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Abstract: In insurance and related industries including healthcare, it is common to have several
outcome measures that the analyst wishes to understand using explanatory variables. For example, in
automobile insurance, an accident may result in payments for damage to one’s own vehicle, damage
to another party’s vehicle, or personal injury. It is also common to be interested in the frequency of
accidents in addition to the severity of the claim amounts. This paper synthesizes and extends the
literature on multivariate frequency-severity regression modeling with a focus on insurance industry
applications. Regression models for understanding the distribution of each outcome continue to
be developed yet there now exists a solid body of literature for the marginal outcomes. This paper
contributes to this body of literature by focusing on the use of a copula for modeling the dependence
among these outcomes; a major advantage of this tool is that it preserves the body of work established
for marginal models. We illustrate this approach using data from the Wisconsin Local Government
Property Insurance Fund. This fund offers insurance protection for (i) property; (ii) motor vehicle;
and (iii) contractors’ equipment claims. In addition to several claim types and frequency-severity
components, outcomes can be further categorized by time and space, requiring complex dependency
modeling. We find significant dependencies for these data; specifically, we find that dependencies
among lines are stronger than the dependencies between the frequency and average severity within
each line.

Keywords: tweedie distribution; copula regression; government insurance; dependency modeling;
inflated count model

1. Introduction and Motivation

Many insurance data sets feature information about how often claims arise, the frequency,
in addition to the claim size, the severity. Observable responses can include:

• N, the number of claims (events),
• yk, k = 1, ..., N, the amount of each claim (loss), and
• S = y1 + · · ·+ yN , the aggregate claim amount.

By convention, the set {yj} is empty when N = 0.

Importance of Modeling Frequency. The aggregate claim amount S is the key element for an insurer’s
balance sheet, as it represents the amount of money paid on claims. So, why do insurance companies
regularly track the frequency of claims as well as the claim amounts? As in an earlier review [1], we
can segment these reasons into four categories: (i) features of contracts; (ii) policyholder behavior and
risk mitigation; (iii) databases that insurers maintain; and (iv) regulatory requirements.
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1. Contractually, it is common for insurers to impose deductibles and policy limits on a per
occurrence and on a per contract basis. Knowing only the aggregate claim amount for each
policy limits any insights one can get into the impact of these contract features.

2. Covariates that help explain insurance outcomes can differ dramatically between frequency
and severity. For example, in healthcare, the decision to utilize healthcare by individuals
(the frequency) is related primarily to personal characteristics whereas the cost per user (the
severity) may be more related to characteristics of the healthcare provider (such as the physician).
Covariates may also be used to represent risk mitigation activities whose impact varies by
frequency and severity. For example, in fire insurance, lightning rods help to prevent an accident
(frequency) whereas fire extinguishers help to reduce the impact of damage (severity).

3. Many insurers keep data files that suggest developing separate frequency and severity models.
For example, insurers maintain a “policyholder” file that is established when a policy is written.
A separate file, often known as the “claims” file, records details of the claim against the insurer,
including the amount. These separate databases facilitate separate modeling of frequency
and severity.

4. Insurance is a closely monitored industry sector. Regulators routinely require the reporting of
claims numbers as well as amounts. Moreover, insurers often utilize different administrative
systems for handling small, frequently occurring, reimbursable losses, e.g., prescription drugs,
versus rare occurrence, high impact events, e.g., inland marine. Every insurance claim means
that the insurer incurs additional expenses suggesting that claims frequency is an important
determinant of expenses.

Importance of Including Covariates. In this work, we assume that the interest is in the joint modeling
of frequency and severity of claims. In actuarial science, there is a long history of studying frequency,
severity and the aggregate claim for homogeneous portfolios; that is, identically and independently
distributed realizations of random variables. See any introductory actuarial text, such as [2], for
an introduction to this rich literature.

In contrast, the focus of this review is to assume that explanatory variables (covariates, predictors)
are available to the analyst. Historically, this additional information has been available from
a policyholder’s application form, where various characteristics of the policyholder were supplied
to the insurer. For example, in motor vehicle insurance, classic rating variables include the age
and sex of the driver, type of the vehicle, region in which the vehicle was driven, and so forth.
The current industry trend is towards taking advantage of “big data”, with attempts being made
to capture additional information about policyholders not available from traditional underwriting
sources. An important example is the inclusion of personal credit scores, developed and used in
the industry to assess the quality of personal loans, that turn out to also be important predictors
of motor vehicle claims experience. Moreover, many insurers are now experimenting with global
positioning systems combined with wireless communication to yield real-time policyholder usage data
and much more. Through such systems, they gather micro data such as the time of day that the car is
driven, sudden changes in acceleration, and so forth. This foray into detailed information is known as
“telematics”. See, for example, [3] for further discussion.

Importance of Multivariate Modeling. To summarize reasons for examining insurance outcomes on
a multivariate basis, we utilize an earlier review in [4]. In that paper, frequencies were restricted to
binary outcomes, corresponding to a claim or no claim, known as “two-part” modeling. In contrast, this
paper describes more general frequency modeling, although the motivation for examining multivariate
outcomes are similar. Analysts and managers gain useful insights by studying the joint behavior of
insurance risks, i.e., a multivariate approach:

• For some products, insurers must track payments separately by component to meet contractual
obligations. For example, in motor vehicle coverage, deductibles and limits depend on the
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coverage type, e.g., bodily injury, damage to one’s own vehicle, or damage to another party;
is natural for the insurer to track claims by coverage type.

• For other products, there may be no contractual reasons to decompose an obligation by
components and yet the insurer does so to help better understand the overall risk. For example,
many insurers interested in pricing homeowners insurance are now decomposing the risk by
“peril”, or cause of loss. Homeowners is typically sold as an all-risk policy, which covers all causes
of loss except those specifically excluded. By decomposing losses into homogenous categories of
risk, actuaries seek to get a better understanding of the determinants of each component, resulting
in a better overall predictor of losses.

• It is natural to follow the experience of a policyholder over time, resulting in a vector of
observations for each policyholder. This special case of multivariate analysis is known as “panel
data”, see, for example, [5].

• In the same fashion, policy experience can be organized through other hierarchies. For example,
it is common to organize experience geographically and analyze spatial relationships.

• Multivariate models in insurance need not be restricted to only insurance losses. For example,
a study of term and whole life insurance ownership is in [6]. As an example in customer retention,
both [7,8] advocate for putting the customer at the center of the analysis, meaning that we need to
think about the several products that a customer owns simultaneously.

An insurer has a collection of multivariate risks and the interest is managing the distribution of
outcomes. Typically, insurers have a collection of tools that can then be used for portfolio management
including deductibles, coinsurance, policy limits, renewal underwriting, and reinsurance arrangements.
Although pricing of risks can often focus on the mean, with allowances for expenses, profit, and “risk
loadings”, understanding capital requirements and firm solvency requires understanding of the
portfolio distribution. For this purpose, it is important to treat risks as multivariate in order to get
an accurate picture of their dependencies.

Dependence and Contagion. We have seen in the above discussion that dependencies arise naturally
when modeling insurance data. As a first approximation, we typically think about risks in a portfolio
as being independent from one another and rely upon risk pooling to diversify portfolio risk. However,
in some cases, risks share common elements such as an epidemic in a population, a natural disaster
such as a hurricane that affects many policyholders simultaneously, or an interest rate environment
shared by policies with investment elements. These common (pandemic) elements, often known as
“contagion”, induce dependencies that can affect a portfolio’s distribution significantly.

Thus, one approach is to model risks as univariate outcomes but to incorporate dependencies
through unobserved “latent” risk factors that are common to risks within a portfolio. This approach
is viable in some applications of interest. However, one can also incorporate contagion effects into
a more general multivariate approach that we adopt this view in this paper. We will also consider
situations where data are available to identify models and so we will be able to use the data to guide
our decisions when formulating dependence models.

Modeling dependencies is important for many reasons. These include:

1. Dependencies may impact the statistical significance of parameter estimates.
2. When we examine the distribution of one variable conditional on another, dependencies

are important.
3. For prediction, the degree of dependency affects the degree of reliability of our predictions.
4. Insurers want to construct products that do not expose them to extreme variation. They want to

understand the distribution of a product that has many identifiable components; to understand
the distribution of the overall product, one strategy is to describe the distribution of each product
and a relationship among the distributions.

A recent review paper [3] provides additional discussion.
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Plan for the Paper. The following is a plan to introduce readers further to the topic. Section 2 gives
a brief overview of univariate models, that is, regression models with a single outcome for a response.
This section sets the tone and notation for the rest of the paper. Section 3 provides an overview of
multivariate modeling, focusing on the “copula” regression approach described here. This section
discusses continuous, discrete, and mixed (Tweedie) outcomes. For our regression applications, the
focus is mainly on a family of copulas known as “elliptical”, because of their flexibility of modeling
pairwise dependence and wide usages in multivariate analysis. Section 3 also summarizes a modeling
strategy for the empirical approach of copula regression.

Section 4 reviews other recent work on multivariate frequency-severity model and describes the
benefits of diversification, particularly important in an insurance context. To illustrate our ideas and
approach, Sections 5 and 6 provide our analysis using data from the Wisconsin Local Government
Property Insurance Fund. Section 7 concludes with a few closing remarks.

2. Univariate Foundations

For notation, define N for the random number of claims, S for the aggregate claim amount, and
S̄ = S/N for the average claim amount (defined to be 0 when N = 0). To model these outcomes, we
use a collection of covariates x, some of which may be useful for frequency modeling whereas others
will be useful for severity modeling. The dependent variables N, S, and S̄ as well as covariates x vary
by the risk i = 1, . . . , n. For each risk, we also are interested in multivariate outcomes indexed by
j = 1, . . . , p. So, for example, Ni = (Ni1, . . . , Nip)

′ represents the vector of p claim outcomes from the
ith risk.

This section summarizes modeling approaches for a single outcome (p = 1). A more detailed
review can be found in [1].

2.1. Frequency-Severity

For modeling the joint outcome (N, S) (or equivalently, (N, S̄)), it is customary to first condition
on the frequency and then modeling the severity. Suppressing the {i} subscript, we decompose the
distribution of the dependent variables as:

f(N, S) = f(N) × f(S|N) (1)

joint = frequency × conditional severity,

where f(N, S) denotes the joint distribution of (N, S). Through this decomposition, we do not require
independence of the frequency and severity components.

