximizes
the expected discounted utility of terminal wealth in the worst-case crash scenario and the influence of
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the stochastic interest rate on this optimal strategy. We formulate the worst-case optimization problem
for a power utility function:

U(x) =
1

γ
xγ, γ < 1, γ 6= 0,

where 1 − γ measures the degree of relative risk aversion. The case γ = 0 corresponds to the case of
a logarithmic utility function. Now, the worst-case optimization problem is given by:

sup
k=(k,k)∈Π

inf
(τ,l)∈C

E
(

1

γ

(
Xk
T

)γ)
, γ < 1, γ 6= 0, (2)

where Π denotes the admissible control space.

Definition 1 (Admissible Control Space Π). An investment strategy k = (k, k) belongs to the admissible
control space Π if it fulfills the following conditions:

1. kt, kt are Ft adapted,

2. kt <
1
l∗

for all t ∈ [0, T ] and k is right continuous,

3. ∃K ≥ 0, such that |kt| ≤ K for all t ∈ [0, T ].

Remark 1. The second condition ensures that the wealth process Xk
t stays positive for all t ∈ [0, T ].

Moreover, we do not restrict the strategies to be non-negative. This is mainly due to the fact that the
optimal post-crash strategy can indeed be negative (see the next section). Therefore, in comparison to the
literature with constant interest rates, we have to allow short selling of the risky asset. We will comment
later in Section 4 on the extra considerations for dealing with possibly negative portfolio processes and
argue why it is sufficient to consider bounded strategies.

In the next two sections, we provide an explicit solution of the worst-case optimization problem by
applying the following three ideas, which have already been successfully applied in the case of constant
interest rates (see, for example, [5–7]). First, we determine the optimal post-crash strategy by applying
the dynamic programming principle. Using the explicit structure of the post-crash value function, we
can reformulate the problem. Then, we can identify the optimal pre-crash strategy via a combination of
the principle of the indifference frontier and the solution of a constrained control problem.

3. The Optimal Post-Crash Strategy

Here, we investigate how the investor has to choose his strategy immediately after the market crash.
At the crash time, the investor is faced with a stochastic optimal control problem over a finite time
horizon. Since the crash time is uncertain, we try to find the optimal strategy and the corresponding
value function depending on an arbitrary initial time t ∈ [0, T ], on the wealth X t = x ∈ R+ and on the
interest rate rt = r ∈ R. Thus, for an arbitrary (t, x, r) ∈ [0, T ] × R+ × R, we define the following
post-crash value function:

V (t, x, r) := sup
k∈Π

Et,x,r
(

1

γ
X
γ

T

)
, (3)
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with respect to the post-crash dynamics:

dXs = Xs

[
rs + µ ks

]
ds+Xsσ1ks dw1,s, X t = x,

drs = a(rM − rs) ds+ σ2 dw̃s, rt = r,

for 0 ≤ t ≤ s. This is a standard stochastic optimal control problem and can be solved using the dynamic
programming principle. The corresponding Hamilton-Jacobi-Bellman (HJB) equation is given by:

V t + sup
k∈R

[
x(µk + r)V x +

σ2
1

2
k

2
x2V xx + ρσ1σ2kxV xr

]
+ a(rM − r)V r +

σ2
2

2
V rr = 0, (4)

V (T, x, r) =
1

γ
xγ, ∀ (x, r) ∈ R+ × R.

As in related work with stochastic interest rates (see, for example, [8,11]), we apply the
following separation method in order to find a solution for Equation (4). Let us assume that
V (t, x, r) = 1

γ
xγ · W (t, r), where W (T, r) = 1 for all r ∈ R. Then, we insert this assumption and

divide the equation by 1
γ
xγ , which leads to a partial differential equation for W :

Wt + γ sup
k∈Π

[
µkW − σ2

1

2
(1− γ)k

2
W + ρσ1σ2kWr

]
+ γrW + a(rM − r)Wr +

σ2
2

2
Wrr = 0,

W (T, r) = 1, ∀ r ∈ R.

By the first order condition, we obtain the candidate for the optimal post-crash strategy:

k
∗
(t, r) =

µ

(1− γ)σ2
1

+
ρσ2

σ1(1− γ)
· Wr(t, r)

W (t, r)
, (5)

and, by inserting, we get the following second order partial differential equation for W :

Wt +
σ2

2

2
Wrr + γ

ρ2σ2
2

2(1− γ)

W 2
r

W
+ γ

µρσ2

σ1(1− γ)
Wr + a(rM − r)Wr (6)

+

(
µ2

2(1− γ)σ2
1

+ r

)
γW = 0,

W (T, r) = 1, ∀ r ∈ R.

By a further separation approach of the formW (t, r) = g(t) exp(β(t)r) with g(T ) = 1 and β(T ) = 0,
we arrive at:

g′(t) + [β′(t)− aβ(t) + γ] g(t)r +
σ2

2

2
g(t)β2(t) + γ

ρ2σ2
2

2(1− γ)
g(t)β2(t)

+

(
γ

µρσ2

σ1(1− γ)
+ arM

)
g(t)β(t) +

(
µ2

2(1− γ)σ2
1

)
γg(t) = 0,

g(T ) = 1, β(T ) = 0.

