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Abstract:

 In the classical expected utility framework, a problem of optimal insurance design with a premium constraint is equivalent to a problem of optimal insurance design with a minimum expected retention constraint. When the insurer has ambiguous beliefs represented by a non-additive probability measure, as in Schmeidler, this equivalence no longer holds. Recently, Amarante, Ghossoub and Phelps examined the problem of optimal insurance design with a premium constraint when the insurer has ambiguous beliefs. In particular, they showed that when the insurer is ambiguity-seeking, with a concave distortion of the insured’s probability measure, then the optimal indemnity schedule is a state-contingent deductible schedule, in which the deductible depends on the state of the world only through the insurer’s distortion function. In this paper, we examine the problem of optimal insurance design with a minimum expected retention constraint, in the case where the insurer is ambiguity-seeking. We obtain the aforementioned result of Amarante, Ghossoub and Phelps and the classical result of Arrow as special cases.
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1. Introduction


In the classical problem of optimal insurance design, it is well known since the work of Arrow [1] that when the insured is a risk-averse expected utility (EU) maximizer and the insurer is a risk-neutral EU maximizer, the indemnity schedule that maximizes the insured’s expected utility of terminal wealth subject to a premium constraint is a deductible indemnity of the form [image: there is no content], where X is the loss random variable and [image: there is no content] is a given constant deductible.



For a given indemnity schedule Y, the premium constraint is a constraint of the form:


[image: there is no content]








where [image: there is no content] is the premium paid and [image: there is no content] is a loading factor. It requires that the premium received by the insurer is enough to cover the expected indemnity payments loaded up for expenses and profits. By letting [image: there is no content], the premium constraint can be written as:


[image: there is no content]



(1)







The quantity [image: there is no content] is a random variable that represents the portion of the loss that is actually suffered (or retained) by the insured after the insurance indemnification payment, and it is called the retention random variable. The constraint given in Equation (1) is often referred to as a minimum expected retention constraint. It requires that the indemnity schedule Y be such that the associated retention random variable has a minimum pre-specified expectation under the insurer’s beliefs. Since a premium constraint and a minimum expected retention constraint are equivalent in the classical EU case, the optimal indemnity schedule with a minimum expected retention constraint is then also a deductible indemnity schedule, with a constant positive deductible level.



Both the premium constraint and the minimum expected retention constraint are a simple restatement of the risk-neutral EU-maximizing insurer’s participation constraint. The insurer and the insured share the same probabilistic beliefs about the realizations of the loss random variable, and hence, Arrow’s [1] classical result is a pure risk-sharing result. The applicability of this result is limited, nonetheless. Indeed, the classical theory of optimal insurance design due to Arrow is based on the classical theory of choice under uncertainty [2,3,4], which follows the Bayesian paradigm, whereby the uncertainty that a decision maker faces in a given decision problem is described by a probability measure over a space of contingencies or states of the world. In other words, the economic agent has a clear probabilistic assessment of the underlying uncertainty that he faces.



However, the seminal work of Knight [5] suggested that there might be situations where the information available to a decision maker is too coarse for him or her to be able to formulate an additive probability measure over the list of contingencies. These occurrences are typically referred to as situations of decision under Knightian uncertainty, or ambiguity. Yet, this did not penetrate the mainstream theory of choice until Ellsberg’s [6] famous thought experiments, which can be seen as an indication of people’s aversion to unknown unknowns, or vagueness in beliefs about likelihoods. There is now a substantial body of empirical evidence for the pervasiveness of ambiguity in situations of choice under uncertainty, and we refer to Camerer [7] for a still timely review.



Largely motivated by the Ellsberg paradox, modern decision theory has developed several models of decision under ambiguity that rationalize behaviours, such as the ones depicted by Ellsberg [6]. For example, in Schmeidler [8], ambiguity is represented by a non-additive subjective “probability” measure, called a capacity, and preferences are aggregated using an integral defined with respect to capacities: the Choquet integral (we review capacities and Choquet integration in Section 3.1 and in Appendix A). Schmeidler’s [8] seminal work and his model of decision under ambiguity, which came to be known as Choquet expected utility (CEU), can be seen as the starting point of decision theoretic investigations of models of choice under ambiguity.



After Schmeidler’s work, many axiomatic models of decision under ambiguity were introduced. In Gilboa and Schmeidler [9], ambiguity is described by a collection of additive priors (a set of probability measures), and preferences are aggregated using the minimum value of the usual (Lebesgue) integral over this collection. Ghirardato, Maccheroni and Marinacci [10] propose a general model of decision under ambiguity that includes that of [9]. Amarante [11] introduces a model of decision under ambiguity that includes the aforementioned ones. We refer to the recent survey of Gilboa and Marinacci [12] for more on this topic, including other models of decision under ambiguity and applications of these models to several problems in economic theory.



In particular, Amarante [11] shows that most models of decision under ambiguity can be represented as models were the objects of choice are evaluated by a Choquet integral with respect to some capacity. That is, Choquet integration is a wide enough aggregation concept for preferences that it can encompass most models of decision under ambiguity and, in particular, the most popular ones. As a result, we focus in this paper on Choquet integration as an aggregation concept for decision-making under ambiguity, and we consider the CEU model of Schmeidler [8] as a model of decision-making under ambiguity.



1.1. Ambiguity in Optimal Insurance Design


Empirical evidence suggests that ambiguity, rather than risk, is prevalent in insurance pricing and underwriting and that often, insurers tend to exhibit more ambiguity than the insured individuals (e.g., [13]). Motivated by these findings, Amarante, Ghossoub and Phelps (AGP) [14] re-examined the classical insurance demand problem of Arrow [1] in a setting where the insurer has ambiguous beliefs (in the sense of Schmeidler [8]) about the realizations of the insurable loss, whereas the insured is an EU maximizer. Specifically, they examined the problem of a risk-averse EU-maximizing insured who wishes to choose the indemnity schedule that maximizes his or her expected utility of terminal wealth, subject to a premium constraint based on the insurer’s ambiguous beliefs and that takes the form:


[image: there is no content]



(2)




where integration is in the sense of Choquet (Section 3.1 and Appendix A). This premium constraint is a restatement of the insurer’s participation constraint. In particular, AGP [14] showed that when the insurer is ambiguity-seeking, with a concave distortion of the insured’s probability measure, then the optimal indemnity schedule is a state-contingent deductible schedule, in which the deductible depends on the state of the world only through the insurer’s distortion function. Arrow’s result then obtains as a special case when the insurer does not distort probabilities.