There are many ways to model dependence when considering the joint distribution f(N, S) in
Equation (1). For example, one may use a latent variable that affects both frequency N and loss
amounts S, thus inducing a positive association. Copulas are another tool used regularly by actuaries
to model non-linear associations and will be described in subsequent Section 4. The conditional
probability framework is a natural method of allowing for potential dependencies and provides a
good starting platform for empirical work.

2.2. Modeling Frequency Using GLMs

It has become routine for actuarial analysts to model the frequency Ni based on covariates xi
using generalized linear models, GLMs, cf., [9]. For binary outcomes, logit and probit forms are
most commonly used, cf., [10]. For count outcomes, one begins with a Poisson or negative binomial
distribution. Moreover, to handle the excessive number of zeros relative to that implied by these
distributions, analysts routinely examine zero-inflated models, as described in [11].

A strength of GLMs relative to other non-linear models is that one can express the mean as a simple
function of linear combinations of the covariates. In insurance, it is common to use a “logarithmic
link” for this function and so express the mean as µi = E Ni = exp(x′iβ), where β is a vector of
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parameters associated with the covariates. This function is used because it yields desirable parameter
interpretations, seems to fit data reasonably well, and ties well with other approaches traditionally
used in actuarial ratemaking applications [12].

It is also common to identify one of the covariates as an “exposure” that is used to calibrate the size
of a potential outcome variable. In frequency modeling, the mean is assumed to vary proportionally
with Ei, for exposure. To incorporate exposures, we specify one of the explanatory variables to be ln Ei
and restrict the corresponding regression coefficient to be 1; this term is known as an offset. With this
convention, we have

ln µi = ln Ei + x′iβ⇔
µi
Ei

= exp(x′iβ).

Since there are inflated numbers of 0 s and 1 s in our data, a "zero-one-inflated" model is introduced.
As an extension of the zero-inflated method, a zero-one-inflated model employs two generating
processes. The first process is governed by a multinomial distribution that generates structural zeros
and ones. The second process is governed by a Poisson or negative binomial distribution that generates
counts, some of which may be zero or one.

Denote the latent variable in the first process as Ii, i = 1, . . . , n, which follows
a multinomial distribution with possible values 0, 1 and 2 with corresponding probabilities
π0,i, π1,i, π2,i = 1− π0,i − π1,i. Here, Ni is frequency.

Ni ∼


0 Ii = 0

1 Ii = 1

Pi Ii = 2.

Here, Pi may be a Poisson or negative binomial distribution. With this, the probability mass
function of Ni is

fN,i(n) = π0,i I{n=0} + π1,i I{n=1} + π2,iPi(n).

A logit specification is used to parameterize the probabilities for the latent variable Ii. Denote the
covariates associated with Ii as zi. A logit specification is used to parameterize the probabilities for the
latent variable Ii. Using level 2 as a reference, the specification is

log
πj,i

π2,i
= z′iγj, j = 0, 1.

Correspondingly,

πj,i =
exp(z′iγj)

1 + exp(z′iγj) + exp(z′iγj)
, j = 0, 1.

π2,i = 1− π0,i − π1,i

Maximum likelihood estimation is used to fit the parameters.

2.3. Modeling Severity

Modeling Severity Using GLMs. For insurance analysts, one strength of the GLM approach is that
the same set of routines can be used for continuous as well as discrete outcomes. For severities, it is
common to use a gamma or inverse Gaussian distribution, often with a logarithmic link (primarily for
parameter interpretability).

One strength of the linear exponential family that forms the basis of GLMs is that a sample average
of outcomes comes from the same distribution as the outcomes. Specifically, suppose that we have m
independent variables from the same distribution with location parameter θ and scale parameter φ.
Then, the sample average comes from the same distributional family with location parameter θ and
scale parameter φ/m. This result is helpful as insurance analysts regularly face grouped data as well
as individual data. For example, [1] provides a demonstration of this basic property.
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To illustrate, in the aggregate claims model, if individual losses have a gamma distribution with
mean µi and scale parameter φ, then, conditional on observing Ni losses, the average aggregate loss S̄i
has a gamma distribution with mean µi and scale parameter φ/Ni.

Modeling Severity Using GB2. The GLM is the workhorse for industry analysts interested in analyzing
the severity of claims. Naturally, because of the importance of claims severity, a number of alternative
approaches have been explored, cf., [13] for an introduction. In this review, we focus on a specific
alternative, using a distribution family known as the “generalized beta of the second kind”, or GB2,
for short.

A random variable with a GB2 distribution can be written as

eµ

(
G1

G2

)σ

= C1eµFσ = eµ

(
Z

1− Z

)σ

,

where the constant C1 = (α1/α2)
σ, G1 and G2 are independent gamma random variables with

scale parameter 1 and shape parameters α1 and α2, respectively. Further, the random variable F
has an F-distribution with degrees of freedom 2α1 and 2α2, and the random variable Z has a beta
distribution with parameters α1 and α2.

Thus, the GB2 family has four parameters (α1, α2, µ and σ), where µ is the location parameter.
Including limiting distributions, the GB2 encompasses the “generalized gamma” (by allowing α2 → ∞)

and hence the exponential, Weibull, and so forth. It also encompasses the “Burr Type 12” (by
allowing α1 = 1), as well as other families of interest, including the Pareto distributions. The GB2 is
a flexible distribution that accommodates positive or negative skewness, as well as heavy tails. See,
for example, [2] for an introduction to these distributions.

For incorporating covariates, it is straightforward to show that the regression function is of
the form

E (y|x) = C2 exp (µ (x)) = C2 ex′β,

where the constant C2 can be calculated with other (non-location) model parameters. Under the
most commonly used way of parametrization for the GB2, where µ is associated with covariates, if
−α1 < σ < α2, then we have

C2 =
B(α1 + σ, α2 − σ)

B(α1, α2)

where B(α1, α2) = Γ(α1)Γ(α2)/Γ(α1 + α2).
Thus, one can interpret the regression coefficients in terms of a proportional change. That is,

∂ [ln E(y)] /∂xk = βk. In principle, one could allow for any distribution parameter to be a function
of the covariates. However, following this principle would lead to a large number of parameters;
this typically yields computational difficulties as well as problems of interpretations, [14]. In this paper,
µ is used to incorporate covariates. An alternative parametrization, as described in Appendix A.1, is
introduced as an extension of the GLM framework.

2.4. Tweedie Model

Frequency-severity modeling is widely used in insurance applications. However, for simplicity, it
is also common to use only the aggregate loss S as a dependent variable in a regression. Because the
distribution of S typically contains a positive mass at zero representing no claims, and a continuous
component for positive values representing the amount of a claim, a widely used mixture is the
Tweedie (1984) distribution. The Tweedie distribution is defined as a Poisson sum of gamma random
variables. Specifically, suppose that N has a Poisson distribution with mean λ, representing the number
of claims. Let yj be an i.i.d. sequence, independent of N, with each yj having a gamma distribution
with parameters α and β, representing the amount of a claim. Note, β is standard notation for this
parameter used in loss-model textbooks, and the reader should understand it is different from the
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bold-faced β, as the latter is a symbol we will use for the coefficients corresponding to explanatory
variables. Then, S = y1 + . . . + yN is a Poisson sum of gammas.

To understand the mixture aspect of the Tweedie distribution, first note that it is straightforward
to compute the probability of zero claims as Pr(S = 0) = Pr(N = 0) = e−λ. The distribution function
can be computed using conditional expectations,

Pr(S ≤ y) = e−λ +
∞

∑
n=1

Pr(N = n)Pr(Sn ≤ y), y ≥ 0.

Because the sum of i.i.d. gammas is a gamma, Sn = y1 + . . . + yn (not S) has a gamma distribution
with parameters nα and β. For y > 0, the density of the Tweedie distribution is

fS(y) =
∞

∑
n=1

e−λ λn

n!
βnα

Γ(nα)
ynα−1e−yβ.

From this, straight-forward calculations show that the Tweedie distribution is a member of the
linear exponential family. Now, define a new set of parameters µ, φ, P through the relations

λ =
µ2−P

φ(2− P)
, α =

2− P
P− 1

and
1
β
= φ(P− 1)µP−1.

Easy calculations show that

E S = µ and Var S = φµP,

where 1 < P < 2. The Tweedie distribution can also be viewed as a choice that is intermediate between
the Poisson and the gamma distributions.

In the basic form of the Tweedie regression model, the scale (or dispersion) parameter φ is constant.
However, if one begins with the frequency-severity structure, calculations show that φ depends on the
risk characteristics (i, cf., [1]). Because of this and the varying dispersion (heteroscedasticity) displayed
by many data sets, researchers have devised ways of accommodating and/or estimating this structure.
The most common way is the so-called “double GLM” procedure proposed in [15] that models the
dispersion as a known function of a linear combination of covariates (as for the mean, hence the name
“double GLM”).

3. Multivariate Models and Methods

3.1. Copula Regression

Copulas have been applied with GLMs in the biomedical literature since the mid-1990s ([16–18]).
In the actuarial literature, the t-copula and the Gaussian copula with GLMs as marginal distributions
were used to develop credibility predictions in [19]. In more general cases, [20] provides a detailed
introduction of copula regression that focuses on the Gaussian copula and [21] surveys copula
regression applications.

Introducing Copulas. Specifically, a copula is a multivariate distribution function with uniform
marginals. Let U1, . . . , Up be p uniform random variables on (0, 1). Their joint distribution function

C(u1, . . . , up) = Pr(U1 ≤ u1, . . . , Up ≤ up) (2)

is a copula.
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Of course, we seek to use copulas in applications that are based on more than just uniformly
distributed data. Thus, consider arbitrary marginal distribution functions F1(y1), . . . , Fp(yp). Then,
we can define a multivariate distribution function using the copula such that

F(y1, . . . , yp) = C(F1(y1), . . . , Fp(yp)). (3)

If outcomes are continuous, then we can differentiate the distribution functions and write the
density function as

f(y1, . . . , yp) = c(F1(y1), . . . , Fp(yp))
p

∏
j=1

fj(yj), (4)

where fj is the density of the marginal distribution Fj and c is the copula density function.
It is easy to check from the construction in Equation (3) that F(·) is a multivariate distribution

function. Sklar established the converse in [22]. He showed that any multivariate distribution function
F(·) can be written in the form of Equation (3), that is, using a copula representation. Sklar also showed
that, if the marginal distributions are continuous, then there is a unique copula representation. See,
for example, the introductory book to copulas [23,24] for an introduction to copulas from an insurance
perspective and [25] for a comprehensive modern treatment.

Regression with Copulas. In a regression context, we assume that there are covariates x associated
with outcomes y = (y1, . . . , yp)′. In a parametric context, we can incorporate covariates by allowing
them to be functions of the distributional parameters.