The standard idea is to eliminate the state variable r from the equation above. This can be done if
β(t) fulfills:

β′(t)− aβ(t) + γ = 0, β(T ) = 0
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Therefore, we can easily conclude that:

β(t) =
γ

a
[1− exp(−a(T − t))] , (7)

and we obtain a linear ordinary differential equation for g(t):

g′(t) + g(t) · f(t) = 0, g(T ) = 1,

with:

f(t) :=
σ2

2

2
β2(t) + γ

ρ2σ2
2

2(1− γ)
β2(t) +

(
γ

µρσ2

σ1(1− γ)
+ arM

)
β(t) + γ

µ2

2(1− γ)σ2
1

,

and, therefore, g(t) = exp(F (T )−F (t)), where F : [0, T ]→ R denotes the antiderivative of f . Finally,
we obtain an explicit formula:

V (t, x, r) =
1

γ
xγW (t, r) =

1

γ
xγg(t) exp(β(t)r) (8)

that solves the HJB equation. Note that W (t, r) = g(t) exp(β(t)r) > 0 for all (t, r) ∈ [0, T ]× R.
Now, it remains to show that the solution of the HJB Equation (8) is equal to the post-crash value

function (3) and that the candidate k
∗

is indeed the optimal post-crash strategy. This can be done by
proving the assumptions of ([8], Corollary 3.2), which provides such a verification result. These proofs
are rather technical, but standard. Thus, we omit them for the sake of brevity. We can conclude that the
optimal strategy after the market crash is given by k

∗
(t, rt), where k

∗
(t, r) is given by Equation (5). Since

Wr(t,r)
W (t,r)

= β(t) for all (t, r) ∈ [0, T ] × R, the optimal post-crash strategy is given by the deterministic
function in t:

k
∗
t =

µ

(1− γ)σ2
1

+
ρσ2

(1− γ)σ1

· β(t). (9)

Note that the optimal post-crash strategy does not depend on ω ∈ Ω, because it does not depend on
the stochastic interest rate itself. However, it depends on the parameters a, σ2 determining the interest
rate Equation (1). Note in particular that, depending on the correlation between the interest rate and
stock price risks, the optimal strategy may attain negative values for t much smaller than T .

Using the optimal post-crash strategy and the corresponding value function, we can reformulate the
worst-case optimization problem and determine the optimal pre-crash strategy in the next section.

4. The Optimal Pre-Crash Strategy

In this section, we identify the pre-crash strategy kt, which is optimal in the worst-case scenario for
t ∈ [0, τ ]. In order to solve the worst-case optimization problem, we apply the so-called martingale
approach, which was first introduced in ([6], Chapter 4) and extended to a multidimensional jump
diffusion market in [5] and to an infinite time horizon worst-case problem, including consumption,
in [7]. In comparison to this work, we also have to handle the influence of the stochastic interest rate.
The idea behind the martingale approach is to reformulate the problem as a controller vs. stopper game
(see Section 4.1) and, afterwards, to find the optimal pre-crash strategy by martingale arguments and the
notion of indifference (Section 4.2).

From now on, we write kt instead of kt for the pre-crash strategy.
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4.1. Reformulation as a Controller vs. Stopper Game

Let (X̃k
t )t∈[0,T ] be the wealth process in a crash-free market controlled by the pre-crash strategy k ∈ Π:

then, X̃k
t follows the stochastic differential equation (SDE):

dX̃k
t = X̃k

t [rt + µkt] dt+ X̃k
t σ1kt dw1,t, X̃k

0 = x0,

where rt solves Equation (1). At the crash time τ the investor’s wealth equals x = (1 − lkτ )X
k
τ− =

(1 − lkτ )X̃
k
τ , and the interest rate is denoted by r = rτ . Considering the post-crash value function,

we can replace (t, x, r) by these values, and therefore, we can reformulate the worst-case optimization
problem in (2) as the pre-crash problem:

sup
k∈Π

inf
(τ,l)∈C

E
(
V (τ, (1− lkτ )X̃k

τ , rτ )
)
.

Since V (t, x, r), given in Equation (8), is strictly monotone increasing with respect to x, this problem
can be rewritten as a controller vs. stopper game of the form:

sup
k∈Π

inf
τ∈C

E
(
Mk

τ

)
, where Mk

t := V (t, (1− l∗k+
t )X̃k

t , rt) (10)

and k+
t := max{0, kt}.

Remark 2. Compared to the previous literature, where a non-negative strategy was required, we have
now included the positive part of pre-crash strategies k in the controller vs. stopper game. First,
as already mentioned, the optimal post-crash strategy can become negative. It would therefore be
conceptually bad to exclude negative pre-crash strategies. This is in particular due to the fact that
there is nothing preventing us from following the optimal post-crash strategy before the crash, given that
it is negative. In such a setting, the investor will benefit two-fold. On the one hand, he behaves optimally
with regard to the terminal wealth utility criterion. Even more, having a negative position, he would
benefit from a positive crash height at such a time instant. It is thus clear that in this situation, the worst
case for the investor is a jump of size zero. Further, for all pre-crash strategies, the worst case is a crash
of size zero when they attain negative values. As it makes no sense from the point of optimal final utility
to hold a position smaller than k

∗
t (low) := min{0, k∗t}, we can thus also restrict the class of admissible

strategies for our worst-case problem to those that are bounded from below by k
∗
t (low) and, thus, are

bounded in total. Therefore, if kτ < 0, then the worst case crash size is l = 0. Otherwise, if kτ ≥ 0, the
investor holds risky assets at the crash time, and the worst-case is the maximal crash size l = l∗.

