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Abstract: This paper proposes a model for the claim occurrence, reporting, and handling process of
insurance companies. It is assumed that insurance claims occur according to a Markovian arrival
process. An incurred claim goes through some stages of a claim reporting and handling process,
such as Incurred But Not Reported (IBNR), Reported But Not Settled (RBNS) and Settled (S).
We derive formulas for the joint distribution and the joint moments for the amount of INBR, RBNS
and Settled claims. This model generalizes previous ones in the literature, which generally assume
Poisson claim arrivals. Due to the flexibility of the Markovian arrival process, the model can be used
to evaluate how the claim occurring, reporting, and handling mechanisms may affect the volatilities
of the amount of IBNR, RBNS and Settled claims, and the interdependencies among them.

Keywords: Incurred But Not Reported (IBNR) losses; Markovian Arrival Processes

1. Introduction

In property and casualty insurance, the loss payment delay related to claim reporting and
handling can be significant. For example, an injury may not be reported by the victim until years after
the accident or exposure that caused it, especially for latent diseases. Reported claims often remain
unpaid for long periods, since court backlogs, discovery procedures, and legal negotiations delay
settlement. Therefore, it is customary to categorize incurred claims into Incurred But Not Reported
(IBNR), Reported But Not Settled (RBNS), and Settled (S), etc.

Insurers can only observe claims that have been reported, yet they are required to reserve funds
for all incurred claims. Therefore, methods to estimate the distribution of incurred losses based
on the insurer’s information about paid and/or reported amount have been studied extensively
in the actuarial literature. For example, Arjas (1989) [1] laid out a structure for modelling the
claim reporting/handling process as a marked point process, where each incurred claim (point) is
associated with a random mark that carries information about how it is categorized into different
stages of settlement over time. The author showed how to use martingale theory to estimate IBNR
claims based on information included in reported claims. Norberg (1993) [2] assumed that claims
occur according to a time–inhomogeneous Poisson process and that the time from claim occurrence
to reporting and time from claim reporting to settlement follow arbitrary distributions. It was showed
that the IBNR, RBNS, and Settled (S) claims all follow compound Poisson distributions and that they
are independent. For a more recent treatment, one is referred to Chapter 8 of Mikosch (2009) [3].

Instead of assuming certain probability distributions for the claim reporting/handling delays,
the claim reporting/handling process may be represented by a Markov chain. This idea was proposed
in Hachemeister (1980) [4], and was followed by, for example, Hesselager (1994) [5], who assumed
that the claims arrive according to a Poisson process and derived the moments of the IBNR and RBNS
claims.
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As was pointed out in Hesselager (1994) [5] and Norberg (1993) [2], when it is assumed that the
claims occur according to a Poisson process, due to the properties of marked Poisson processes, the
amount of claims in different settlement stages (such as IBNR, RBNS) are independent - a statement
that has not been tested empirically. The purpose of the current paper is not to argue whether
the assumption of independencies among the claims in different stages of the settlement process
is reasonable or not. Instead, we propose a general model that allows interdependencies among
claims in difference stages of the settlement process. As argued in Neuhaus (2004) [6], since claim
development between two valuation dates comprises two separate types of development: changes in
the assessment of reported incurred claims, and reports of new claims that are received by the insurer,
it could be advantageous to distinct between the cost of reported claims and the cost of unreported
claims in claim reserving. Information on their dependency will be important when aggregating both
costs to estimate the variation of the total claim development.

Specifically, we assume that claims occur according to a Markovian arrival process (MAP)
(see for example, Asmussen 2003 [7]), and that an incurred claim goes through some stages of
a claim reporting/handling process according to a Markovian law. We derive formulas for the joint
distribution and the joint moments for the amount of INBR, RBNS and Settled claims. Since the MAP
is quite general and includes Poisson processes, renewal processes with phase–type inter–arrival
times and Markov modulated Poisson processes as special cases, our model may be used to evaluate
how different claim occurring/handling processes may affect the volatility of the IBNR, RBNS, and
Settled claims and their interdependencies. As an example, in Section 5, we assume that the claim
occurrence frequency is influenced by an external environment, which evolves according to a Markov
chain, so the claims arrive according to a Markov modulated Poisson process. Using the results
developed in Section 3 and 4, we show that in this case the amount of IBNR and RBNS claims are more
volatile than in the case when claims arrive according to a homogeneous Poisson process. In addition,
the amount of IBNR and RBNS claims are stochastically dependent.