Specifically, we assume that there are n independent risks and p outcomes for each risk i,
i = 1, . . . , n. For this section, consider an outcome yi = (yi1, . . . , yip)

′ and K× 1 vector of covariates
xi, where K is the number of covariates. The marginal distribution of yij is a function of xij, βj and θj.
Here, xij is a Kj× 1 vector of explanatory variables for risk i and outcome type j, a subset of xi, and βj is
a Kj × 1 vector of marginal parameters to be estimated. The systematic component x′ijβj determines the
location parameter. The vector θj summarizes additional parameters of the marginal distribution that
determine the scale and shape. Let Fij = F(yij; xij, βj, θj) denote the marginal distribution function.

This describes a classical approach to regression modeling, treating explanatory variances/
covariates as non-stochastic (“fixed”) variables. An alternative is to think of the covariates themselves
as random and perform statistical inference conditional on them. Some advantages of this alternative
approach are that one can model the time-changing behavior of covariates, as in [26], or investigate
non-parametric alternatives, as in [27]. These represent excellent future steps in copula regression
modeling that are not addressed further in this article.

3.2. Multivariate Severity

For continuous severity outcomes, we may consider the density function fij = f(yij; xij, βj, θj)

associated with the distribution function Fij and c the copula density function with parameter vector α.
With this, using Equation (4), the log-likelihood function of the ith risk is written as

li(β, θ, α) =
p

∑
j=1

ln fij + c(Fi1, . . . , Fip; α), (5)

where β = (β1, . . . , βp) and θ = (θ1, . . . , θp) are collections of parameters over the p outcomes. This is
a fully parametric set-up; the usual maximum likelihood techniques enjoy certain optimality properties
and are the preferred estimation method.

If we consider only a single outcome, say yi1, then the associated log-likelihood is ln fi1. Thus,
the set of outcomes y11, . . . , yn1 allows for the usual “root-n” consistent estimator of β1, and similarly
for the other outcomes yij, j = 2 . . . , p. By considering each outcome in isolation of the others, we can
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get desirable estimators of the regression coefficients βj, j = 1, . . . , p. These provide excellent starting
values to calculate the fully efficient maximum likelihood estimators using the log-likelihood from
Equation (5). Joe coined the phrase “inference for margins”, sometimes known by the acronym IFM
in [28], to describe this approach to estimation.

In the same way, one can consider any pair of outcomes, (yij, yik) for j 6= k. This permits consistent
estimation of the marginal regression parameters as well as the association parameters between the
jth and kth outcomes. As with the IFM, this technique provides excellent starting values of a fully
efficient maximum likelihood estimation recursion. Moreover, they provide the basis for an alternative
estimation method known as “composite likelihood”, cf., [29] or [30], for a description in a copula
regression context.

3.3. Multivariate Frequency

If outcomes are discrete, then one can take differences of the distribution function in Equation (3)
to write the probability mass function as

f(y1, . . . , yp) =
2

∑
j1=1
· · ·

2

∑
jp=1

(−1)j1+···+jp C(u1,j1 , . . . , up,jp). (6)

Here, uj,1 = Fj(yj−) and uj,2 = Fj(yj) are the left- and right-hand limits of Fj at yj, respectively.
For example, when p = 2, we have

f(y1, y2) = C(F1(y1), F2(y2))−C(F1(y1−), F2(y2))

−C(F1(y1), F2(y2−)) + C(F1(y1−), F2(y2−)).

It is straightforward in principle to estimate parameters using Equation (6) and standard
maximum likelihood theory.

In practice, two caveats should be mentioned. The first is that the result of [22] only guarantees
that the copula is unique over the range of the outcomes, a point emphasized with several interesting
examples in [31]. In a regression context, this non-identifiability is less likely to be a concern, as noted
in [25,29,30,32]. Moreover, the latter reference emphasizes that the Gaussian copula with binary
data has been used for decades by researchers as this is just another form for the commonly used
multivariate probit.

The second issue is computational. As can be seen in Equation (6), likelihood inference involves
the computation of multidimensional rectangle probabilities. The review article [30] describes several
variations of maximum likelihood that can be useful as the dimension p increases, see also [33].
As in [34], the composite likelihood method is used for computation. For large values of p, the
pair (also known as “vine”) copula approach described in [35] for discrete outcomes seems to be
a promising approach.

3.4. Multivariate Tweedie

As emphasized in [25] (p. 226), in copula regression it is possible to have outcomes that are
combinations of continuous, discrete, and mixture distributions. One case of special interest in
insurance modeling is the multivariate Tweedie, where each marginal distribution is a Tweedie and
the margins are joined by a copula. Specifically, Shi considers different types of insurance coverages
with Tweedie margins in [36] .
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To illustrate the general principles, consider the bivariate case (p = 2). Suppressing the i index
and covariate notation, the joint distribution is

f(y1, y2) =


C(F1(0), F2(0)) y1 = 0, y2 = 0

f (y1)∂1C(F1(y1), F2(0)) y1 > 0, y2 = 0
f (y2)∂2C(F1(0), F2(y2)) y1 = 0, y2 > 0

f (y1) f (y2)c(F1(y1), F2(y2)) y1 > 0, y2 > 0

,

where ∂jC denotes the partial derivative of copula with respect to jth component.
See [36] for additional details of this estimation where he also described a double GLM approach

to accommodate varying dispersion parameters.

3.5. Association Structures and Elliptical Copulas

First consider an outline of the evolution of multivariate regression modeling.

1. The multivariate normal (Gaussian) distribution has provided a foundation for multivariate
data analysis, including regression. By permitting a flexible structure for the mean, one can
readily incorporate complex mean structures including high order polynomials, categorical
variables, interactions, semi-parametric additive structures, and so forth. Moreover, the variance
structure readily permits incorporating time series patterns in panel data, variance components in
longitudinal data, spatial patterns, and so forth. One way to get a feel for the breadth of variance
structures readily accommodated is to examine options in standard statistical software packages
such as PROC Mixed in [37] (for example, the TYPE switch in the RANDOM statement permits the
choice of over 40 variance patterns).

2. In many applications, appropriately modeling the mean and second moment structure (variances
and covariances) suffices. However, for other applications, it is important to recognize the
underlying outcome distribution and this is where copulas come into play. As we have seen,
copulas are available for any distribution function and thus readily accommodate binary, count,
and long-tail distributions that cannot be adequately approximated with a normal distribution.
Moreover, marginal distributions need not be the same, e.g., the first outcome may be a count
Poisson distribution and the second may be a long-tail gamma.

3. Pair copulas (cf., [25]) may well represent the next step in the evolution of regression modeling.
A copula imposes the same dependence structure on all p outcomes whereas a pair copula has the
flexibility to allow the dependence structure itself to vary in a disciplined way. This is done by
focusing on the relationship between pairs of outcomes and examining conditional structures to
form the dependence of the entire vector of outcomes. This approach is useful for high dimensional
outcomes (where p is large), an important developing area of statistics. This represents an excellent
future step in copula regression modeling that is not addressed further in this article.

As described in [25], there is a host of copulas available depending on the interests of the analyst
and the scientific purpose of the investigation. Considerations for the choice of a copula may include
computational convenience, interpretability of coefficients, a latent structure for interpretability, and
a wide range of dependence, allowing both positive and negative associations.

For our applications of regression modeling, we typically begin with the elliptical copula family.
This family is based on the family of elliptical distributions that includes the multivariate normal and
t-distributions, see more in [38].

This family has most of the desirable traits that one would seek in a copula family. From our
perspective, the most important feature is that it permits the same family association matrices found in
the multivariate Gaussian distribution. This not only allows the analyst to investigate a wide degree of
association patterns, but also allows estimation to be accomplished in a familiar way using the same
structure as in the Gaussian family, e.g., [37].
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For example, if the ith risk evolves over time, we might use a familiar time series model to
represent associations, e.g.,

ΣAR1(ρ) =


1 ρ ρ2 ρ3

ρ 1 ρ ρ2

ρ2 ρ 1 ρ

ρ3 ρ2 ρ 1


such as an autoregressive of order 1 (AR1). See [19] for an actuarial application.

For a more complex example, suppose that yi = (yi1, yi2, yi3)
′ represents three types of

expenses for the ith company observed over 4 time periods. Then, we might use the following
dependence structure

Σ =

 ΣAR1(ρ1) σ12Σ12 σ13Σ13

σ12Σ′12 ΣAR1(ρ2) σ23Σ23

σ13Σ′13 σ23Σ′23 ΣAR1(ρ3)

 ,

as in [39]. This is a commonly used specification in models of several time series in econometrics where
σjk represents a cross-sectional association between yij and yik and Σjk represents cross-associations
with time lags.

3.6. Assessing Dependence

Dependence can be assessed at all stages of the model fitting process:

• Copula identification begins after marginal models have been fit. Then, use the “Cox-Snell”
residuals from these models to check for association. Create simple correlation statistics (Spearman,
polychoric) as well as plots (pp and tail dependence plots) to look for dependence structures and
identify a parametric copula.

• After a model identification, estimate the model and examine how well the model fits. Examine
the residuals to search for additional patterns using, for example, correlation statistics and t-plot
(for elliptical copulas). Examine the statistical significance of fitted association parameters to seek
a simpler fit that captures the important tendencies of the data.

• Compare the fitted model to alternatives. Use overall goodness of fit statistics for
comparisons, including AIC and BIC, as well as cross-validation techniques. For nested models,
compare via the likelihood ratio test and use Vuong’s procedure for comparing non-nested
alternative specifications.

• Compare the models based on a held-out sample. Use statistical measures and economically
meaningful alternatives such as the Gini statistic.

In the first and second step of this process, a variety of hypothesis tests and graphical methods
can be employed to identify the specific type of copula (e.g., Archmedian, elliptical, extreme value,
and so forth) that corresponds to the given data. Researchers have developed a graphical tool called
the Kendall plot, or the K-plot for short, to detect dependence. See [40]. To determine whether a joint
distribution corresponds to an Archimedean copula or a specific extreme-value copula, goodness-of-fit
tests developed by [41–44] can be helpful. The reader may also reference [25] for a comprehensive
coverage of the various assessment methods for dependence.

3.7. Frequency-Severity Modeling Strategy

Multivariate frequency-severity modeling strategies are a subset of the usual regression and
copula identification and inference strategies. In absence of a compelling theory to suggest the
appropriate covariates and predictors (which is generally the case for insurance applications), the
modeling strategy consists of model identification, estimation, and inference. Typically, this is done in
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a recursive fashion where one sets aside a random portion of the data for identification and estimation
(the “training” sample), and one proceeds to validate and conduct inference on another portion (the
“test” sample). See, for example, [45] for a description of this and many procedures for variable
selection, mainly in a cross-sectional regression context.

