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Abstract:

 The Munich chain-ladder method for claims reserving was introduced by Quarg and Mack on an axiomatic basis. We analyze these axioms, and we define a modified Munich chain-ladder method which is based on an explicit stochastic model. This stochastic model then allows us to consider claims prediction and prediction uncertainty for the Munich chain-ladder method in a consistent way.
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1. Introduction

The Munich chain-ladder method was introduced by Quarg and Mack [1] on a pure axiomatic basis, and in 2003 it was awarded the Gauss prize by Deutsche Aktuarvereinigung (DAV) and Deutsche Gesellschaft für Versicherungs- und Finanzmathematik (DGVFM), see [1]. However, today it is still not known whether there is a non-trivial interesting stochastic model that fulfills these axioms, nor is much known about the prediction uncertainty in the Munich chain-ladder method. Liu and Verrall [2] propose to use bootstrap for the estimation of the prediction uncertainty in the Munich chain-ladder method, however this requires existence of a model that fulfills the Munich chain-ladder axioms. The aim of this paper is to study the axioms of the Munich chain-ladder method and to define a modified Munich chain-ladder method which is based on an explicit stochastic model. This explicit stochastic model gives a rigorous mathematical foundation for the analysis of claims prediction and its uncertainty.

There are two different ways to view the Munich chain-ladder method. The first way is to define a stochastic model which has the required structure of the Munich chain-ladder factors; this is the approach taken in [1]. The second way is to define a general chain-ladder model and to derive estimators in this model that have the Munich chain-ladder factor structure; this is the approach taken in [3]. Here, we analyze both of these views and we show how the second way leads to a modified Munich chain-ladder method. This analysis is done within the family of multivariate log-normal models. The first main result is that within this family of models, there is, in general, no interesting Munich chain-ladder model, see Theorem 2 below. The resulting Munich chain-ladder predictor always has an approximation error which is quantified in Theorem 3 below. Based on these findings, we define a modified Munich chain-ladder model for which we can derive optimal predictors and the corresponding prediction uncertainty.


Organization of the Paper

In the next section, we consider stochastic models which simultaneously fulfill the chain-ladder assumptions for cumulative payments and incurred claims. In Theorem 1, we see that such models only permit rather restricted correlation structures. For these restricted chain-ladder models, we then study the optimal one-step ahead prediction in Section 3. This optimal one-step ahead prediction can directly be compared to the Munich chain-ladder axioms which are introduced in Section 4. In Theorem 2, we find that, in general, the Munich chain-ladder axioms are not fulfilled in our modeling framework. This motivates a modified Munich chain-ladder method which is presented in Section 5. For this modified version, we derive optimal predictors and study prediction uncertainty in Section 6. These results are compared numerically in Section 7. The numerical study is based on the original data set of Quarg and Mack [1].




2. Chain-Ladder Models

We denote cumulative payments of accident year i and development year j by [image: there is no content] and the corresponding incurred claims are denoted by [image: there is no content] for [image: there is no content] and [image: there is no content]. We define the following sets of information



[image: there is no content]=Pi,k;k≤j,0≤i≤J,[image: there is no content]=Ii,k;k≤j,0≤i≤Jand[image: there is no content]=[image: there is no content]∪[image: there is no content].









Assumption 1 
(distribution-free chain-ladder model).




	(A1)

	We assume that the random vectors [image: there is no content]have strictly positive components and are independent for different accident years [image: there is no content].



	(A2)

	There exist parameters [image: there is no content]such that for [image: there is no content]and [image: there is no content]



E[image: there is no content][image: there is no content]=fjP[image: there is no content]andVar[image: there is no content][image: there is no content]=(σjP)2Pi,j2,E[image: there is no content][image: there is no content]=fjI[image: there is no content]andVar[image: there is no content][image: there is no content]=(σjI)2Ii,j2.












These assumptions correspond to assumptions PE, PV, IE, IV and PIU in [1], except that we make a modification in the variance assumptions PV and IV. We make this change because it substantially simplifies our considerations (we come back to this in Remark 1 below). Assumption 1 states that cumulative payments ([image: there is no content])i,j and incurred claims ([image: there is no content])i,j fulfill the distribution-free chain-ladder model assumptions simultaneously. Our first aim is to show that there is a non-trivial stochastic model that fulfills the chain-ladder model assumptions simultaneously for cumulative payments and incurred claims. To this end, we define an explicit distributional model. The distributions are chosen such that the analysis becomes as simple as possible. We will see that assumption (A2) requires a sophisticated consideration.

We choose a continuous and strictly increasing link function [image: there is no content] with [image: there is no content] and [image: there is no content]. The standard example is the log-link function given by



g(x)=logxforx>0,



(1)




but the results derived in this section hold true for general such link functions. The log-link function has the advantage of closed form solutions. For (general) link function g (as introduced above), we define the transformed age-to-age ratios for [image: there is no content] and [image: there is no content] by


[image: there is no content]=g[image: there is no content]Pi,j−1and[image: there is no content]=g[image: there is no content]Ii,j−1,








where we set fixed initial values [image: there is no content] according to given volume measures [image: there is no content]. To simplify the outline, we introduce vector notation, for [image: there is no content] we set


[image: there is no content]









Assumption 2 
(multivariate (log-)normal chain-ladder model I).




	(B1)

	We assume that the random vectors [image: there is no content]are independent for different accident years [image: there is no content].



	(B2)

	There exists a parameter vector [image: there is no content]and a positive definite covariance matrix [image: there is no content]such that we have for [image: there is no content]



[image: there is no content]∼Nθ,Σ.












For log-link Equation (1), we obtain the log-normal chain-ladder model and for a general link g a general link ratio model. We have the following identities for the generated σ-algebras



σPi,k;k≤j,0≤i≤J=σ{ξi,kP;k≤j,0≤i≤J}.








Therefore, by an abuse of notation, we use [image: there is no content] for both sets of information, and analogously for [image: there is no content] and [image: there is no content]. From this, we immediately see that assumptions (A1) and (B1) agree with each other. Due to the independence of different accident years i we have for [image: there is no content]



[image: there is no content]|Bj*=(d)[image: there is no content]|{ξi,0*,…,ξi,j*},([image: there is no content],ξi,j+1I)|[image: there is no content]=(d)([image: there is no content],ξi,j+1I)|{[image: there is no content],…,[image: there is no content],[image: there is no content],…,[image: there is no content]}.








For [image: there is no content] we denote by [image: there is no content] and let [image: there is no content] be the (positive definite) covariance matrix of the random vector [image: there is no content]. Moreover, let [image: there is no content] denote the covariance vector between [image: there is no content] and [image: there is no content], and let [image: there is no content] be the variance of component [image: there is no content].


Lemma 1. 
Under Assumption 2 we have for [image: there is no content], [image: there is no content]and [image: there is no content]



[image: there is no content]|Bj*∼Nθj+1*+([image: there is no content])′Σ[j]*−1[image: there is no content]−θ[j]*,(sj+1*,post)2,








with [image: there is no content].