Now, the aim is to solve the controller vs. stopper game (10). As already mentioned
above, [6] and [5] used the notion of indifference to determine the optimal pre-crash strategy for a
model with a constant interest rate. Therein, a pre-crash strategy k̂ is called an indifference strategy if
the investor, who applies this strategy, reaches the same performance for two different stopping times,
which means (see, for example, [6], Chapter 4.2):

E
(
M k̂

τ1

)
= E

(
M k̂

τ2

)
,

for all stopping times τ1, τ2. In the next section, we will also use this definition to identify the optimal
pre-crash strategy.
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4.2. Identification of Optimal Pre-Crash Strategy by the Martingale Method

The main result of this paper is the following theorem, which gives the optimal pre-crash strategy for
the worst-case optimization problem in (2).

Theorem 2. Let k
∗
t be the optimal post-crash strategy given by Equation (9), and let k̂t be the uniquely

determined solution of the following ordinary differential equation (ODE):

dkt
dt

=
1− l∗kt
l∗

(
φ(t, kt)− φ(t, k

∗
t )
)
, kT = 0, (11)

where:

φ(t, k) := (µ+ ρσ1σ2β(t))k − σ2
1

2
(1− γ)k2, (12)

and β(t) is given by Equation (7). Then, k∗t := k
∗
t ∧k̂t is the optimal pre-crash strategy for the worst-case

optimization problem in (2).

Remark 3. Note that for general parameters a > 0 and σ2 > 0 (i.e., the model indeed contains a
stochastic interest rate), ODE Equation (11) is a non-autonomous equation, because k

∗
t is not constant

over time.

In order to prove this result, we give a sequence of auxiliary results. The first Lemma ensures that
k∗t = k

∗
t ∧ k̂t is an admissible pre-crash strategy in the sense of Definition 1.

Lemma 3. Let k
∗
t and φ(t, k) be given by Equation (9) and (12), respectively. Then, the ordinary

differential equation:

dkt
dt

=
1− l∗kt
l∗

(
φ(t, kt)− φ(t, k

∗
t )
)
, kT = 0 (13)

has a uniquely determined solution k̂t with 0 ≤ k̂t <
1
l∗

for all t ∈ [0, T ].

Proof of Lemma 3. See Appendix A.

Remark 4. Since k∗t = k
∗
t ∧ k̂t is a deterministic, continuous and bounded function on [0, T ], it is easy

to check that it is admissible in the sense of Definition 1. Especially, the lemma above provides the
inequality k∗t <

1
l∗

for all t ∈ [0, T ]. Thus, following this strategy before the market crash, the investor’s
wealth stays positive at the crash time.

In the next lemma, we will show that an investor who applies the pre-crash strategy k̂t is indifferent
with respect to the market crash, which means k̂t is an indifference strategy for the controller vs. stopper
game (10).

Lemma 4. Let k̂t be the uniquely determined solution of the ODE Equation (11), and let Mk
t be given

by Equation (10) for t ∈ [0, T ] and Mk
∞ := V (T, X̃k

T , rT ). Then, M k̂
t is a martingale on [0, T ] ∪ {∞}

and k̂t is an indifference strategy for the controller vs. stopper game.
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Proof of Lemma 4. As in [5], we use a martingale argument to prove the assertion. The proof will be
divided into two steps. First, we show that M k̂

t is a martingale on [0, T ] ∪ {∞}, and then, we obtain the
assertion by applying Doob’s optional sampling theorem.

By applying Ito’s formula on V (t, x, r) = 1
γ
xγW (t, r) and using that k̂t ≥ 0 for all t ∈ [0, T ], we

obtain that:

dM k̂
t =

1

γ
(X̃ k̂

t )γ(1− l∗k̂t)γW (t, rt) ·
{
γ
−l∗

(1− l∗k̂t)
· dk̂t
dt

+ γ
(
φ(t, kt)− φ(t, k

∗
t )
)}

dt

+
1

γ
(X̃ k̂

t )γ(1− l∗k̂t)γW (t, rt) ·
{
γσ1k̂t dw1,t + ρσ2β(t) dw1,t +

√
1− ρ2σ2β(t) dw2,t

}
.

Here, we used that W (t, r) solves Equation (6) for all (t, r) ∈ [0, T ]× R. Because of the fact that k̂t
fulfills Equation (11), it remains to show that:

dM k̂
t = M k̂

t ·
{
γσ1k̂t dw1,t + ρσ2β(t) dw1,t +

√
1− ρ2σ2β(t) dw2,t

}
is a martingale. The solution of this linear SDE is given by:

M k̂
t = M k̂

0︸︷︷︸
const

· exp

(∫ t

0

γσ1k̂s dw1,s +

∫ t

0

ρσ2β(s) dw1,s +

∫ t

0

√
1− ρ2σ2β(s) dw2,s

− 1

2

∫ t

0

γ2σ2
1 k̂

2
s + σ2

2β
2(s) ds

)
.