You can think about the identification and estimation procedures as three components in a copula
regression model:

1. Fit the mean structure. Historically, this is the most important aspect. One can apply robust
standard error procedures to get consistent and approximately normally distributed coefficients,
assuming a correct mean structure.

2. Fit the variance structure with a selected distribution. In GLMs, the choice of the distribution
dictates the variance structure that can be over-ruled with a separately specified variance, e.g.,
a “double GLM.”

3. Fit the dependence structure with a choice of copula.

For frequency-severity modeling, there are two mean and variance structures to work with,
one for the frequency and one for the severity.

3.7.1. Identification and Estimation

Although the estimation of parametric copulas is fairly established, the literature on identification
of copulas is still in the early stage of development. As described in Section 3.2, maximum likelihood
is the usual choice with an inference for margins and/or composite likelihood approach for starting
values of the iterations. A description of composite likelihood in the context of copula modeling can be
found in [25]. As noted here, composite likelihood may be particularly useful for multivariate discrete
data when univariate margins have common parameters (p. 233, [25]). Another variation of maximum
likelihood in copula regression is the “maximization by parts” method, as described in [20] and utilized
in [46]. In the context of copula regressions, the idea behind this is to split the likelihood into two pieces,
an easier part corresponding to the marginals and a more difficult part corresponding to the copula.
The estimation routine takes advantage of these differing levels of difficulty in the calculations.

Identification of copula models used in regression typically starts with residuals from marginal
fits. For severities, the idea is to estimate a parametric fit to the marginal distribution, such as normal
or gamma regression. Then, one applies the distribution function (that depends on covariates) to the
observation. Using notation, we can write this as Fi(yi) = ε̂i. This is known as the “probability integral
transformation.” If the model is correctly specified, then the ε̂i has a uniform (0,1) distribution. This is
an idea that dates back to works by Cox and Snell in [47] and so these are often known as “Cox-Snell”
residuals. For copula identification, it is recommended in [25] to take an inverse normal distribution
transform (i.e., Φ−1(ε̂i), for a standard normal distribution function Φ) to produce “normal scores.”

Because of the discreteness with frequencies, these residuals are not uniformly distributed even
if the model is correctly specified. In this case, one can “jitter” the residuals. Specifically, define
a modified distribution function Fi(y, λ) = Pr(Yi < y) + λ Pr(Yi = y) and let V be a uniform random
number that is independent of Yi. Then, we can define the jittered residual to be Fi(yi, V) = ε̃i. If the
model is correctly specified, then jittered residuals have a uniform (0,1) distribution, cf., [48].

Compared to classical residuals, residuals from probability integral transforms have less ability to
guide model development—we can only tell if the marginal models are approximately correct. The
main advantage of this residual is that it is applicable to all (parametric) distributions. If you are
working with a distribution that supports other definitions of residuals, then these are likely to be
more useful because they may tell you how to improve your model specification, not whether or not it
is approximately correct. If the marginal model fit is adequate, then we can think of the residuals as
approximate realizations from a uniform distribution and use standard techniques from copula theory
to identify a copula. We refer to [25] for a summary of this literature.
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3.7.2. Model Validation

After identification and estimation, it is customary to compare a number of alternative models
based on the training and on the test samples. For the training sample, the “in-sample” comparisons
are typically based on the significance of the coefficients, overall goodness of fit measures (including
information criteria such as AIC and BIC), cross-validation, as well as likelihood ratio comparisons
for nested models.

For comparisons among non-nested parametric models, it is now common in the literature to
cite a statistic due to Vuong [49]. For this statistic, one calculates the contribution to the logarithmic
likelihood such as in Equation (5) for two models, say, l(1)i and l(2)i . One prefers Model (1) compared

to Model (2) if the average difference, D̄ = m−1 ∑m
i=1 Di, is positive, where Di = l(1)i − l(2)i

and m is the size of the validation sample. To assess the significance of this difference, one
can apply approximate normality with approximate standard errors given as SDD/

√
m where

SD2
D = (m− 1)−1 ∑m

i=1(Di − D̄)2. In a copula context, see (p. 257, [25]) for a detailed description of this
procedure, where sample size adjustments similar to those used in AIC and BIC are also introduced.

Comparison among models using test data, or “out-of-sample” comparisons are also important
in insurance because many of these models are used for predictive purposes such as setting rates for
new customers. Out-of-sample measures compare held-out observations to those predicted by the
model. Traditionally, absolute values and squared differences have been used to summarize differences
between these two. However, for many insurance data sets, there are large masses at zero, meaning
that these traditional metrics are less helpful. To address this problem, a newer measure is developed
in [50] that they call the “Gini index.” In this context, the Gini index is twice the average covariance
between the predicted outcome and the rank of the predictor. In order to compare models, Theorem 5
of [50] provides standard errors for the difference of two Gini indices.

4. Frequency Severity Dependency Models

In traditional models of insurance data, the claim frequency is assumed to be independent of
claim severity. We emphasize in Appendix A.4 that the average severity may depend on frequency,
even when this classical assumption holds.

One way of modeling the dependence is through the conditioning argument developed in
Section 2.1. An advantage of this approach is that the frequency can be used as a covariate to model
the average severity. See [51] for a healthcare application of this approach. For another application,
a Bayesian approach for modeling claim frequency and size was proposed in [52], with both covariates
as well as spatial random effects taken into account. The frequency was incorporated into the severity
model as covariate. In addition, they checked both individual and average claim modeling and found
the results were similar in their application.

As an alternative approach, copulas are widely used for frequency severity dependence modeling.
In [46], Czado et al. fit Gaussian copula on Poisson frequency and gamma severity and used
an optimization by parts method from [53] to do the estimation. They derived the conditional
distribution of frequency given severity. In [54], the distribution of policy loss is derived without the
independence assumption between frequency and severity. They also showed that the ignoring of
dependence can lead to underestimation of loss. A Vuong test was adopted to select the copula.

To see how the copula approach works, recall that S̄ represents average severity of claims and N
denotes frequency. Using a copula, we can express the likelihood as

fS̄,N(s, n) =

{
fS̄,N(s, n|N > 0)P(N > 0) for n > 0

P(N = 0) for n = s = 0

Denote
D1(u, v) =

∂

∂u
C(u, v) = P(V ≤ v|U = u).
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With this,

fS̄,N(s, n|N > 0) =
∂

∂s
P(S̄ ≤ s, N ≤ n|N > 0)

=
∂

∂s
C(FS̄(s), FN(n|N > 0))

= fS̄(s)D1(FS̄(s), FN(n|N > 0)).

This yields the following expression for the likelihood

fS̄,N(s, n) =


fS̄(s)P(N > 0)(D1(FS̄(s), FN(n|N > 0))

−D1(FS̄(s), FN(n− 1|N > 0))) for s > 0, n ≥ 1

P(N = 0) for s = 0, N = 0.

For another approach, Shi et al. also built a dependence model between frequency and severity
in [55]. They used an extra indicator variable for occurrence of claim to deal with the zero-inflated
part, and built a dependence model between frequency and severity conditional on positive claim.
The two approaches described previously were compared; one approach using frequency as a covariate
for the severity model, and the other using copulas. They used a zero-truncated negative binomial for
positive frequency and the GG model for severity. In [56], a mixed copula regression based on GGS
copula (see [25] for an explanation of this copula) was applied on a medical expenditure panel survey
(MEPS) dataset. In this way, the negative tail dependence between frequency and average severity can
be captured.

Brechmann et al. applied the idea of the dependence between frequency and severity to the
modeling of losses from operational risks in [57]. For each risk class, they considered the dependence
between aggregate loss and the presence of loss. Another application of this methodology in
operational risk aggregation can be found in [58]. Li et al. focused on two dependence models;
one for the dependence of frequencies across different business lines, and another for the aggregate
losses. They applied the method on Chinese banking data and found significant difference between
these two methods.

5. LGPIF Case Study

We demonstrate the multivariate frequency severity modeling approach using a data set from the
Wisconsin Local Government Property Insurance Fund (LGPIF). The LGPIF was established to provide
property insurance for local government entities that include counties, cities, towns, villages, school
districts, fire departments, and other miscellaneous entities, and is administered by the Wisconsin
Office of the Insurance Commissioner. Properties covered under this fund include government
buildings, vehicles, and equipment. For example, a county entity may need coverage for its snow
plowing trucks, in addition to its building and contents [59]. These data provide a good example of
a typical multi-line insurance company encountered in practice. More details about the project may be
found at the Local Government Property Insurance Fund project website [60].

5.1. Data / Problem Description

The data consist of six coverage groups; building and content (BC), contractor’s equipment (IM),
comprehensive new (PN), comprehensive old (PO), collision new (CN), collision old (CO) coverage.
The data are longitudinal, and Tables 1 and 2 provide summary statistics for the frequencies and
severities of claims within the in-sample years 2006 to 2010, and the validation sample 2011.
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Table 1. Data Summary by Coverage, 2006–2010 (Training Sample).

Average Average Annual Claims Average Coverage Number of Number of
Frequency Severity in Each Year (Million) Claims Observations

BC 0.879 9868 17,143 37.050 4992 5660
IM 0.056 624 766 0.848 318 4622
PN 0.159 197 466 0.158 902 1638
PO 0.103 311 504 0.614 587 2138
CN 0.127 374 744 0.096 720 1529
CO 0.120 538 951 0.305 680 2013

Table 2. Data Summary by Coverage, 2011 (Validation Sample).

Average Average Annual Claims Average Coverage Number of Number of
Frequency Severity in Year (Million) Claims Observations

BC 0.945 8352 20,334 42.348 1038 1095
IM 0.076 382 645 0.972 83 904
PN 0.224 307 634 0.172 246 287
PO 0.128 220 312 0.690 140 394
CN 0.125 248 473 0.093 137 268
CO 0.081 404 656 0.375 89 375

Table 3 describes each coverage group. Automobile coverage is subdivided into four subcategories,
which correspond to combinations for collision versus comprehensive and for new versus old cars.

Table 3. Description of Coverage Groups.

Code Name of Coverage Description

BC Building and Contents
This coverage provides insurance for buildings and the properties within.
In case the policyholder has purchased a rider, claims in this group may
reflect additional amounts covered under endorsements.

IM Contractor’s Equipment IM, an abbreviation for “inland marine” is used as the coverage code for
equipments coverage, which originally belong to contractors.