Proof. 
This is a standard result for multivariate Gaussian distributions, see Result 4.6 in [4]. ☐



Using Lemma 1, we can calculate the conditionally expected claims for given link function g. We have for [image: there is no content] and [image: there is no content]



E[image: there is no content][image: there is no content]=[image: there is no content]Eg−1g[image: there is no content][image: there is no content][image: there is no content]=[image: there is no content]Eg−1[image: there is no content][image: there is no content],



(2)






E[image: there is no content][image: there is no content]=[image: there is no content]Eg−1g[image: there is no content][image: there is no content][image: there is no content]=[image: there is no content]Eg−1ξi,j+1I[image: there is no content].



(3)




In a similar way, we obtain for the conditional variances



Var[image: there is no content][image: there is no content]=Pi,j2Eg−1([image: there is no content])2[image: there is no content]−Eg−1[image: there is no content][image: there is no content]2,



(4)






Var[image: there is no content][image: there is no content]=Ii,j2Eg−1(ξi,j+1I)2[image: there is no content]−Eg−1ξi,j+1I[image: there is no content]2.



(5)




We have assumed that Σ is positive definite. This implies that also [image: there is no content] is positive definite for [image: there is no content]. We then see from Lemma 1 that, in general, the last terms in Equations (2)–(5) depend on [image: there is no content] and [image: there is no content], respectively. Therefore, these last terms are not constant w.r.t. information [image: there is no content] and [image: there is no content], respectively, and Assumption 1 (A2) is not fulfilled unless both [image: there is no content] and [image: there is no content] are equal to the zero vector. This immediately gives the next theorem.


Theorem 1. 
Assume that Assumption 2 is fulfilled for general link function g as introduced above. The model fulfills Assumption 1 if and only if



Σ[J]P=diag(s0P)2,…,(sJP)2andΣ[J]I=diag(s0I)2,…,(sJI)2.



(6)




Under Equation (6), we have in the special case of the log-link [image: there is no content]and for [image: there is no content]and [image: there is no content]


E[image: there is no content][image: there is no content]=[image: there is no content]expθj+1P+(sj+1P)2/2,Var[image: there is no content][image: there is no content]=Pi,j2exp2θj+1P+(sj+1P)2exp(sj+1P)2−1.








Analogous statements hold true for incurred claims [image: there is no content], conditioned on [image: there is no content].



Remark 1. 
The previous theorem says that covariance structure Equation (6) is a necessary condition to obtain the chain-ladder model of Assumption 1. This holds for general link functions g, see Equations (2)–(5), and under Gaussian age-to-age ratios. The resulting variance properties differ from the classical ones of Quarg and Mack [1]. However, our argument does not use the variance assumption in a crucial way (it is already sufficient to consider Equations (2)–(3)), except that under Assumption 2 the analysis receives an analytically tractable closed form solution. Therefore, we expect this result to hold true in broader generality.



Under the assumptions of Theorem 1, the process ([image: there is no content])[image: there is no content] has the Markov property, and we obtain the following chain-ladder parameters for the log-link [image: there is no content]



fj*=expθj+1*+(sj+1*)2/2and(σj*)2=(fj*)2exp(sj+1*)2−1,



(7)




with [image: there is no content]. Moreover, the covariance matrix Σ under Theorem 1 is given by


[image: there is no content]



(8)




for an appropriate matrix [image: there is no content] such that Σ is positive definite.

Lemma 2. 
A symmetric matrix Σ of the form Equation (8) is positive definite if and only if the matrix



[image: there is no content]=Σ[J]I−A′Σ[J]P−1Aispositivedefinite,








or, equivalently, if and only if the matrix


[image: there is no content]=Σ[J]P−A′Σ[J]I−1Aispositivedefinite.











Proof. 
This lemma is a standard result in linear algebra about Schur complements, see Section C.4.1 in [5]. ☐



The matrices [image: there is no content] are called Schur complements of [image: there is no content] in Σ, for [image: there is no content]. One may still choose more structure in matrix [image: there is no content], for instance, a lower-left-triangular matrix is often a reasonable choice, i.e., [image: there is no content] for all [image: there is no content]. For the time-being, we allow for any matrix A such that Σ is positive definite. This leads to the following model assumptions.


Assumption 3 
(multivariate (log-)normal chain-ladder model II).




	(C1)

	We assume that the random vectors [image: there is no content]are independent for different accident years [image: there is no content].



	(C2)

	There exists a parameter vector [image: there is no content]and a matrix Σ of the form Equation (8) with positive definite Schur complements [image: there is no content]and [image: there is no content]such that we have for [image: there is no content]



[image: there is no content]∼Nθ,Σ.













Corollary 1. 
The model of Assumption 3 fulfills the distribution-free chain-ladder model of Assumption 1 for any link function g (as introduced above). The chain-ladder parameters are given by Equation (7) in the special case of the log-link function Equation (1).



The previous corollary states that we have found a class of non-trivial stochastic models that fulfill the distribution-free chain-ladder assumptions simultaneously for cumulative payments and incurred claims. Note that an appropriate choice of matrix A in Equation (8) allows us for dependence modeling between cumulative payments and incurred claims, this will be crucial in the sequel.



3. One-Step Ahead Prediction

Formulas (2) and (3) and Theorem 1 provide the best prediction of [image: there is no content] based on [image: there is no content] and the best prediction of [image: there is no content] based on [image: there is no content], respectively, under Assumption 3. The basic idea behind the Munich chain-ladder method is to consider best predictions based on both sets of information [image: there is no content]=[image: there is no content]∪[image: there is no content], that is, how does prediction of, say, cumulative payments [image: there is no content] improve by enlarging the information from [image: there is no content] to [image: there is no content]. This is similar to the considerations in [3]. In this section, we start with the special case of “one-step ahead prediction”, the general case is presented in Section 6, below. We denote by [image: there is no content] and let [image: there is no content] be the (positive definite) covariance matrix of the random vector [image: there is no content]. Moreover, let [image: there is no content] denote the covariance vector between [image: there is no content] and [image: there is no content] for [image: there is no content]. Note that in contrast to Lemma 1 we replace [image: there is no content] by [image: there is no content], i.e., we set the upper index in brackets.


Lemma 3. 
Under Assumption 3 we have for [image: there is no content], [image: there is no content]and [image: there is no content]



[image: there is no content]|[image: there is no content]∼Nθj+1*+([image: there is no content])′Σ[j]−1[image: there is no content]−θ[j],(sj+1(*),post)2,








with (sj+1(*),post)2=(sj+1*)2−([image: there is no content])′Σ[j]−1[image: there is no content].



Proof. 
This is a standard result for multivariate Gaussian distributions, see Result 4.6 in [4]. ☐



The previous lemma shows that the conditional expectation of [image: there is no content], given [image: there is no content], is linear in the observations [image: there is no content]. This will be crucial. An easy consequence of the previous lemma is the following corollary for the special case of the log-link.


Corollary 2 
(one-step ahead prediction for log-link). Under Assumption 3 we have prediction for log-link [image: there is no content]and for [image: there is no content]and [image: there is no content]



E[image: there is no content][image: there is no content]=[image: there is no content]expθj+1P+(Σj,j+1(P))′Σ[j]−1[image: there is no content]−θ[j]+(sj+1(P),post)2/2=fjP[image: there is no content]γjP([image: there is no content])=E[image: there is no content][image: there is no content]γjP([image: there is no content]),








with for [image: there is no content]


γj*([image: there is no content])=expβj*([image: there is no content])−([image: there is no content])′Σ[j]−1[image: there is no content]/2,βj*([image: there is no content])=([image: there is no content])′Σ[j]−1[image: there is no content]−θ[j].