Methodologically, we will follow Willmot (1990) [8], which recognized the connections between
the distribution of the number of IBNR claims and the number of customers in an infinite server
queue, where the service time of the queue is analogous to the time needed to report a claim.
This allows us to make use of the results on the distribution of the number of customers in an infinite
server queue with Markovian arrivals in the queueing literatures (see for example, Ramaswami and
Neuts 1980 [9] and Masuyama and Takine 2002 [10]).

The remaining parts of this paper are organized as follows. Section 2 introduces the claim
occurrence and settlement processes; Section 3 derives an equation that characterizes the joint
distribution of the amount of the claims in different stages of the settlement process; Section 4 derives
formulas for the joint moments; Section 5 presents numerical examples; Section 6 concludes.

2. The Model

2.1. The Claim Incurral Process

We assume that claims occur according to a MAP with representation (γ, D0, D1). That is,
let J(t) be an irreducible continuous time Markov process with m < ∞ states, initial distribution
γ, intensity matrix D = (Di,j)i,j∈1,2,··· ,m, and limiting distribution π. A transition in J(t) may be
accompanied by the occurrence of a claim. As such, the intensity matrix D has the decomposition
D = D0 + D1, where D0 is the matrix of intensities of state changes without arrivals and D1 that
of state changes with arrivals. Claims that arrive with the i → j transitions are assumed to have
probability distribution function Fij, density function fij, kth moments µ

(k)
ij and moment generating

function (mgf) f ∗ij(s) =
∫ ∞

0 esx fij(x)dx. In addition, we let D f (x) denote a matrix with the ijth element

{D f (x)}ij = {D1}ij fij(x); for k ≥ 1, let Dµ,k be a matrix with the ijth element {Dµ,k}ij = {D1}ijµ
(k)
ij ,

let D∗f (s) be a matrix with the ijth element {D∗f (s)}ij = {D1}ij f ∗ij(s) for 1 ≤ i, j ≤ m.
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2.2. The Claim Reporting and Handling Process

As in Hesselager (1994) [5], the claim reporting and handling process is modelled by a
continuous time Markov chain I(t) with state space S = {0, 1, · · · , K}. Let S = SIBNR ∪ SRBNS ∪ SS,
where SIBNR = {1, · · · , K1}, SRBNS = {K1 + 1, · · · , K}, and SS = {0} denote subsets containing
IBNR, RBNS and Settled states respectively. The state 0 is assumed to be absorbing, which means that
there is no further development after a claim is settled.

An incurred claim is initially assigned to a state j in the set of transient states {1, · · · , K} with
probability β j. The matrix of the rates of transitions among the transient states is denoted by T and the
vector of rates of transitions from transient states to the absorbing state is denoted by t. Then, the total
time a claim spends in the claim reporting and handling process follows a phase–type distribution
with representation (β, T), where β = {β j}j=1,··· ,K.

In fact, the model structure requires that both the claim reporting and the claim handling time
follow phase type distributions. Since it is well–known that the family of phase–type distributions
is dense in the set of all positive-valued distributions (Asmussen 2003) [7], the current model can
be used to approximate other models that directly assume certain claim reporting/handling delay
distributions.

In addition, the proposed model is quite flexible in that one can add more states into the state
space S to represent additional features of the claim reporting/handling process. For example,
in insurance practice, a settled claim can be reopened. Reopened claims can be included in the
model, for example, by introducing a state “pre-settled” in the subset SRBNS, where a claim in the
“pre-settled” state can move to the state 0 (Settled) with certain probability, but it also may move
back to some other state in SRBNS, representing a reopened claim.

3. The Joint Distribution of Claims in Different States

Let X(t) = (X0(t), X1(t), · · · , XK(t)), t ≥ 0, denote the amount of claims incurred during time
interval (0, t] and is at stage {0, 1, · · · , K} of claim reporting/handling process. Let G(x, t) be a matrix
of conditional probabilities with the ijth element

Gij(x, t) = P [X(t) ≤ x, J(t) = j|J(0) = i] , i, j = 1, 2, · · · , m. (1)

Let
G∗(ξ, t) =

∫
eξ·x(t)dG(x, t),

where ξ = {ξ0, ξ1, · · · , ξK}, be the moment generating function (mgf) of G(x, t).
For i ≥ 1, let Ti and Yi denote the time of occurrence and the size of the ith claim respectively.

