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Abstract: In the compound Poisson insurance risk model under a dividend barrier strategy,
this paper aims to analyze jointly the aggregate discounted claim amounts until ruin and
the total discounted dividends until ruin, which represent the insurer’s payments to its
policyholders and shareholders, respectively. To this end, we introduce a Gerber–Shiu-type
function, which further incorporates the higher moments of these two quantities. This not
only unifies the individual study of various ruin-related quantities, but also allows for
new measures concerning covariances to be calculated. The integro-differential equation
satisfied by the generalized Gerber–Shiu function and the boundary condition are derived.
In particular, when the claim severity is distributed as a combination of exponentials,
explicit expressions for this Gerber–Shiu function in some special cases are given.
Numerical examples involving the covariances between any two of (i) the aggregate
discounted claims until ruin, (ii) the discounted dividend payments until ruin and (iii) the
time of ruin are presented along with some interpretations.
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1. Introduction

The study of the aggregate (non-discounted) claims has been a classical and important topic in
collective risk theory (see, e.g., [1,2] for reviews). Exact results concerning the Laplace transform and the
moments of the aggregate discounted claims have also been obtained by, e.g., [3–7]. Traditionally, the
analysis of the aggregate claims is mostly concerned with the aggregate until a fixed time t > 0.
Recently, there has been increased interest in the aggregate claims until the ruin time of the underlying
risk process (instead of a fixed time). Specifically, under the (perturbed) compound Poisson model and
the phase-type renewal models, [8,9] studied the distribution of the aggregate claims until ruin without
discounting; whereas [10] (Section 6), [11] (Section 4.2) and [12] (Section 5.2) analyzed the expected
aggregate discounted claims until ruin. The higher moments of the aggregate discounted claims until
ruin were also considered by [13] (Section 2.1) in a risk process with Markovian claims arrival (e.g., [14],
Chapter XI.1), by [15] in a renewal risk model with arbitrary inter-claim times and by [16] in a
dependent Sparre–Andersen risk model (e.g., [17]).

However, the aforementioned contributions in the literature mainly focused on the individual
treatment of the moments and/or the distribution of the aggregate claims in various models, and
little has been said about the relationship between the aggregate claim amounts and other ruin-related
quantities. An exception is [16], who have recently analyzed the covariance of the aggregate discounted
claims until ruin and the time of ruin (conditional on ruin occurring). In the context of a dependent
Sparre–Andersen risk model where the inter-claim time and the resulting claim amount are modeled via
a Farlie–Gumbel–Morgenstern copula with exponential marginals, they provided numerical illustrations
showing that the above covariance could possibly take a negative value and gave some probabilistic
interpretations, as well. In addition to the time of ruin, in this paper, we are also interested in the
relationship of the aggregate discounted claims until ruin, particularly with the total discounted dividends
paid until ruin. Note that the insurer’s surplus is drained by payments made not only to the policyholders
(claims), but also to the shareholders (dividends). The dividend payouts are determined based on the
overall performance of the company’s business, which is, in turn, affected by insurance claim payments.
Moreover, it is worthwhile to point out that although numerous studies have been performed by various
researchers on the dividend payments in different risk models, the concurrent analysis of dividends and
other ruin-related quantities, such as the time of ruin and the deficit at ruin, only appears in Theorem
1 of [18] (to the best of our knowledge). The above reasoning leads us to investigate the Gerber–Shiu
expected discounted penalty function [19] in which both the total discounted dividends until ruin and the
aggregate discounted claims until ruin are incorporated (see Equation (3)). A merit of a this proposed
approach is that it facilitates the joint analysis of the aforementioned random variables, leading to
covariance measures that have never been studied before (see Section 4).

In this paper, we assume that the baseline risk process {U(t)}t≥0 (in the absence of dividends) follows
the classical compound Poisson insurance risk model. Let c > 0 be the premium rate per unit time
received by the insurer, {N(t)}t≥0 be the claims counting process, which is a Poisson process with
parameter λ > 0, and Yi be the size of the i-th claim. It is assumed that {Yi}∞i=1 forms a sequence of
independent and identically distributed positive continuous random variables with common probability
density function p(·) and Laplace transform p̃(·). In addition, {N(t)}t≥0 and {Yi}∞i=1 are assumed
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independent. The aggregate claims process is thus {S(t)}t≥0 where S(t) =
∑N(t)

i=1 Yi. With the initial
surplus u = U(0) ≥ 0, the surplus process {U(t)}t≥0 follows the dynamics:

U(t) = u+ ct− S(t), t ≥ 0

The positive security loading condition c > λE[Y1] is assumed to hold true. Since the concept of
redistributing part of the insurer’s surplus to the shareholders was proposed by [20], the dividend strategy
that has been studied the most is the barrier strategy (see, e.g., [21]). Such a strategy will be adopted in
this paper, and it is known to be optimal in maximizing the expected total discounted dividends until ruin
when p(·) is completely monotone (e.g., Theorem 3 of [22]). Under a dividend barrier strategy, whenever
the surplus process reaches a fixed level b > 0, a dividend is declared and immediately payable at rate c
until the next claim occurs. The modified surplus process {Ub(t)}t≥0 can then be described by:

dUb(t) =

{
c dt− dS(t), Ub(t) < b

−dS(t), Ub(t) = b

where the initial surplus Ub(0) = u is such that 0 ≤ u ≤ b. The time of ruin of {Ub(t)}t≥0 is defined as
τb = inf{t ≥ 0 : Ub(t) < 0}. With D(t) = U(t) − Ub(t) being the aggregate dividend payments until
time t ≥ 0, we define the total discounted dividends until ruin to be:

Dδ(τb) =

∫ τb

0

e−δt dD(t) = c

∫ τb

0

e−δt1{Ub(t)=b} dt (1)

where δ ≥ 0 is the force of interest and 1A is the indicator function of the event A. In the above model,
solutions to the Gerber–Shiu function and the moments of Dδ(τb) were derived by [23,24], respectively.
The latter contribution also proposed that the shareholders should cover the deficit at ruin (now known as
the “Dickson–Waters modification”), and this was later studied by [25], as well. For the further analysis
of the moments of Dδ(τb), interested readers are referred to [18,26] for the Lévy insurance risk process
and [27,28] for a general skip-free upward stationary Markov process. We also define the aggregate
discounted claim costs until ruin as:

Zδ(τb) =

N(τb)∑
i=1

e−δTif(Yi) (2)

where Ti is the occurrence time of the i-th claim (i.e., the i-th arrival epoch of the Poisson process
{N(t)}t≥0) and f(·) is the cost function that associates a cost to each claim. While Dδ(τb) represents the
discounted payments made to the shareholders, the special case of Zδ(τb) when f(y) = y corresponds to
the aggregate discounted claims until ruin, which constitute the total payment to the policyholders (that
can be expressed as Zδ(τb) =

∫ τb
0
e−δt dS(t)).