Analogous statements hold true for incurred claims [image: there is no content].


The term γjP([image: there is no content]) gives the correction if we experience not only [image: there is no content] but also [image: there is no content]. This increased information leads also to a reduction of prediction uncertainty of size



(sj+1P)2↦(sj+1(P),post)2=(sj+1P)2−(Σj,j+1(P))′Σ[j]−1Σj,j+1(P)≤(sj+1P)2.









Example 1 
(log-link). The analysis of the correction term γjP([image: there is no content])is not straightforward. Therefore, we consider an explicit example for the case [image: there is no content]and [image: there is no content]. In this case, the covariance matrix Σ under Assumption 3 is given by



[image: there is no content]









	Case [image: there is no content]. We start the analysis for [image: there is no content], i.e., given information [image: there is no content].






[image: there is no content]=(s0P)200(s1P)2[image: there is no content][image: there is no content][image: there is no content][image: there is no content][image: there is no content][image: there is no content][image: there is no content][image: there is no content](s0I)200(s1I)2andΣ[0]−1=1(s0Ps0I)2−a0,02(s0I)2−[image: there is no content]−[image: there is no content](s0P)2.








Moreover, [image: there is no content]. This provides credibility weight [image: there is no content]given by


[image: there is no content]=(Σ0,1(P))′Σ[0]−1=1(s0Ps0I)2−a0,02−[image: there is no content][image: there is no content],[image: there is no content](s0P)2,








and posterior variance


(s1(P),post)2=(s1P)2−(Σ0,1(P))′Σ[0]−1Σ0,1(P)=(s1P)2−([image: there is no content]s0P)2(s0Ps0I)2−a0,02.








Observe that [image: there is no content]is the crucial term in the credibility weight [image: there is no content]. If these two random variables [image: there is no content]and [image: there is no content]are uncorrelated, then [image: there is no content]and we cannot learn from observation [image: there is no content]to improve prediction [image: there is no content]. The predictor for log-link [image: there is no content]is given by


EPi,1[image: there is no content]=Pi,0expθ1P+β0P(ξi,[0])+(s1(P),post)2/2=f0PPi,0γ0P(ξi,[0]),








with


β0P(ξi,[0])=[image: there is no content]ξi,[0]−θ[0]=−[image: there is no content][image: there is no content](s0Ps0I)2−a0,02[image: there is no content]−θ0P+[image: there is no content](s0P)2(s0Ps0I)2−a0,02[image: there is no content]−θ0I.








Also remarkable is that observation [image: there is no content]is used to improve the prediction of [image: there is no content], though these two random variables are uncorrelated under Assumption 3. This comes from the fact that if [image: there is no content]then [image: there is no content]is used to adjust [image: there is no content].

	Case [image: there is no content]. This case is more involved. Set






b0,0=(s0I)2−a0,02/(s0P)2−a1,02/(s1P)2,b0,1=−[image: there is no content][image: there is no content]/(s0P)2−[image: there is no content][image: there is no content]/(s1P)2,b1,1=(s1I)2−a0,12/(s0P)2−a1,12/(s1P)2,[image: there is no content]=b0,1[image: there is no content]−b1,1[image: there is no content](b0,0b1,1−b0,12)(s0P)2,[image: there is no content]=−b0,0[image: there is no content]+b0,1[image: there is no content](b0,0b1,1−b0,12)(s0P)2,[image: there is no content]=b0,1[image: there is no content]−b1,1[image: there is no content](b0,0b1,1−b0,12)(s1P)2,[image: there is no content]=−b0,0[image: there is no content]+b0,1[image: there is no content](b0,0b1,1−b0,12)(s1P)2.








We have the following inverse matrix for [image: there is no content], see Appendix B for the full inverse matrix,


[image: there is no content]








Moreover, [image: there is no content]is the covariance vector between [image: there is no content]and [image: there is no content]. This provides credibility weight [image: there is no content]given by


α[1]P=a2,0[image: there is no content]+a2,1[image: there is no content],a2,0[image: there is no content]+a2,1[image: there is no content],b1,1a2,0−b0,1a2,1b0,0b1,1−b0,12,−b0,1a2,0+b0,0a2,1b0,0b1,1−b0,12,








and posterior variance


(s2(P),post)2=(s2P)2−(Σ1,2(P))′Σ[1]−1Σ1,2(P)=(s2P)2−b1,1a2,02−2b0,1a2,1a2,0+b0,0a2,12b0,0b1,1−b0,12.








We again see that the crucial terms are a2,0=Cov([image: there is no content],[image: there is no content])and a2,1=Cov([image: there is no content],[image: there is no content]). If these two covariances are zero then incurred claims observation is not helpful to improve the prediction of [image: there is no content]. Therefore, we assume that at least one of these two covariances is different from zero. The predictor for the log-link [image: there is no content]is given by


EPi,2B1=Pi,1expθ2P+β1P(ξi,[1])+(s2(P),post)2/2=f1PPi,1γ1P([image: there is no content]).








with


β1P([image: there is no content])=(a2,0[image: there is no content]+a2,1[image: there is no content])[image: there is no content]−θ0P+(a2,0[image: there is no content]+a2,1[image: there is no content])[image: there is no content]−θ1P+b1,1a2,0−b0,1a2,1b0,0b1,1−b0,12[image: there is no content]−θ0I+−b0,1a2,0+b0,0a2,1b0,0b1,1−b0,12[image: there is no content]−θ1I.



(9)




Again [image: there is no content]and [image: there is no content]are used to adjust [image: there is no content]and [image: there is no content]through [image: there is no content], [image: there is no content]and [image: there is no content], [image: there is no content], respectively, which are integrated into [image: there is no content], [image: there is no content]and [image: there is no content], [image: there is no content], respectively.




4. Munich Chain-Ladder Model

In Corollary 2, we have derived the best prediction under Assumption 3 for the log-link. This best prediction is understood relative to the mean-square error of prediction, and it crucially depends on the choice of the link function g. Since our model fulfills the chain-ladder model Assumption 1 for any link function g according to Corollary 1, it can also be considered as the best prediction for given information [image: there is no content] in the distribution-free chain-ladder model for other link function choices g. The Munich chain-ladder method tackles the problem from a different viewpoint in that it extends the distribution-free chain-ladder model Assumption 1, so that it enforces the best prediction to have a pre-specified form. We define this extended model in Assumption 4, below, and then study under which circumstances our distributional model from Assumption 3 fulfills these Munich chain-ladder model assumptions. Define the residuals



[image: there is no content]=[image: there is no content]−E[image: there is no content][image: there is no content]Var[image: there is no content][image: there is no content]1/2and[image: there is no content]=[image: there is no content]−E[image: there is no content][image: there is no content]Var[image: there is no content][image: there is no content]1/2.








The adapted Munich chain-ladder assumptions of Quarg and Mack [1] are given by:


Assumption 4 
(Munich chain-ladder model). Assume in addition to Assumption 1 that there exist constants [image: there is no content]such that for [image: there is no content]and [image: there is no content]



E[image: there is no content][image: there is no content]=fjP[image: there is no content]+[image: there is no content]Var[image: there is no content][image: there is no content]1/2[image: there is no content],








and


E[image: there is no content][image: there is no content]=fjI[image: there is no content]+[image: there is no content]Var[image: there is no content][image: there is no content]1/2[image: there is no content].