By Novikov’s condition (see, for example, [12], Corollary 5.13), the second factor is a martingale,
and therefore, M k̂

t is a martingale on [0, T ]. It remains to show, that E(M k̂
∞|FT ) = M k̂

T . By definition of
Mk
∞ and with k̂T = 0, we have:

E
(
M k̂
∞|FT

)
= E

V (T, X̃ k̂
T , rT )︸ ︷︷ ︸

FT−measurable

|FT

 = V (T, X̃ k̂
T , rT ) = M k̂

T .

Finally, M k̂
t is a martingale on [0, T ] ∪ {∞}. By Doob’s optional sampling theorem, we obtain:

E
(
M k̂

τ1

)
= E

(
M k̂

τ2

)
(14)

for all stopping times τ1, τ2. By definition, k̂t is thus an indifference strategy for the controller vs. stopper
game (10).

Due to the martingale property of the process M k̂
t , we also obtain an indifference frontier, which

prevents the investor from too optimistic of an investment (see, e.g., [6], p. 343): let k ∈ Π be an
arbitrary admissible pre-crash strategy, and let k̂ be the solution of ODE (11); then, M k̂

t is a martingale
on [0, T ] ∪ {∞}. Define η := inf{t ≥ 0 : kt > k̂t} and:

k̃t :=

kt : t < η

k̂t : t ≥ η
.
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Then, as in ([6], Lemma 4.3), we obtain by the martingale property that:

inf
τ∈C

E(M k̃
τ ) ≥ inf

τ∈C
E(Mk

τ ).

Consequently, it is sufficient to consider pre-crash strategies kt with kt ≤ k̂t for all t ∈ [0, T ].
The optimal strategy cannot cross the indifference frontier k̂, because one can then improve its
performance by cutting it off at k̂, and therefore, it would not be optimal. Thus, the optimal pre-crash
strategy is an element of the set:

A(k̂) :=
{
k ∈ Π : kt ≤ k̂t, ∀ t ∈ [0, T ]

}
.

The next lemma will show that k∗t = k
∗
t ∧ k̂t is optimal in the no-crash scenario in the class A(k̂).

This result is an important part of the proof of Theorem 2.

Lemma 5. Let k
∗
t be given by Equation (9), and let k̂t be the uniquely determined indifference strategy

as a solution of Equation (11). Then, the solution of the constrained stochastic optimal control problem:

sup
kt≤k̂t

E
(

1

γ
(X̃k

T )γ
)
, (15)

w.r.t. dX̃k
s = X̃k

s [rs + µks] ds+ X̃k
s σ1ks dw1,s, X̃0 = x0,

drs = a(rM − rs) ds+ (ρσ2 dw1,s +
√

1− ρ2σ2 dw2,s), r0 = r0.

is given by k∗t = k
∗
t ∧ k̂t.

Proof of Lemma 5. Let Ṽ (t, x, r) denote the value function of the constrained stochastic optimal
control problem Equation (15). To obtain it, we consider the corresponding HJB equation given by:

Ṽt + sup
kt≤k̂t

[
x(µk + r)Ṽx +

σ2
1

2
k2x2Ṽxx + ρσ1σ2kxṼxr

]
+ a(rM − r)Ṽr +

σ2
2

2
Ṽrr = 0 (16)

Ṽ (T, x, r) =
1

γ
xγ, ∀ (x, r) ∈ R+ × R.

By the standard separation method Ṽ (t, x, r) = 1
γ
xγW̃ (t, r) with W̃ (T, r) = 1 for all r ∈ R, we can

reduce the HJB equation to an equation for W̃ (t, r). By the first order condition, we obtain a candidate
for the optimal control:

k∗t =

(
µ

(1− γ)σ2
1

+
ρσ2

(1− γ)σ1

· W̃r(t, rt)

W̃ (t, rt)

)
∧ k̂t.

Inserting k∗ in the equation and applying W̃ (t, r) = g̃(t) exp(β̃(t) · r) with g̃(T ) = 1 and β̃(T ) = 0,
we obtain (with Equation (7)) that:

β̃(t) =
γ

a
[1− exp(−a(T − t))] = β(t),

and:

g̃(t) = exp

(∫ T

t

u(s) ds

)
,

u(s) : =
σ2

2

2
β̃2(s) + (γρσ1σ2k

∗
s + arM)β̃(s) + γ(µk∗s −

σ2
1

2
(1− γ)k∗2s ).
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Therefore, we conclude that:

Ṽ (t, x, r) =
1

γ
xγ g̃(t) exp(β̃(t) · r)

solves the HJB Equation (16). Using the same arguments for the verification result as in ([8],
Corollary 3.2), we obtain that:

k∗t =

(
µ

(1− γ)σ2
1

+
ρσ2

(1− γ)σ1

· β̃(t)

)
∧ k̂t

=

(
µ

(1− γ)σ2
1

+
ρσ2

(1− γ)σ1

· β(t)

)
∧ k̂t

= k
∗
t ∧ k̂t

is the optimal control for the constrained optimization problem, because β̃(t) = β(t) for all
t ∈ [0, T ].

Remark 5. Lemma 5 shows that k∗t = k
∗
t ∧ k̂t is the optimal strategy in the no-crash scenario τ = {∞}

in the class A(k̂). Note that the value function Ṽ (t, x, r) only differs from the post-crash value function
V (t, x, r) by the factor g̃(t) instead of g(t).