Because of the properties of the Choquet integral, the premium constraint in Equation (2) cannot be re-written as a minimum expected retention constraint. Therefore, in the case where the insurer is a Choquet-expected utility maximizer as in Schmeidler [8], a problem of insurance design given a premium constraint is not equivalent to a problem of insurance design given a minimum expected retention constraint, where the expectation is in the sense of Choquet, that is it is an ambiguous (or non-additive) expectation.




1.2. Related Literature


There is a growing literature devoted to the study of ambiguity in insurance design and, more broadly, in situations of contracting or risk sharing. For example, Alary et al. [15] examine a problem of optimal insurance design in which the insured is ambiguity-averse in the sense of Klibanoff, Marinacci and Mukerji [16]. The authors assume that, conditional on a non-zero loss occurring, the loss severity distribution is not ambiguous; however, the probability that a loss occurs is ambiguous. The authors then show that, in this situation, the optimal indemnity is a straight deductible. Gollier [17] also examines a problem of optimal insurance design in which the insured is ambiguity-averse in the sense of Klibanoff, Marinacci and Mukerji [16], and he shows that the optimal indemnity schedule contains a disappearing deductible when the insured’s collection of (additive) priors can be ordered according to the monotone-likelihood ratio property.



Jeleva [18] considers an insurance model in which the insured behaves according to Schmeidler’s CEU model. She assumes that the optimal insurance contract is of the co-insurance type and then looks for the optimal co-insurance factor. Young [19] and Bernard et al. [20] examine a problem of optimal insurance design in which the insured is a rank-dependent expected utility maximizer [21,22]. Doherty and Eeckhoudt [23] study the optimal level of deductible under Yaari’s dual theory [22]. Karni [24] considers an insurance model in which the preferences of the insured can accommodate ambiguous beliefs, but they satisfy certain differentiability criteria. He shows that a deductible indemnity schedule is optimal in that case. Machina [25] considers a similar setting where the preferences of the insured have a non-EU representation that satisfies certain differentiability criteria, and he examines the optimal level of co-insurance and the optimal level of deductible. Schlesinger [26] examines the optimal co-insurance level in a situation where the preferences of the insured are not necessarily EU preferences, but they are risk-averse in the sense of disliking mean-preserving increases in risk.



The papers mentioned above all assume that the ambiguity is on the side of the insured. Motivated by empirical evidence suggesting that insurers tend to exhibit more ambiguity than the insured individuals (e.g., [13]), AGP [14] study the problem of optimal insurance design in a setting where the insurer has ambiguous beliefs about the realizations of the insurable loss (and behaves according to Schmeidler’s CEU model), whereas the insured does not.



Carlier et al. [27] examine ambiguity on both sides: the insurer’s and the insured’s. Specifically, they consider the case in which both parties’ beliefs are epsilon-contaminations of a given prior, and they show that the optimal indemnity contains a deductible for high values of the loss. Anwar and Zheng [28] also examine ambiguity on both sides, but they consider a model with only two states of the world: a no-loss state and a loss state. As such, this is of limited scope, since the shape of an optimal indemnity schedule cannot be determined in a two-state world.



Carlier and Dana [29,30,31] and Chateauneuf et al. [32] examine more general problems of risk sharing and contracting that are relevant to the insurance problem considered here. However, they do not give a full analytical characterization of the optimal risk sharing rule, which is one of the main goals of the present paper in the context of an insurance design problem.



Finally, we would like to mention the recent work of Balbas et al. [33] who consider ambiguity on the side of both the insurer and the insured1. The authors assume that both parties behave according to the maxmin expected utility (MEU) model of Gilboa and Schmeidler [9], that is their ambiguity is described by a collection of additive priors (a set of probability measures), and preferences are aggregated using the minimum value of the usual (Lebesgue) integral over this collection of priors. The authors do not consider the retention random variable as a decision variable, but rather its sensitivity (i.e., mathematical derivative) with respect to total claims. This is meant to prevent some potential moral hazard issues. The authors then show that the optimal indemnity schedule is often such that the sensitivity of the retention random variable to the total claims saturates the problem’s constraints (a bang-bang solution).




1.3. This Paper’s Contribution


This paper is meant to supplement the literature and provide a framework for scholars or practitioners who are used to considering retention as a decision variable, but would like to examine the effect of ambiguity. Specifically, we examine the problem of optimal insurance design for a given minimum expected retention level, when the insurer is ambiguity-seeking in the sense of Schmeidler [8]. We focus on the case of an ambiguity-seeking rather than an ambiguity-averse insurer, since recent work suggests that situations of ambiguity-seeking are empirically relevant (e.g., [34,35,36]). We examine two cases:

	(1)

	
We first examine the problem of insurance design when the insurer’s beliefs are a concave distortion of a probability measure that differs from the insurer’s probability measure. We show that there is an event A to which the insurer assigns full probability and on which the optimal indemnity schedule is a state-contingent deductible schedule, with a state-contingent deductible that is a function of the insurer’s distortion function and of a likelihood ratio between the two parties’ beliefs. On the complement of the event A, the optimal indemnity is full insurance. However, the insurer assigns zero probability to the complement of A.




	(2)

	
As a special case of the above, we examine the problem of insurance design when the insurer’s beliefs are a concave distortion of the insured’s probability measure. We show that in this case, the result of AGP [14] mentioned above still holds: the optimal indemnity schedule is a state-contingent deductible schedule, in which the deductible depends on the state of the world only through the insurer’s distortion function. Arrow’s result then obtains as a special case when the insurer does not distort probabilities.










1.4. Outline


The rest of this paper is organized as follows. In Section 2, we review the classical optimal insurance design problem. In Section 3, we examine the problem of optimal insurance design given a minimum expected retention constraint, in the case of an insurer who is ambiguity-seeking in the sense of Schmeidler [8]. Proofs and related analysis are given in the Appendices.





2. Optimal Insurance: The Classical Case


2.1. Setup and Preliminaries


Consider a collection S of states of the world, and endow S with a σ-algebra [image: there is no content] of events. Let B[image: there is no content] denote the linear space of all bounded, [image: there is no content]-valued and [image: there is no content]-measurable functions on S,[image: there is no content]. Let B+[image: there is no content] denote the collection of all [image: there is no content]+-valued elements of B[image: there is no content]. Any f∈B[image: there is no content] is bounded, and we define its sup norm by [image: there is no content].