C Collision This provides coverage for impact of a vehicle with an object, impact of
vehicle with an attached vehicle, or overturn of a vehicle.

P Comprehensive

Direct and accidental loss or damage to motor vehicle, including breakage of
glass, loss caused by missiles, falling objects, fire, theft, explosion,
earthquake, windstorm, hail, water, flood, malicious mischief or vandalism,
riot or civil common, or colliding with a bird or animal.

N New This code is used as an indication that the coverage is for vehicles of current
model year, or 1∼2 years prior to the current model year.

O Old This code is used as an indication that the coverage is for vehicles three or
more years prior to the current model year.

From Table 3, there are collision and comprehensive coverages, each for new and old vehicles of
the entity. Hence, an entity can potentially have collision coverage for new vehicles (CN), collision
coverage for old vehicles (CO), comprehensive coverage for new vehicles (PN), and comprehensive
coverage for old vehicles (PO). Hence, in our analysis, we consider these sub-coverages as individual
lines of businesses, and work with six separate lines, including building and contents (BC), and
contractor’s equipment (IM) as separate lines also.

Preliminary dependence measures for discrete claim frequencies and continuous average
severities can be obtained using polychoric and polyserial correlations. These dependence measures
both assume latent normal variables, whose values fall within the cut-points of the discrete variables.
The polychoric correlation is the inferred latent correlation between two ordered categorical variables;
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the polyserial correlation is the inferred latent correlation between a continuous variable and an ordered
categorical variable, cf. [25].

Table 4 shows the polychoric correlation among the frequencies of the six coverage groups.
Note that these dependencies in Table 4 are measured before controlling for the effects of explanatory
variables on the frequencies. As Table 4 shows, there is evidence of correlation across different lines,
however these cross-sectional dependencies may be due to correlations in the exposure amounts or,
in other words, the sizes of the entities.

Table 4. Polychoric Correlation among Frequencies of Claims.

BC IM PN PO CN

IM 0.506
PN 0.465 0.584
PO 0.490 0.590 0.771
CN 0.492 0.541 0.679 0.566
CO 0.559 0.601 0.642 0.668 0.646

The dependence between frequencies and average claim severities is often of interest to modelers.
In Appendix A.4 we show that average severity may depend on frequency, even when the classical
assumption, independence of frequency and individual severities, holds. Our data are consistent with
this result. The diagonal entries of Table 5 show the polyserial correlations between the frequency and
severity of each coverage group.

Table 5. Polyserial Correlation between Frequencies and Severities.

BC IM PN PO CN CO
Frequency Frequency Frequency Frequency Frequency Frequency

BC Severity −0.033 0.029 −0.063 −0.069 0.020 −0.050
IM Severity −0.033 −0.078 0.110 0.249 0.159 0.225
PN Severity 0.074 0.275 −0.146 −0.216 0.119 0.143
PO Severity 0.111 0.171 −0.161 −0.119 0.258 0.137
CN Severity −0.112 −0.174 −0.003 0.135 0.032 −0.175
CO Severity −0.099 −0.079 −0.055 −0.083 −0.068 −0.032

According to Table 5, the observed correlation between frequency and severity is small. For the
CN line, a positive correlation can be observed although very small (0.032, while the other correlations
between frequency and severity are negative). Again, these numbers only provide a rough idea of
the dependency. Table 6 shows the Spearman correlation between the average severities, for those
observations with at least one positive claim. The correlation among the severities of new and old car
comprehensive coverage is high.

Table 6. Correlation among Average Severities.

BC IM PN PO CN

IM 0.220
PN 0.098 0.095
PO 0.229 0.118 0.415
CN 0.084 0.237 0.166 0.200
CO 0.132 0.261 0.075 0.140 0.244

In summary, these summary statistics show that there are potentially interesting dependencies
among the response variables.
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Explanatory Variables

Table 7 shows the number of observations available in the data set, for years 2006–2010.

Table 7. Number of Observations.

BC IM PN PO CN CO

Coverage > 0 5660 4622 1638 2138 1529 2013
Average Severity > 0 1684 236 315 263 370 362

Explanatory variables used are summarized in Table 8. The marginal analyses for each line are
performed on the subset for which the coverage amounts shown in Table 7 are positive.

Table 8. Summary of Explanatory Variables.

Variable Name Description Mean

lnCoverageBC Log of the building and content coverage amount. 37.050
lnCoverageIM Log of the contractor’s equipment coverage amount. 0.848
lnCoveragePN Log of the comprehensive coverage amount for new vehicles. 0.158
lnCoveragePO Log of the comprehensive coverage amount for old vehicles. 0.614
lnCoverageCN Log of the collision coverage amount for new vehicles. 0.096
lnCoverageCO Log of the collision coverage amount for old vehicles. 0.305

NoClaimCreditBC Indicator for no building and content claims in prior year. 0.328
NoClaimCreditIM Indicator for no contractor’s equipment claims in prior year. 0.421
NoClaimCreditPN Indicator for no comprehensive claims for new cars in prior year. 0.110
NoClaimCreditPO Indicator for no comprehensive claims for old cars in prior year. 0.170
NoClaimCreditCN Indicator for no collision claims for new cars in prior year. 0.090
NoClaimCreditCO Indicator for no collision claims for old cars in prior year. 0.140

EntityType City, County, Misc, School, Town (Categorical)
lnDeductBC Log of the BC deductible level, chosen by the entity. 7.137
lnDeductIM Log of the IM deductible level, chosen by the entity. 5.340

5.2. Marginal Model Fitting—Zero/One Frequency, GB2 Severity

For each coverage type, a frequency-severity model is fit marginally.

5.2.1. BC (Building and Contents) Frequency Modeling

In the frequency part, we fit several commonly employed count models: Poisson, negative
binomial (NB), zero-inflated Poisson (zeroinfPoisson), zero-inflated negative binomial (zeroinflNB).
Our data not only exhibit a large mass at 0, as with many other insurance claims data, but also
an inflated number of 1 s. For BC, there are 997 policies with 1 claim. This can be compared to the
expected number under zero-inflated Poisson, 754, and under the zero-inflated negative binomial,
791. (See Table 9 for details). These zero-inflated models underestimate the point mass at 1 due to the
shrinkage to 0. Thus, alternative “zero-one-inflated” models are introduced in Section 2.2.

Table 9 shows the expected count for each frequency value under different models and the
empirical values from the data. A Poisson distribution underestimates the zero proportions while
zero-inflated and negative binomial models underestimate the proportion of 1 s. The zero-one inflated
models do provide the best fits for simultaneously estimating the probability of a zero and a one.

Chi-square goodness of fit statistics can be used to compare different models. Table 10 shows the
result. It is calculated depending on Table 9. The zero-one-inflated negative binomial is significantly
better than other methods.



Risks 2016, 4, 4 18 of 36

Table 9. Comparison between Empirical Values and Expected Values for the building and contents
(BC) Line.

Empical ZeroinflPoisson ZeroonePoisson Poisson NB ZeroinflNB ZerooneNB

0 3976 4038.125 3975.403 3709.985 4075.368 4093.699 3996.906
1 997 754.384 1024.219 1012.267 809.077 791.424 1003.169
2 333 355.925 276.082 417.334 313.359 314.618 280.600
3 136 187.897 146.962 202.288 155.741 157.282 136.758
4 76 106.780 82.052 106.874 88.866 89.615 75.822

5 31 63.841 48.426 60.160 55.484 55.697 46.021
6 19 39.850 30.212 36.540 36.919 36.845 29.854
7 19 26.082 19.850 24.261 25.765 25.553 20.379
8 16 18.025 13.670 17.440 18.663 18.395 14.482
9 5 13.165 9.808 13.222 13.932 13.652 10.632

10 7 10.087 7.269 10.305 10.664 10.393 8.016
11 2 8.007 5.505 8.124 8.336 8.084 6.180
12 4 6.505 4.219 6.427 6.636 6.406 4.855
13 5 5.357 3.248 5.086 5.367 5.159 3.875
14 5 4.441 2.502 4.024 4.401 4.214 3.136

15 2 3.690 1.925 3.182 3.653 3.485 2.569
16 4 3.062 1.479 2.519 3.066 2.914 2.127
17 3 2.530 1.134 1.999 2.598 2.460 1.777
18 1 2.077 0.867 1.597 2.221 2.095 1.498
≥ 19 19 10.168 5.167 16.366 19.876 18.004 11.343

0 proportion 0.702 0.713 0.702 0.655 0.720 0.723 0.706
1 proportion 0.176 0.133 0.181 0.179 0.143 0.140 0.177

Table 10. Goodness of Fit Statistics for BC Line.

ZeroinfPoisson ZeroonePoisson Poisson NB ZeroinflNB ZerooneNB

154.573 77.064 105.201 88.086 98.400 34.515

5.2.2. BC (Building and Contents) Severity Modeling

In the average severity part, the most commonly used distribution, gamma, is fit and compared
with the GB2 model. To do the goodness of fit test, the quantiles of normal Cox-Snell residuals are
compared with normal quantiles.

Figure 1 shows the residual plot of severity fitted with gamma and GB2. Clearly, the gamma does
not fit well especially in the tail part.
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Figure 1. QQ Plot for Residuals of Gamma and GB2 Distribution for BC.
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5.2.3. Building and Contents Model Summary

Table 11 shows the coefficients for the fitted marginal models. Here, coefficients of GB2, NB and
the zero-one-inflated parts are provided.

Table 11. Coefficients of Marginal Models for BC Line.

Variable Name Coef. Standard
Error

GB2

(Intercept) 5.620 0.199 ∗∗∗
lnCoverageBC 0.136 0.029 ∗∗∗
NoClaimCreditBC 0.143 0.076 .
lnDeductBC 0.321 0.034 ∗∗∗
EntityType: City −0.121 0.090
EntityType: County −.059 0.112
EntityType: Misc 0.052 0.142
EntityType: School 0.182 0.092 ∗
EntityType: Town −0.206 0.141
σ 0.343 0.070
α1 0.486 0.119
α2 0.349 0.083

NB

(Intercept) −0.798 0.198 ∗∗∗
lnCoverageBC 0.853 0.033 ∗∗∗
NoClaimCreditBC −0.400 0.132 ∗∗
lnDeductBC −0.232 0.035 ∗∗∗
EntityType: City −0.074 0.090
EntityType: County 0.015 0.117
EntityType: Misc −0.513 0.188 ∗∗
EntityType: School −1.056 0.094 ∗∗∗
EntityType: Town −0.016 0.160
log(size) 0.370 0.115

Zero

(Intercept) −6.928 0.840 ∗∗∗
CoverageBC −0.408 0.135 ∗∗
lnDeductBC 0.880 0.108 ∗∗∗
NoClaimCreditBC 0.954 0.459 ∗

One

(Intercept) −5.466 0.965 ∗∗∗
CoverageBC 0.142 0.117
lnDeductBC 0.323 0.137 ∗
NoClaimCreditBC 0.669 0.447

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1.