To provide an analytical tool to jointly study Equations (1) and (2) and other ruin-related quantities
according to the above discussions, Equations (1) and (2) are now incorporated into the Gerber–Shiu
function in the form of moment-based components as follows. Throughout the paper, we shall use N and
N+ to denote the set of non-negative integers and the set of positive integers, respectively. For n,m ∈ N,
we define the Gerber–Shiu type function of our interest as, for 0 ≤ u ≤ b,

φδ1,δ2,δ3,n,m(u; b) = φδ123,n,m(u; b) = E
[
e−δ1τbDn

δ2
(τb)Z

m
δ3
(τb)w(Ub(τ

−
b ), |Ub(τb)|)

∣∣Ub(0) = u
]

(3)
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where δ1 ≥ 0 is the Laplace transform argument with respect to the time of ruin τb and w(·, ·) is the
penalty function that depends on the surplus prior to ruin Ub(τ−b ) and the deficit at ruin |Ub(τb)|. Note that
we allow dividends and claims to be discounted using different interest rates δ2 ≥ 0 and δ3 ≥ 0 to
account for possibly different time preferences of the shareholders and the policyholders. Moreover, the
indicator function 1{τb<∞} is not needed in the above definition, because ruin occurs almost surely under
a barrier strategy. The work in [15] first proposed a special case of Equation (3) when n = 0, δ1 = kδ3

for some k ∈ N, and w only depends on the deficit in the context of a Sparre–Andersen risk model
without dividends. The extended Gerber–Shiu function φδ123,n,m(u; b) in Equation (3) not only unifies
the individual study of each variable involved, but also allows for new quantities to be evaluated. Clearly,
when n = m = 0, it reduces to the usual Gerber–Shiu function proposed by [19] (which will be denoted
by φδ1(u; b)). On the other hand, if δ1 = 0, n ∈ N+ m = 0 and w ≡ 1, then Equation (3) reduces to the
moments of discounted dividends until ruin (e.g., [24]). Interesting new quantities that can be computed
from Equation (3) include the following.

(i) Whenm = 0, then Equation (3) can be regarded as a unification of the usual Gerber–Shiu function
and the dividend moments. The analysis of this special case is surprisingly simple, and the general
solution can be expressed in terms of quantities available in the literature. See Section 2.3.

(ii) When δ1 = 0 and w ≡ 1, Equation (3) reduces to the joint moments of Dδ2(τb) and Zδ3(τb), from
which the covariance of Dδ2(τb) and Zδ3(τb) can be calculated. See Section 4.

(iii) When w ≡ 1 and n = 0 (resp. m = 0), the joint moments of τb and Zδ3(τb) (resp. Dδ2(τb)) can be
obtained by successively differentiating Equation (3) with respect to δ1, leading to the covariance
of τb and Zδ3(τb) (resp. Dδ2(τb)). See Section 4.

The remainder of the paper is organized as follows. Section 2 deals with the derivation of the
integro-differential equation (IDE) in u satisfied by φδ123,n,m(u; b) along with the boundary condition.
The treatment will be different depending on whether n = 0 or n ∈ N+. A general solution to
φδ123,n,0(u; b) is given, as well. In Section 3, it is assumed that f(y) = y (as we are mostly interested in
the aggregate discounted claims until ruin), w(x, y) = w(y), and the distribution of each claim follows
a combination of exponentials. Explicit expressions for φδ123,n,0(u; b) when n ∈ N, φδ123,0,m(u; b) when
m = 1, 2 and φδ123,1,1(u; b) are obtained. These formulas are then applied to generate numerical examples
in Section 4 concerning particularly covariances involving τb, Zδ3(τb) andDδ2(τb). We also provide some
explanations of the results.

2. General Results

2.1. IDE and Boundary Condition for φδ13,m(u; b) = φδ123,0,m(u; b)

We first let n = 0, so that the dividend component Dδ2(τb) is absent in the definition Equation (3).
Such a special case is denoted by:

φδ13,m(u; b) = φδ123,0,m(u; b) = E
[
e−δ1τbZm

δ3
(τb)w(Ub(τ

−
b ), |Ub(τb)|)

∣∣Ub(0) = u
]

(4)

We have the following Theorem (and it is understood that any derivative φ′δ13,m(u; b) or, more
generally, φ′δ123,n,m(u; b) is taken with respect to the first argument u).
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Theorem 1. For m ∈ N, the Gerber–Shiu function φδ13,m(u; b) in Equation (4) satisfies the IDE:

φ′δ13,m(u; b) =
λ+ δ1 +mδ3

c
φδ13,m(u; b)−

λ

c

∫ u

0

φδ13,m(u− y; b)p(y) dy

− λ

c

m−1∑
i=0

(
m

i

)∫ u

0

fm−i(y)φδ13,i(u− y; b)p(y) dy −
λ

c

∫ ∞
u

fm(y)w(u, y − u)p(y) dy (5)

for 0 ≤ u ≤ b. The boundary condition is given by:

φ′δ13,m(b; b) = 0 (6)

Proof. Conditioning on the occurrence time and the amount of the first claim followed by a binomial
expansion, we arrive at, for 0 ≤ u ≤ b,

φδ13,m(u; b) =

∫ b−u
c

0

λe−(λ+δ1+mδ3)t
{∫ u+ct

0

m∑
i=0

(
m

i

)
fm−i(y)φδ13,i(u+ ct− y; b)p(y) dy

+

∫ ∞
u+ct

fm(y)w(u+ ct, y − u− ct)p(y) dy
}
dt

+

∫ ∞
b−u
c

λe−(λ+δ1+mδ3)t
{∫ b

0

m∑
i=0

(
m

i

)
fm−i(y)φδ13,i(b− y; b)p(y) dy

+

∫ ∞
b

fm(y)w(b, y − b)p(y) dy
}
dt

=

∫ b−u
c

0

λe−(λ+δ1+mδ3)tγb,m(u+ ct) dt+

∫ ∞
b−u
c

λe−(λ+δ1+mδ3)tγb,m(b) dt (7)

where:

γb,m(x) =

∫ x

0

m∑
i=0

(
m

i

)
fm−i(y)φδ13,i(x− y; b)p(y) dy +

∫ ∞
x

fm(y)w(x, y − x)p(y) dy (8)

A change of variable x = u + ct in the first integral in Equation (7) along with the evaluation of the
second integral gives rise to:

φδ13,m(u; b) =
λ

c

∫ b

u

e−
λ+δ1+mδ3

c
(x−u)γb,m(x) dx+

λ

λ+ δ1 +mδ3
e−

λ+δ1+mδ3
c

(b−u)γb,m(b) (9)

Differentiation with respect to u leads to:

φ′δ13,m(u; b) =
λ+ δ1 +mδ3

c
φδ13,m(u; b)−

λ

c
γb,m(u) (10)

Applying Equation (8) and separating the term i = m in the summation proves Equation (5).
Finally, putting u = b in Equation (9) yields:

φδ13,m(b; b) =
λ

λ+ δ1 +mδ3
γb,m(b) (11)

from which the comparison with Equation (10) at u = b results in the boundary condition
Equation (6).



Risks 2015, 3 496

It is instructive to note that the IDE Equation (5) satisfied by φδ13,m(u; b) needs to be solved
recursively inm. This is because the non-homogeneous part of Equation (5) involves the lower moments
φδ13,i(u; b) for i = 0, 1, . . . ,m− 1 (and therefore, the starting point is the classical Gerber–Shiu function
φδ1(u; b) = φδ13,0(u; b)). However, it does not appear to be an easy task to obtain a general solution of
φδ13,m(u; b) for m ∈ N+ when the claim distribution is arbitrary, as the non-homogeneous part of the
IDE depends on the barrier level b. This is in contrast to φδ1(u; b) (i.e., the case m = 0) for which the
non-homogeneous part of the IDE does not depend on b, and therefore, the barrier-free Gerber–Shiu
function φδ1(u;∞) can be treated as a particular solution (see [23], Section 3). In Sections 3.2 and
3.3, we shall demonstrate how to obtain φδ13,1(u; b) and φδ13,2(u; b) when each claim is distributed as a
combination of exponentials.

2.2. IDE and Boundary Condition for φδ123,n,m(u; b) When n ∈ N+

Now, we consider φδ123,n,m(u; b) in Equation (3) for n ∈ N+. For notational convenience, we define
δ123(n,m) = δ1 + nδ2 +mδ3. The IDE and boundary condition satisfied by φδ123,n,m(u; b) are given in
the following Theorem.