In the classical problem of optimal insurance design given a premium constraint, a risk-averse EU-maximizing individual with initial wealth [image: there is no content] faces an insurable random loss, against which he or she seeks insurance. This random loss is represented by a bounded, nonnegative random variable X on the state space. That is, the random loss is a given element of B+[image: there is no content] with closed range [image: there is no content], where [image: there is no content].



Denote by Σ the σ-algebra [image: there is no content] of subsets of S generated by X. Then, for any [image: there is no content], there exists a Borel-measurable map I:[image: there is no content]→[image: there is no content], such that [image: there is no content] ([37], Theorem 4.41). Let [image: there is no content] denote the collection of nonnegative elements of [image: there is no content], and let P be a probability measure on [image: there is no content]. We will make the following assumption all throughout.



Assumption 1. 

The random loss X is a continuous random variable2 on the probability space [image: there is no content]. That is, the Borel probability measure [image: there is no content] is nonatomic3.





The individual seeking an insurance coverage against this random loss X has the possibility of purchasing an insurance indemnity schedule [image: there is no content], which pays the amount [image: there is no content], in the state of the world [image: there is no content]. That is, [image: there is no content], and we can hence identify [image: there is no content] with the collection of all possible indemnity schedules. The price of this insurance indemnity schedule is called the insurance premium, and it is denoted by [image: there is no content]. The premium is determined by the insurer, based on the insurer’s beliefs about the realizations of X (and hence, of Y).




2.2. The Insurance Design Problem


In the classical insurance model of Arrow [1], both the insurer and the insured are EU maximizers, having the same non-ambiguous beliefs about the realizations of X. The insurer is assumed to be a risk-neutral EU maximizer, with a linear utility function v, which we assume to be the identity function. This is without loss of generality, as utility functions are defined up to a positive linear transformation. The insured is risk-averse, having a concave increasing utility function u.



After purchasing an indemnity schedule [image: there is no content], the insured’s wealth is the random variable W defined by [image: there is no content], in each state of the world [image: there is no content]. The insured’s problem is that of choosing an indemnity schedule that maximizes his or her expected utility of wealth, for a given premium Π. Specifically, the insured’s problem is that of choosing Y in [image: there is no content] so as to maximize:


[image: there is no content]








subject to the classical constraint that the indemnity function is nonnegative and does not exceed the loss, that is [image: there is no content], and subject to a premium constraint of the form:


[image: there is no content]



(3)




where [image: there is no content] is a given loading factor.



Arrow’s [1] classical result states that in this case, the optimal insurance indemnity schedule is a deductible insurance schedule:

Theorem 1 (Arrow). 

The optimal indemnity schedule is a deductible schedule given by:


[image: there is no content]








where [image: there is no content] is a constant, such that [image: there is no content].








2.3. Premium Constraint vs. Minimal Expected Retention Constraint


In this classical framework, it is easy to see how the premium constraint given in Equation (3) is equivalent to a constraint for the form:


[image: there is no content]



(4)




for [image: there is no content]. For a given indemnity schedule [image: there is no content], the random variable


[image: there is no content]








is the amount of loss that is retained by the insured individual and is called the retention random variable. The constraint given in Equation (4) is called a minimum retention constraint.



Therefore, the classical problem of demand for insurance is equivalent to the following problem of optimal insurance design with a minimal expected retention:


Foragiven[image: there is no content]≥0sup[image: there is no content]∫uW0−Π−X+YdPs.t.0≤Y≤X,∫X−YdP≥[image: there is no content]



(5)







By the monotonicity of u, if [image: there is no content], then full insurance is optimal, that is [image: there is no content] is an optimal solution for Problem (5). When [image: there is no content], Theorem 1 implies that the optimal solution is a deductible indemnity schedule with a constant, positive deductible.



One should note the equivalence between a premium constraint and a minimum expected retention constraint holds only under the expected value premium principle, i.e., under Expected Utility Theory. Insurance pricing, risk measurement and premium principles under non-Expected Utility models or models of Ambiguity have been recently examined in the literature (see, e.g. Pichler [38] and Ghossoub [39]). Under such non-linear premium principles, the equivalence between a premium constraint and a minimum retention constraint does not hold.





3. The Case of an Ambiguity-Seeking Insurer


3.1. Preliminaries: Capacities, Choquet Integration and the CEU Model


Definition 1. 

A (normalized) capacity on a measurable space [image: there is no content] is a set function [image: there is no content], such that:

	(1)

	
[image: there is no content];




	(2)

	
[image: there is no content]; and,




	(3)

	
υ is monotone: for any A,B∈Σ,A⊆B⇒υA≤υB.











The capacity υ is said to be:

	
supermodular (or convex) if [image: there is no content], for all [image: there is no content]; and,



	
submodular (or concave) if [image: there is no content], for all [image: there is no content].








For instance, if [image: there is no content] is a probability space and [image: there is no content] is an increasing function, such that [image: there is no content] and [image: there is no content], then the set function [image: there is no content] is a capacity on [image: there is no content], called a distorted probability measure. The function T is usually called a probability distortion. If, moreover, the distortion function T is convex (respectively concave), then the capacity [image: there is no content] is supermodular (respectively submodular) ([40] Ex. 2.1).



Definition 2. 

Let [image: there is no content] be a supermodular capacity and [image: there is no content] a submodular capacity on [image: there is no content].

	
The core of [image: there is no content], denoted by core[image: there is no content], is the collection of all probability measures Q on [image: there is no content], such that [image: there is no content].



	
The anti-core of [image: there is no content], denoted by acore[image: there is no content], is the collection of all probability measures Q on [image: there is no content], such that [image: there is no content].










Both core[image: there is no content] and acore[image: there is no content] are weak*-compact and convex collections of probability measures on the space [image: there is no content].



Definition 3. 

Let υ be a capacity on [image: there is no content]. The Choquet integral of [image: there is no content] with respect to υ is defined by:


∫Ydυ:=∫0+∞υ{s∈S:Ys≥t}dt+∫−∞0υ{s∈S:Ys≥t}−1dt








where the integrals are taken in the sense of Riemann.