Remark 2. 
The idea behind these additional assumptions is that one corrects for high and low incurred-paid and paid-incurred ratios via the residuals [image: there is no content]and [image: there is no content]because, for instance for cumulative payments, we have



[image: there is no content]=[image: there is no content]−E[image: there is no content][image: there is no content]Var[image: there is no content][image: there is no content]1/2=[image: there is no content][image: there is no content]−E[image: there is no content][image: there is no content][image: there is no content]Var[image: there is no content][image: there is no content][image: there is no content]1/2=[image: there is no content]−E[image: there is no content][image: there is no content]Var[image: there is no content][image: there is no content]1/2,








with incurred-paid ratio [image: there is no content]=[image: there is no content]/[image: there is no content]. Therefore, the additional assumptions in Assumption 4 exactly provide PQ and IQ of Quarg and Mack [1]. If we choose the log-link for Assumption 3 then the incurred-paid ratio [image: there is no content]is turned into a difference on the log scale, that is, log([image: there is no content])=log[image: there is no content]−log[image: there is no content]=∑l=0jξi,lI−∑l=0jξi,lP. The aim of this section is to analyze under which circumstances these Munich chain-ladder corrections lead to the optimal predictors provided in Corollary 2. Below we will see that the constants [image: there is no content]and [image: there is no content]are crucial, they measure the (positive) correlation between the cumulative payments and the incurred-paid ratio correction (and similarly for incurred claims), see also Section 2.2.2 in [1]. Moreover, [image: there is no content]and [image: there is no content]receive an explicit meaning in Theorem 3, below.


The tower property of conditional expectations E[[image: there is no content]|[image: there is no content]]=E[E[[image: there is no content]|[image: there is no content]]|[image: there is no content]] implies under Assumption 4



E[image: there is no content][image: there is no content]=fjP[image: there is no content]+[image: there is no content]Var[image: there is no content][image: there is no content]1/2E[image: there is no content][image: there is no content]=fjP[image: there is no content].








Therefore, Assumption 4 does not contradict Assumption 1. As mentioned in Remark 2, we now analyze Assumption 4 from the viewpoint of the multivariate (log-)normal chain-ladder model of Assumption 3. We therefore need to analyze the correction term defined in the Munich chain-ladder model



[image: there is no content]Var[image: there is no content][image: there is no content]1/2[image: there is no content]=[image: there is no content]σjP[image: there is no content][image: there is no content],



(10)




and compare it to the optimal correction term obtained from Lemma 3 and Corollary 2, respectively. We start with log-link [image: there is no content] and then provide the general result in Theorem 2, below. For the log-link we have representation of incurred claims


[image: there is no content]=νiexp∑l=0jξi,lI.



(11)




Therefore, for [image: there is no content] we need to determine the conditional distribution of [image: there is no content], given [image: there is no content].


Lemma 4. 
Under Assumption 3, we have



∑l=0jξi,lI|[image: there is no content]∼N∑l=0jθlI+(a0:jI)′Σ[j]P−1[image: there is no content]−θ[j]P,(s0:jI,post)2,








with covariance vector [image: there is no content]for [image: there is no content], and posterior variance [image: there is no content].



Proof. 
This is a standard result for multivariate Gaussian distributions, see Result 4.6 in [4]. ☐




Example 2 
(log-link). We consider log-link [image: there is no content]. In this case, we have from Equation (11) and using Lemma 4 for the residual of the correction term



[image: there is no content]=exp{∑l=0jξi,lI}−Eexp{∑l=0jξi,lI}[image: there is no content]Varexp{∑l=0jξi,lI}[image: there is no content]1/2=exp∑l=0j(ξi,lI−θlI)−(a0:jI)′Σ[j]P−1[image: there is no content]−θ[j]P−(s0:jI,post)2/2−1exp(s0:jI,post)2−11/2.








This implies for the Munich chain-ladder model Assumption 4, we also use Equation (7),


fjP[image: there is no content]+[image: there is no content]Var[image: there is no content][image: there is no content]1/2[image: there is no content]=fjP[image: there is no content]+[image: there is no content]σjP[image: there is no content][image: there is no content]=fjP[image: there is no content]γjP,MCL([image: there is no content]),








with Munich chain-ladder correction factor defined by


γjP,MCL([image: there is no content])=1+[image: there is no content]e(sj+1P)2−1e(s0:jI,post)2−1e∑l=0j(ξi,lI−θlI)−(a0:jI)′Σ[j]P−1ξi,[j]P−θ[j]P−(s0:jI,post)22−1.



(12)




We analyze this Munich chain-ladder correction factor for [image: there is no content]. It is given by


γ1P,MCL([image: there is no content])=1+[image: there is no content]e(s2P)2−1e(s0:1I,post)2−1×e([image: there is no content]−θ0I)+([image: there is no content]−θ1I)−[image: there is no content]+[image: there is no content](s0P)2([image: there is no content]−θ0P)−[image: there is no content]+[image: there is no content](s1P)2([image: there is no content]−θ1P)−(s0:jI,post)22−1.



(13)




We compare this to the best prediction under Assumption 3 in the case [image: there is no content]characterized by Equation (9) and under the additional assumptions that [image: there is no content]and [image: there is no content]. In this case we obtain from Equations (7) and (9) correction term


γ1P([image: there is no content])=expβ1P([image: there is no content])−b0,0a2,122(b0,0b1,1−b0,12)=exp{a2,1b0,0b1,1−b0,12−b0,1[image: there is no content]−θ0I+b0,0[image: there is no content]−θ1I+a2,1[image: there is no content][image: there is no content]−θ0P+[image: there is no content][image: there is no content]−θ1P−b0,0a2,122(b0,0b1,1−b0,12)}.



(14)




Note that Equations (13) and (14) differ. This can, for instance, be seen because all terms in the sum [image: there is no content]in γ1P,MCL([image: there is no content])are equally weighted, whereas for the best predictor we consider a weighted sum −b0,1([image: there is no content]−θ0I)+b0,0([image: there is no content]−θ1I)in γ1P([image: there is no content]). We conclude that, in general, Assumption 3 does not imply that the Munich chain-ladder model Assumption 4 is fulfilled.


The (disappointing) conclusion from Example 2 is that within the family of models fulfilling Assumption 3 with log-link [image: there is no content] there does not exist (a general) interesting example satisfying the Munich chain-ladder model Assumption 4. Exceptions can only be found for rather artificial covariance matrices Σ, for instance, a choice with [image: there is no content] would fulfill the Munich chain-ladder model Assumption 4. But this latter choice is not of interest because it requires [image: there is no content]=[image: there is no content]=0 (which does not support the empirical findings of [1] that these correlation parameters should be positive). The result of Example 2 can be generalized to any link function as the next theorem shows.


Theorem 2. 
Assume that cumulative payments [image: there is no content]and incurred claims [image: there is no content]fulfill Assumption 3 for a given continuous and strictly increasing link function [image: there is no content]with [image: there is no content]and [image: there is no content]. In general, this model does not fulfill the Munich chain-ladder model Assumption 4, except for special choices of Σ.




