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Abstract: We give an explicit algorithm and source code for combining alpha streams
via bounded regression. In practical applications, typically, there is insufficient history to
compute a sample covariance matrix (SCM) for a large number of alphas. To compute
alpha allocation weights, one then resorts to (weighted) regression over SCM principal
components. Regression often produces alpha weights with insufficient diversification
and/or skewed distribution against, e.g., turnover. This can be rectified by imposing bounds
on alpha weights within the regression procedure. Bounded regression can also be applied
to stock and other asset portfolio construction. We discuss illustrative examples.
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1. Introduction

With technological advances, there is an ever-increasing number of alpha streams.1 Many of these
alphas are ephemeral, with relatively short lifespans. As a result, in practical applications, typically,

1 Here “alpha”, following the common trader lingo, generally means any reasonable “expected return” that one may wish
to trade on and is not necessarily the same as the “academic” alpha. In practice, often, the detailed information about how
alphas are constructed may not be available, e.g., the only data available could be the position data, so “alpha” then is a
set of instructions to achieve certain stock holdings by some times t1, t2, . . .
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there is insufficient history to compute a sample covariance matrix (SCM) for a large number of alpha
streams; SCM is singular. Therefore, directly using SCM in, say, alpha portfolio optimization is not
an option.2

One approach to circumvent this difficulty is to build a factor model for alpha streams [1]. Because
of the utmost secrecy in the alpha business, such factor models must be built in-house; there are no
commercial providers of “standardized” factor models for alpha streams. As with factor models for
equities, such model building for alphas requires certain nontrivial expertise and time expenditure.

Therefore, in practice, one often takes a simpler path. As was discussed in more detail in [1], one
can deform SCM, such that it is nonsingular and, then, use the so-deformed SCM in, say, Sharpe ratio
optimization for a portfolio of alphas. For small deformations, this then reduces to a cross-sectional
weighted regression of the alpha stream expected returns [1]. The regression weights are the inverse
sample variances of the alphas. The columns of the loadings matrix, over which the expected returns are
regressed, are nothing but the first K principal components of SCM corresponding to its positive (i.e.,
non-vanishing) eigenvalues [1].

Regression often produces alpha weights with insufficient diversification and/or skewed distribution
against, e.g., turnover. Thus, if some expected returns are skewed, then, despite non-unit regression
weights (which suppress more volatile alphas), the corresponding alpha weights can be larger than
desired by diversification considerations. Furthermore, the principal components know nothing about
quantities, such as turnover.3 A simple way of obtaining a more “well-rounded” portfolio composition
is to set bounds on alpha weights. This is the approach we discuss here.

When individual alpha streams are traded on separate execution platforms, the alpha weights are
non-negative. By combining and trading multiple alpha streams on the same execution platform, the
framework we adapt here, one saves on transaction costs by internally crossing trades between different
alpha streams (as opposed to going to the market).4 Then, the alpha weights can be negative.

When alpha weights can take both positive and negative values, the bounded regression problem
simplifies. It boils down to an iterative algorithm that we discuss in Section 2. This algorithm can
actually be derived from an optimization algorithm with bounds (in a factor model context) discussed
in [2] by taking the regression limit of optimization. We also give R source code for the bounded
regression algorithm in Appendix A. Appendix B contains some legalese. We conclude in Section 3,
where we also discuss bounded regression with transaction costs following [3].

2. Bounded Regression

2.1. Notations

We have N alphas αi, i = 1, . . . , N . Each alpha is actually a time series αi(ts), s = 0, 1, . . . ,M ,
where t0 is the most recent time. Below, αi refers to αi(t0).

2 For a partial list of hedge fund literature, see, e.g., [4–23] and the references therein. For a partial list of portfolio
optimization and related literature, see, e.g., [24–58] and the references therein.

3 One approach to rectify this is to add a turnover-based factor to the loadings matrix [1].
4 For a recent discussion, see [59].
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Let Cij be the sample covariance matrix (SCM) of the N time series αi(ts). If M < N , then only M
eigenvalues of Cij are non-zero, while the remainder have “small” values, which are zeros distorted by
computational rounding.5

Alphas αi are combined with weights wi. Any leverage is included in the definition of αi, i.e., if a
given alpha labeled by j ∈ {1, . . . , N} before leverage is α′j (this is a raw, unlevered alpha) and the
corresponding leverage is Lj : 1, then we define αj ≡ Lj α

′
j . With this definition, the weights satisfy

the condition:
N∑
i=1

|wi| = 1 (1)

Here, we allow the weights to be negative, as we are interested in the case where the alphas are traded
on the same execution platform, and trades between alphas are crossed, so one is actually trading the
combined alpha α ≡

∑N
i=1 αi wi.