The Choquet integral with respect to a (countably additive) measure is the usual a Lebesgue integral with respect to that measure ([41] p. 59). By a classical result of Schmeidler [42], we can represent Choquet integrals with respect to a supermodular (respectively submodular) capacity as a lower (respectively upper) envelope of Lebesgue integrals:

Proposition 1 

(Schmeidler [42]). Let υ be a capacity on [image: there is no content], and let [image: there is no content]:

	
If υ is supermodular, then ∫Ydυ=min∫YdP:P∈core[image: there is no content];



	
If υ is submodular, then ∫Ydυ=max∫YdP:P∈acore[image: there is no content].












Definition 4. 

Two functions [image: there is no content] are said to be comonotonic if:


[image: there is no content]s−[image: there is no content]s′[image: there is no content]s−[image: there is no content]s′≥0,foralls,s′∈S













For instance, any [image: there is no content] is comonotonic with any c∈[image: there is no content]. Moreover, if [image: there is no content] and if [image: there is no content] is of the form [image: there is no content]=I∘[image: there is no content], for some Borel-measurable function I, then [image: there is no content] is comonotonic with [image: there is no content] if and only if the function I is nondecreasing. Appendix A provides some additional information about capacities and Choquet integration.



In the CEU model of Schmeidler [8], the ambiguous beliefs of a decision maker are represented by a non-additive probability measure (a capacity) on the state space, and preferences are aggregated using the concept of Choquet integration.



The decision maker’s preferences over alternatives induce a unique non-additive probability measure υ over the sate space and a utility function u, such that an alternative Y is evaluated by [image: there is no content], where integration is in the sense of Choquet. Moreover, in the CEU model, ambiguity aversion is equivalent to the convexity of the capacity, and ambiguity loving is equivalent to the concavity of the capacity.




3.2. The Insurance Design Problem


Here, we assume that the insurer has ambiguous beliefs about the realizations of the loss random variable X. His or her ambiguous beliefs are represented by a non-additive probability measure (a capacity) on the state space, as in the CEU model of Schmeidler [8].



In this case, an indemnity schedule Y will be deemed acceptable by the insurer if the associated retention [image: there is no content] yields a non-additive expectation of at least [image: there is no content] under the insurer’s ambiguous beliefs. In other words, the minimum retention constraint in this context is given by:


[image: there is no content]



(6)




where integration is in the sense of Choquet. It is important to note that since the Choquet integral is not additive in general and only positively homogeneous (Proposition A1), the constraint given in Equation (6) cannot be written as a premium constraint of the form [image: there is no content] for some [image: there is no content]. This is a fundamental point of departure from the classical case.



Recently, AGP [14] studied the problem of optimal insurance design given a premium constraint, when the insurer has ambiguous beliefs in the sense of the CEU model of Schmeidler [8]. Specifically, they study the problem:


supY∈B(Σ)∫uW0−Π−X+YdPs.t.0≤Y≤X,−∫−Ydυ≤Π1+ρ



(7)







The constraint −∫−Ydυ≤Π1+ρ is a restatement of the insurer’s participation constraint:


[image: there is no content]








where [image: there is no content] is the insurer’s initial wealth.



Here, for a given [image: there is no content], the insured’s problem is the following:


supY∈B(Σ)∫uW0−Π−X+YdPs.t.0≤Y≤X,∫X−Ydυ≥[image: there is no content]



(8)







As mentioned above, due to the properties of the Choquet integral, problems Equations (7) and (8) are not equivalent.



Assumption 2. 

The insured’s utility function u satisfies the following properties:

	(1)

	
[image: there is no content];




	(2)

	
u is strictly increasing and strictly concave;




	(3)

	
u is continuously differentiable.




	(4)

	
The first derivative satisfies [image: there is no content] and [image: there is no content].











Thus, in particular, we assume that the insured is risk-averse. We also make the assumption that the insured is well diversified, so that the particular exposure to X is sufficiently small, with respect to the total wealth of the insured:



Assumption 3. 

X≤W0−Π,P-a.s. That is, [image: there is no content]





In this paper, we consider the case of an insurer who is an ambiguity-seeking insurer in the sense of Schmeidler [8]. That is, the capacity υ is submodular (concave; Definition 1). Specifically, we consider the case where the insurer’s capacity υ is of the form [image: there is no content], for some probability measure [image: there is no content] on [image: there is no content] and some function [image: there is no content], which is increasing, concave and continuous with [image: there is no content] and [image: there is no content]. Then, [image: there is no content] is a submodular capacity on [image: there is no content].



Assumption 4. 

We assume that [image: there is no content], where:

	(1)

	
Q is a probability measure on [image: there is no content], such that [image: there is no content] is nonatomic;




	(2)

	
[image: there is no content] is increasing, concave and twice differentiable; and




	(3)

	
[image: there is no content] and [image: there is no content].











Henceforth, we examine the following problem, for a given [image: there is no content]:


supY∈B(Σ)∫uW0−Π−X+YdPs.t.0≤Y≤X,∫X−YdT∘Q≥[image: there is no content]



(9)








3.3. A Characterization of the Optimal Indemnity Schedule


For each [image: there is no content], let [image: there is no content], denote the distribution function of Z with respect to the probability measure Q, and let [image: there is no content] be the left-continuous inverse of the distribution function [image: there is no content] (that is, the quantile function of Z), defined by:


FZ−1t=infz∈[image: there is no content]+:[image: there is no content]z≥t,∀t∈0,1



(10)







Definition 5. 

Denote by [image: there is no content] the collection of all quantile functions f of the form [image: there is no content], where F is the distribution function of some [image: there is no content], such that [image: there is no content].





That is, [image: there is no content] is the collection of all quantile functions f that satisfy the following properties:

	(1)

	
[image: there is no content], for each [image: there is no content];




	(2)

	
[image: there is no content], for each [image: there is no content].









Denoting by Quant=f:[image: there is no content]→[image: there is no content]|fisnondecreasingandleft−continuous the collection of all quantile functions, we can then write [image: there is no content] as follows:


AQuant=f∈Quant:0≤fz≤FX−1z,foreach0<z<1



(11)







By Lebesgue’s decomposition theorem ([37], Th. 10.61) there exists a unique pair [image: there is no content] of (nonnegative) finite measures on [image: there is no content], such that:

	
[image: there is no content];



	
[image: there is no content] ([image: there is no content] is absolutely continuous with respect to Q); and,



	
[image: there is no content] ([image: there is no content] and Q are mutually singular).