Theorem 2. For n ∈ N+ and m ∈ N, the Gerber–Shiu function φδ123,n,m(u; b) in Equation (3) satisfies
the IDE:

φ′δ123,n,m(u; b) =
λ+ δ123(n,m)

c
φδ123,n,m(u; b)−

λ

c

∫ u

0

φδ123,n,m(u− y; b)p(y) dy

− λ

c

m−1∑
i=0

(
m

i

)∫ u

0

fm−i(y)φδ123,n,i(u− y; b)p(y) dy (12)

for 0 ≤ u ≤ b. The boundary condition is given by:

φ′δ123,n,m(b; b) = nφδ123,n−1,m(b; b) (13)

Proof. Similar to the proof of Theorem 1, we consider the event of the first claim. Note that if the first
claim causes ruin before the process reaches the barrier b, then no dividend is payable before ruin (i.e.,
Dδ2(τb) = 0). With n ∈ N+, such an event contributes nothing to the Gerber–Shiu function. In addition,
if the process reaches b before the first claim and the first claim does not result in ruin, then we need to
apply separate binomial expansions to dividends and claims. Consolidating the above observations, one
finds, for 0 ≤ u ≤ b,

φδ123,n,m(u; b) =

∫ b−u
c

0

λe−(λ+δ123(n,m))t

∫ u+ct

0

m∑
i=0

(
m

i

)
fm−i(y)φδ123,n,i(u+ ct− y; b)p(y) dy dt

+

∫ ∞
b−u
c

λe−(λ+δ123(n,m))t

{∫ ∞
b

(
cs
t− b−u

c

∣∣δ2
)n
fm(y)w(b, y − b)p(y) dy

+

∫ b

0

n∑
j=0

(
n

j

)(
cs
t− b−u

c

∣∣δ2
)n−j m∑

i=0

(
m

i

)
fm−i(y)φδ123,j,i(b− y; b)p(y) dy

}
dt

=
λ

c

∫ b

u

e−
λ+δ123(n,m)

c
(x−u)

∫ x

0

m∑
i=0

(
m

i

)
fm−i(y)φδ123,n,i(x− y; b)p(y) dy dx
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+

∫ ∞
0

λe−(λ+δ123(n,m))(t+ b−u
c )
{∫ ∞

b

(
cst|δ2

)n
fm(y)w(b, y − b)p(y) dy

+

∫ b

0

n∑
j=0

(
n

j

)(
cst|δ2

)n−j m∑
i=0

(
m

i

)
fm−i(y)φδ123,j,i(b− y; b)p(y) dy

}
dt (14)

where st|δ = (eδt − 1)/δ is the actuarial notation for the accumulated value of an annuity at rate $1 per
unit time payable continuously for t years under a force of interest δ. In particular, Equation (14) at
u = b gives:

φδ123,n,m(b; b) =

∫ ∞
0

λe−(λ+δ123(n,m))t

{∫ ∞
b

(
cst|δ2

)n
fm(y)w(b, y − b)p(y) dy

+

∫ b

0

n∑
j=0

(
n

j

)(
cst|δ2

)n−j m∑
i=0

(
m

i

)
fm−i(y)φδ123,j,i(b− y; b)p(y) dy

}
dt (15)

By substituting Equations (15) into Equation (14), we arrive at:

φδ123,n,m(u; b) =
λ

c

∫ b

u

e−
λ+δ123(n,m)

c
(x−u)

∫ x

0

m∑
i=0

(
m

i

)
fm−i(y)φδ123,n,i(x− y; b)p(y) dy dx

+ e−
λ+δ123(n,m)

c
(b−u)φδ123,n,m(b; b)

Taking the derivative with respect to u yields the IDE Equation (12).
The proof of the boundary condition in Equation (13) mostly follows that in [24] (Theorem 2.1),

although it is a bit more tedious. Nonetheless, it is included here for the sake of completeness. First, by
applying Lemma 2.1 of [24] to Equation (15), we obtain:

φδ123,n,m(b; b) = λcnn!

{ n∏
k=0

(λ+ δ123(k,m))−1
}∫ ∞

b

fm(y)w(b, y − b)p(y) dy

+ λ
n∑
j=0

cn−j
n!

j!

{ n∏
k=j

(λ+ δ123(k,m))−1
}∫ b

0

m∑
i=0

(
m

i

)
fm−i(y)φδ123,j,i(b− y; b)p(y) dy (16)

Substituting Equation (16) into Equation (12) at u = b followed by some cancellations of terms leads
to:

φ′δ123,n,m(b; b) = λcn−1n!

{ n−1∏
k=0

(λ+ δ123(k,m))−1
}∫ ∞

b

fm(y)w(b, y − b)p(y) dy

+ λ
n−1∑
j=0

cn−j−1
n!

j!

{ n−1∏
k=j

(λ+ δ123(k,m))−1
}∫ b

0

m∑
i=0

(
m

i

)
fm−i(y)φδ123,j,i(b− y; b)p(y) dy (17)

We shall now prove Equation (13) by induction on n. For the starting point n = 1, we get from
Equation (17) that:

φ′δ123,1,m(b; b) =
λ

λ+ δ123(0,m)

{∫ ∞
b

fm(y)w(b, y−b)p(y)dy+
∫ b

0

m∑
i=0

(
m

i

)
fm−i(y)φδ123,0,i(b−y; b)p(y)dy

}
It is observed that the right-hand side of the above expression is equivalent to the right-hand side of

Equation (9) when u = b. In other words, we have:

φ′δ123,1,m(b; b) = φδ13,m(b; b) = φδ123,0,m(b; b)
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i.e., Equation (13) is true for n = 1. Next, we assume that Equation (13) is true for n = 1, 2, . . . , N

for some N ∈ N+. Putting u = b and n = j in Equation (12) followed by rearrangements yields, for
j = 1, 2, . . . , N ,

λ

∫ b

0

m∑
i=0

(
m

i

)
fm−i(y)φδ123,j,i(b− y; b)p(y) dy

= (λ+ δ123(j,m))φδ123,j,m(b; b)− cφ′δ123,j,m(b; b)
= (λ+ δ123(j,m))φδ123,j,m(b; b)− cjφδ123,j−1,m(b; b)

where the last equality follows from the induction assumption. Moreover, from Equations (8) and (11),
it is clear that:

λ

∫ b

0

m∑
i=0

(
m

i

)
fm−i(y)φδ123,0,i(b−y; b)p(y) dy = (λ+δ123(0,m))φδ123,0,m(b; b)−λ

∫ ∞
b

fm(y)w(b, y−b)p(y) dy

Using Equation (17) and the above two equations, we consider the case n = N + 1 as:

φ′δ123,N+1,m(b; b) = λcN(N + 1)!

{ N∏
k=0

(λ+ δ123(k,m))−1
}∫ ∞

b

fm(y)w(b, y − b)p(y) dy

+
N∑
j=1

cN−j
(N + 1)!

j!

{ N∏
k=j

(λ+ δ123(k,m))−1
}
{(λ+ δ123(j,m))φδ123,j,m(b; b)− cjφδ123,j−1,m(b; b)}

+ cN(N + 1)!

{ N∏
k=0

(λ+ δ123(k,m))−1
}{

(λ+ δ123(0,m))φδ123,0,m(b; b)− λ
∫ ∞
b

fm(y)w(b, y − b)p(y) dy
}

(18)

Note that the first and the last terms cancel each other out. By writing the above summation term as:

N∑
j=1

cN−j
(N + 1)!

j!

{ N∏
k=j

(λ+ δ123(k,m))−1
}
{(λ+ δ123(j,m))φδ123,j,m(b; b)− cjφδ123,j−1,m(b; b)}

=

(N−1∑
j=1

cN−j
(N + 1)!

j!