5.2.4. Marginal Models for Other Lines

Appendix A.2 provides the model selection and marginal model results for lines other than
building and contents.

5.3. Copula Identification and Fitting

Dependence is fit at two levels. The first is between frequency and average severity within each
line. The second is among different lines.

5.3.1. Frequency Severity Dependence

Vuong’s test, as described in Section 3.7.2, is used for copula selection. Specifically, we consider
two models M(1) and M(2), in our example, M(1) is Gaussian copula while M(2) is t copula. Let ∆12
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be the difference in divergence from models M(1) and M(2). When the true density is g, this can be
written as

∆12 = n−1 ∑
i

{
Eg[log f (2)(Yi; xi, θ(2))]− Eg[log f (1)(Yi; xi, θ(1))]

}
.

A large sample 95% confidence interval for ∆12, D̄± 1.96× n−1/2SDD, is provided in Table 12.
Table 12 shows the comparison of Gaussian copula against t copula with commonly used degrees of
freedom for frequency and severity dependence in BC line. An interval completely below 0 indicates
that copula 1 is significantly better than copula 2. Thus, the Gaussian copula is preferred.

Table 12. Vuong Test of Copulas for BC Frequency and Severity Dependence.

Copula 1 Copula 2 95% Interval

Gaussian t(df = 3) −0.0307 −0.0122
Gaussian t(df = 4) −0.0202 −0.0065
Gaussian t(df = 5) −0.0147 −0.0038
Gaussian t(df = 6) −0.0114 −0.0023

Maximum likelihood estimation with the full multivariate likelihood, which estimates parameters
in marginal and copula models simultaneously, is fit here. Table 13 shows parameters of BC line with
the full likelihood method. Here the marginal dispersion parameters are fixed from marginal models.
By comparing Tables 11 and 13, it can be seen that the coefficients are close. As pointed out in [25],
inference functions for margins, with the results in Table 11, is efficient and can provide a good starting
point for the full likelihood method, as in Table 13.

Table 13. Coefficients of Total Likelihood for BC Line.

Variable Name Coef. Standard
Error

GB2

(Intercept) 5.629 0.195 ∗∗∗
lnCoverageBC 0.144 0.029 ∗∗∗
NoClaimCreditBC 0.222 0.076 ∗∗
lnDeductBC 0.320 0.031 ∗∗∗
EntityType: City −0.148 0.090 .
EntityType: County −0.043 0.111
EntityType: Misc 0.158 0.143
EntityType: School 0.225 0.092 ∗
EntityType: Town −0.218 0.141
σ 0.343 0.070
α1 0.486 0.119
α2 0.349 0.083

NB

(Intercept) −0.789 0.083 ∗∗∗
lnCoverageBC 1.003 0.001 ∗∗∗
NoClaimCreditBC −0.297 0.172 .
lnDeductBC −0.230 0.001 ∗∗∗
EntityType: City −0.068 0.097
EntityType: County −0.489 0.109 ∗∗∗
EntityType: Misc −0.468 0.202 ∗
EntityType: School −0.645 0.083 ∗∗∗
EntityType: Town 0.267 0.166
log(Size) 0.370 0.115
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Table 13. Cont.

Variable Name Coef. Standard
Error

Zero

(Intercept) −6.246 0.364 ∗∗∗
lnCoverageBC −0.338 0.047 ∗∗∗
lnDeductBC 0.910 0.050 ∗∗∗
NoClaimCreditBC 0.888 0.355 ∗

One

(Intercept) −5.361 0.022 ∗∗∗
lnCoverageBC 0.345 0.013 ∗∗∗
lnDeductBC 0.335 0.010 ∗∗∗
NoClaimCreditBC 0.556 0.431

ρ Dependence −0.132 0.033 ∗∗∗
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1.

For other lines, the results of the full likelihood method are summarized in Table 14. As described
in Appendix A.2, the other lines use a negative binomial model for claim frequencies, not the 0–1
inflated model introduced in Section 2.2. For the CO line severity, 1

σ is fitted for the purpose of
computation. Model selection and marginal model results can be found in Appendix A.2.

Table 14. Coefficients of Total Likelihood for Other Lines.

IM PN PO CN CO

Coef. Std. Coef. Std. Coef. Std. Coef. Std. Coef. Std.
Error Error Error Error Error

GB2

(Intercept) 8.153 0.823 *** 7.918 0.046 *** 7.554 0.092 *** 6.773 0.059 *** 9.334 0.000 ***
lnCoverage 0.304 0.065 *** 0.078 0.045 . 0.081 0.057 0.137 0.039 *** 0.161 0.000 ***
NoClaimCredit 0.190 0.202 0.021 0.209 0.695 0.194 *** 0.140 0.144 −0.296 0.001 ***
lnDeduct 0.028 0.125
σ 0.955 0.365 0.047 0.043 0.100 0.130 0.863 0.513 40.193 31.080
α1 1.171 0.630 0.054 0.050 0.102 0.137 4.932 6.441 0.038 0.030
α2 1.337 0.856 0.076 0.068 0.108 0.145 1.279 1.131 0.025 0.019

NB

(Intercept) −1.331 0.594 * −2.160 0.284 *** −2.664 0.297 *** −0.467 0.158 ** −1.746 0.187 ***
Coverage 0.796 0.077 *** 0.239 0.065 *** 0.490 0.067 *** 0.487 0.054 *** 0.782 0.056 ***
NoClaimCredit −0.371 0.141 ** −0.588 0.194 ** −0.612 0.177 *** −0.668 0.157 *** −0.324 0.139 *
lnDeduct −0.140 0.085 .
EntityType: City −0.306 0.235 0.574 0.330 . 0.411 0.376 0.433 0.186 * 0.680 0.232 **
EntityType: County 0.139 0.274 3.083 0.294 *** 2.477 0.329 *** 1.131 0.172 *** 1.284 0.211 ***
EntityType: Misc −2.195 1.024 * −0.060 0.642 −0.508 0.709 −0.323 0.456 0.486 0.442
EntityType: School −0.032 0.292 0.389 0.297 0.926 0.327 ** −0.192 0.185 1.350 0.208 ***
EntityType: Town −0.405 0.277 −0.579 0.481 −1.022 0.650 −1.529 0.385 *** −0.450 0.355
size 0.724 1.004 0.766 1.420 1.302

ρ Dependence −0.109 0.097 −0.154 0.064 * −0.166 0.073 * 0.171 0.064 ** 0.009 0.045

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1.

Table 13 shows significantly strong negative association between frequency and average severity
for the building and contents (BC) line. In contrast, the results are mixed for other lines. Table 14
shows no significant relationships for the CO and IM lines, mild negative relationships for the PN and
PO lines, and a strong positive relationship for the CN line. For the BC and CN lines, these results are
consistent with the polyserial correlations in Table 5, calculated without covariates.

5.3.2. Dependence between Different Lines

The second level of dependence lies between different lines. In this section, the dependence model
for frequencies, severities and aggregate loss with Tweedie margins, as in Section 3.4, are fit. Here, we
use marginal results from the inference functions for margins method. In principle, full likelihood can
be used. As mentioned previously in this section, in our case, the results of inference functions for
margins are close to full likelihood estimation.
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Tables 15 and 16 show the dependence parameters of copula models for frequencies and
severities, respectively. A Gaussian copula is applied and the composite likelihood method is used
for computation. Comparing Tables 4 and 15, it can be seen that frequency dependence parameters
decrease substantially. This is due to controlling for the effects of explanatory variables. In contrast,
comparing Tables 6 and 16, there appears to be little change in the dependence parameters. This may
be due to the smaller impact that explanatory variables have on the severity modeling when compared
to frequency modeling.

Table 15. Dependence Parameters for Frequency.

BC IM PN PO CN

IM 0.190
PN 0.141 0.162
PO 0.054 0.206 0.379
CN 0.101 0.149 0.271 0.081
CO 0.116 0.213 0.151 0.231 0.297

Table 16. Dependence Parameters for Severity.

BC IM PN PO CN

IM 0.145
PN 0.134 0.051
PO 0.298 0.099 0.498
CN 0.062 0.110 0.156 0.168
CO 0.106 0.215 0.083 0.080 0.210

Table 17 shows the result of dependence parameters for different lines with Tweedie margins.
The coefficients of marginal models are in Appendix A.3.

Table 17. Dependence Parameters for Tweedies.

BC IM PN PO CN

IM 0.210
PN 0.279 0.367
PO 0.358 0.412 0.559
CN 0.265 0.266 0.553 0.328
CO 0.417 0.359 0.496 0.562 0.573

6. Out-of-Sample Validation

For out-of-sample validation, the coefficient estimates from the marginals and the dependence
parameters are used to obtain the predicted claims with the held-out 2011 data. We compare the
independent case, dependent frequency-severity model, and the dependent pure premium approach.

6.1. Spearman Correlation

The out of sample validation is performed on the 2011 held-out data, where there are 1098
observations. The claim scores for the pure premium approach are obtained using the conditional
mean of the Tweedie distribution for each policyholder. For the frequency-severity approach, the
conditional mean for the zero-one-inflated negative binomial distribution is multiplied to the first
moment of the GB2 severity distribution for the policyholder. Claim scores for the dependent pure
premium approach and the dependent frequency-severity approach are computed using a Monte
Carlo simulation of the normal copula.
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We first consider the nonparametric Spearman correlation between model predictions and the
held-out claims. Four models are considered: the frequency-severity and pure premium (Tweedie)
model, assuming independence among lines, and assuming a Gaussian copula among lines. As can
be seen from Table 18, the predicted claims are about the same whether dependence is considered
or not. The interesting question is how much improvement the zero-one-inflated negative binomial
model, and the long-tail distribution (GB2) marginals bring. We observe that the long-tail nature of
the severity distribution sometimes results in a large predicted claim. We found that prediction of the
mean, using the first moment, can be numerically sensitive. Figure 2 shows a plot of the predicted
claims against the out-of-sample claims, for the independent pure premium approach. Figure 3 shows
the dependent frequency-severity approach.

Table 18. Out-of-Sample Correlation.