That is, for all [image: there is no content], [image: there is no content]B=0, whenever [image: there is no content]. Moreover, there exists some [image: there is no content], such that QS\A=[image: there is no content]A=0, which then implies that [image: there is no content]S\A=0 and [image: there is no content]. Note also that for all [image: there is no content], ∫ZdP=∫AZd[image: there is no content]+∫S\AZd[image: there is no content]. Furthermore, by the Radon–Nikodým Theorem ([43], Th. 4.2.2), there exists a Q-a.s. unique Σ-measurable and Q-integrable function [image: there is no content], such that [image: there is no content]C=∫ChdQ, for all [image: there is no content]. Hence, for all [image: there is no content], ∫ZdP=∫AZhdQ+∫S\AZd[image: there is no content]. Furthermore, since [image: there is no content]S\A=0, it follows that ∫S\AZd[image: there is no content]=∫S\AZdP. Thus, for all [image: there is no content], ∫ZdP=∫AZhdQ+∫S\AZdP.



Moreover, since [image: there is no content] is Σ-measurable and Q-integrable, there exists a Borel-measurable and [image: there is no content]-integrable map [image: there is no content], such that h=d[image: there is no content]dQ=ϕ∘X. We will also make the following assumption, which can be interpreted as a kind of monotone likelihood ratio property.



Assumption 5. 

The Σ-measurable function h=ϕ∘X=d[image: there is no content]dQ is comonotonic with X, i.e., ϕ is nondecreasing.





Since [image: there is no content] is nonatomic (by Assumption 4), it follows that [image: there is no content] has a uniform distribution over [image: there is no content] ([44], Lemma A.21), that is [image: there is no content] for each t∈[image: there is no content]. Letting [image: there is no content], it follows that U is a random variable on the probability space [image: there is no content] with a uniform distribution on [image: there is no content]. Consider the following quantile problem:


supf∫uW0−Π−fUϕ[image: there is no content]UdQs.t.f∈AQuant,∫[image: there is no content]1−UfUdQ=[image: there is no content]



(12)







The following theorem characterizes the solution of the insured’s problem (Problem (9)) in terms of the solution of the relatively easier quantile problem given in Problem (12), provided the previous assumptions hold. The proof is given in Appendix C.



Theorem 2. 

Under the previous assumptions, if [image: there is no content] is optimal for Problem (12), then the function:


[image: there is no content]=X−[image: there is no content]U1A+X1S\A








is optimal for Problem (9).





In particular, [image: there is no content]=X−[image: there is no content]U,Q-a.s. That is, the set E of states of the world s, such that [image: there is no content]s≠X−[image: there is no content]Us, has probability zero under the probability measure Q (and hence, [image: there is no content]). The optimal indemnity schedule will be seen by the insurer to be almost surely equal to the function X−[image: there is no content]U.



Another immediate implication of Theorem 2 is that the collection of states of the world in which the optimal indemnity schedule is a full insurance rule is a set of states to which the insurer assigns a zero likelihood. On the set of all other states of the world, the optimal indemnity schedule deviates from the full insurance rule by the function [image: there is no content]U.



Under the following two assumptions, it is possible to fully characterize the shape of an optimal insurance contract. This is done in Corollary 1.



Assumption 6. 

The Σ-measurable function h=ϕ∘X=d[image: there is no content]dQ is such that ϕ is left-continuous.





Assumption 7. 

the function [image: there is no content], defined on t∈[image: there is no content]\{t:ϕ∘Fx−1t=0}, is nondecreasing.





Assumption 7 is also a monotone likelihood ratio type assumption. Similar assumptions have been used in Jin and Zhou [45] in their study of portfolio choice under prospect theory, in He and Zhou [46] in their study of a portfolio choice problem under Yaari’s [22] dual theory of choice, in Jin and Zhou [47] in their study of greed and leverage within a portfolio choice problem under prospect theory and in Carlier and Dana [48] in their study of the demand for contingent claims under rank-dependent expected utility [21]. Furthermore, note that when both the insured and the insurer are Bayesian decision makers, that is when the insurer does not distort probabilities, then Assumption 7 and Assumption 5 are equivalent4.



When the previous assumptions hold, we can give an explicit characterization of an optimal indemnity schedule, as follows.



Corollary 1 (The Shape of an Optimal Indemnity Schedule). 

Under the previous assumptions, the function [image: there is no content] defined below is an optimal solution for Problem (9):


[image: there is no content]=minX,max0,X−dT,ϕ1A+X1S\A








where:


[image: there is no content]








U is a random variable on the probability space [image: there is no content] with a uniform distribution on [image: there is no content], and [image: there is no content] is chosen, so that:


∫[image: there is no content]1−Umax0,minX,W0−Π−[image: there is no content]−1−[image: there is no content][image: there is no content]1−UϕXdQ=[image: there is no content]













The proof of Corollary 1 is given in Appendix D. Note that if Assumption 5 holds, then Assumption 6 is a weak assumption5.




3.4. A Special Case


Finally, we consider the special case where [image: there is no content], in which the insurer’s submodular capacity υ is a concave distortion of the insured’s probability measure P of the form [image: there is no content]. In this case, the insured’s problem becomes:


supY∈B(Σ)∫uW0−Π−X+YdPs.t.0≤Y≤X,∫X−YdT∘P≥[image: there is no content]



(13)




where the distortion function [image: there is no content] is increasing, concave, twice differentiable and satisfies [image: there is no content] and [image: there is no content].



Since [image: there is no content], we have:

	
P=[image: there is no content]=Q;



	
h=ϕ∘X=d[image: there is no content]dQ is the constant function equal to one. Hence, Assumptions 5 and 6 trivially hold;



	
[image: there is no content], and hence, [image: there is no content];



	
[image: there is no content] is a random variable on the probability space [image: there is no content] with a uniform distribution on [image: there is no content].








Since, moreover, the random variable [image: there is no content] is also a random variable on the probability space [image: there is no content] with a uniform distribution on [image: there is no content], Corollary 1 then becomes:

Corollary 2. 