{ N∏
k=j+1

(λ+ δ123(k,m))−1
}
φδ123,j,m(b; b) + (N + 1)φδ123,N,m(b; b)

)

−
( N∑

j=2

cN−j
(N + 1)!

j!

{ N∏
k=j

(λ+ δ123(k,m))−1
}
cjφδ123,j−1,m(b; b)

+ cN(N + 1)!

{ N∏
k=1

(λ+ δ123(k,m))−1
}
φδ123,0,m(b; b)

)

= (N + 1)φδ123,N,m(b; b)− cN(N + 1)!

{ N∏
k=1

(λ+ δ123(k,m))−1
}
φδ123,0,m(b; b)

it is observed that Equation (18) reduces to:

φ′δ123,N+1,m(b; b) = (N + 1)φδ123,N,m(b; b)

In other words, Equation (13) is true for n = N + 1. By mathematical induction, Equation (13) is true
for n ∈ N+.
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Similar to the comments made at the end of the section with Equation 2.1, we note that the
determination of the Gerber–Shiu function φδ123,n,m(u; b) requires a double recursion in n and m with
the starting point being the classical Gerber–Shiu function φδ1(u; b). Section 3.4 will be concerned with
solving the IDE in Theorem 2 for φδ123,1,1(u; b) when the claim distribution follows a combination of
exponentials.

2.3. General Solution for φδ12,n(u; b) = φδ123,n,0(u; b) When n ∈ N+

In this subsection, we look at the special case of Equation (3) wherem = 0 (i.e., without the aggregate
claim component Zδ3(τb)), namely:

φδ12,n(u; b) = φδ123,n,0(u; b) = E
[
e−δ1τbDn

δ2
(b)w(Ub(τ

−
b ), |Ub(τb)|)

∣∣Ub(0) = u
]

(19)

The general solution of φδ12,n(u; b) for n ∈ N+ is given in the following Theorem, which complements
the results in Theorem 1 of [18].

Theorem 3. For n ∈ N+, the Gerber–Shiu function φδ12,n(u; b) in Equation (19) can be represented as

φδ12,n(u; b) =
vn(u)

v′n(b)

( n−1∏
k=1

vk(b)

v′k(b)

)
n!φδ1(b; b), 0 ≤ u ≤ b (20)

where φδ1(b; b) is the classical Gerber–Shiu function evaluated at u = b, and vn(·) is a solution to the
homogeneous IDE:

v′n(u) =
λ+ δ1 + nδ2

c
vn(u)−

λ

c

∫ u

0

vn(u− y)p(y) dy, u ≥ 0 (21)

Proof. For n ∈ N+, it is known from Theorem 2 that φδ12,n(u; b) in Equation (19) satisfies the
homogeneous IDE:

φ′δ12,n(u; b) =
λ+ δ1 + nδ2

c
φδ12,n(u; b)−

λ

c

∫ u

0

φδ12,n(u− y; b)p(y) dy, 0 ≤ u ≤ b (22)

with the boundary condition:
φ′δ12,n(b; b) = nφδ12,n−1(b; b) (23)

The solution of Equation (22) is the unique apart from a multiplicative constant. Therefore, one
has φδ12,n(u; b) = Knvn(u) for some constant Kn that does not depend on u, where vn(·) satisfies
Equation (21). Application of the boundary condition in Equation (23) givesKn = nφδ12,n−1(b; b)/v

′
n(b),

so that:
φδ12,n(u; b) =

vn(u)

v′n(b)
nφδ12,n−1(b; b), 0 ≤ u ≤ b

Recursively, it is easy to see that Equation (20) holds true.
We remark that the function vn(·) is known to satisfy a defective renewal equation with the solution

given by, e.g., Equation (36) of [29]. An alternative solution to Equation (21) and related properties of
vn(·) can be found in Section 4 of [23]. Note also that vn(·) is in fact a scalar multiple of the (δ1 +

nδ2)-scale function in the literature of Lévy processes. See, e.g., [30] (Chapter 4).
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3. Combination of Exponentials Claims

In this entire section, we shall derive some nice explicit solutions to the IDEs obtained in the previous
section when the claim amount is distributed as a combination of exponentials, i.e., the claim density is
given by:

p(y) =
r∑

k=1

qkαke
−αky, y > 0 (24)

where
∑r

k=1 qk = 1 and αk > 0 for k = 1, 2, . . . , r. Without loss of generality, we assume that αk’s are
distinct and qk’s are non-zero. The corresponding Laplace transform of p(·) is given by:

p̃(s) =
r∑

k=1

qkαk
αk + s

From, e.g., [31], it is known that the class of combinations of exponentials is dense in the set of
distributions on (0,∞). It is further assumed that w(x, y) = w(y) in Equation (3), i.e., the penalty
function depends on the deficit only. Concerning the aggregate discounted claim costs until ruin
Equation (2), we shall use f(y) = y and δ3 > 0, so that Zδ3(τb) =

∑N(τb)
i=1 e−δ3TiYi represents the

discounted claim amounts until ruin. For each n,m ∈ N, define {ρn,m,j}r+1
j=1 to be the roots of Lundberg’s

equation (in ξ):

cξ − (λ+ δ1 + nδ2 +mδ3) + λ
r∑

k=1

qkαk
αk + ξ

= 0 (25)

These r + 1 roots are assumed to be distinct. In what follows, some special cases of the Gerber–Shiu
function φδ123,n,m(u; b) defined in Equation (3) will be examined. As we shall see, these cases of our
interest can all be expressed in the form of:

φδ123,n,m(u; b) =
m∑
i=0

r+1∑
j=1

An,m,i,j e
ρn,i,ju, 0 ≤ u ≤ b

for some constants An,m,i,j’s.

3.1. φδ12,n(u; b) = φδ123,n,0(u; b) When n ∈ N

In this subsection, we consider φδ12,n(u; b) = φδ123,n,0(u; b) for n ∈ N. First, the case n = 0 corresponds
to the classical Gerber–Shiu function φδ1(u; b) = φδ12,0(u; b), which is available from Equations (7.11)
and (7.12) of [25] with slight modifications, as they considered w(y) = y. The result is given in the
following Lemma.

Lemma 4. The classical Gerber–Shiu function φδ1(u; b) admits the representation:

φδ1(u; b) =
r+1∑
j=1

A0,0,0,j e
ρ0,0,ju, 0 ≤ u ≤ b (26)

where {ρ0,0,j}r+1
j=1 are the roots of Equation (25) when n = m = 0. The coefficients {A0,0,0,j}r+1

j=1 can be
solved from the linear system of r + 1 equations comprising:

r+1∑
j=1

A0,0,0,j

αk + ρ0,0,j
= w̃(αk), k = 1, 2, . . . , r (27)
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and:
r+1∑
j=1

A0,0,0,j ρ0,0,j e
ρ0,0,jb = 0

where w̃(s) =
∫∞
0
e−syw(y) dy is the Laplace transform of w(·).

Next, we look at φδ12,n(u; b) for n ∈ N+, which can be used to study jointly the dividend moments
with the time of ruin and/or the deficit. According to the discussions in Section 2.3, in this case,
φδ12,n(u; b) is simply a scalar multiple of vn(u), which is obtainable from Equation (7.8) of [25].
This along with the boundary condition in Equation (23) leads to the following Lemma.

Lemma 5. For n ∈ N+, the Gerber–Shiu function φδ12,n(u; b) admits the representation:

φδ12,n(u; b) =
r+1∑
j=1

An,0,0,j e
ρn,0,ju, 0 ≤ u ≤ b

where {ρn,0,j}r+1
k=1 are the roots of Equation (25) when m = 0. The coefficients {An,0,0,j}r+1

j=1 can be
solved recursively from the linear system of r + 1 equations comprising:

r+1∑
j=1

An,0,0,j
αk + ρn,0,j

= 0, k = 1, 2, . . . , r (28)

and:
r+1∑
j=1

An,0,0,j ρn,0,j e
ρn,0,jb = n

r+1∑
j=1

An−1,0,0,j e
ρn−1,0,j b

The required coefficients {A0,0,0,j}r+1
j=1 to start the recursion can be computed using Lemma 4.