2.2. Weighted Regression

When SCM Cij is singular and no other matrix (e.g., a factor model) to replace it is available, one
can deform SCM, such that it is nonsingular and then use the so-deformed SCM in, say, Sharpe ratio
optimization for a portfolio of alphas [1]. For small deformations, this reduces to a cross-sectional
weighted regression of the alpha stream expected returns [1]. The regression weights zi (not to be
confused with the alpha weights wi) are the inverse sample variances of the alphas: zi ≡ 1/Cii. The
columns of the loadings matrix ΛiA, A = 1, . . . , K, over which the expected returns are regressed, are
nothing but the first K principal components of SCM corresponding to its positive (i.e., non-vanishing)
eigenvalues. However, for now, we will keep ΛiA general (e.g., one may wish to include other risk factors
in ΛiA [1]).

The weights wi are given by:
wi = γ zi εi (2)

where εi are the residuals of the cross-sectional regression of αi over ΛiA (without the intercept, unless
the intercept is subsumed in ΛiA, see below) with the regression weights zi:

εi = αi −
N∑
j=1

zj αj

K∑
A,B=1

ΛiA ΛjB Q
−1
AB (3)

where Q−1AB is the inverse of:

QAB ≡
N∑
i=1

zi ΛiA ΛiB (4)

and the overall factor γ in Equation (2) is fixed via Equation (1). Note that we have:

∀A ∈ {1, . . . , K} :
N∑
i=1

wi ΛiA = 0 (5)

5 Actually, this assumes that there are no N/Asin any of the alpha time series. If some or all alpha time series contain
N/As in a non-uniform manner and the correlation matrix is computed by omitting such pair-wise N/As, then the resulting
correlation matrix may have negative eigenvalues that are not zeros distorted by computational rounding.
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Therefore, the weights wi are neutral w.r.t. the risk factors defined by the columns of the loadings
matrix ΛiA.

2.3. Bounds

Since the weights wi can have either sign, we will assume that the lower and upper bounds on
the weights:

w−i ≤ wi ≤ w+
i (6)

satisfy the conditions:

w−i ≤ 0 (7)

w+
i ≥ 0 (8)

w−i < w+
i (9)

The last condition is not restrictive: if for some alpha labeled by i, we have w−i = w+
i , then we can

simply set wi = w−i and altogether exclude this alpha from the bounded regression procedure below.
Furthermore, if, for whatever reason, we wish to have no upper/lower bound for a given wi, we can
simply set w±i = ±1.

The bounds can be imposed for diversification purposes: e.g., one may wish to require that no alpha
has a weight greater than some fixed (small) percentile ξ, i.e., |wi| ≤ ξ, so w±i = ±ξ. One may also wish
to suppress the contributions of high turnover alphas, e.g., by requiring that |wi| ≤ ξ̃ if τi ≥ τ∗, where τi
is the turnover,6 τ∗ is some cut-off turnover, and ξ̃ is some (small) percentile. Bounds can also be used
to limit the weights of low capacity7 alphas, etc.8

2.4. Running a Bounded Regression

Therefore, how do we impose the bounds in the context of a regression? There are two subtleties here.
First, we wish to preserve the factor neutrality property (5), which is invariant under the simultaneous
rescalingswi → ζwi (where ζ is a constant). If we simply set somewi to their upper or lower bounds, this
generally will ruin the rescaling invariance, so the property (5) will be lost. Second, we must preserve
the normalization condition (1). In fact, it is precisely this normalization condition that allows one to
meaningfully set the bounds w±i , as the regression itself does not fix the overall normalization coefficient
γ in Equation (2), owing to the rescaling invariance wi → ζwi.

6 Here, the turnover (over a given period, e.g., daily turnover) is defined as the ratio τi ≡ Di/Ii of total dollars Di (long
plus short) traded by the alpha labeled by i over the corresponding total dollar holdings Ii (long plus short).

7 By capacity I∗i for a given alpha, we mean the value of the investment level Ii for which the P&L Pi(Ii) is maximized
(considering nonlinear effects of impact).