If Assumptions 2, 3 and 7 hold and if [image: there is no content] is nonatomic, then the function [image: there is no content] defined below is an optimal solution for Problem (13):


[image: there is no content]=minX,max0,X−dT








where:


[image: there is no content]








V is a random variable on the probability space [image: there is no content] with a uniform distribution on [image: there is no content], and [image: there is no content] is chosen, so that:


∫[image: there is no content]Vmax0,minX,W0−Π−[image: there is no content]−1[image: there is no content][image: there is no content]VdP=[image: there is no content]















Corollary 2 states that when the insurer’s ambiguous beliefs are a concave distortion of the insured’s non-ambiguous beliefs, then an indemnity schedule that solves the optimal insurance design problem given a minimum retention constraint is a state-contingent deductible schedule, with a state-contingent deductible given by:


[image: there is no content]








for an appropriately-chosen [image: there is no content]. This is an identical result to Theorem 5.4 of AGP [14], which states that when the insurer’s ambiguous beliefs are a concave distortion of the insured’s non-ambiguous beliefs, then an indemnity schedule that solves the optimal insurance design problem given a premium constraint is a state-contingent deductible schedule, with a state-contingent deductible given by:


[image: there is no content]








for an appropriately-chosen [image: there is no content].



Hence, when the insurer’s ambiguous beliefs are a concave distortion of the insured’s non-ambiguous beliefs, a problem of optimal insurance design with a minimum retention constraint is equivalent to a problem of optimal insurance design with a premium constraint. The optimal indemnity schedule is given by a state-contingent deductible schedule6, in which the state-contingent deductible [image: there is no content] depends on the state of the world only through the insurer’s distortion function T. Clearly, when the insurer does not distort probabilities, so that the function T is the identity function, one recovers Arrow’s result as a special case.
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Appendix A. More on Capacities and Choquet Integration


Definition A1. A capacity υ on [image: there is no content] is continuous from above (respectively below) if for any sequence [image: there is no content], such that [image: there is no content] (respectively [image: there is no content]) for each n, it holds that:


limn→+∞υAn=υ⋂n=1+∞Anrespectivelylimn→+∞υAn=υ⋃n=1+∞An











A capacity that is continuous both from above and below is said to be continuous.



For instance, if υ is a distorted probability measure of the form [image: there is no content] where T is a continuous function, then υ is a continuous capacity.



The Choquet integral with respect to a (countably additive) measure is the usual Lebesgue integral with respect to that measure ([41] p. 59). Unlike the Lebesgue integral, the Choquet integral is not an additive operator on [image: there is no content]. However, the Choquet integral is additive over comonotonic functions.



Proposition A1. 

Let υ be a capacity on [image: there is no content].

	(1) 

	
If [image: there is no content], then in general, ∫ϕ1+ϕ2dυ≠∫ϕ1dυ+∫ϕ2dυ.




	(2) 

	
If [image: there is no content] are comonotonic, then ∫ϕ1+ϕ2dυ=∫ϕ1dυ+∫ϕ2dυ.




	(3) 

	
If [image: there is no content] are such that [image: there is no content], then ∫ϕ1dυ≤∫ϕ2dυ.




	(4) 

	
For all [image: there is no content] and all [image: there is no content], then ∫cϕdυ=c∫ϕdυ.




	(5) 

	
If υ is submodular, then for any [image: there is no content], ∫ϕ1+ϕ2dυ≤∫ϕ1dυ+∫ϕ2dυ.












Appendix B. Rearrangements and Supermodularity


Here, the idea of an equimeasurable rearrangement of a random variable with respect to another random variable is discussed. All proofs, additional results and references to the literature may be found in Ghossoub [51,52].



Appendix B.1. The Nondecreasing Rearrangement


Consider the setting of Section 2.1, and let ζ be the probability law of X defined by [image: there is no content] for any Borel subset B of [image: there is no content].



Definition A2. 

For any Borel-measurable map I:[image: there is no content]→[image: there is no content], define the distribution function of I as the map [image: there is no content]:[image: there is no content]→0,1 defined by:


[image: there is no content]



(A1)









Then, [image: there is no content] is a nondecreasing right-continuous function.



Definition A3. 

Let [image: there is no content] be any Borel-measurable map, and define the function [image: there is no content]:[image: there is no content]→[image: there is no content] by:


[image: there is no content]t:=infz∈[image: there is no content]+|[image: there is no content]z≥ζ0,t



(A2)









The following proposition gives some useful properties of the map [image: there is no content] defined above.



Proposition A2. 

Let [image: there is no content] be any Borel-measurable map, and let [image: there is no content]:[image: there is no content]→[image: there is no content] be defined as in Equation (A2). Then, the following hold:

	(1) 

	
[image: there is no content] is left-continuous, nondecreasing and Borel-measurable;




	(2) 

	
[image: there is no content]0=0 and [image: there is no content]M≤M. Therefore, [image: there is no content][image: there is no content]⊆[image: there is no content];




	(3) 

	
If [image: there is no content] are such that I1≤I2,ζ-a.s., then [image: there is no content]1≤[image: there is no content]2;




	(4) 

	
[image: there is no content] is ζ-equimeasurable with I, in the sense that for any Borel set B,


ζt∈[image: there is no content]:It∈B=ζt∈[image: there is no content]:[image: there is no content]t∈B



(A3)








	(5) 

	
If I¯:[image: there is no content]→[image: there is no content]+ is another nondecreasing, Borel-measurable map, which is ζ-equimeasurable with I, then I¯=[image: there is no content],ζ-a.s.











[image: there is no content] is called the nondecreasing ζ-rearrangement of I. Now, define [image: there is no content] and [image: there is no content]:=[image: there is no content]∘X. Then:

	(1)

	
[image: there is no content], since I and [image: there is no content] are Borel-measurable mappings of [image: there is no content] into itself;




	(2)

	
[image: there is no content] is a nondecreasing function of X:



Xs≤Xs′⇒[image: there is no content]s≤[image: there is no content]s′, for all [image: there is no content]; and




	(3)

	
Y and [image: there is no content] have the same distribution under P (i.e., they are P-equimeasurable):



Ps∈S:Ys≤α=Ps∈S:[image: there is no content]s≤α, for any α∈[image: there is no content].









Call [image: there is no content] a nondecreasing P-rearrangement of Y with respect to X and denote it by [image: there is no content]P. Then, [image: there is no content]P is P-a.s. unique. Note also that if [image: there is no content] and [image: there is no content] are P-equimeasurable; and for any Borel-measurable function ψ, ψ[image: there is no content] is P-integrable if and only if ψ[image: there is no content] is P-integrable, in which case, we have ∫ψ[image: there is no content]dP=∫ψ[image: there is no content]dP.