BC IM PN PO CN CO Total

Independent Tweedie 0.410 0.304 0.602 0.461 0.512 0.482 0.500
Dependent Tweedie (Monte Carlo) 0.412 0.305 0.601 0.462 0.511 0.481 0.501
Independent Frequency-Severity 0.440 0.308 0.590 0.475 0.525 0.469 0.498
Dependent Frequency-Severity (Monte Carlo) 0.435 0.308 0.590 0.477 0.525 0.485 0.521
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Figure 2. Out-of-Sample Validation for Independent Tweedie. (In these plots, the conditional mean for
each policyholder is plotted against the claims.)
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Figure 3. Out-of-Sample Validation for Dependent Frequency-Severity. (In these plots, the claim scores
for each line is simulated from the frequency-severity model with dependence, using a Monte Carlo
approach with B = 50,000 samples from the normal copula. The model with 01-NB and GB2 marginals
show clear improvement for the BC line, in particular for the upper tail prediction. For other lines
such as CO, the GB2 marginal results in miss-scaling).

6.2. Gini Index

To further validate our results, we use the Gini index to measure the satisfaction of the fund
manager with each score. The Gini index is calculated using relativities computed with the actual
premium collected by the LGPIF in 2011 as the denominator, with the scores predicted by each model
as numerator. This means we are looking for improvements over the original premium scores used
by the LGPIF. We expect the Gini index to be higher with the frequency-severity approach, as the fit
for the upper tail is better. Figure 4 compares the independent Tweedie approach, and the dependent
frequency-severity approach. For the dependent frequency-severity approach, a random 6-dimensional
vector is sampled from the normal copula, and the quantiles are converted to frequencies and severities.

For the BC line scores calculated using the Tweedie model, we obtain−1.74% Gini index, meaning
this model does not improve the existing premium scores used by the fund. Note that in [59], where
the interest is more in the regularization problem, a constant premium is used as denominator for
assessing the relativity. Here, the denominator used is the original premiums, which means in order
for the index to be positive, there must be an improvement over the original premiums. The dependent
frequency-severity scores with B = 50,000, normal copula, and zero-one-inflated NB and GB2 margins
results in a Gini index of 22.77%, meaning a clear improvement from the original premium scores.
As a side note, the Spearman correlations are: original BC premiums 42.59%, Tweedie model 40.97%,
and Frequency-severity model 43.52%, with the out-of-sample claims. Also the reader may observe
from Table 18 that the improvement is mostly due to the better marginal model fit, instead of the
dependence modeling.
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Figure 4. Ordered Lorenz Curves for BC.

7. Concluding Remarks

This study shows standard procedures for dependence modeling for a multiple lines insurance
company. We have demonstrated that sophisticated marginal models may improve claim score
calculations, and further demonstrated how multivariate claim distributions may be estimated using
copulas. Our study also verifies that dependence modeling has little influence on the claim scores, but
rather is a potentially useful tool for assessing risk measures of liabilities when losses are dependent
on one another. A potentially interesting study would be to analyze the difference in risk measures
associated with the correlation in liabilities carried by a multiple lines insurer, with and without
dependence modeling. We leave this study for future work.

An interesting question is how to predict claims that are large relative to the rest of the distribution.
For example, when simulating the GB2 distribution, we regularly generated large predicted values (that
our software converted into “infinite values”). This suggests that more sophisticated consideration
of the upper limits (possibly due to policy limits of the LGPIF) may be necessary to model the claim
severities using long-tail distributions.
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A. Appendix

A.1. Alternative Way of Choosing Location Parameters for GB2

An alternative way to choose the location parameter in GB2 is through log linear model in [61].
The density of GB2(σ, µ, α1, α2) is

f (y; µ, σ, α1, α2) =
[exp(z)]α1

yσB(α1, α2)[1 + exp(z)]α1+α2

where z = ln(y)−µ
σ .

As pointed out in [62], if
Y ∼ GB2(σ, µ, α1, α2),

log(Y) = µ + σ(log α1 − log α2) + σlog F(2α1, 2α2).
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This is actually the log linear model used with errors following the log-F distribution.
Thus µ + σ(log α1 − log α2) can be used as the location parameter associated with covariates.

As a special case of GB2, the location parameter of GG can be derived based on GB2. The density
of GG(a, b, α1) is

GG(y; a, b, α1) =
a

Γ(α1)y
(y/b)aα1 e−(y/b)a

.

Reparametrizing the GB2(a, b, α1, α2)) with a = 1
σ , b = exp(µ), we have

GG(a, b, α1) = lim
α2→∞

GB2(a, bα1/a
2 , α1, α2).

The location parameter for GG(a, b, α1) should be log(b) + σlog(α2) + σ(log(α1)− log(α2)) =

log(b) + σlog(α1). This is consistent with the results in [63].
When a = 1, the GG distribution becomes the gamma distribution with shape parameter α1 and

scale parameter b. log(b) + log(α1) is the location parameter, which is the log-mean of the gamma
distribution, and is hence consistent with the GLM framework.

A.2. Other Lines

A.2.1. IM (Contractor’s Equipment)

The property fund uses IM as a symbol to denote contractor’s equipment, and we follow this
notation. Figure A1 shows the residual plot of severity fitted with gamma and GB2 in the IM line.
Based on the plot, the GB2 is chosen.
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Figure A1. QQ Plot for Residuals of Gamma and GB2 Distribution for contractor’s equipment (IM).

Table A1 shows the expected count for each frequency value under different models and empirical
values from the data. The proportion of 1 s for the IM line is not high, and hence most models were
able to capture this.

Table A1. Comparison between Empirical Values and Expected Values for IM line.

Empical ZeroinflPoisson ZeroonePoisson Poisson NB ZeroinflNB ZerooneNB

0 4386 4381.660 4383.572 4351.363 4383.527 4384.718 4384.736
1 182 189.282 184.517 233.111 191.214 188.278 188.252
2 40 35.986 37.159 29.992 31.187 32.558 32.560
3 6 10.383 11.428 5.794 9.313 9.716 9.719
4 4 3.237 3.662 1.311 3.555 3.668 3.669
5 2 1.009 1.155 0.324 1.548 1.564 1.565
6 2 0.311 0.357 0.081 0.740 0.724 0.724
≥7 0 0.132 0.151 0.024 0.889 0.763 0.764

0 proportion 0.949 0.948 0.948 0.941 0.948 0.949 0.949
1 proportion 0.039 0.041 0.040 0.050 0.041 0.041 0.041
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Table A2. Goodness of Fit Statistics for IM Line.

ZeroinflPoisson ZeroonePoisson Poisson NB ZeroinflNB ZerooneNB

13.046 11.204 74.788 7.335 6.497 6.493

Table A2 shows goodness of fit tests result. It was calculated using the results in Table A1.
The parsimonious model, negative binomial, is preferred.

A.2.2. PN (Comprehensive New)

The property fund uses P for comprehensive, and N to denote new vehicles. Hence PN would
mean comprehensive coverage for new vehicles. Figure A2 shows the residual plot of severity, fitted
with gamma and GB2 for PN. Based on the plot, the GB2 is chosen for the PN line.
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Figure A2. QQ Plot for Residuals of Gamma and GB2 Distribution for comprehensive new (PN).

Table A3 shows the expected count for each frequency value under different models, and the
empirical values from the data.

Table A3. Comparison between Empirical Values and Expected Values for PN Line.

Empical ZeroinflPoisson ZeroonePoisson Poisson NB ZeroinflNB ZerooneNB

0 1323 1318.274 1310.359 1260.404 1324.292 1327.832 1323.999
1 154 116.320 161.105 153.445 148.051 141.023 149.927
2 50 53.333 28.759 78.837 52.433 53.831 50.552
3 33 49.295 30.636 62.798 32.670 33.472 32.031
4 19 41.465 32.238 41.674 22.728 23.348 22.648
5 16 28.661 28.095 22.970 16.145 16.650 16.341
6 13 16.614 20.560 10.853 11.546 11.920 11.827
7 7 8.282 12.953 4.510 8.291 8.537 8.557
8 4 3.623 7.169 1.683 5.972 6.111 6.185
9 4 1.413 3.540 0.573 4.314 4.371 4.466

10 3 0.497 1.579 0.180 3.124 3.124 3.221
11 1 0.159 0.643 0.053 2.267 2.232 2.320
12 2 0.047 0.241 0.015 1.649 1.593 1.670
13 4 0.013 0.084 0.004 1.202 1.137 1.201
14 2 0.003 0.027 0.001 0.878 0.811 0.863
15 1 0.001 0.008 0 0.643 0.578 0.620
16 1 0 0.002 0 0.471 0.412 0.445
≥17 1 0 0.001 0 0.788 0.651 0.712

0 proportion 0.808 0.805 0.800 0.769 0.809 0.811 0.809
1 proportion 0.094 0.071 0.098 0.094 0.090 0.086 0.092
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Table A4 shows goodness of fit tests result. It was calculated using the results in Table A3.
The simpler model, negative binomial, is preferred.

Table A4. Goodness of Fit Statistics for PN Line.

ZeroinflPoisson ZeroonePoisson Poisson NB ZeroinflNB ZerooneNB

31,776.507 2113.085 93,179.199 11.609 14.537 11.853

A.2.3. PO (Comprehensive Old)

The property fund uses symbol O to denote old, hence PO would be comprehensive coverage for
old vehicles. Figure A3 shows the residual plot of severity fitted with gamma and GB2, for the PO line.
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Figure A3. QQ Plot for Residuals of Gamma and GB2 Distribution for comprehensive old (PO).

Table A5 shows the expected count for each frequency value under different models and empirical
values from the data.

Table A5. Comparison between Empirical Values and Expected Values for PO Line.

Empical ZeroinflPoisson ZeroonePoisson Poisson NB ZeroinflNB ZerooneNB

0 1875 1873.859 1867.234 1811.952 1879.908 1880.884 1879.944
1 155 121.646 153.552 180.597 142.801 139.962 144.827
2 42 54.712 34.118 76.153 45.728 45.669 43.381
3 26 38.944 28.731 40.240 24.579 24.945 23.977
4 12 24.618 21.921 18.234 15.068 15.469 15.010
5 8 13.332 14.536 7.152 9.671 10.002 9.780
6 7 6.366 8.598 2.512 6.361 6.609 6.509
7 4 2.757 4.662 0.814 4.256 4.434 4.397
8 2 1.109 2.380 0.248 2.886 3.010 3.006
9 2 0.421 1.173 0.072 1.979 2.065 2.076
10 1 0.153 0.570 0.020 1.371 1.429 1.447
11 1 0.054 0.276 0.005 0.958 0.998 1.017
≥12 3 0.026 0.250 0.002 2.339 2.426 2.521

0 proportion 0.877 0.876 0.873 0.847 0.879 0.880 0.879
1 proportion 0.072 0.057 0.072 0.084 0.067 0.065 0.068

Table A6 shows goodness of fit tests result. It was calculated using the results in Table A5.
Negative binomial model is selected, based on the test results.
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Table A6. Goodness of Fit Statistics for PO Line.