Then we have that

E
[
eξ·x(t)1(T1 > t, J(t) = j)|J(0) = i

]
= {eD0t}ij, (2)

where 1(·) denotes an indicator function, which takes value 1 if the argument(s) is true and
0 otherwise.

For n ≥ 1
E
[
eξ·X(t)|N(t) = n, and for i = 1, · · · n, Ti = ti, Yi = yi

]
= ∏n

i=1

(
∑K

k=0 pk(t− ti)eξkyi
)

,
(3)

where for k = 0, 1, · · · , K, pk(t− ti) is the probability that a claim that occurs at time ti is at stage k of
the claim reporting/handling process at time t. Because of the assumed Markovian structure of the
claim reporting/handling process, for k = 1, · · · , K, pk(t− ti)=βeT(t−ti)ek, where ek denotes the kth
column of an identity matrix, and p0(t− ti) = 1−∑K

k=1 pk(t− ti).
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It follows by using the law of total probability that

E
[
eξ·X(t)1(T1 < t, J(t) = j)|J(0) = i

]
= ∑∞

n=1
∫ t

0 dt1
∫ t

t1
dt2 · · ·

∫ t
tn−1

dtn
∫ ∞

0 dy1 · · ·
∫ ∞

0 dyn{
∏n

i=1

[
eD0(ti−ti−1)D f (yi)

(
∑K

k=0 pk(t− ti)eξkyi
)]

eD0(t−tn)
}

ij

= ∑∞
n=1

∫ t
0 dt1

∫ t
t1

dt2 · · ·
∫ t

tn−1
dtn{

∏n
i=1

[
eD0(ti−ti−1)D∗1(ξ, t− ti)

]
eD0(t−tn)

}
ij

,

(4)

where

D∗1(ξ, t− ti) =
K

∑
k=0

pk(t− ti)D∗f (ξk). (5)

Combining Equations (2) and (4), we have

G∗(ξ, t) = {eD0t}+
∞

∑
n=1

∫ t

0
dt1

∫ t

t1

dt2 · · ·
∫ t

tn−1

dtn

n

∏
i=1

[
eD0(ti−ti−1)D∗1(ξ, t− ti)

]
eD0(t−tn) (6)

Using similar arguments as in the derivation of Theorem 3.1 in Masuyama and Takine (2002)
[10], Equation (6) leads to

Theorem 1.

∂

∂t
G∗(ξ, t) = [D0 + D∗1(ξ, t)]G∗(ξ, t), (7)

where

D∗1(ξ, t) =
K

∑
k=0

pk(t)D∗f (ξk). (8)

The proof of the Theorem is provided in the appendix of the current paper.

Remark 1. It can be seen from Equation (7) that

∂

∂t
G(x, t) = D0G(x, t) +

K

∑
k=0

pk(t)
∫ xk

0
D f (y)G(x− yek, t)dy, (9)

where xk is the kth element of x and ek is the kth column vector of a (K + 1)× (K + 1) identity matrix.
Intuitively, considering what may occur during a small time interval (0, h), we have

Gij(x, t) = ∑m
l=1 h

[
∑K

k=0 pk(t)
∫ xj

0 {D1 f (y)}ilGl j(x− yek, t− h)dy
]

+ ∑1≤l≤m
l 6=i

h{D0}ilGl j(x, t− h)

+ (1 + {D0}iih)Gij(x, t− h).

(10)

Letting h→ 0 yields Equation (9).