Lemma A1. 

Fix [image: there is no content], and let [image: there is no content]P denote the nondecreasing P-rearrangement of Y with respect to X. If 0≤Y≤X,P-a.s., then 0≤[image: there is no content]P≤X.






Appendix B.2. Supermodularity


Definition A4. 

A function L:[image: there is no content]2→[image: there is no content] is supermodular if for any x1,x2,y1,y2∈[image: there is no content] with [image: there is no content] and [image: there is no content], one has:


[image: there is no content]



(A4)









A function L:[image: there is no content]2→[image: there is no content] is called strictly supermodular if for any x1,x2,y1,y2∈[image: there is no content] with [image: there is no content] and [image: there is no content], one has:


[image: there is no content]



(A5)







Lemma A2. 

A function L:[image: there is no content]2→[image: there is no content] is supermodular (respectively strictly supermodular) if and only if the function [image: there is no content] is nondecreasing (respectively increasing) on [image: there is no content], for any x∈[image: there is no content] and [image: there is no content] (respectively [image: there is no content]).





Example A1. If g:[image: there is no content]→[image: there is no content] is concave and a∈[image: there is no content], then the function [image: there is no content]:[image: there is no content]2→[image: there is no content] defined by [image: there is no content] is supermodular. If, moreover, g is strictly concave, then [image: there is no content] is strictly supermodular.



Lemma A3 (Hardy–Littlewood). 

Fix [image: there is no content], and let [image: there is no content]P denote the nondecreasing P-rearrangement of Y with respect to X. If L is supermodular, then (assuming integrability) we have:


∫LX,YdP≤∫LX,[image: there is no content]PdP













Moreover, if L is strictly supermodular, then equality holds if and only if Y=[image: there is no content]P,P-a.s.





Appendix C. Proof of Theorem 2


Denote by [image: there is no content]SB the feasibility set for Problem (9):


[image: there is no content]SB=Y∈BΣ:0≤Y≤Xand∫X−Ydυ≥[image: there is no content]



(A6)







Let [image: there is no content]SB= be defined as:


[image: there is no content]SB==Y∈BΣ:0≤Y≤Xand∫X−Ydυ=[image: there is no content]



(A7)







To rule out trivial situations, we will make the following assumption:

Assumption A1. 

[image: there is no content]SB=≠∅.







Assumption A1 then implies that [image: there is no content]SB≠∅. By monotonicity of the Choquet integral, the non-emptiness of [image: there is no content]SB implies that:


[image: there is no content]











Appendix C.1. “Splitting”


Recall that by Lebesgue’s decomposition theorem ([37], Th. 10.61) there exists a unique pair [image: there is no content] of (nonnegative) finite measures on [image: there is no content], such that [image: there is no content], [image: there is no content] and [image: there is no content]. That is, for all [image: there is no content] with [image: there is no content], we have [image: there is no content]B=0, and there is some [image: there is no content], such that QS\A=[image: there is no content]A=0. It then also follows that [image: there is no content]S\A=0 and [image: there is no content]. In the following, the Σ-measurable set A on which Q is concentrated is assumed to be fixed all throughout. Consider now the following two problems:


Foragivenβ≥[image: there is no content],sup[image: there is no content]∫AuW0−Π−X+YdPs.t.0≤Y≤X,∫X−YdT∘Q=β



(A8)




and:


sup[image: there is no content]∫S\AuW0−Π−X+YdPs.t.0≤Y1S\A≤X1S\A,∫S\AX−YdT∘Q=0



(A9)







Remark A1. 

Since the function u is continuous (Assumption 2), it is bounded on any closed and bounded subset of [image: there is no content]. Therefore, since the range of X is closed and bounded, the supremum of each of the above two problems is finite when their feasibility sets are non-empty. Now, the function X is feasible for Problem (A9), and so, Problem (A9) has a non-empty feasibility set.





Definition A5. 

For a given [image: there is no content], let [image: there is no content] be the feasibility set of Problem (A8) with parameter β. That is,


[image: there is no content]:=Y∈B+Σ:0≤Y≤X,∫X−YdT∘Q=β













Denote by Γ the collection of all β for which the feasibility set [image: there is no content] is non-empty:

Definition A6. 

Let Γ:=β≥[image: there is no content]:[image: there is no content]≠∅.







Lemma A4. 

[image: there is no content].





Proof. 

By Assumption A1, [image: there is no content]. ☐





Lemma A5. 

X is optimal for Problem (A9).





Proof. 

The feasibility of X for Problem (A9) is clear. To show optimality, let Y be any feasible solution for Problem (A9). Then, for each [image: there is no content], [image: there is no content]. Therefore, since u is increasing, we have [image: there is no content], for each [image: there is no content]. Thus,


∫S\AuW0−Π−X+YdP≤∫S\AuW0−Π−X+XdP=uW0−ΠPS\A








☐





Remark A2. 

Since [image: there is no content] and [image: there is no content], it follows that [image: there is no content], and so, ∫1S\AdT∘Q=T∘QS\A=0, by Proposition A1. Therefore, for any [image: there is no content], it follows from the monotonicity and positive homogeneity of the Choquet integral (Proposition A1) that:


0≤∫S\AZdT∘Q=∫Z1S\AdT∘Q≤∫∥Z∥s1S\AdT∘Q=∥Z∥s∫1S\AdT∘Q=0








and so, ∫S\AZdT∘Q=0. Consequently, it follows from Proposition A1 that for any [image: there is no content],


∫ZdT∘Q≤∫Z1AdT∘Q=∫AZdT∘Q













Now, consider the following problem:


supβ∈ΓFA*β:FA*βisthesupremumofProblem(A8),forafixedβ∈Γ



(A10)







Lemma A6. 

If [image: there is no content] is optimal for Problem (A10) and if [image: there is no content] is optimal for Problem (A8) with parameter [image: there is no content], then [image: there is no content]:=[image: there is no content]1A+X1S\A is optimal for Problem (9).





Proof. 