Now, using Lemma 3–5, we prove Theorem 2.

Proof of Theorem 2. We have to show that k∗t = k
∗
t ∧ k̂t is the optimal strategy for the controller vs.

stopper game (10). Then, by the arguments of Section 4.1, we obtain that k∗t is the optimal pre-crash
strategy for the worst-case optimization problem Equation (2).

Let tS := inf{t ∈ [0, T ] : k
∗
t ≥ k̂t}. Since k̂T = 0 and k

∗
T > 0, the infimum is attained at tS < T ,

which is the point of intersection of k̂t and k
∗
t (if it exists).

Now, let us consider the stochastic process Mk∗
t on the interval [tS, T ]. For t ∈ [tS, T ], we have

k∗t = k
∗
t ∧ k̂t = k̂t. In Theorem 4, we already proved that M k̂

t is a martingale on [0, T ] ∪ {∞}, and
therefore, Mk∗

t is a martingale on [tS, T ] ∪ {∞}. Note that if tS = 0, that means k
∗
t ≥ k̂t for all

t ∈ [0, T ], then Mk∗
t is a martingale on [0, T ] ∪ {∞}. In particular, this is the case if γ · ρ ≥ 0 (see

Lemma 6 below).
Now, let γ · ρ < 0, and assume that tS > 0, which means there exists a (uniquely determined)

intersection point of k̂t and k
∗
t , denoted by tS . Moreover, let us define t0 := inf{t ∈ [0, T ] : k

∗
t ≥ 0}. If

t0 > 0, then t0 denotes the uniquely determined root of k
∗
t , because it is strictly monotone increasing for

γ · ρ < 0.
Let us consider the stochastic process Mk∗

t with k∗t = k
∗
t on the interval [t0, tS].

For t ∈ [t0, tS], we have:

dMk∗

t = Mk∗

t ·

{
−γ l∗

1− l∗k∗t
· dk

∗
t

dt
+ γφ(t, k

∗
t )− γφ(t, k

∗
t )

}
dt

+Mk∗

t ·
{
γσ1k

∗
t dw1,t + ρσ2β(t) dw1,t +

√
1− ρ2σ2β(t) dw2,t

}
.
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With:
dk
∗
t

dt
=

ρσ2

σ1(1− γ)
(−γ exp(−a(T − t))),

we have:

Mk∗

t = Mk∗

t0
· exp

{∫ t

t0

γ2 l∗

1− l∗k∗s
· ρσ2

σ1(1− γ)
exp(−a(T − s)) ds

}
· exp

{∫ t

t0

−1

2
γ2σ2

1k
∗2
s −

1

2
σ2

2β
2(s) ds

+

∫ t

t0

γσ1k
∗
s dw1,s + ρσ2β(s) dw1,s +

√
1− ρ2σ2β(s) dw2,s

}
.

Now, by Novikov’s condition, the second factor is a martingale on [t0, tS]. As further, Mk∗
t0

is
Fs-measurable for s ≥ t0, we have for t0 ≤ s ≤ t ≤ tS:

E
(
Mk∗

t |Fs
)

= Mk∗

t0
· exp

{
ρ

∫ t

t0

γ2 l∗

1− l∗k∗u
· σ2

σ1(1− γ)
exp(−a(T − u)) du

}
· exp

{∫ s

t0

−1

2
γ2σ2

1k
∗2
u −

1

2
σ2

2β
2(u) du

+

∫ s

t0

γσ1k
∗
u dw1,u + ρσ2β(u) dw1,u +

√
1− ρ2σ2β(u) dw2,u

}
< Mk∗

t0
· exp

{
ρ

∫ s

t0

γ2 l∗

1− l∗k∗u
· σ2

σ1(1− γ)
exp(−a(T − u)) du

}
· exp

{∫ s

t0

−1

2
γ2σ2

1k
∗2
u −

1

2
σ2

2β
2(u) du

+

∫ s

t0

γσ1k
∗
u dw1,u + ρσ2β(u) dw1,u +

√
1− ρ2σ2β(u) dw2,u

}
= Mk∗

s .

The inequality above holds because of two arguments: First, we observe that k
∗
u ≤ k̂u < 1

l∗
for

u ∈ [t0, tS], and therefore, the integrand of the deterministic integral is positive. Secondly, we only
have to consider the cases γ > 0, ρ < 0 and γ < 0, ρ > 0 (because of γρ < 0) for the estimate of the
deterministic integral. For both of these cases, we easily obtain that:

Mk∗

t0
exp

{
ρ

∫ t

t0

. . . du

}
< Mk∗

t0
exp

{
ρ

∫ s

t0

. . . du

}
,

for s ≤ t because Mk∗
t0
> 0 for γ > 0 and Mk∗

t0
< 0 for γ < 0. By the arguments above, we obtain that

E
(
Mk∗

t |Fs
)
≤ Mk∗

s for t0 ≤ s ≤ t ≤ tS . Therefore, Mk∗
t is a supermartingale on [t0, tS]. If t0 = 0,

we obtain, together with the martingale property on [tS, T ] ∪ {∞}, that Mk∗
t is a supermartingale on

[0, T ] ∪ {∞}.
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Otherwise, if t0 > 0, then we have to consider Mk∗
t on the interval [0, t0]. By assumption, we have

that k
∗
t ≤ 0, and therefore, k∗t = k

∗
t ≤ 0 for t ∈ [0, t0]. For t ∈ [0, t0], we obtain:

dMk∗

t = d
(
V (t, X̃k∗

t , rt)
)

= Mk∗

t

{
γσ1k

∗
t dw1,t + ρσ2β(t) dw1,t +

√
1− ρ2σ2β(t) dw2,t

}
.