8 Since the regression we consider here is weighted with the regression weights zi = 1/Cii, this already controls exposure
to alpha volatility, so imposing bounds based on volatility would make a difference only if one wishes to further suppress
volatile alphas.
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Here, we discuss the bounded regression algorithm. To save space, we skip the detailed derivation as
it follows straightforwardly by taking the regression limit of optimization with bounds in the context of
a factor model, both of which are discussed in detail in [2].9

Let us define the following subsets of the index i ∈ J ≡ {1, . . . , N}:

wi = w+
i , i ∈ J+ (10)

wi = w−i , i ∈ J− (11)

J ≡ J+ ∪ J− (12)

J̃ ≡ J \ J (13)

Further, let:

α̃i ≡ γ αi (14)

yA ≡
∑
i∈J̃

zi α̃i ΛiA +
∑
i∈J+

w+
i ΛiA +

∑
i∈J−

w−i ΛiA (15)

where γ is to be determined (see below). Then, we have:

wi = zi

(
α̃i −

K∑
A,B=1

ΛiA Q̃
−1
AB yB

)
, i ∈ J̃ (16)

∀i ∈ J+ : zi

(
α̃i −

K∑
A,B=1

ΛiA Q̃
−1
AB yB

)
≥ w+

i (17)

∀i ∈ J− : zi

(
α̃i −

K∑
A,B=1

ΛiA Q̃
−1
AB yB

)
≤ w−i (18)

where Q̃−1 is the inverse of the K ×K matrix Q̃:

Q̃AB ≡
∑
i∈J̃

zi ΛiA ΛiB (19)

Here, the loadings matrix ΛiA must be such that Q̃ is invertible.10 Furthermore, note that wi, i ∈ J̃
given by Equation (16) together with wi = w+

i , i ∈ J+ and wi = w−i , i ∈ J− satisfy Equation (5), as
they should.

Note that, for a given value of γ, Equation (15) solves for yA given J+ and J−. On the other hand,
Equations (17) and (18) determine J+ and J− in terms of yA. The entire system is then solved iteratively,
where at the initial iteration, one takes J̃ (0) = J , so that J+(0) and J−(0) are empty. However, we still
need to fix γ. This is done via a separate iterative procedure, which we describe below.

9 The regression limit of optimization essentially amounts to the limit ξ2i ≡ η ξ̃2i , η → 0, ξ̃2i = fixed, where ξi is the specific
(idiosyncratic) risk in the factor model with the factor loadings matrix identified with the regression loadings matrix ΛiA

(and the K ×K factor covariance matrix becomes immaterial in the regression limit); see [2] for details.
10 This is the case if the columns of ΛiA are comprised of the first K principal components of SCM Cij corresponding to its

positive eigenvalues. However, as mentioned above, here, we keep the loadings matrix general.
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Because we have two iterations, to guarantee (rapid) convergence, the J± iteration (that is, for a given
value of γ) can be done as follows. Let ŵ(s)

i be such that:

∀i ∈ J : w−i ≤ ŵ
(s)
i ≤ w+

i (20)

∀A ∈ {1, . . . , K} :
N∑
i=1

ŵ
(s)
i ΛiA = 0 (21)

At the (s + 1)-th iteration, let w(s+1)
i be given by Equation (16) for i ∈ J̃ (s), with w(s+1)

i = w±i for
i ∈ J±(s). This solution satisfies Equation (5), but may not satisfy the bounds. Let:

qi ≡ w
(s+1)
i − ŵ(s)

i (22)

hi(t) ≡ ŵ
(s)
i + t qi, t ∈ [0, 1] (23)

Then:
ŵ

(s+1)
i ≡ hi(t∗) = ŵ

(s)
i + t∗ qi (24)

where t∗ is the maximal value of t, such that hi(t) satisfies the bounds. We have:

qi > 0 : pi ≡ min
(
w

(s+1)
i , w+

i

)
(25)

qi < 0 : pi ≡ max
(
w

(s+1)
i , w−i

)
(26)

t∗ = min

(
pi − ŵ(s)

i

qi

∣∣∣ qi 6= 0, i ∈ J

)
(27)

Now, at each step, instead of Equations (17) and (18), we can define J±(s+1) via:

∀i ∈ J+(s+1) : ŵ
(s+1)
i = w+

i (28)

∀i ∈ J−(s+1) : ŵ
(s+1)
i = w−i (29)

where ŵ(s+1)
i is computed iteratively as above, and we can take ŵ(0)

i ≡ 0 at the initial iteration. Unlike
Equations (17) and (18), Equations (28) and (29) add new elements to J± one (or a few) element(s) at
each iteration.