3.2. φδ13,1(u; b) = φδ123,0,1(u; b)

Now, we analyze the Gerber–Shiu function Equation (4) when m = 1, whose solution is given in the
following Theorem.

Theorem 6. The Gerber–Shiu function φδ13,1(u; b) admits the representation:

φδ13,1(u; b) =
1∑
i=0

r+1∑
j=1

A0,1,i,j e
ρ0,i,ju, 0 ≤ u ≤ b (29)

where {ρ0,i,j}r+1
j=1 are the roots of Equation (25) when n = 0 and m = i. While the coefficients

{A0,1,0,j}r+1
j=1 (i.e., i = 0) are given explicitly by:

A0,1,0,j =
λA0,0,0,j

δ3

r∑
k=1

qkαk
(αk + ρ0,0,j)2

j = 1, 2, . . . , r + 1 (30)

with {A0,0,0,j}r+1
j=1 obtainable from Lemma 4, the coefficients {A0,1,1,j}r+1

j=1 (i.e., i = 1) can be solved
from the linear system of r + 1 equations comprising:

1∑
i=0

r+1∑
j=1

A0,1,i,j

αk + ρ0,i,j
+

r+1∑
j=1

A0,0,0,j

(αk + ρ0,0,j)2
= T 2

αk
w(0), k = 1, 2, . . . , r (31)
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and:
1∑
i=0

r+1∑
j=1

A0,1,i,j ρ0,i,j e
ρ0,i,jb = 0 (32)

In Equation (31), T 2
αk
w(0) =

∫∞
0
ye−αkyw(y) dy can be regarded as a double Dickson–Hipp operator

(e.g., [32,33]).

Proof. From Equation (5), when m = 1, the IDE for φδ13,1(u; b) is:

cφ′δ13,1(u; b)− (λ+ δ1 + δ3)φδ13,1(u; b) + λ

∫ u

0

φδ13,1(u− y; b)p(y) dy

+ λ

∫ u

0

yφδ1(u− y; b)p(y) dy + λ

∫ ∞
u

yw(y − u)p(y) dy = 0, 0 ≤ u ≤ b (33)

Substituting Equations (24) and (26), the last two integrals above are evaluated as:

λ

∫ u

0

yφδ1(u− y; b)p(y) dy = λ
r+1∑
j=1

r∑
k=1

A0,0,0,j qkαk

∫ u

0

ye−αkyeρ0,0,j(u−y) dy

= λ
r+1∑
j=1

r∑
k=1

A0,0,0,j qkαk

{
1

(αk + ρ0,0,j)2
eρ0,0,ju − 1

αk + ρ0,0,j
ue−αku − 1

(αk + ρ0,0,j)2
e−αku

}
(34)

and:

λ

∫ ∞
u

yw(y − u)p(y) dy = λ
r∑

k=1

qkαkw̃(αk)ue
−αku + λ

r∑
k=1

qkαkT 2
αk
w(0)e−αku (35)

respectively. Further noting that (d/du + αk)
∫ u
0
φδ13,1(u − y; b)e−αky dy = φδ13,1(u; b), the application

of the operator
∏r

k=1(d/du + αk) to Equation (33) yields an (r + 1)-th order differential equation with
constant coefficients, where the non-homogeneous parts involve the exponential terms {e−αku}rk=1 and
{eρ0,0,ju}r+1

j=1. Denoting the roots of the characteristic equation of the homogeneous part by {ρ0,1,j}r+1
j=1

(and assuming that they are distinct), the solution form of φδ13,1(u; b) is:

φδ13,1(u; b) =
1∑
i=0

r+1∑
j=1

A0,1,i,j e
ρ0,i,ju +

r∑
k=1

B0,1,0,k e
−αku, 0 ≤ u ≤ b (36)

for some constants A0,1,i,j’s and B0,1,0,k’s (it will be shown that {ρ0,1,j}r+1
j=1 indeed satisfy Lundberg’s

Equation (25) with n = 0 and m = 1). To identify the constants in Equation (36), we insert Equations
(24) and (36) into the first integral in Equation (33) and arrive at:

λ

∫ u

0

φδ13,1(u− y; b)p(y) dy = λ
1∑
i=0

r+1∑
j=1

r∑
k=1

A0,1,i,j qkαk
αk + ρ0,i,j

(eρ0,i,ju − e−αku)

+ λ
r∑

k=1

B0,1,0,k qkαkue
−αku + λ

r∑
k=1

r∑
i=1,i 6=k

B0,1,0,i qkαk
αk − αi

(e−αiu − e−αku) (37)

Moreover, with the solution form Equation (36), one has that:

cφ′δ13,1(u; b)− (λ+ δ1 + δ3)φδ13,1(u; b) = c

{ 1∑
i=0

r+1∑
j=1

A0,1,i,j ρ0,i,j e
ρ0,i,ju −

r∑
k=1

B0,1,0,k αke
−αku

}
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− (λ+ δ1 + δ3)

{ 1∑
i=0

r+1∑
j=1

A0,1,i,j e
ρ0,i,ju +

r∑
k=1

B0,1,0,k e
−αku

}
(38)

Because of the IDE Equation (33), the sum of Equations (34), (35), (37) and (38) is identical to zero
for all 0 ≤ u ≤ b, and we proceed by equating various exponential terms to gain information about
the unknown constants. First, equating the coefficients of eρ0,1,ju confirms that {ρ0,1,j}r+1

j=1 are the roots
of Equation (25) with n = 0 and m = 1. In addition, by examining the coefficients of ue−αku, we arrive at:

λB0,1,0,k qkαk + λ
r+1∑
j=1

A0,0,0,j qkαk

(
− 1

αk + ρ0,0,j

)
+ λqkαkw̃(αk) = 0, k = 1, 2, . . . , r

from which one concludes that B0,1,0,k = 0 for k = 1, 2, . . . , r thanks to Equation (27). In other words,
the solution form Equation (36) reduces to Equation (29). Next, equating the coefficients of eρ0,0,ju,
we get:

cA0,1,0,j ρ0,0,j − (λ+ δ1 + δ3)A0,1,0,j + λ

r∑
k=1

A0,1,0,j qkαk
αk + ρ0,0,j

+ λ
r∑

k=1

A0,0,0,j qkαk
(αk + ρ0,0,j)2

= 0

for j = 1, 2, . . . , r + 1. However, {ρ0,0,j}r+1
j=1 are Lundberg’s roots according to Lemma 4, and thus,

Equation (30) follows. Now, comparing the coefficients of e−αku (keeping in mind that B0,1,0,k’s are
always zero) results in Equation (31). Lastly, the boundary condition in Equation (32) is a direct
consequence of Equation (6).

3.3. φδ13,2(u; b) = φδ123,0,2(u; b)

Here, we look at φδ13,2(u; b) = φδ123,0,2(u; b), which can be used to compute the second moment of
Zδ3(τb) =

∑N(τb)
i=1 e−δ3TiYi.