Again, by Novikov’s condition, we obtain that Mk∗
t is a martingale on [0, t0].

Finally, Mk∗
t is a supermartingale on [0, T ] ∪ {∞} (for γρ ≥ 0, Mk∗

t is even a martingale on
[0, T ] ∪ {∞}). By Doob’s optional sampling theorem (see, for example, ([13], Theorem 16)), we have:

E(Mk∗

τ1
) ≥ E(Mk∗

τ2
), for τ1 ≤ τ2. (17)

The inequality implies that τ = {∞} is a worst-case scenario for the strategy k∗t = k
∗
t ∧ k̂t.

Analogously, to the indifference optimality principle in [6] and [5], we have:

inf
τ∈C

E
(
Mk∗

τ

) (17)
≥ E

(
Mk∗

∞
)
≥ E

(
Mk
∞
)
≥ inf

τ∈C
E
(
Mk

τ

)
. (18)

The second inequality holds, because k∗t is optimal in the no-crash scenario (see Lemma 5). By
inequality (18), k∗t = k

∗
t ∧ k̂t is the optimal strategy for the controller vs. stopper game in the classA(k̂).

Due to the indifference frontier, that means, due to the fact that the optimal strategy is in the class A(k̂),
we obtain that k∗t = k

∗
t ∧ k̂t is the optimal pre-crash strategy for the worst-case optimization problem

in (2). Obviously, k∗t is admissible in the sense of Definition 1, because it is a deterministic, continuous
and bounded function on [0, T ]. Due to the fact that k̂t < 1

l∗
for all t ∈ [0, T ] (see Lemma 3), we easily

obtain that k∗t <
1
l∗

for all t ∈ [0, T ].

Lemma 6. Let γ · ρ ≥ 0. Then, k
∗
t ≥ k̂t for all t ∈ [0, T ], where k̂t is a solution of Equation (13) and k

∗
t

is the optimal post-crash strategy given by Equation (9).

Proof of Lemma 6. See Appendix A.

Remark 6. For the case γ · ρ ≥ 0, we obtain that k
∗
t ≥ k̂t for all t ∈ [0, T ], and therefore, k∗t = k̂t.

By Lemma 4, we obtain that Mk∗
t is a martingale on [0, T ] ∪ {∞}. In this case, we have an equality

instead of the first inequality in Equation (18), because of Doob’s optional sampling theorem for a
martingale. Therefore, if γ · ρ ≥ 0, then it is optimal to follow the indifference strategy k̂t before the
market crash.

For the special case of γ · ρ = 0, which occurs when either the price and the interest rate are
uncorrelated or γ = 0 (log-utility case), we obtain the optimal post-crash strategy given by:

k
∗
t =

µ

σ2
1(1− γ)

.

Moreover, the optimal pre-crash strategy has to fulfill ODE (11), which reduces to the same ODE
given in ([6], Equation 4.3) for this special case.

In the next section, we can illustrate the strategies that are optimal before and after the market
crash, respectively.
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5. Numerical Example

In Section 3, we have shown that the optimal post-crash strategy k
∗
t , which is valid for t ∈ (τ, T ], is

given by Equation (9) in an explicit form. By Theorem 2, we obtained that the optimal pre-crash strategy
k∗t , valid for t ∈ [0, τ ], is given by:

k∗t = k
∗
t ∧ k̂t,

where k̂t fulfills ODE (11), which can be rewritten in the form:

dkt
dt

=
1− l∗kt
l∗

· σ
2
1

2
(γ − 1)

(
kt − k

∗
t

)2

, kT = 0. (19)

Thus, for given model parameters, we can calculate the optimal strategies numerically.

5.1. The Special Case a = 0, σ2 = 0, r0 = r

If we choose the parameters a = 0, σ2 = 0 and r0 = r for some constant r > 0, the model reduces to
the classical Merton model with a constant interest rate r under the threat of a market crash, which was
already considered in [5,6]. In more detail, by Section 3, the optimal post-crash strategy is given by the
classical Merton strategy for maximizing the expected utility of terminal wealth,

k
∗
t ≡ kM :=

µ

σ2
1(1− γ)

.

Moreover, the optimal pre-crash strategy has to fulfill the ODE:

dkt
dt

=
1− l∗kt
l∗

· σ
2
1

2
(γ − 1)

(
kt − kM

)2
, kT = 0,

which was already derived in ([6], Equation 4.3) and ([5], Equation 19).