The convergence criteria are given by:

J+(s+1) = J+(s) (30)

J−(s+1) = J−(s) (31)

These criteria are based on discrete quantities and are unaffected by computational (machine)
precision effects. However, in practice, the equalities in Equations (28) and (29) are understood within
some tolerance (or machine precision); see the R code in Appendix A. We will denote the value of ŵ(s+1)

i

at the final iteration (for a given value of γ) via w̃i.
Finally, γ is determined via another iterative procedure as follows (we use superscript a for the γ

iterations to distinguish them from the superscript s for the J± iterations):

γ(a+1) =
γ(a)∑N

i=1

∣∣∣w̃(a)
i

∣∣∣ (32)
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where w̃(a)
i is computed as above for γ = γ(a). To achieve rapid convergence, the initial value γ(0) can

be set as follows:
γ(0) =

1∑N
i=1 zi |εi|

(33)

where εi are the residuals of the weighted regression (without bounds) given by Equation (3). The
convergence criterion for the γ iteration is given by:

γ(a+1) = γ(a) (34)

understood within some preset computational tolerance (or machine precision).
The R code for the above algorithm with some additional explanatory documentation is given in

Appendix A. Note that this code is not written to be “fancy” or optimized for speed or in any other way.
Instead, its sole purpose is to illustrate the bounded regression algorithm as it is described above in a
simple-to-understand fashion. Some legalese relating to this code is given in Appendix B.

2.5. Application to Stock Portfolios

Above, we discussed the bounded regression algorithm in the context of computing weights for
portfolios of alpha streams. However, the algorithm is quite general and, with appropriate notational
identifications, can be applied to portfolios of stocks or other suitable instruments. In fact, it can also be
applied outside of finance. Here, for the sake of definiteness, we will focus on stock portfolios; in fact,
we will assume that they are dollar neutral, so both long and short positions are allowed.11

2.5.1. Establishing Trades

Let us first discuss establishing trades, i.e., we start from nil positions and establish a portfolio of N
stocks. Instead of alpha streams, our index i ∈ {1, . . . , N} ≡ J now labels the stocks. We will denote
the desired dollar (not share) holdings via Hi and the total dollar investment (long plus short) via I:

I ≡
N∑
i=1

|Hi| (35)

Let wi ≡ Hi/I . These are now our stock weights (analogous to the alpha weights). Then, we have
the familiar normalization condition:

N∑
i=1

|wi| = 1 (36)

However, normally, one imposes bounds on Hi, not on wi. For example, in the case of establishing
trades, one may wish to cap the positions, such that: (i) not more than a small percentile ξ of the total
dollar investment I is allocated to any given stock; this is a diversification constraint; and (ii) only a

11 Various generalizations are possible, some more straightforward than others.
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small percentile ξ̃ of ADDV (average daily dollar volume) Vi is traded; this is a liquidity constraint (see
below). In this case, we have the following bounds on the dollar holdings Hi:

H−i ≤ Hi ≤ H+
i (37)

H±i = ±min
(
ξ I, ξ̃ Vi

)
(38)

In this case, the upper and lower bounds are symmetrical. In some cases, such as for hard-to-borrow
stocks, we may have some H−i = 0. In other cases, one may not wish to have a long position in some
stocks, etc. We will only assume that H−i ≤ 0 and H+

i ≥ 0, in line with our discussion above for the
bounds on the weights, which are then given by:

w±i ≡ H±i /I (39)

The final touch then is that instead of αi, one uses some expected returns Ei in the case of stocks. The
rest goes through exactly as above for a suitably-chosen ΛiA.