Theorem 7. The Gerber–Shiu function φδ13,2(u; b) admits the representation:

φδ13,2(u; b) =
2∑
i=0

r+1∑
j=1

A0,2,i,j e
ρ0,i,ju, 0 ≤ u ≤ b (39)

where {ρ0,i,j}r+1
j=1 are the roots of Equation (25) when n = 0 and m = i. The coefficients {A0,2,0,j}r+1

j=1

(i.e., i = 0) and {A0,2,1,j}r+1
j=1 (i.e., i = 1) are given explicitly by:

A0,2,0,j =
λA0,1,0,j

δ3

r∑
k=1

qkαk
(αk + ρ0,0,j)2

+
λA0,0,0,j

δ3

r∑
k=1

qkαk
(αk + ρ0,0,j)3

(40)

for j = 1, 2, . . . , r + 1 and:

A0,2,1,j =
2λA0,1,1,j

δ3

r∑
k=1

qkαk
(αk + ρ0,1,j)2

(41)

j = 1, 2, . . . , r + 1, respectively, with {A0,1,0,j}r+1
j=1 and {A0,1,1,j}r+1

j=1 obtainable from Theorem 6 and
{A0,0,0,j}r+1

j=1 from Lemma 4. Then, the coefficients {A0,2,2,j}r+1
j=1 (i.e., i = 2) can be solved from the

linear system of r + 1 equations comprising:
2∑
i=0

r+1∑
j=1

A0,2,i,j

αk + ρ0,i,j
+

1∑
i=0

r+1∑
j=1

2A0,1,i,j

(αk + ρ0,i,j)2
+

r+1∑
j=1

2A0,0,0,j

(αk + ρ0,0,j)3
= 2T 3

αk
w(0) (42)
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for k = 1, 2, . . . , r, and:
2∑
i=0

r+1∑
j=1

A0,2,i,j ρ0,i,j e
ρ0,i,jb = 0 (43)

In Equation (42), T 3
αk
w(0) =

∫∞
0
(y2e−αky/2)w(y) dy can be regarded as a triple Dickson–Hipp operator.

Proof. Because of Equation (5), one has the IDE:

cφ′δ13,2(u; b)− (λ+ δ1 + 2δ3)φδ13,2(u; b) + λ

∫ u

0

φδ13,2(u− y; b)p(y) dy

+ 2λ

∫ u

0

yφδ13,1(u− y; b)p(y) dy + λ

∫ u

0

y2φδ1(u− y; b)p(y) dy + λ

∫ ∞
u

y2w(y − u)p(y) dy = 0

(44)

for 0 ≤ u ≤ b. With Equations (24), (26) and (29), we evaluate the last three integrals as:

2λ

∫ u

0

yφδ13,1(u− y; b)p(y) dy

= 2λ
1∑
i=0

r+1∑
j=1

r∑
k=1

A0,1,i,j qkαk

{
1

(αk + ρ0,i,j)2
eρ0,i,ju − 1

αk + ρ0,i,j
ue−αku − 1

(αk + ρ0,i,j)2
e−αku

}
(45)

λ

∫ u

0

y2φδ1(u− y; b)p(y) dy = λ
r+1∑
j=1

r∑
k=1

A0,0,0,j qkαk

{
2

(αk + ρ0,0,j)3
eρ0,0,ju − 1

αk + ρ0,0,j
u2e−αku

− 2

(αk + ρ0,0,j)2
ue−αku − 2

(αk + ρ0,0,j)3
e−αku

}
and:

λ

∫ ∞
u

y2w(y − u)p(y) dy = λ
r∑

k=1

qkαk
{
w̃(αk)u

2e−αku + 2T 2
αk
w(0)ue−αku + 2T 3

αk
w(0)e−αku

}
(46)

respectively. Similar to the proof of Theorem 6, we apply the operator
∏r

k=1(d/du + αk) to transform
Equation (44) into an (r + 1)-th order differential equation with non-homogeneous terms {ue−αku}rk=1,
{e−αku}rk=1, {eρ0,0,ju}r+1

j=1 and {eρ0,1,ju}r+1
j=1. It will be seen that {ρ0,2,j}r+1

j=1 defined via Equation (25) with
n = 0 and m = 2 are indeed the roots of the characteristic equation of the homogeneous part. Hence,
φδ13,2(u; b) is of the form:

φδ13,2(u; b) =
2∑
i=0

r+1∑
j=1

A0,2,i,j e
ρ0,i,ju +

1∑
j=0

r∑
k=1

B0,2,j,k u
je−αku, 0 ≤ u ≤ b (47)

for some constants A0,2,i,j’s and B0,2,j,k’s. Now, putting Equations (24) and (47) into the first integral in
Equation (44) yields:

λ

∫ u

0

φδ13,2(u− y; b)p(y) dy = λ

2∑
i=0

r+1∑
j=1

r∑
k=1

A0,2,i,j qkαk
αk + ρ0,i,j

(eρ0,i,ju − e−αku) + λ

r∑
k=1

B0,2,0,k qkαkue
−αku
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+ λ
r∑

k=1

r∑
i=1,i 6=k

B0,2,0,i qkαk
αk − αi

(e−αiu − e−αku) + λ

2

r∑
k=1

B0,2,1,k qkαku
2e−αku

+ λ
r∑

k=1

r∑
i=1,i 6=k

B0,2,1,i qkαk

{
1

(αi − αk)2
e−αku − 1

αi − αk
ue−αiu − 1

(αi − αk)2
e−αiu

}
(48)

In addition, from Equation (47), the first two terms of Equation (44) are collectively written as:

cφ′δ13,2(u; b)− (λ+ δ1 + 2δ3)φδ13,2(u; b)

= c

{ 2∑
i=0

r+1∑
j=1

A0,2,i,j ρ0,i,j e
ρ0,i,ju −

r∑
k=1

B0,2,0,k αke
−αku +

r∑
k=1

B0,2,1,k(e
−αku − αkue−αku)

}

− (λ+ δ1 + 2δ3)

{ 2∑
i=0

r+1∑
j=1

A0,2,i,j e
ρ0,i,ju +

r∑
k=1

B0,2,0,k e
−αku +

r∑
k=1

B0,2,1,k ue
−αku

}
(49)

Summing Equations (45), (46), (48) and (49) gives zero according to the IDE Equation (44). First, by
equating the coefficients of eρ0,2,ju, one asserts that {ρ0,2,j}r+1

j=1 are the roots of Equation (25) with n =

0 and m = 2. Next, we shall equate the coefficients u2e−αku, ue−αku, eρ0,1,ju, eρ0,0,ju and e−αku to
determine the unknown constants in Equation (47). From the coefficients of u2e−αku, we have:

λ

2
B0,2,1,k qkαk + λ

r+1∑
j=1

A0,0,0,j qkαk

(
− 1

αk + ρ0,0,j

)
+ λqkαkw̃(αk) = 0

for k = 1, 2, . . . , r, which implies B0,2,1,k = 0 for k = 1, 2, . . . , r, because of Equation (27). Then,
comparing the coefficients of ue−αku leads to:

λB0,2,0,k qkαk − 2λ
1∑
i=0

r+1∑
j=1

A0,1,i,j qkαk
αk + ρ0,i,j

− 2λ
r+1∑
j=1

A0,0,0,j qkαk
(αk + ρ0,0,j)2

+ 2λqkαkT 2
αk
w(0) = 0

for k = 1, 2, . . . , r. Since Equation (31) holds, we arrive at B0,2,0,k = 0 for k = 1, 2, . . . , r, as well, and
therefore, Equation (47) is simplified to give Equation (39). Next, the coefficients of eρ0,1,ju result in:

cA0,2,1,j ρ0,1,j − (λ+ δ1 + 2δ3)A0,2,1,j + λ
r∑

k=1

A0,2,1,j qkαk
αk + ρ0,1,j

+ 2λ
r∑

k=1

A0,1,1,j qkαk
(αk + ρ0,1,j)2

= 0

for j = 1, 2, . . . , r + 1, and in turn, we find Equation (41) as {ρ0,1,j}r+1
j=1 satisfies Equation (25) with

n = 0 and m = 1 because of Theorem 6. Similarly, (40) follows from the coefficients of eρ0,0,ju. Finally,
equating the coefficients of e−αku yields the r equations in Equation (42), and then, Equation (43) is a
direct consequence of the boundary condition in Equation (6) when m = 2.