5.2. Example

Using ODE (19), we can calculate the indifference strategies numerically. In the following, we choose
the model parameters:

µ = 0.08, σ1 = 0.3, a = 2, rM = 0.05, σ2 = 0.1, l∗ = 0.4, T = 5

to illustrate the optimal pre- and post-crash strategies.
Figure 1 shows the optimal strategies for ρ = 0.5 and for different values of γ. For these parameters,

we have that γ · ρ > 0, and therefore, by Lemma 6, we have that k
∗
t ≥ k̂t for all t ∈ [0, T ], and it is

optimal to follow the indifference strategy k∗t = k̂t before the market crash.
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Figure 1. Optimal pre- and post-crash strategies for ρ = 0.5.
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The same is true for the examples in Figure 2, where ρ = −0.5, γ = −0.5 and γ = −3. Analogously
to the case of a constant interest rate, we can see that the optimal strategies before the market crash are
lower for higher rates of relative risk aversion 1 − γ. Note that for the case γ · ρ ≥ 0, we have that the
optimal pre-crash strategy is given by the indifference strategy. This result was already stated for models
with a constant interest rate (see, e.g., [6]).

Figure 2. Optimal pre- and post-crash strategies for ρ = −0.5.
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Now, if γ · ρ < 0, it can happen (depending on the choice of parameters) that k
∗
t < k̂t for some

t ∈ [0, T ]. In Figure 3, for example for ρ = 0.5 and γ = −13, it is not optimal to follow the
indifference strategy before the market crash. Indeed, the investor has to follow the post-crash strategy k

∗
t

for t ∈ [0, tS], where tS denotes the intersection point of k
∗
t and k̂t. Only after tS , he will follow the

indifference strategy k̂t. Note that, due to the high rate of relative risk aversion (1−γ = 14), the investor
invests at most 0.02% of his wealth in the risky asset before the market crash occurs. If the market crash
occurs before time tS , he will stay at the post-crash strategy for all t ∈ [0, T ].
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Figure 3. Optimal pre- and post-crash strategies for ρ = 0.5 and γ = −13.
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6. Conclusions and Outlook

Our main result, Theorem 2, provides a closed form solution of the worst-case optimization problem
in (2) under a stochastic interest rate. The pre-crash strategy is given by the minimum of the indifference
strategy and the post-crash strategy. For the case γ · ρ ≥ 0, we were able to show that the indifference
strategy is smaller than or equal to the post-crash strategy for all t ∈ [0, T ], which implies that it is
optimal to follow the indifference strategy before the crash. If γ · ρ < 0, it can happen, depending on the
choice of market parameters, that it is optimal to follow the post-crash strategy first and, afterwards, to
follow the indifference strategy. Due to the stochastic interest rate, we obtained that worst-case optimal
strategies can also include short selling periods if the rate of relative risk aversion is sufficiently high.

There are various aspects that can be examined starting from our work. Among them are:
• The use of other interest rate models, such as the Cox–Ingersoll–Ross model or multi-factor

models.
• Changing market parameters after the market crash.
• A market with at most n possible crashes.
• A multiple asset market.

A particularly interesting case can be the introduction of a more complicated jump behavior at the
crash time. By this, we mean that both the stock price and the interest rate jump simultaneously.

Author Contributions
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A. Proofs

Proof of Lemma 3. From:

k
∗
t =

µ+ ρσ1σ2β(t)

(1− γ)σ2
1

,

we easily obtain that:

φ(t, k
∗
t ) =

(µ+ ρσ1σ2β(t))2

2(1− γ)σ2
1

=
σ2

1

2
(1− γ)k

∗2
t ≥ 0, ∀ t ∈ [0, T ].
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Thus, Equation (13) can be rewritten as follows:

dkt
dt

=
1− l∗kt
l∗

· σ
2
1

2
(γ − 1)

(
kt − k

∗
t

)2

, kT = 0.

Now, we can write the corresponding forward equation to (13) by choosing ht , kT−t:

dht
dt

=
1− l∗ht

l∗
· σ

2
1

2
(1− γ)

(
ht − k

∗
T−t

)2

, h0 = 0. (20)

Let:

f(t, h) :=
1− l∗h
l∗

· σ
2
1

2
(1− γ)

(
h− k∗T−t

)2

,

then f : [0, T ] × R → R is continuous in t and h and continuously differentiable with respect to h, and
therefore, f(t, h) is locally Lipschitz continuous in h. Let J1 ⊂ [0, T ] be an arbitrary compact interval.
Then, we have:

f(t, h) · h = h · 1− l∗h
l∗

· σ
2
1

2
(1− γ)

(
h− k∗T−t

)2

= −σ
2
1

2
(1− γ)h4 +

3∑
j=0

sj(t)h
j

where sj(t) are continuous functions on [0, T ] and, therefore, bounded. Therefore, we can choose a
constant CJ1 , such that:

f(t, h) · h ≤ CJ1 ∀t ∈ J1, ∀h ∈ R,

and, therefore, f(t, h) · h ≤ CJ1(1 + h2) for all t ∈ J1 and h ∈ R. By applying Gronwall’s lemma, there
exists a uniquely determined solution ht on the maximal existence interval [0, t+) with t+ = +∞. By
time reversion, we obtain the existence and uniqueness of a solution kt of Equation (13).

It remains to show that the solution fulfills 0 ≤ kt <
1
l∗

. This, will be done in two steps. First, we
show that kt ∈ [0, 1

l∗
] for all t ∈ [0, T ] by an invariance argument, and second, we show by contradiction

that kt < 1
l∗

.