2.5.2. Rebalancing Trades

With rebalancing trades, we have the current dollar holdings H∗i and the desired dollar holdings Hi.
In this case, one may wish to cap the positions such that: (i) not more than a small percentile ξ of the total
dollar investment I is allocated to any given stock; this is the same diversification constraint as above;
(ii) only a small percentile ξ̃ of ADDV Vi is traded; this the same liquidity constraint as above; and (iii)
not more than a small percentile ξ′ of ADDV Vi is allocated to any given stock; this is another liquidity
constraint stemming from the consideration that, if the portfolio must be liquidated swiftly (e.g., due to
an unforeseen event), to mitigate liquidation costs, the positions are capped based on liquidity. Here,
ξ′ typically can be several times larger than ξ̃; the portfolio can be built up in stages as long as at each
stage, the bounds are satisfied. The bounds on Hi now read:

|Hi| ≤ min (ξ I, ξ′ Vi) (40)

|Hi −H∗i | ≤ ξ̃ Vi (41)

It is more convenient to rewrite these bounds in terms of the traded dollar amounts Di ≡ Hi −H∗i :

D−i ≤ Di ≤ D+
i (42)

D+
i = min

(
min (ξ I, ξ′ Vi)−H∗i , ξ̃ Vi

)
≥ 0 (43)

D−i = max
(
−min (ξ I, ξ′ Vi)−H∗i , − ξ̃ Vi

)
≤ 0 (44)

and we are assuming that |H∗i | ≤ min (ξ I, ξ′ Vi). Furthermore, we will assume that H∗i itself satisfies
Equation (5):

∀A ∈ {1, . . . , K} :
N∑
i=1

H∗i ΛiA = 0 (45)

Then, the bounded regression algorithm can be straightforwardly applied to the weights wi and xi
defined as follows:

wi ≡ Hi/I (46)

xi ≡ Di/I (47)
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In the J± iteration, we now use xi instead of wi, while in the γ iteration, we still use wi. Then,
the rest of the algorithm goes through unchanged. Let us note, however, that the source code given
in Appendix A is written with alpha weights in mind, so while it can be adapted to the case of stock
portfolios in the case of establishing trades, straightforward modifications are required to accommodate
rebalancing trades.

2.5.3. Examples: Intraday Mean Reversion Alphas

To illustrate the use of the algorithm, we have employed it to construct portfolios for intraday mean
reversion alphas with the loadings matrix ΛiA in the following five incarnations: (i) intercept only (so
K = 1); (ii) BICS (Bloomberg Industry Classification System) sectors; (iii) BICS industries; (iv) BICS
sub-industries; and (v) the four style factors prc, mom, hlvand vol, of [60] plus BICS sub-industries. The
regression weights are the inverse sample variances: zi = 1/Cii (see below). In Cases (ii)–(v) above, the
intercept is subsumed in the loadings matrix ΛiA. Indeed, we have

∑
A∈G ΛiA ≡ 1, where G is the set of

columns of ΛiA corresponding to sectors in Case (ii), industries in Case (iii) and sub-industries in Cases
(iv) and (v). Consequently, the resultant portfolios are automatically dollar neutral.

The portfolio construction and backtesting are identical to those in [61], where a more detailed
discussion can be found; so, to save space, here, we will only give a brief summary. The portfolios
are assumed to be established at the open and liquidated at the close on the same day, so they are purely
intraday, and the algorithm of Section 2.5.1 for establishing trades applies. The expected returns Ei for
each date are taken to be Ei = −Ri, where Ri ≡ ln

(
P open
i /P close

i

)
, and for each date, P open

i is today’s
open, while P close

i is yesterday’s close adjusted for splits and dividends if the ex-date is today. Therefore,
these are intraday mean-reversion alphas.

The universe is top 2000 by ADDV Vi, where ADDV is computed based on 21-trading day rolling
periods. However, the universe is not rebalanced daily, but also every 21 trading days (see [61] for
details). The sample variances Cii are computed based on the same 21-trading day rolling periods and
are not applied daily, but also, every 21 trading days, the same as the universe rebalancing (see [61] for
details). We run our simulations over a period of five years (more precisely, 252× 5 trading days going
back from 5 September 2014, inclusive). The annualized return-on-capital (ROC) is computed as average
daily P&L divided by the total (long plus short) intraday investment level I (with no leverage) and
multiplied by 252. The annualized Sharpe ratio (SR) is computed as the daily Sharpe ratio multiplied by√

252. Cents-per-share (CPS) are computed as the total P&L divided by the total shares traded. On each
day, the total (establishing plus liquidating) shares traded for each stock are given by Qi = 2|Hi|/P open

i

(see [61] for details).
For comparison purposes, the results for regressions without bounds are given in Table 1. The results

for the bounded regressions, with the bounds on the desired holdings set as:

|Hi| ≤ 0.01 Vi (48)

so not more than 1% of each stock’s ADDV is bought or sold, are given in Table 2, and the corresponding
P&Ls are plotted in Figure 1. Thus, as expected, adding the liquidity bounds has the diversification effect
on the portfolios, so the Sharpe ratios are substantially improved; as usual, at the expense of (slightly)
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lowering paper ROC and CPS. Note that, even with tight liquidity bounds, the four style factors, prc,
mom, hlv and vol, of [60] add value, further validating the four-factor model of [60].