Proof. 
The optimal one-step ahead prediction for given link function g is given by, see also Lemma 3,



E[image: there is no content][image: there is no content]=[image: there is no content]Eg−1[image: there is no content][image: there is no content],








with


[image: there is no content]|[image: there is no content]∼Nθj+1P+(Σj,j+1(P))′Σ[j]−1[image: there is no content]−θ[j],(sj+1(P),post)2.










From the latter, we observe that observation [image: there is no content] is considered in a linear fashion c′[image: there is no content] for an appropriate vector [image: there is no content], which typically is different from zero (for [image: there is no content]) and which does not point into the direction of [image: there is no content], i.e., we consider a weighted sum of the components of [image: there is no content] (with non-identical weights).

On the other hand, the correction terms from the Munich chain-ladder assumption for a given link function g are given by, see also Equation (10),



[image: there is no content]σjP[image: there is no content][image: there is no content]=[image: there is no content]σjP[image: there is no content]g−1(νi)∏l=0jg−1(ξi,lI)−E[image: there is no content][image: there is no content]Var[image: there is no content][image: there is no content]1/2=[image: there is no content]σjP[image: there is no content]g−1(νi)exp∑l=0jlogg−1(ξi,lI)−E[image: there is no content][image: there is no content]Var[image: there is no content][image: there is no content]1/2.








Thus, the only link function g which considers the components of [image: there is no content] in a linear fashion is the log-link [image: there is no content]. For the log-link we get



[image: there is no content]σjP[image: there is no content][image: there is no content]=[image: there is no content]σjP[image: there is no content]expνi+∑l=0jξi,lI−E[image: there is no content][image: there is no content]Var[image: there is no content][image: there is no content]1/2.








From this we see that all components of [image: there is no content] are considered with identical weights, and, therefore, it differs from the optimal one-step ahead prediction (if the latter uses non-identical weights). This is exactly what we have seen in Example 2 and proves the theorem.  ☐

In Theorem 4.1 of [3], the Munich chain-ladder structure has been found as a best linear approximation to E[image: there is no content][image: there is no content] in the following way



E^linear[image: there is no content][image: there is no content]=argminX=c1[image: there is no content]+c2[image: there is no content];c1,c2∈L([image: there is no content])EX−[image: there is no content]2BjP=fjP[image: there is no content]+Corr[image: there is no content],[image: there is no content][image: there is no content]Var[image: there is no content][image: there is no content]1/2[image: there is no content],



(15)




where L([image: there is no content]) is the space of [image: there is no content]-measurable random variables. Note that this approximates the exact conditional expectation E[image: there is no content][image: there is no content] and it gives an explicit meaning to parameter [image: there is no content]∈(−1,1) (which typically is non-constant in j), see also Section 2.2.2 in [1].

Theorem 3 
(approximation error of MCL predictor). Under Assumption 3 and the log-link choice [image: there is no content]we have approximation error for the Munich chain-ladder predictor E^linear[image: there is no content][image: there is no content]given by the difference



E^linear[image: there is no content][image: there is no content]−E[image: there is no content][image: there is no content]=fjP[image: there is no content]γjP,MCL([image: there is no content])−γjP([image: there is no content]),








where [image: there is no content]is given in Equation (12) with [image: there is no content]replaced by Corr([image: there is no content],[image: there is no content]|[image: there is no content])and γjP([image: there is no content])is given in Corollary 2.



Proof. 
This proof follows from Example 2.  ☐




Remark 3. 
In Theorem 2, we have seen that, in general, the Munich chain-ladder model Assumption 4 is not fulfilled for chain-ladder models satisfying Assumption 3. If, nevertheless, we would like to use an estimator that has Munich chain-ladder structure, we should use it in the sense of best-linear approximation Equation (15) to the best prediction E[image: there is no content][image: there is no content]. Theorem 3 gives the approximation error of this approach for the log-link choice.





5. The Modified Munich Chain-Ladder Method

In the sequel, we concentrate on the model of Assumption 3 with log-link function [image: there is no content]. This provides the chain-ladder model specified in the second part of Theorem 1 and the one-step ahead prediction given in Corollary 2. The issues that we still need to consider are the following: (i) We would like to extend the one-step ahead predictions to get the predictions of [image: there is no content] and [image: there is no content], i.e., the final values of each accident year [image: there is no content]; (ii) Typically, model parameters are not known and need to be estimated; (iii) We should specify the prediction uncertainty. In order to achieve these goals, we choose a Bayesian modeling framework.

We remark that we consider tasks (ii) and (iii) in a Bayesian framework which turns out to be rather straightforward. Alternatively, one could also consider these questions from a frequentist’s viewpoint. In this case, (ii) is solved by maximum likelihood estimation and (iii) can be assessed either with bootstrap methods or by (asymptotic) results for maximum likelihood estimates. Our experience is that in many cases these different assessments lead to rather similar values if one uses non-informative priors in the Bayesian approach.


Assumption 5 
((Bayesian) modified Munich chain-ladder model). Choose log-link [image: there is no content]and assume the following: There is given a fixed covariance matrix Σ of the form Equation (8) having positive definite Schur complements [image: there is no content]and [image: there is no content].


	Conditionally, given parameter vector [image: there is no content], the random vectors [image: there is no content]are independent for different accident years [image: there is no content]with



[image: there is no content]









	The parameter vector Θ has prior distribution



[image: there is no content]








with prior mean [image: there is no content]and symmetric positive definite prior covariance matrix [image: there is no content].






We first merge all accident years [image: there is no content] to one random vector



[image: there is no content]








which has conditional distribution


[image: there is no content]








for an appropriate matrix [image: there is no content] and covariance matrix [image: there is no content]. The following lemma is crucial, we refer to Corollary 4.3 in [6].

Lemma 5. 
Under Assumption 5 the random vector [image: there is no content]has a multivariate Gaussian distribution given by



ζ=ΞΘ∼Nμ=Bθθ,S=Σ++BTB′BTTB′T.










An easy consequence of Lemma 5 is the following marginal distribution



[image: there is no content]








This shows that, in the Bayesian multivariate normal model with Gaussian priors, we can completely “integrate out” the hierarchy of parameters Θ. However, we keep the hierarchy of parameters in order to obtain Bayesian parameter estimates for Θ.

Denote the dimension of ζ by [image: there is no content]. Choose [image: there is no content] with [image: there is no content]. Denote by [image: there is no content] and [image: there is no content] the projections such that we obtain a disjoint decomposition of the components of ζ



ζ↦[image: there is no content],[image: there is no content]=[image: there is no content]ζ,Pvζ.



(16)




The random vector [image: there is no content] has a multivariate Gaussian distribution with expected values



μt=E[image: there is no content]=[image: there is no content]μandμv=E[image: there is no content]=Pvμ,








and with covariance matrices


St=Cov[image: there is no content]=[image: there is no content]SPt′,Sv=Cov[image: there is no content]=PvSPv′,Sv,t′=St,v=Cov[image: there is no content],[image: there is no content]=[image: there is no content]SPv′.








The projections in Equation (16) only describe a permutation of the components of ζ. In complete analogy to Lemma 1 we have the following lemma.


Lemma 6. 
Under Assumption 5, the random vector [image: there is no content]has a multivariate Gaussian distribution with the first two conditional moments given by



μvpost=E[image: there is no content][image: there is no content]=μv+Sv,tSt−1[image: there is no content]−μt,Svpost=Cov[image: there is no content][image: there is no content]=Sv−Sv,tSt−1St,v.