Step 1:
By an invariance argument in the sense of the qualitative theory of ODE’s, we show that

ht ∈ D := [0, 1
l∗

] for all t ≥ 0. The convex set D is called positively invariant (see, for example, [14],
Chapter 7) if ht ∈ D for all t ∈ [0, t+) if h0 ∈ D. By Theorem 7.3.4 in [14], we obtain that D is
positively invariant for Equation (20) if and only if:

f(t, h) · y ≤ 0 ∀ t ∈ R, h ∈ ∂D =

{
0,

1

l∗

}
, y ∈ N (h),

where N (h) denotes the set of outer normals on D in h. For h = 1
l∗
∈ ∂D, we have f(t, 1

l∗
) · y ≤ 0 for

all t ∈ R, y ∈ N ( 1
l∗

) = (0,∞). For h = 0 ∈ ∂D, we obtain:

f(t, 0) · y =
1

l∗
σ2

1

2
(1− γ)

(
−k∗T−t

)2

· y ≤ 0, ∀ t ∈ R, y ∈ N (0) = (−∞, 0).
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Thus, D is positively invariant, and therefore, ht ∈ [0, 1
l∗

] for all t ∈ [0, t+). By time reversion, we
also obtain that kt ∈ [0, 1

l∗
] for all t ∈ [0, T ].

Step 2: Here, we show that kt < 1
l∗

for all t ∈ [0, T ].

Let t̃ := inf{t ∈ [0, T ] : kt ≤ 1
l∗
− δ, ks ≤ 1

l∗
− δ, ∀s ∈ [t, T ]} for some δ > 0. Since kT = 0 and by

continuity of kt, the infimum is attained at some t̃. First, we show that kt̃ ≤ 1
l∗
− 2δ for some δ > 0 if

ks ≤ 1
l∗
− 2δ for s ∈ [t̃, T ], and in a second step, we deduce that t̃ = 0 by contradiction.

1. Here, we show that kt̃ ≤ 1
l∗
− 2δ:

By definition, we have that kt̃ <
1
l∗

, and therefore, Equation (13) implies:

d

dt̃
log(1− l∗kt̃) = −F (t̃, kt̃), F (t, k) :=

σ2
1

2
(γ − 1)

(
k − k∗t

)2

.

Integrating on both sides and using that ks < 1
l∗

for s ∈ [t̃, T ] and kT = 0 leads to:

log(1− l∗kt̃) =

∫ T

t̃

F (s, ks) ds.

Moreover, by Step 1, we know that kt ∈ [0, 1
l∗

] for all t ∈ [0, T ]. Since F (s, k) is a continuous
function in k, we have |F (s, ks)| ≤ M for all s ∈ [0, T ], and we obtain 1 − l∗kt̃ ≥ e−MT . Thus,
with δ̃ := 1

2
e−MT , we have:

kt̃ ≤
1

l∗
− 2δ, δ :=

δ̃

l∗
> 0. (21)

2. We show that t̃ = 0 by contradiction:
Assume that t̃ > 0, then the inequality (21) implies:

kt̃ ≤
1

l∗
− 2δ,

since ks < 1
l∗

for s ∈ [t̃, T ]. By continuity, there exists t′ < t̃, such that kt′ ≤ 1
l∗
− δ, which is a

contradiction to the definition of t̃. Thus, t̃ = 0, and therefore, kt < 1
l∗

for all t ∈ [0, T ].

Proof of Lemma 6. By Equation (9) and (13), we have:

dk
∗
t

dt
=

ρσ2

σ1(1− γ)
β′(t), k

∗
T =

µ

σ2
1(1− γ)

> 0

dk̂t
dt

=
1− l∗k̂t
l∗

· σ
2
1

2
(γ − 1)

(
k̂t − k

∗
t

)2

, k̂T = 0.

Now, we define ut := k
∗
t − k̂t, then uT = µ

σ2
1(1−γ)

, and we obtain:

dut
dt

=
dk
∗
t

dt
− dk̂t

dt
=

ρσ2

σ1(1− γ)
β′(t) +

σ2
1

2
(1− γ)

1− l∗(k∗t − ut)
l∗

· u2
t
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Additionally, the corresponding forward equation with ũt := uT−t is given by:

dũt
dt

= −σ
2
1

2
(1− γ)

1− l∗(k∗T−t − ũt)
l∗

· ũ2
t −

ρσ2

σ1(1− γ)
β′(T − t), ũ0 =

µ

σ2
1(1− γ)

. (22)

To show that ũt ≥ 0, we can use the invariance argument. Let:

f̃(t, ũ) := −σ
2
1

2
(1− γ)

1− l∗(k∗T−t − ũ)

l∗
· ũ2 − ρσ2

σ1(1− γ)
β′(T − t)

and let D := [0,∞). Then, we can show that D is positively invariant for Equation (22): for
ũ = 0 ∈ ∂D, we have:

f̃(t, 0) · y = − ρσ2

σ1(1− γ)
β′(T − t) · y =

σ2

σ1(1− γ)
exp (−at) γ · ρ︸︷︷︸

≥0

·y ≤ 0,

∀y ∈ N (0) = (−∞, 0),∀ t ∈ R.

By Theorem 7.3.4 in [14], we have that D is positively invariant for Equation (22), which means
ũt ≥ 0 for all t ∈ [0, t+ = ∞). Thus, by time reversion, ut = k

∗
t − k̂t ≥ 0, that is k̂t ≤ k

∗
t for all

t ∈ [0, T ].
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