Table 1. Simulation results for the 5 alphas via regression without bounds discussed in
Section 2.5.3. ROC, return-on-capital; SR, Sharpe ratio; CPS, cents-per-share; BICS,
Bloomberg Industry Classification System.

Alpha ROC SR CPS

Regression: Intercept only 33.59% 5.59 1.38
Regression: BICS sectors 39.28% 7.05 1.61

Regression: BICS industries 42.66% 8.19 1.75
Regression: BICS sub-industries 45.25% 9.22 1.84

Regression: 4 style factors plus BICS sub-industries 46.60% 9.85 1.90
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Figure 1. P&L graphs for the intraday alphas discussed in Section 2.5.3, with a summary
in Table 2. Bottom-to-top-performing: (i) regression over intercept only; (ii) regression over
BICS sectors; (iii) regression over BICS industries; (iv) regression over BICS sub-industries;
and (v) regression over the four style factors, prc, mom, hlvand vol, of [60] plus BICS
sub-industries. The investment level is $10 M long plus $10 M short.
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Table 2. Simulation results for the 5 alphas via bounded regression discussed in
Section 2.5.3.

Alpha ROC SR CPS

Regression: Intercept only 29.66% 7.36 1.25
Regression: BICS sectors 35.32% 9.89 1.48

Regression: BICS industries 39.25% 12.00 1.65
Regression: BICS sub-industries 42.23% 14.13 1.75

Regression: 4 style factors plus BICS sub-industries 43.70% 15.54 1.82

3. Concluding Remarks

One, but not the only, way to think about bounded regression is as an alternative to optimization
with bounds when the latter is not attainable. In fact, as mentioned above, bounded regression is a zero
specific risk limit of optimization with bounds in the context of a factor model. Therefore, when a factor
model is not available, e.g., in the context of alpha streams, bounded regression can be used in lieu
of optimization.

In this regard, one can further augment the bounded regression algorithm we discussed above by
including linear transaction costs, as in [3]. A systematic approach is to start with optimization with
bounds and linear transaction costs in the context of a factor model, as in [2], and to take a zero specific
risk limit. Non-linear transaction costs (impact) in the context of alpha weights can be treated using the
approximation discussed in [3] using the spectral model of turnover reduction [62].

Appendix

A. The R Code

Below, we give R (R Package for Statistical Computing, http://www.r-project.org) source code for the
bounded regression algorithm we discuss in the main text. The entry function is calc.bounded.lm(),
which runs the γ iteration loop and calls the function bounded.lm(), which runs the J± iteration
loop. The args() of calc.bounded.lm() are: ret, which is the N -vector of alphas αi (or, more
generally, some other returns); load, which is the N × K loadings matrix ΛiA; weights, which is
the N -vector of the regression weights zi; upper, which is the N -vector of the upper bounds w+

i ;
lower, which is the N -vector of the lower bounds w−i ; and prec, which is the desired precision with
which the output weights wi, the N -vector of which calc.bounded.lm() returns, must satisfy the
normalization condition (1). Internally, bounded.lm() calls the function calc.bounds(), which
computes ŵ(s+1)

i in Equation (24) at each iteration. The code is straightforwardly self-explanatory. Jp,
Jm in bounded.lm() correspond to J±. One subtlety is that, when restricting ΛiA to J̃ ⊂ J , in the
case of binary industry classification (e.g., when ΛiA corresponds to BICS sub-industries, which can
be small), the so-restricted ΛiA may have null columns, which must be omitted, and the code below
does just that. For non-binary cases, one may wish to augment the code to ensure that the matrix Q <-

t(load[Jt, take]) %*% w.load[Jt, take] is nonsingular (and, if it is, then remove the culprit
columns in ΛiA or otherwise modify the latter); however, for non-binary ΛiA and generic regression
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weights, this should not occur, except for special, non-generic cases.