This lemma allows us to estimate the parameters and calculate the predictions at time J, conditionally given observations



[image: there is no content]=[image: there is no content];0≤i≤J,0≤j≤J;i+j≤J,[image: there is no content]=Ii.j;0≤i≤J,0≤j≤J;i+j≤J,[image: there is no content]=[image: there is no content]∪[image: there is no content].








Choose [image: there is no content] and [image: there is no content] and denote by [image: there is no content] the projection of ζ onto the components [image: there is no content] and [image: there is no content] with [image: there is no content]. These are exactly the components that generate information [image: there is no content]. Lemma 6 allows us to calculate the posterior distribution of [image: there is no content], conditionally given [image: there is no content]. We split this calculation into two parts, one for parameter estimation and one for claims prediction. We consider therefore the following projection



PΘ∈R2(J+1)×vwithPΘ[image: there is no content]=Θ.








This projection extracts the parameter vector Θ from the unobserved components [image: there is no content].


Corollary 3 
(parameter estimation). Under Assumption 5, the Bayesian estimator for the parameter vector Θ is at time J given by



θpost=EΘ[image: there is no content]=PΘμvpost.










This can now be compared to the individual estimates



[image: there is no content]



(17)




where for [image: there is no content] we either condition on [image: there is no content] or on [image: there is no content].


6. Claims Prediction and Prediction Uncertainty

For the prediction of the total claim amount of accident year i, we have two different possibilities, either we use the predictor of cumulative payments [image: there is no content] or the one of incurred claims [image: there is no content]. Naturally, these two predictors differ and the Munich chain-ladder method exactly aims at diminishing this difference by including the incurred-paid and paid-incurred ratios, see Remark 2 and [1]. Choose the log-link [image: there is no content], then we calculate for [image: there is no content] the best predictors



E[image: there is no content][image: there is no content]=[image: there is no content]Eexp∑l=J−i+1Jξi,lP[image: there is no content],








and


E[image: there is no content][image: there is no content]=Ii,J−iEexp∑l=J−i+1Jξi,lI[image: there is no content].








Assume again that [image: there is no content] exactly corresponds to the observations in [image: there is no content]. Then we define for [image: there is no content] and [image: there is no content] the linear maps



Gi*∈R1×vwithGi*[image: there is no content]=∑l=J−i+1Jξi,l*.








This is the sum of the unobserved components of accident year i at time J for cumulative payments and incurred claims, respectively.


Theorem 4 
(modified Munich chain-ladder (mMCL) predictors). Under Assumption 5, the Bayesian predictors for the total claim amount of accident year [image: there is no content]at time J are



P^i,JmMCL=E[image: there is no content][image: there is no content]=[image: there is no content]expGiPμvpost+GiPSvpost(GiP)′/2,








and


I^i,JmMCL=E[image: there is no content][image: there is no content]=Ii,J−iexpGiIμvpost+GiISvpost(GiI)′/2.








The conditional mean-square error of prediction is given by


msep∑i=1J[image: there is no content]|[image: there is no content]∑i=1JP^i,JmMCL=Var∑i=1J[image: there is no content][image: there is no content]=∑i,k=1JP^i,JmMCLP^k,JmMCLexpGiPSvpost(GkP)′−1,








and analogously for incurred claims msep∑i=1J[image: there is no content]|[image: there is no content](∑i=1JI^i,JmMCL).


This can now again be compared to the individual predictors



P^i,JHCL=E[image: there is no content][image: there is no content]andI^i,JHCL=E[image: there is no content][image: there is no content],



(18)




and the corresponding conditional mean-square errors of prediction. Note that these individual predictors correspond to the predictors in the model of Hertig [7] under Gaussian prior assumptions for the (unknown) mean parameters. Predictors and prediction uncertainty of Equation (18) can (easily) be obtained from Theorem 4 using the particular choice [image: there is no content] in Σ.
Before we give a numerical example, we briefly describe these predictors. The likelihood function of Assumption 5 is given by



L(Ξ,Θ)=1(2π)2(J+1)2/2det(Σ+)1/2exp−12(Ξ−BΘ)′(Σ+)−1(Ξ−BΘ)×1(2π)2(J+1)/2det(T)1/2exp−12(Θ−θ)′T−1(Θ−θ).








Under the additional assumption of diagonal matrices



[image: there is no content]



(19)




we obtain log-likelihood (we drop all normalizing constants)


logL(Ξ,Θ)∝−12∑[image: there is no content]J∑i=0J[image: there is no content]−ΘjP2(sjP)2+ΘjP−θjP2(tjP)2+∑i=0J[image: there is no content]−ΘjI2(sjI)2+ΘjI−θjI2(tjI)2.








From this, we see that the Bayesian estimators of the parameters are for [image: there is no content] and [image: there is no content] under Equation (19) given by, see also Corollary 3,



EΘj*[image: there is no content]=[image: there is no content][image: there is no content]+(1−[image: there is no content])[image: there is no content],








with prior mean [image: there is no content], and empirical mean [image: there is no content] and credibility weight [image: there is no content] given by


[image: there is no content]=1I−j+1∑i=0J−iξi,j*and[image: there is no content]=J−i+1J−i+1+(σj*/tj*)2.








If we now let the prior information become non-informative, i.e., [image: there is no content], we obtain estimate



lim[image: there is no content]EΘj*[image: there is no content]=[image: there is no content],



(20)




and posterior variances [image: there is no content]. In view of Theorem 4, this provides under Equation (19) and in the non-informative prior limit


[image: there is no content]



(21)




where the latter identity defines the chain-ladder parameter estimates [image: there is no content] for our model. This is exactly the chain-ladder predictor obtained in Hertig’s log-normal chain-ladder model, see formula (5.9) in [7]. The corresponding result also holds true for incurred claims under Equation (19).
As was investigated by Quarg and Mack [1], see also Remark 2 above and Figure 1 below, we expect positive dependence between cumulative payment residuals and incurred-paid ratios (and between incurred claims residuals and paid-incurred ratios). This will be reflected by a covariance matrix choice Σ that does not have diagonal form Equation (19) but a general off-diagonal matrix A in Equation (8) such that the Schur complements are positive definite (see Assumption 5). In this case, the best predictors are provided by Theorem 4. They do not have a simple form (though their calculation is straightforward using matrix algebra). We will compare these predictors to the Munich chain-ladder predictors Equation (15) which are non-optimal in our context (see Theorem 3).

Figure 1. (lhs) Incurred-paid residuals obtained from [image: there is no content]=[image: there is no content]/[image: there is no content], see Remark 2, versus claims payments residuals obtained from [image: there is no content], straight line has slope [image: there is no content]; (rhs) paid-incurred residuals obtained from Qi,j=[image: there is no content]/[image: there is no content]versus incurred claims residuals obtained from [image: there is no content], straight line has slope [image: there is no content].



[image: Risks 03 00624 g001 1024]







7. Example

We provide an explicit example which is based on the original data of Quarg and Mack [1], the data is provided in the Appendix A. We calculate for this data set Hertig’s chain-ladder (HCL) reserves according to Equations (18) and (21), the reserves in the modified Munich chain-ladder (mMCL) method of Theorem 4 and the (non-optimal) log-normal Munich chain-ladder (LN–MCL) reserves Equation (15) (according to Assumption 4). These reserves are based on the Bayesian multivariate log-normal framework of Assumption 5 with log-link [image: there is no content]. For comparison purposes, we also provide the classical chain-ladder (CL) reserves together with the Quarg and Mack Munich chain-ladder reserves (QM–MCL); these two latter methods differ from our results because of the different variance assumption in Assumption 1. In order to have comparability between the different approaches, we choose non-informative priors [image: there is no content] in the former Bayesian methods, see also Equations (20) and (19).