4. The Joint Moments

For k = 0, · · · , K and l ≥ 1, let

{ml
k(t)}i = E

[
[Xk(t)]l |J(0) = i

]
, i = 1, · · · , m,
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be the lth moment of Xk(t) conditional on J(0) = i. Let ml
k(t) denote the vector of conditional

moments with the ith element being {ml
k(t)}i. Let mk(t) denote m1

k(t).
Then, differentiating both sides of Equation (7) with respect to ξk and rearranging, we obtain for

k = 0, 1, · · · , K

d
dt

ml
k(t) = Dml

k(t) + pk(t)
l

∑
i=1

(
l
i

)
Dµ,iml−i

k (t), (11)

where
m0

k(t) = eDte = e

and Dµ,i is a matrix with abth element {D1}ab × µ
(i)
ab for 1 ≤ a, b ≤ m.

In particular,
d
dt

mk(t) = Dmk(t) + pk(t)Dµ,1e, (12)

which has the solution

mk(t) = eDt
∫ t

0
pk(s)e−DsDµ,1e ds. (13)

For k1, k2 = 0, 1, · · · , K, k1 6= k2, and l1, l2 ≥ 0, let ml1,l2
k1,k2

(t) be a vector having the ith element

{ml1,l2
k1,k2

(t)}i = E
[
[Xl1

k1
(t)Xl2

k2
(t)]|J(0) = i

]
, i = 1, · · · , m.

Then by differentiating both sides of Equation (7), we have

d
dt

m(l1,l2)
k1,k2

(t) = Dml1,l2
k1,k2

(t) +
l1,l2

∑
(i,j)>0

(
l1
i

)(
l2
j

)
Di,j

µ,k1,k2
ml1−i,l2−j

k1,k2
(t), (14)

where Di,j
µ,k1,k2

=
∂i+jD∗1(ξ,t)

∂ξ i
k1

∂ξ
j
k2

|ξ0,ξ1,··· ,ξK=0.

Noticing that by Equation (8),

Di,j
µ,k1,k2

=


0 if i > 0 and j > 0

pk1(t)Dµ,i if i > 0 and j = 0
pk2(t)Dµ,j if i = 0 and j > 0

.

So Equation (14) can be simplified to

d
dt ml1,l2

k1,k2
(t) = Dml1,l2

k1,k2
(t) + ∑l1

i=1

(
l1
i

)
pk1(t)Dµ,im

l1−i,l2
k1,k2

(t)

+ ∑l2
j=1

(
l2
j

)
pk2(t)Dµ,jm

l1,l2−j
k1,k2

(t).
(15)

In particular, let mk1,k2(t) denote m1,1
k1,k2

(t), then it satisfies

d
dt

mk1,k2(t) = Dmk1,k2(t) + pk1(t)Dµ,1mk2(t) + pk2(t)Dµ,1mk1(t). (16)

Remark 2. Let {ml
IBNR(t)}i be the lth moment of the amount of IBNR claims conditional on J(0) = i.

Since SIBNR = {1, · · · , K1}, we have

{ml
IBNR(t)}i = E

( K1

∑
k=1

Xk(t)

)l

|J(0) = i

 .
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This can be calculated by making use of formula (15).

The unconditional moments of X(t) are obtained by pre–multiplying the vector of conditional
moments by the initial distribution γ of the claim arrival process. When the claim arrival process is
stationary, i.e., γ = π, the calculation of the unconditional moments simplifies because πD = 0 and
if we pre–multiply the moment formulas (11) and (15) by π, the first term on right hand side of the
equations becomes zero. Particularly, for the first moments, we have that

d
dt

πmk(t) = pk(t)πDµ,1e, (17)

which gives the simple formulas

πmk(t) =
∫ t

0 pk(τ)dτπDµ,1e
=
∫ t

0 βeTτekdτπDµ,1e
= βT−1(eTt − I)ekπDµ,1e, for k = 1, · · · , K,

(18)

and
πm0(t) =

(
t− βT−1(eTt − I)e

)
πDµ,1e.

When t→ ∞, we have for k = 1, · · · , K,

πmk(t)→ (−βT−1ek)(πDµ,1e), (19)

where the term −βT−1ek is in fact the expected amount of time a claim stays in stage k before
settlement (absorption).

Remark 3. Let ml(t) denote the vector of conditional moments of the total amount of incurred claims
during (0, t], regardless of the claim reporing/handling status. Then it can be calculated by setting
pk(t) = 1 in equation (11). In the equilibrium case, we have that πm(t) = πDµ,1et. This result will
be used in the next section.