ZeroinflPoisson ZeroonePoisson Poisson NB ZeroinflNB ZerooneNB

387.671 43.127 5365.758 2.995 3.824 2.512

A.2.4. CN (Collision New)

Figure A4 shows the residual plot of severity fitted with gamma and GB2 for the CN line.
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Figure A4. QQ Plot for Residuals of Gamma and GB2 Distribution for collision new (CN).

Table A7 shows the expected count for each frequency value under different models, and the
empirical values from the data.

Table A7. Comparison between Empirical Values and Expected Values for CN Line.

Empical ZeroinflPoisson ZeroonePoisson Poisson NB ZeroinflNB ZerooneNB

0 1159 1157.476 1153.549 1090.320 1168.332 1169.317 1163.521
1 228 201.586 229.228 274.394 210.934 209.282 226.545
2 74 79.485 56.894 95.634 69.231 69.270 60.183
3 26 43.915 36.167 40.251 33.137 33.325 30.364
4 16 24.613 23.909 17.118 18.478 18.644 17.630
5 9 12.536 14.538 6.987 10.951 11.066 10.846
6 3 5.718 7.937 2.723 6.677 6.749 6.866
7 3 2.352 3.904 1.018 4.137 4.178 4.422
8 4 0.881 1.745 0.366 2.589 2.612 2.881
9 1 0.303 0.716 0.127 1.633 1.645 1.895
10 0 0.097 0.272 0.042 1.036 1.043 1.255
11 3 0.029 0.096 0.014 0.661 0.664 0.837
12 0 0.008 0.032 0.004 0.424 0.425 0.561
13 1 0.002 0.010 0.001 0.273 0.273 0.378
14 1 0.001 0.003 0 0.176 0.176 0.256
15 1 0 0.001 0 0.114 0.114 0.174
≥16 0 0 0 0 0.176 0.175 0.296

0 proportion 0.758 0.757 0.754 0.713 0.764 0.765 0.761
1 proportion 0.149 0.132 0.150 0.179 0.138 0.137 0.148

Table A8 shows the goodness of fit tests result. It was calculated using the values in Table A7.
The parsimonious model, negative binomial, is selected.
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Table A8. Goodness of Fit Statistics for CN Line.

ZeroinflPoisson ZeroonePoisson Poisson NB ZeroinflNB ZerooneNB

10,932.035 1791.868 15,221.056 29.911 30.378 22.574

A.2.5. CO (Collision, Old)

Figure A5 shows the residual plot of severity fitted with Gamma and GB2 for the CO line. GB2 is
preferred. Note, here 1

σ instead of σ is fitted for computational stability.
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Figure A5. QQ Plot for Residuals of Gamma and GB2 Distribution for collision old (CO).

Table A9 shows the expected count for each frequency value under different models, and the
empirical values from the data.

Table A9. Comparison between Empirical Values and Expected Values for CO Line.

Empical ZeroinflPoisson ZeroonePoisson Poisson NB ZeroinflNB ZerooneNB

0 1651 1649.151 1647.342 1600.173 1654.590 1656.293 1653.325
1 224 197.854 220.281 262.576 218.632 212.240 220.052
2 63 85.200 63.848 84.408 66.972 70.829 67.211
3 34 42.854 37.325 37.334 30.322 32.286 31.127
4 22 21.236 21.693 16.911 16.287 16.989 16.606
5 5 9.765 11.729 7.164 9.512 9.603 9.511
6 2 4.137 5.815 2.811 5.824 5.650 5.671
7 5 1.647 2.658 1.040 3.673 3.408 3.468
8 3 0.645 1.144 0.373 2.365 2.091 2.158
9 3 0.265 0.488 0.133 1.547 1.301 1.361
≥10 1 0.230 0.516 0.076 2.495 1.883 2.024

0 proportion 0.820 0.819 0.818 0.795 0.822 0.823 0.822
1 proportion 0.111 0.098 0.109 0.130 0.109 0.105 0.109

Table A10 shows the goodness of fit tests result. It was calculated using the results in Table A9.
The parsimonious model, negative binomial, is selected.

Table A10. Goodness of Fit Statistics for CO Line.

ZeroinflPoisson ZeroonePoisson Poisson NB ZeroinflNB ZerooneNB

60.691 25.206 121.987 10.387 11.440 10.370
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A.3. Tweedie Margins

Table A11 shows marginal coefficients for each line.

Table A11. Marginal Coefficients of Tweedie Model.

BC IM PN

Variable Name Estimate Standard Estimate Standard Estimate Standard
Error Error Error

(Intercept) 5.855 0.969 *** 8.404 1.081 *** 6.284 0.437 ***
lnCoverage 0.758 0.155 *** 1.022 0.134 *** 0.395 0.107 ***
lnDeduct 0.147 0.148 −0.277 0.154 .
NoClaimCredit −0.272 0.371 −0.330 0.244 −0.570 0.296 .
EntityType: City 0.264 0.574 0.223 0.406 0.930 0.497 .
EntityType: County 0.204 0.719 0.671 0.501 2.550 0.462 ***
EntityType: Misc −0.380 0.729 −1.945 1.098 . −0.010 0.942
EntityType: School 0.072 0.521 −0.340 0.520 0.036 0.474
EntityType: Town 0.940 0.658 −0.487 0.476 0.185 0.586
φ 165.814 849.530 376.190
P 1.669 1.461 1.418

PO CN CO

Variable Name Estimate Standard Estimate Standard Estimate Standard
Error Error Error

(Intercept) 5.868 0.489 *** 8.263 0.294 *** 7.889 0.340 ***
lnCoverage 0.860 0.119 *** 0.474 0.098 *** 0.841 0.117 ***
lnDeduct
NoClaimCredit 0.155 0.319 −0.369 0.253 −1.025 0.331 **
EntityType: City 0.747 0.612 0.169 0.347 −0.723 0.540
EntityType: County 1.414 0.577 * 1.112 0.325 *** 0.863 0.434 *
EntityType: Misc 0.033 0.925 −0.596 0.744 −0.579 0.939
EntityType: School 0.989 0.544 . −0.631 0.316 * 0.477 0.399
EntityType: Town −2.482 1.123 * −1.537 0.499 ** −0.628 0.564
φ 322.662 336.297 302.556
P 1.508 1.467 1.527

Notes: φ: dispersion parameter, P: power parameter, 1 < P < 2. Signif. codes: 0 ‘***’ 0.001‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1

Figure A6 shows the cdf plot of jittered aggregate losses, as described in Section 3.7. For most
lines, the plots do not show a uniform trend. This tells us that the Tweedie model may not be ideal for
such cases.
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Figure A6. Jittering Plot of Tweedie.

A.4. Dependence of Frequency and Severity

To motivate this problem, let us think about a classical “aggregate loss” model insurance. In
this model, we have a count random variable N representing the number of claims of a policyholder.
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The positive claim amounts are denoted as Y1, Y2, . . . which are independent and identically distributed.
During a specified time interval, the policyholder incurs N claims Y1, . . . , YN , that sum to

S =
N

∑
j=1

Yj,

known as the aggregate loss. In the classical model, the claims frequency distribution N is assumed
independent of the amount distribution Y.

A.4.1. Moments

The random variable S is said to have a “compound distribution.” Its moments are readably
computable in terms of the frequency and severity moments. Using the law of iterated expectations,
we have

E S = E (E(S|N)) = E (µY N) = µYµN

and

E S2 = E
{

E(S2|N)
}
= E

{
NE(Y2) + N(N − 1)µ2

Y

}
= µN(σ

2
Y + µ2

Y) + (σ2
N + µ2

N − µN)µ
2
Y

= µNσ2
Y + (σ2

N + µ2
N)µ

2
Y

so

Var S = µNσ2
Y + σ2

Nµ2
Y

= Poisson µNE(Y2).

A.4.2. Average Severity

These are calculations basic to the actuarial curriculum. Less common is an expression for the
average severity, defined as S̄ = S/N. Note that when N = 0, we define S̄ = 0. Also, use the notation
pn = Pr(N = n). Again, using the rule of iterated expectations, we have

E S̄ = 0× p0 +
∞

∑
n=1

(
E

{
1
n

n

∑
i=1

Yi

}
|N = n

)
pn

=
∞

∑
n=1
{µx} pn

= µx(1− p0)

and

E S̄2 = 02 × p0 +
∞

∑
n=1

1
n2

(
nEY2 + n(n− 1)µ2

Y

)
pn

=
∞

∑
n=1

(
µ2

Y +
EY2 − µ2

Y
n

)
pn

= µ2
Y(1− p0) + σ2

Y

∞

∑
n=1

pn

n
.



Risks 2016, 4, 4 33 of 36

Thus,

Var S̄ = p0(1− p0)µ
2
Y + σ2

Y

∞

∑
n=1

pn

n
.

For zero truncated distributions with p0 = 0, we have E S̄ = µY and Var S̄ = σ2
YE 1

N .

A.4.3. Correlation and Dependence

The random variables S and N are clearly related. To demonstrate this, we have

Cov(S, N) = E {E(SN|N)} − E(S)E(N)

= E
{

µY N2
}
− µYµ2

N

= µY

{
σ2

N + µ2
N

}
− µYµ2

N

= µYσ2
N ≥ 0.

However, the case for the average severity and frequency is not so clear.

Cov(S̄, N) = E(S)− E(S̄)E(N)

= µYµN − (1− p0)µYµN

= p0µYµN .

Thus, S̄ and N are uncorrelated when p0 = 0.
Are S̄ and N independent when p0 = 0? Basic calculations show that this is not the case. To this

end, define the n-fold convolution of the Y random variables, F∗n(x) = Pr(Y1 + · · · + Yn ≤ x).
With this notation, we have

Pr(S̄ ≤ s|N = n) = Pr(Y1 + · · ·+ Yn ≤ sn|N = n) = F∗n(sn)

and

Pr(S̄ ≤ s) =
∞

∑
n=0

Pr(S̄ ≤ s|N = n)pn =
∞

∑
n=0

F∗n(sn)pn

6= F∗n(sn) = Pr(S̄ ≤ s|N = n).

So, S̄ and N provide a nice example of two random variables that are uncorrelated but
not independent.
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