calc.bounded.lm <- function(ret, load, weights, upper, lower, prec = 1e-5)

{

reg <- lm(ret ∼ -1 + load, weights = weights)

x <- weights * residuals(reg)

ret <- ret / sum(abs(x))

repeat{

x <- bounded.lm(ret, load, weights, upper, lower)

if(abs(sum(abs(x)) - 1) < prec)

break

ret <- ret / sum(abs(x))

}

return(x)

}

bounded.lm <- function(ret, load, weights, upper, lower, tol = 1e-6)

{

calc.bounds <- function(z, x)

{

q <- x - z

p <- rep(NA, length(x))

pp <- pmin(x, upper)

pm <- pmax(x, lower)

p[q > 0] <- pp[q > 0]

p[q < 0] <- pm[q < 0]

t <- (p - z)/q

t <- min(t, na.rm = T)

z <- z + t * q

return(z)

}

if(!is.matrix(load))

load <- matrix(load, length(load), 1)

n <- nrow(load)

k <- ncol(load)

ret <- matrix(ret, n, 1)
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upper <- matrix(upper, n, 1)

lower <- matrix(lower, n, 1)

z <- diag(weights)

w.load <- z %*% load

w.ret <- z %*% ret

J <- rep(T, n)

Jp <- rep(F, n)

Jm <- rep(F, n)

z <- rep(0, n)

repeat{

Jt <- J & !Jp & !Jm

y <- t(w.load[Jt, ]) %*% ret[Jt, ]

if(sum(Jp) > 1)

y <- y + t(load[Jp, ]) %*% upper[Jp, ]

else if(sum(Jp) == 1)

y <- y + upper[Jp, ] * matrix(load[Jp, ], k, 1)

if(sum(Jm) > 1)

y <- y + t(load[Jm, ]) %*% lower[Jm, ]

else if(sum(Jm) == 1)

y <- y + lower[Jm, ] * matrix(load[Jm, ], k, 1)

if(k > 1)

take <- colSums(abs(load[Jt, ])) > 0

else

take <- T

Q <- t(load[Jt, take]) %*% w.load[Jt, take]

Q <- solve(Q)

v <- Q %*% y[take]

xJp <- Jp

xJm <- Jm

x <- w.ret - w.load[, take] %*% v

x[Jp, ] <- upper[Jp, ]

x[Jm, ] <- lower[Jm, ]

z <- calc.bounds(z, x)

Jp <- abs(z - upper) < tol

Jm <- abs(z - lower) < tol
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if(all(Jp == xJp) & all(Jm == xJm))

break

}

return(z)

}

B. Disclaimers

Wherever the context so requires, the masculine gender includes the feminine and/or neuter, and the
singular form includes the plural and vice versa. The author of this paper (“Author”) and his affiliates
including without limitation Quantigicr Solutions LLC (“Author’s Affiliates” or “his Affiliates”) make
no implied or express warranties or any other representations whatsoever, including without limitation
implied warranties of merchantability and fitness for a particular purpose, in connection with or with
regard to the content of this paper including without limitation any code or algorithms contained
herein (“Content”).

The reader may use the Content solely at his/her/its own risk and the reader shall have no claims
whatsoever against the Author or his Affiliates and the Author and his Affiliates shall have no liability
whatsoever to the reader or any third party whatsoever for any loss, expense, opportunity cost, damages
or any other adverse effects whatsoever relating to or arising from the use of the Content by the reader
including without any limitation whatsoever: any direct, indirect, incidental, special, consequential or
any other damages incurred by the reader, however caused and under any theory of liability; any loss
of profit (whether incurred directly or indirectly), any loss of goodwill or reputation, any loss of data
suffered, cost of procurement of substitute goods or services, or any other tangible or intangible loss;
any reliance placed by the reader on the completeness, accuracy or existence of the Content or any
other effect of using the Content; and any and all other adversities or negative effects the reader might
encounter in using the Content irrespective of whether the Author or his Affiliates is or are or should
have been aware of such adversities or negative effects.

The R code included in Appendix A hereof is part of the copyrighted R code of Quantigicr Solutions
LLC and is provided herein with the express permission of Quantigicr Solutions LLC. The copyright
owner retains all rights, title and interest in and to its copyrighted source code included in Appendix A
hereof and any and all copyrights therefor.
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