3.4. φδ123,1,1(u; b)

In this section, we consider the Gerber–Shiu function Equation (3) when n = m = 1, which is
useful for evaluating the covariance of the discounted dividends Dδ2(τb) and the discounted claims
Zδ3(τb) =

∑N(τb)
i=1 e−δ3TiYi.
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Theorem 8. The Gerber–Shiu function φδ123,1,1(u; b) admits the representation:

φδ123,1,1(u; b) =
1∑
i=0

r+1∑
j=1

A1,1,i,j e
ρ1,i,ju, 0 ≤ u ≤ b (50)

where {ρ1,i,j}r+1
j=1 are the roots of Equation (25) when n = 1 and m = i. While the coefficients

{A1,1,0,j}r+1
j=1 (i.e., i = 0) are given explicitly by:

A1,1,0,j =
λA1,0,0,j

δ3

r∑
k=1

qkαk
(αk + ρ1,0,j)2

, j = 1, 2, . . . , r + 1 (51)

with {A1,0,0,j}r+1
j=1 obtainable from Lemma 5, the coefficients {A1,1,1,j}r+1

j=1 (i.e., i = 1) can be solved
from the linear system of r + 1 equations comprising:

1∑
i=0

r+1∑
j=1

A1,1,i,j

αk + ρ1,i,j
+

r+1∑
j=1

A1,0,0,j

(αk + ρ1,0,j)2
= 0, k = 1, 2, . . . , r (52)

and:
1∑
i=0

r+1∑
j=1

A1,1,i,j ρ1,i,j e
ρ1,i,jb =

1∑
i=0

r+1∑
j=1

A0,1,i,j e
ρ0,i,jb (53)

Proof. When n = m = 1, Equation (12) becomes:

cφ′δ123,1,1(u; b)− (λ+ δ123(1, 1))φδ123,1,1(u; b) + λ

∫ u

0

φδ123,1,1(u− y; b)p(y) dy

+ λ

∫ u

0

yφδ123,1,0(u− y; b)p(y) dy = 0, 0 ≤ u ≤ b (54)

As in the proofs of Theorems 6 and 7, the above IDE can be reduced to a differential equation with
solution form:

φδ123,1,1(u; b) =
1∑
i=0

r+1∑
j=1

A1,1,i,j e
ρ1,i,ju +

r∑
k=1

B1,1,0,k e
−αku, 0 ≤ u ≤ b (55)

Then, substitution of Equations (24) and (55) into Equation (54) along with some straightforward
calculations yields:

c

{ 1∑
i=0

r+1∑
j=1

A1,1,i,j ρ1,i,j e
ρ1,i,ju −

r∑
k=1

B1,1,0,k αke
−αku

}

− (λ+ δ123(1, 1))

{ 1∑
i=0

r+1∑
j=1

A1,1,i,j e
ρ1,i,ju +

r∑
k=1

B1,1,0,k e
−αku

}

+ λ

1∑
i=0

r+1∑
j=1

r∑
k=1

A1,1,i,j qkαk
αk + ρ1,i,j

(eρ1,i,ju − e−αku)

+ λ
r∑

k=1

r∑
i=1,i 6=k

B1,1,0,i qkαk
αk − αi

(e−αiu − e−αku) + λ
r∑

k=1

B1,1,0,k qkαkue
−αku

+ λ
r+1∑
j=1

r∑
k=1

A1,0,0,j qkαk

{
1

(αk + ρ1,0,j)2
eρ1,0,ju − 1

αk + ρ1,0,j
ue−αku − 1

(αk + ρ1,0,j)2
e−αku

}
= 0
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While the coefficients of eρ1,1,ju simply mean that {ρ1,1,j}r+1
j=1 are the roots of Equation (25) with

n = m = 1, the coefficients of ue−αku give rise to:

λB1,1,0,k qkαk + λ

r+1∑
j=1

A1,0,0,j qkαk

(
− 1

αk + ρ1,0,j

)
= 0, k = 1, 2, . . . , r

Further incorporating Equation (28) with n = 1, it follows that B1,1,0,k = 0 for k = 1, 2, . . . , r, and
thus, Equation (55) simplifies to Equation (50). Next, equating the coefficients of eρ1,0,ju yields:

cA1,1,0,j ρ1,0,j − (λ+ δ123(1, 1))A1,1,0,j + λ
r∑

k=1

A1,1,0,j qkαk
αk + ρ1,0,j

+ λ
r∑

k=1

A1,0,0,j qkαk
(αk + ρ1,0,j)2

= 0

for j = 1, 2, . . . , r+ 1, which reduces to Equation (51) as {ρ1,0,j}r+1
j=1 are the roots of Equation (25) with

n = 1 and m = 0. Lastly, comparing the coefficients of e−αku results in Equation (52), while we get
Equation (53) from the boundary condition in Equation (13) when n = m = 1.

4. Numerical Illustrations

Now, we shall apply the results in the previous sections to study some new ruin-related quantities
with numerical examples. Throughout this section, we assume the cost function f(y) = y, so that
Zδ3(τb) =

∑N(τb)
i=1 e−δ3TiYi is the aggregate discounted claim amounts until ruin. The quantities

of interest include the expectation and the variance of Zδ3(τb), as well as the covariances between
any two of Zδ3(τb), the total discounted dividends until ruin Dδ2(τb) and the time of ruin τb.
For our purposes, it will be sufficient to use the penalty function w(x, y) = 1. For simplicity,
we shall use E[X|u; b] to denote the expectation of the random variable X given an initial surplus
Ub(0) = u and dividend barrier b. Then, the variance and the coefficient of variation of X are
Var(X|u; b) = E[X2|u; b] − (E[X|u; b])2 and CV(X|u; b) =

√
Var(X|u; b)/E[X|u; b], respectively.

Similarly, Cov(X1, X2|u; b) = E[X1X2|u; b] − E[X1|u; b]E[X2|u; b] and Corr(X1, X2|u; b) =

Cov(X1, X2|u; b)/
√

Var(X1|u; b)Var(X2|u; b), respectively, represent the covariance and correlation of
X1 and X2 given Ub(0) = u and barrier b. All of the components required for our analysis are obtainable
from the Gerber–Shiu function φδ1,δ2,δ3,n,m(u; b) in Equation (3). While the k-th moments of Zδ3(τb)
and Dδ2(τb) are simply φ0,δ2,δ3,0,k(u; b) and φ0,δ2,δ3,k,0(u; b), respectively, the k-th moment of τb is given
by E[τ kb |u; b] = (−1)k(∂k/∂δk1)φδ1,δ2,δ3,0,0(u; b)|δ1=0 = (−1)k(∂k/∂δk1)φδ1(u; b)|δ1=0 (and we only need
k = 1, 2). Moreover, one has E[Zδ3(τb)Dδ2(τb)|u; b] = φ0,δ2,δ3,1,1(u; b), and the first order joint moments
involving τb are E[τbZδ3(τb)|u; b] = −(∂/∂δ1)φδ1,δ2,δ3,0,1(u; b)|δ1=0 = −(∂/∂δ1)φδ13,1(u; b)|δ1=0 and
E[τbDδ2(τb)|u; b] = −(∂/∂δ1)φδ1,δ2,δ3,1,0(u; b)|δ1=0 = −(∂/∂δ1)φδ12,1(u; b)|δ1=0.