First, we need to estimate the parameters in the log-normal model of Assumption 5. For [image: there is no content] and [image: there is no content], we choose the sample standard deviations of the observed log-link ratios [image: there is no content] and [image: there is no content], [image: there is no content], with the usual exponential extrapolation for the last period [image: there is no content]. Using these sample estimators, we calculate the posterior means [image: there is no content] and [image: there is no content] using Corollary 3 under choice [image: there is no content]. In the non-informative prior limit, these posterior means are given by Equation (21) (and similarly for incurred claims). This then allows one to calculate Hertig’s chain-ladder parameters [image: there is no content] and [image: there is no content], see Equation (21). These parameters are provided in Table 1. Note that these chain-ladder factors differ from the ones in the classical chain-ladder model because of the different variance assumptions.

Table 1. Sample standard deviations [image: there is no content] and [image: there is no content]; posterior means [image: there is no content] and [image: there is no content] obtained from Corollary 3, see also Equation (21); and Hertig’s chain-ladder estimates [image: there is no content] and [image: there is no content] according to Equation (21).


	a.y. i/d.y. j
	0
	1
	2
	3
	4
	5
	6





	[image: there is no content]
	7.2195
	0.9163
	0.1203
	0.0296
	0.0216
	0.0205
	0.0137



	[image: there is no content]
	0.4972
	0.1600
	0.0515
	0.0069
	0.0036
	0.0101
	0.0036



	[image: there is no content]
	1,573
	2.5376
	1.1296
	1.0301
	1.0219
	1.0208
	1.0138



	[image: there is no content]
	7.8404
	0.5151
	0.0137
	0.0003
	0.0115
	−0.0090
	−0.0037



	[image: there is no content]
	0.5182
	0.1503
	0.0406
	0.0146
	0.0022
	0.0180
	0.0022



	[image: there is no content]
	2,963
	1.6959
	1.0148
	1.0004
	1.0116
	0.9912
	0.9963










Using these parameters, we calculate the HCL reserves (prediction minus the last observed cumulative payments [image: there is no content] at time J), and for comparison purposes we provide the classical CL reserves. These results are provided in Table 2. The main observation is that there are quite substantial differences between the HCL reserves from cumulative payments of 6,205 and the HCL reserves from incurred claims of 7,730, see Table 2. This also holds true for the classical CL reserves 5,938 versus 7,503. This gap mainly comes from the last accident year [image: there is no content] because incurred claims observation [image: there is no content] is comparably high. We also note that the HCL reserves are more conservative than the classical CL ones. This mainly comes from the variance correction that enters the mean of log-normal random variables, see Equation (21).


Table 2. Resulting reserves from the Hertig’s chain-ladder (HCL) method based on paid and incurred; from the log-normal Munich chain-ladder (LN–MCL) method based on paid and incurred; from the modified Munich chain-ladder (mMCL) paid method; the classical chain-ladder (CL) method based on paid and incurred (inc.); and the Quarg and Mack Munich chain-ladder (QM–MCL) method paid and incurred.



	
a.y. i

	
HCL

	
LN-MCL

	
mMCL

	
CL

	
QM-MCL




	
paid

	
inc.

	
paid

	
inc.

	
paid

	
paid

	
inc.

	
paid

	
inc.






	
1

	
32

	
97

	
35

	
95

	
16

	
32

	
97

	
35

	
96




	
2

	
157

	
92

	
92

	
147

	
115

	
158

	
88

	
103

	
135




	
3

	
337

	
286

	
262

	
346

	
375

	
332

	
276

	
269

	
326




	
4

	
416

	
201

	
289

	
330

	
382

	
408

	
191

	
289

	
302




	
5

	
925

	
459

	
656

	
688

	
906

	
924

	
466

	
646

	
655




	
6

	
4,339

	
6,594

	
5,395

	
5,534

	
5,130

	
4,084

	
6,385

	
5,505

	
5,606




	
total

	
6’205

	
7’730

	
6’729

	
7’140

	
6’924

	
5’938

	
7’503

	
6’847

	
7’120









To bridge this gap between the cumulative payments and the incurred claims methods we study the other reserving methods. We start with the LN–MCL method under the log-normal assumptions of Assumption 4. First we determine the correlation parameters. We use the estimators of Section 3.1.2 in [1] with changed variance functions. This provides estimates [image: there is no content] and [image: there is no content]. Note that this exactly corresponds to the positive linear dependence illustrated in Figure 1; Quarg and Mack [1] obtain under their (changed) variance assumption 64% and 44%, respectively, which is in line with our findings. Using these estimates we can then calculate the reserves in our LN–MCL method and in Quarg-Mack’s QM–MCL method. The results are provided in Table 2. We observe that the gap between the cumulative payments reserves of 6,729 and the incurred claims reserves of 7,140 becomes more narrow due to the correction factors. The same holds true for QM–MCL with reserves 6,847 and 7,120, respectively. Moreover, both models LN–MCL and QM–MCL provide rather close results, though their model assumptions differ in the variance assumption.





Finally, we study the modified Munich chain-ladder method mMCL of Assumption 5, see Theorem 4. We therefore need to specify the off-diagonal matrix [image: there is no content], see Equation (8). A first idea to calibrate this matrix A is to use correlation estimate [image: there is no content] from the LN-MCL method. A crude approximation using Theorem 3 provides



49%=λ^P≈Corr[image: there is no content],[image: there is no content][image: there is no content]≈∑k=0jaj+1,kσj+1P∑k=0j(σkI)21/2=∑k=0jCorr([image: there is no content],ξi,kI)σkI∑k=0j(σkI)21/2.








From this, we see that in our numerical example we need comparatively high correlations, for instance, Corr([image: there is no content],ξi,kI)≥40% would be in line with [image: there is no content]. The difficulty with this choice is that the resulting matrix Σ of type Equation (8) is not positive definite. Therefore, we need to choose smaller correlations. We do the following choice for all [image: there is no content]



Corr([image: there is no content],[image: there is no content])=40%form=1,30%form=2,20%form=3,



(22)




and 0% otherwise. This provides a positive definite choice for Σ of type Equation (8) in our example. This choice means that we can learn from incurred claims observations [image: there is no content] (which relate to residuals [image: there is no content]) for cumulative payments observations [image: there is no content] with development lags [image: there is no content], but no other conclusions can be drawn from other observations. Note that, in this example, we only use correlation choices Equation (22), but no similar choice for Corr(ξi,j+mI,[image: there is no content]) is done. The reason is that if we choose positive correlations for the latter, in general, Σ is not positive definite. This shows that requirement Equation (8) is rather restrictive and we expect that data usually does not satisfy Assumption 1, because both plots in Figure 1 show a positive slope.
The resulting mMCL reserves



R^imMCL=P^i,JmMCL−[image: there is no content],








according to Theorem 4, are provided in Table 2. Correlation choice Equation (22) means that we learn from incurred claims, which are above average for accident year [image: there is no content]. This substantially increases the mMCL reserves based on cumulative payments to 6’924. Note that we do not provide the values for incurred claims: positive definiteness of Σ restricts Corr(ξi,j+mI,[image: there is no content])=0 (under Equation (22)) which implies that we obtain almost identical values to the HCL incurred reserves for I^i,JmMCL−[image: there is no content].
Finally, we analyze the prediction uncertainty measured by the square-rooted conditional mean square error of prediction. The results are provided in Table 3.