Remark 4. Similar to Section 8 of Ramaswami and Neuts (1980) [9], it can be shown that when t→ ∞,
the distribution of Xk(t), k ∈ {SIBNR ∪ SRBNS} has an asymptotical limit and the joint moments
ml1,l2

k1,k2
(t) for k1, k2 ∈ {SIBNR ∪ SRBNS} converges to a finite vector. This fact is actually illustrated

in the numerical examples in the next section.

Remark 5. Since the calculation of the joint moments of X(t) only requires the moments of the
claim sizes – the exact form of the claim size distribution is not needed. In the following numerical
examples, exponential claim sizes are assumed for presentational convenience only.

5. Numerical Examples

This example considers three cases of the claim arrival process and illustrates how they affect the
moments of the amount of IBNR and RBNS claims and their dependency. In the following, a random
variable following an exponential distribution with rate λ is said to follow an Exp(λ) distribution.

Case 1: Claims arrive according to a Poisson process with inter claim arrival times following an
Exp(140) distribution. The claim sizes follow an Exp(140/190) distribution. In terms of the MAP
representation, we have

γ = 1, D0 = −140 and D1 = 140.

Case 2: The claims arrive according to a Markov modulated Poisson process and claim sizes are
modulated by the states of the underlying Markov process. Specifically, assume that an external
environment evolves according to a continuous time Markov chain {E(t)}t≥0 with a state space



Risks 2016, 4, 6 7 of 10

{N, R}, where the two elements standing for normal and risky environment respectively. The
environment process is assumed to have the infinitesimal generator

Q =

(
−σ1 σ1

σ2 −σ2

)
,

where σ1 = 1 and σ2 = 9. The equilibrium distribution of the environment states is given by
π = [0.9, 0.1], which means that in the long run, with 90% chance, the environment is normal and
with 10% chance the environment is risky. In the normal environment N, the claim occurrence rate
is λN = 100 and the claim sizes follow an Exp(1) distribution. In the risky environment R, the claim
occurrence rate is λR = 500 and the claim sizes follow an Exp(1/2) distribution.
Assuming that the claim arrival process is stationary, the MAP representation is given by

γ = π = [0.9, 0.1], D0 =

[
−101 1

9 −509

]
and D1 =

[
100 0
0 500

]
.

Case 3: This case is similar to Case 2, but with different parameter values. Here it is assumed
that the environment process has state space {N, R} and have the infinitesimal generator

Q =

(
−σ1 σ1

σ2 −σ2

)
,

where σ1 = 4 and σ2 = 6. So the equilibrium distribution of the environment states is given by
π = [0.6, 0.4]. In the normal environment N, the claim occurrence rate is λN = 100 and the claim sizes
follow an Exp(1) distribution. In the risky environment R, the claim occurrence rate is λR = 162.5
and the claim sizes follow an Exp(1/2) distribution.
Assuming that the claim arrival process is stationary, the MAP representation is given by

γ = π = [0.6, 0.4], D0 =

[
−104 4

6 −168.5

]
, and D1 =

[
100 0
0 162.5

]
.

For all three cases, the expected values of the amount of claims incurred in the time interval (0, 1]
are the same and have the value πDµe = 190.

The parameter values for the environment process in Case 2 and 3 are designed to study how
the environment affects the claim incurring and reporting process. In general, assuming σ2 > σ1,
then a large ratio σ2/σ1 indicates that the arrival process is “bursty”and thus more volatile. See for
example, Neuts and Li (1997) [11] for a discussion of the burstiness of Markovian arrival processes.
With the above setup, The standard deviations (SD) of the amount of claims incurred in the time
interval (0, 1] were calculated using the method pointed out in remark 3 and their values are found
to be 22.7, 117, and 53.2 for case 1, 2 and 3 respectively. Obviously, the claim arrival process of case 2
is the most volatile and case 1 is the least volatile.

In all three cases, the claim reporting/handling process I(t) is assumed to have three states
S = {0, 1, 2}, with SIBNR = {1}, SRBNS = {2} and SS = 0. Therefore, both the time from
claim occurrence to reporting and the time from claim reporting to settlement follow Exponential
distributions. Assuming that they have rate 1/5 and 1 respectively, then we have

T =

(
−0.2 0.2

0 −1

)
.