In all upcoming numerical examples, it is assumed that the Poisson arrival rate is λ = 1, the premium
rate is c = 1.5 and policyholders and shareholders have the same force of interest δ2 = δ3 = 0.01.
Three different claim distributions will be considered, namely: (i) a sum of two exponential random
variables with means 1/3 and 2/3; (ii) an exponential distribution with mean one; and (iii) a mixture of
two exponential distributions with means two and 1/2 and mixing probabilities 1/3 and 2/3, respectively.
Their densities are (i) p(y) = 3e−(3/2)y − 3e−3y, (ii) p(y) = e−y and (iii) p(y) = (1/6)e−(1/2)y + (4/3)e−2y,
which are all in the form of Equation (24). While they all have the same mean of one, they possess
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different variances of 0.56, 1 and 2, respectively. Each of Figures 1 to 9 contains two subfigures, (a) and
(b), where (a) plots the quantity of interest against u (0 ≤ u ≤ b) for fixed b = 10, while (b) plots the
same quantity against b ≥ u for fixed u = 10. The curves corresponding to the three claim distributions
above are represented in red, green and blue colors, respectively.
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Figure 1. Expected aggregate discounted claims E[Z0.01(τb)|u; b].
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Figure 2. Variance of aggregate discounted claims Var(Z0.01(τb)|u; b).
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Figure 3. Coefficient of variation of aggregate discounted claims CV(Z0.01(τb)|u; b).
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Figure 4. Covariance of ruin time and aggregate discounted claims Cov(τb, Z0.01(τb)|u; b).
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Figure 5. Correlation of ruin time and aggregate discounted claims Corr(τb, Z0.01(τb)|u; b).
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Figure 6. Covariance of ruin time and total discounted dividends Cov(τb, D0.01(τb)|u; b).
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Figure 7. Correlation of ruin time and total discounted dividends Corr(τb, D0.01(τb)|u; b).
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Figure 8. Covariance of aggregate discounted claims and total discounted dividends
Cov(Z0.01(τb), D0.01(τb)|u; b).

2 4 6 8 10
u

0.2

0.4

0.6

0.8

CorrHZ0.01 H�10 L,D0.01 H�10 LÈu;10L

Mixed Exp

Exp

SumExp

(a)

20 30 40 50
b

�0.4

�0.2

0.2

0.4

0.6

0.8

CorrHZ0.01 H�b L,D0.01 H�b LÈ10;bL

Mixed Exp

Exp

SumExp

(b)

Figure 9. Correlation of aggregate discounted claims and total discounted dividends
Corr(Z0.01(τb), D0.01(τb)|u; b).

First, Figure 1 depicts the behavior of the expected aggregate discounted claims E[Z0.01(τb)|u; b].
From Figure 1a, the three curves of E[Z0.01(τ10)|u; 10] are all increasing in the initial surplus u.
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Intuitively, for any given sample path of the aggregate claims process {S(t)}t≥0, a higher value of u
leads to larger ruin time τ10, and therefore, more claims are included in Z0.01(τ10), resulting in a larger
expectation E[Z0.01(τ10)|u; 10]. Figure 1b also shows that E[Z0.01(τb)|10; b] increases in the barrier level
b and then converges to a finite value. Clearly, the increasing property is due to the fact that a larger b
delays ruin, and thus, more claims occur before ruin. However, as b (and, hence, τb) increases further,
claims that occur late contribute little toZ0.01(τb) due to discounting, and consequently,E[Z0.01(τb)|10; b]
converges. Interestingly, it is observed from Figure 1a,b that E[Z0.01(τb)|u; b] increases as the variance
of the claim distribution decreases when the pair (u, b) is fixed. Indeed, we have separately checked that
when the claim’s variance decreases, the expected ruin time E[τb|u; b] increases for the above concerned
domain of fixed (u, b) (and the graphs are omitted here for the sake of brevity). As the process {Ub(t)}t≥0
survives longer in expectation, it is natural that on average, more claims occur before ruin. Next, we look
at the variance of Z0.01(τb), which is shown in Figure 2. Unfortunately, Figure 2 does not appear to show
much of a pattern that allows for interpretation. However, if we turn to the coefficient of variation in
Figure 3, it can be seen that CV(Z0.01(τ10)|u; 10) and CV(Z0.01(τb)|10; b) are decreasing in u and b,
respectively. Furthermore, Figure 3 suggests that CV(Z0.01(τb)|u; b) increases with the variance of the
claim distribution (with the exception of small values of u in Figure 3a). In other words, once we have
used a standardized measure of dispersion, which is unitless, the variability of the aggregate discounted
claims until ruin Z0.01(τb) is in accordance with that of the individual claim.

After analyzing the first two moments of Z0.01(τb), we now look at various covariance measures.
Concerning the relationship between the ruin time τb and the aggregate discounted claims Z0.01(τb) for
fixed (u, b), consider sample paths of the surplus process {Ub(t)}t≥0 for which τb is large (e.g., larger
than the mean E[τb|u; b]). Intuitively, there are two opposing effects on Z0.01(τb). A longer ruin time
means more time for claims to occur, and this tends to increase Z0.01(τb). On the other hand, it also
implies that no claims larger than b occur early, and this may make Z0.01(τb) smaller in the presence
of discounting. Figure 4 shows that the covariance of τb and Z0.01(τb) is positive, suggesting that the
former effect dominates under our parameter setting (interested readers are referred to [16] (Section
5) for an example where the latter effect dominates and leads to negative covariance in the context
of a dependent Sparre–Andersen model without dividends). In addition, we see from Figure 4 that
Cov(τb, Z0.01(τb)|u; b) decreases as the variance of individual claims increases. This can be attributed
to the fact that, according to our discussions following Figure 1, both τb and Z0.01(τb) are of a larger
magnitude when the claim distribution has smaller variance. In order to remove the effect of different
magnitudes, we plot the correlation Corr(τb, Z0.01(τb)|u; b) in Figure 5. It is instructive to note that the
ordering with respect to the claim’s variance is now reversed, i.e., Corr(τb, Z0.01(τb)|u; b) increases with
the variance of the claim. Moreover, Corr(τb, Z0.01(τb)|u; b) is decreasing in both u and b. Note also
that the correlation can sometimes reach 0.8, suggesting that τb and Z0.01(τb) can be strongly dependent.
Now, we turn to the co-movement of the ruin time τb and the total discounted dividends D0.01(τb). The
covariance Cov(τb, D0.01(τb)|u; b) in Figure 6 is always positive. Clearly, a larger ruin time means that the
insurance business survives longer, and hence, the process {Ub(t)}t≥0 stays at the barrier more often for
dividends to be paid. It is also observed from Figures 6 and 7 that both the covariance and the correlation
exhibit the same behavior as in Figures 4 and 5 in terms of the shape and ordering of the curves.
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Finally, we consider the covariance and the correlation of the aggregate discounted claims
Z0.01(τb) and the total discounted dividends D0.01(τb) in Figures 8 and 9. Although the covariance
Cov(Z0.01(τ10), D0.01(τ10)|u; 10) in Figure 8a is always positive, Cov(Z0.01(τb), D0.01(τb)|10; b) in
Figure 8b takes negative values as b gets larger when the claim distribution is exponential or a sum
of two exponentials. The fact that the covariance is possibly negative may be explained as follows.
For fixed (u, b), we already know from previous discussions that both Z0.01(τb) and D0.01(τb) tend to be
larger when τb is large. Meanwhile, it should be noted that both claims and dividends are paid from
the insurer’s surplus (which consists of the initial surplus plus the premium collected to date). In this
regard, one can argue that Z0.01(τb) andD0.01(τb) may also move in opposite directions. If the covariance
is negative, then it means that the latter effect dominates. While the curves in Figures 8a and 9a as a
function of u are not ranked according to the variance of the claim distribution, those in Figures 8b and
9b as a function of b suggest that both covariance and correlation increase with the claim’s variance
(except for a very, very small portion in Figure 8b, where the green line is slightly above the blue line
when b is close to 10).
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