Table 3. Resulting reserves and square-rooted conditional mean square error of prediction of the different chain-ladder methods. * is calculated from Equation (23).







	
	Reserves
	msep1/2





	Hertig’s chain-ladder HCL paid
	6,205
	1,249



	Hertig’s chain-ladder HCL incurred
	7,730
	1,565



	log-normal Munich chain-ladder LN–MCL paid
	6,729
	1,224*



	log-normal Munich chain-ladder LN–MCL incurred
	7,140
	1,673*



	modified Munich chain-ladder mMCL paid
	6,924
	1,208



	modified Munich chain-ladder mMCL incurred
	7,730
	1,565



	classical chain-ladder CL paid
	5,938
	994



	classical chain-ladder CL incurred
	7,503
	995



	Quarg-Mack Munich chain-ladder QM–MCL paid
	6,847
	n/a



	Quarg-Mack Munich chain-ladder QM–MCL incurred
	7,120
	n/a








The prediction uncertainties of the HCL reserves and of the mMCL reserves were calculated according to Theorem 4. For the former (HCL reserves), we simply need to set [image: there is no content]. We see that the uncertainties in the modified version for cumulative payments are reduced from 1’249 to 1’208 because correlations Equation (22) imply that we can learn from incurred claims for cumulative payments. For incurred claims, they remain (almost) invariant because of choices [image: there is no content] for [image: there is no content].

We can now calculate the prediction uncertainty for the LN–MCL method (which is still an open problem). Within Assumption 5, we know that the mMCL predictor is optimal, therefore, we obtain prediction uncertainty for the LN–MCL method



msep∑i[image: there is no content]|[image: there is no content]∑iP^i,JMCL=msep∑i[image: there is no content]|[image: there is no content]∑iP^i,JmMCL+∑iP^i,JMCL−∑iP^i,JmMCL2,



(23)




and similarly for incurred claims. The second term in Equation (23) is the approximation error because the LN–MCL predictor is non-optimal within Assumption 5.


To resume, the modified Munich chain-ladder method for cumulative payments and under assumption Equation (8) provides in our example, claims reserves that are between the HCL paid and the HCL incurred reserves (as requested). Moreover, it provides the smallest prediction uncertainty among the methods based on multivariate normal distributions. This is because, in contrast to the HCL paid and HCL incurred methods, it simultaneously considers the entire information [image: there is no content], and because there is no bias (approximation error) compared LN–MCL paid and LN–MCL incurred. These conclusions are always based on the validity of Assumption 5 which is the weakness of the method because real data typically requires different covariance matrix choices than Equation (8).



8. Conclusions

We have studied the Munich chain-ladder axioms of Quarg and Mack [1] under the moment assumptions of Assumption 1. In a multivariate log-normal modeling framework, this provides rather restrictive covariance matrix Σ requirements, see Equation (8), so that Assumption 1 is simultaneously fulfilled for cumulative payments and incurred claims. For instance, a reasonable choice of Σ for the data of Quarg and Mack [1] will differ from structure Equation (8), see Section 7 where a simultaneous choice of Equation (22) for cumulative payments and a similar choice for incurred claims would lead to a covariance matrix Σ that is not positive definite.

If Equation (8) holds, then there exists a consistent Munich chain-ladder framework, see Assumption 3, for which we can analyze claims reserves and their prediction uncertainty, see Theorem 4. Moreover, the Munich chain-ladder predictor is non-optimal in this framework, see Theorem 2, and the approximation error is provided in Theorem 3.
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Appendix


A. Data of Quarg and Mack [1]






Table A2. Observed incurred claims [image: there is no content], [image: there is no content], source Quarg and Mack [1].












	a.y. i/d.y. j
	0
	1
	2
	3
	4
	5
	6





	0
	978
	2,104
	2,134
	2,144
	2,174
	2,182
	2’174



	1
	1,844
	2,552
	2,466
	2,480
	2,508
	2,454
	



	2
	2,904
	4,354
	4,698
	4,600
	4,644
	
	



	3
	3,502
	5,958
	6,070
	6,142
	
	
	



	4
	2,812
	4,882
	4,852
	
	
	
	



	5
	2,642
	4,406
	
	
	
	
	



	6
	5,022
	
	
	
	
	
	









B. Inverse Matrix Σ[1]

Consider the matrix



[image: there is no content]=(s0P)200(s1P)2[image: there is no content][image: there is no content][image: there is no content][image: there is no content][image: there is no content][image: there is no content][image: there is no content][image: there is no content](s0I)200(s1I)2.








Set



b0,0=(s0I)2−a0,02/(s0P)2−a1,02/(s1P)2,b1,1=(s1I)2−a0,12/(s0P)2−a1,12/(s1P)2,b0,1=−[image: there is no content][image: there is no content]/(s0P)2−[image: there is no content][image: there is no content]/(s1P)2.








The inverse matrix of [image: there is no content] is given by



[image: there is no content]−1=1(s0P)2+b0,0a0,12−2b0,1[image: there is no content][image: there is no content]+b1,1a0,02(b0,0b1,1+b0,12)(s0P)4b0,0[image: there is no content][image: there is no content]−b0,1([image: there is no content][image: there is no content]+[image: there is no content][image: there is no content])+b1,1[image: there is no content][image: there is no content](b0,0b1,1−b0,12)(s0P)2(s1P)2b0,0[image: there is no content][image: there is no content]−b0,1([image: there is no content][image: there is no content]+[image: there is no content][image: there is no content])+b1,1[image: there is no content][image: there is no content](b0,0b1,1−b0,12)(s0P)2(s1P)21(s1P)2+b0,0a1,12−2b0,1[image: there is no content][image: there is no content]+b1,1a1,02(b0,0b1,1+b0,12)(s1P)4b0,1[image: there is no content]−b1,1[image: there is no content](b0,0b1,1−b0,12)(s0P)2−b0,0[image: there is no content]+b0,1[image: there is no content](b0,0b1,1−b0,12)(s0P)2b0,1[image: there is no content]−b1,1[image: there is no content](b0,0b1,1−b0,12)(s1P)2−b0,0[image: there is no content]+b0,1[image: there is no content](b0,0b1,1−b0,12)(s1P)2b0,1[image: there is no content]−b1,1[image: there is no content](b0,0b1,1−b0,12)(s0P)2b0,1[image: there is no content]−b1,1[image: there is no content](b0,0b1,1−b0,12)(s1P)2−b0,0[image: there is no content]+b0,1[image: there is no content](b0,0b1,1−b0,12)(s0P)2−b0,0[image: there is no content]+b0,1[image: there is no content](b0,0b1,1−b0,12)(s1P)2b1,1b0,0b1,1−b0,12−b0,1b0,0b1,1−b0,12−b0,1b0,0b1,1−b0,12b0,0b0,0b1,1−b0,12.
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