A claim has to be reported before being handled, so β = [1, 0].
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The mean, standard deviation and the coefficient of variation of the amount of the IBNR, RBNS
and Settled claims for the three cases are computed using the formulas developed in Section 4. The
values are plotted in Figure 1, from which it can be seen that the mean amount of IBNR, RBNS and
Settled claims coincide in the three cases, however the standard deviations and the values of the
coefficient of variation are very different. For case 1, IBNR and RBNS losses are independent because
of the Poisson arrival assumption. However, as shown in Figure 2, the amount of IBNR and RBNS
claims in case 2 and 3 are correlated, with the correlation affected by the burstiness of the claim
arrival process.
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Figure 1. Moments of the claims in different stages.
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Figure 2. Correlation between Incurred But Not Reported (IBNR) and Reported But Not Settled
(RBNS) claims.

6. Conclusion and Discussions

In this paper, we propose and analyze a model of insurance claim occurrence, reporting and
handling process based on Markovian arrival processes. This model generalizes the commonly used
models assuming Poisson claim arrivals. It enables us to evaluate how the claim occurrence process
may affect the volatilities and interdependencies of the amount claims in different stages of the loss
reporting/handling process.

The model can be generalized in many ways. For example, in the current model, the claim
severity is fixed at the time when it occurs and are independent of the claim reporting and setting
process, the full amount is paid when a claim is settled. However, in reality, claim severity could
change during the claim settling process due to reassessment. In fact, in the model introduced by
Huynh et al. (2015) [12], it is assumed that the claim size may change during the claim setting
(investigation) process. The Markovian model proposed in this paper could be generalized to
consider this. For example, one could assume that each claim of size y is modified by a random
factor Vy with distribution function fVy during its stay in the RBNS phases. With such modifications,
Equation (3) becomes

E
[
eξ·X(t)|N(t) = n, and for i = 1, · · · n, Ti = ti, Yi = yi

]
= ∏n

i=1

(
∑k∈SIBNR

pk(t− ti)eξkyi + ∑k∈SRBNS
⋃

SS
pk(t− ti)e

ξkyiVyi

)
.

(20)

Thus Equation (8) becomes

D∗1(ξ, t) = ∑
k∈SIBNR

pk(t)D∗f (ξk) + ∑
k∈SRBNS

⋃
SS

pk(t)
∫ ∫

D f (yi)eξkyiv fVyi (v)dvdyi
. (21)

With this, the calculation of the moments can be carried out is a similar way as in Section 4.
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It should be pointed out that parameter estimation for MAP processes is much more complicated
than for a Poisson process. How to estimate parameters for the MAP claim arrival process based on
observation of reported/paid losses is an interesting future research topic.
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Appendix

For i = 1, · · · , n, let ui = t− tn+1−i. Then Equation (6) may be rewritten as

G∗(ξ, t) = {eD0t}+ ∑∞
n=1

∫ t
0 dun

∫ un
0 dun−1 · · ·

∫ u2
0 du1eD0(t−un)D∗1(ξ, un)

× eD0(un−un−1)D∗1(ξ, un−1) · · · eD0(u2−u1)D∗1(ξ, u1)eD0u1 .
(A1)

Pre-multiplying both sides of Equation (A1) by e−D0t yields

e−D0tG∗(ξ, t) = I + ∑∞
n=1

∫ t
0 dun

∫ un
0 dun−1 · · ·

∫ u2
0 du1e−D0un D∗1(ξ, un)

× eD0(un−un−1)D∗1(ξ, un−1) · · · eD0(u2−u1)D∗1(ξ, u1)eD0u1 .
(A2)

Differentiating both sides of Equation (A2) with respect to t, we obtain

e−D0t ∂
∂t G∗(ξ, t)− e−D0tD0G∗(ξ, t)

= e−D0tD∗1(ξ, t)
[
eD0t + ∑∞

n=2
∫ t

0 dun−1
∫ un−1

0 dun−2 · · ·
∫ u2

0 du1eD0(t−un−1)D∗1(ξ, un−1)
]

×eD0(un−1−un−2)D∗1(ξ, un−2) · · · eD0(u2−u1)D∗1(ξ, u1)eD0u1 .

(A3)

Rearranging Equation (A3) yields Theorem 1.
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