By the feasibility of [image: there is no content] for Problem (A8) with parameter [image: there is no content], we have [image: there is no content] and ∫X−[image: there is no content]dT∘P=[image: there is no content]. Therefore, 0≤[image: there is no content]≤X, and:


∫X−[image: there is no content]dT∘Q=∫X−[image: there is no content]1A+X−X1S\AdT∘Q=∫AX−[image: there is no content]dT∘Q≥∫X−[image: there is no content]dT∘Q=[image: there is no content]≥[image: there is no content]








where the inequality ∫AX−[image: there is no content]dT∘Q≥∫X−[image: there is no content]dT∘Q follows from the same argument as in Remark A2. Hence, [image: there is no content] is feasible for Problem (9). To show the optimality of [image: there is no content] for Problem (9), let [image: there is no content] be any other feasible function for Problem (9), and define α by α=∫X−[image: there is no content]dT∘Q. Then, [image: there is no content], and so, [image: there is no content] is feasible for Problem (A8) with parameter α; and α is feasible for Problem (A10). Hence:


FA*α≥∫AuW0−Π−X+[image: there is no content]dP













Now, since [image: there is no content] is optimal for Problem (A10), it follows that FA*[image: there is no content]≥FA*α. Moreover, [image: there is no content] is feasible for Problem (A9) (since 0≤[image: there is no content]≤X, and so, ∫S\AX−[image: there is no content]dT∘Q=0 by Remark A2). Thus,


FA*[image: there is no content]+uW0−ΠPS\A≥FA*α+uW0−ΠPS\A≥∫AuW0−Π−X+[image: there is no content]dP+uW0−ΠPS\A≥∫AuW0−Π−X+[image: there is no content]dP+∫S\AuW0−Π−X+[image: there is no content]dP=∫uW0−Π−X+[image: there is no content]dP











However, FA*[image: there is no content]=∫AuW0−Π−X+[image: there is no content]dP. Therefore,


∫uW0−Π−X+[image: there is no content]dP=FA*[image: there is no content]+uW0−ΠPS\A≥∫uW0−Π−X+[image: there is no content]dP.











Hence, [image: there is no content] is optimal for Problem (9). ☐



Lemma A7. 

[image: there is no content] is optimal for Problem (A10).





Proof. 

The feasibility of [image: there is no content] for Problem (A10) follows from Assumption A1. The optimality of [image: there is no content] for Problem (A10) follows from the monotonicity of the utility function u appearing in Problem (A8) and of the Choquet integral, which imply that the function [image: there is no content] is nonincreasing. ☐





By Lemma A7, we can restrict ourselves to solving Problem (A8) with parameter β=[image: there is no content]. That is, Lemmata A6 and A7 imply the following result.



Lemma A8. 

Consider the problem:


sup[image: there is no content]∫AuW0−Π−X+YdPs.t.0≤Y≤X,∫X−YdT∘Q=[image: there is no content]



(A11)









If [image: there is no content] is optimal for Problem (A11), then [image: there is no content]:=[image: there is no content]1A+X1S\A is optimal for Problem (9).




Appendix C.2. Solving Problem (A11)


Recall that for all [image: there is no content], ∫ZdP=∫AZhdQ+∫S\AZdP, where h=d[image: there is no content]dQ is the Radon–Nikodým derivative of [image: there is no content] with respect to Q. Moreover, by definition of the set [image: there is no content], we have QS\A=[image: there is no content]A=0. Therefore, ∫AZhdQ=∫ZhdQ, for each [image: there is no content]. Hence, we can rewrite Problem (A11) (recalling that [image: there is no content]) as the following problem:


sup[image: there is no content]∫uW0−Π−X+YϕXdQs.t.0≤Y≤X,∫X−YdT∘Q=[image: there is no content]



(A12)







We then obtain the following result immediately:

Lemma A9. 

If [image: there is no content] is optimal for Problem (A12), then it is optimal for Problem (A11), and hence, the function [image: there is no content]:=[image: there is no content]1A+X1S\A is optimal for Problem (9).







Now, consider the following problem:


sup[image: there is no content]∫uW0−Π−ZϕXdQs.t.0≤Z≤X,∫ZdT∘Q=[image: there is no content]=∫0+∞TQ{s∈S:Zs≥t}dt



(A13)







Lemma A10. 

If [image: there is no content] is optimal for Problem (A13), then [image: there is no content]:=X−[image: there is no content] is optimal for Problem (A12). Consequently, the function X−[image: there is no content]1A+X1S\A is optimal for Problem (9).





Proof. 

Suppose that [image: there is no content] is optimal for Problem (A13), and define [image: there is no content]:=X−[image: there is no content]. Then, [image: there is no content]∈BΣ. Moreover, since 0≤[image: there is no content]≤X, it follows that 0≤[image: there is no content]≤X. Now,


∫X−[image: there is no content]dT∘Q=∫X−X−[image: there is no content]dT∘Q=∫[image: there is no content]dT∘Q=[image: there is no content]








and so, [image: there is no content] is feasible for Problem (A12). To show optimality of [image: there is no content] for Problem (A12), suppose, by way of contradiction, that [image: there is no content]≠[image: there is no content] is feasible for Problem (A12) and:


∫uW0−Π−X+[image: there is no content]hdQ>∫uW0−Π−X+[image: there is no content]hdQ








that is, with [image: there is no content]:=X−[image: there is no content], we have:


∫uW0−Π−[image: there is no content]hdQ>∫uW0−Π−[image: there is no content]hdQ













Now, since 0≤[image: there is no content]≤X and ∫X−[image: there is no content]dT∘Q=[image: there is no content], [image: there is no content] is feasible for Problem (A13), hence contradicting the optimality of [image: there is no content] for Problem (A13). Thus, [image: there is no content]:=X−[image: there is no content] is optimal for Problem (A12). The rest follows from Lemma A9. ☐



Definition A7. 

If [image: there is no content] are feasible for Problem (A13), we will say that [image: there is no content] is an improvement of [image: there is no content] (or is improving) when the following hold:

	(1)

	
∫uW0−Π−[image: there is no content]hdQ≥∫uW0−Π−[image: there is no content]hdQ; and,




	(2)

	
∫[image: there is no content]dT∘Q=∫[image: there is no content]dT∘Q.











The next result shows that for any feasible claim for Problem (A13), there is a another feasible claim for Problem (A13), which is comonotonic with X and improving.



Lemma A11. 

If Z is feasible for Problem (A13) and if [image: there is no content] is the nondecreasing Q-rearrangement of Z with respect to X, then [image: there is no content] is feasible for Problem (A13), comonotonic with X and an improvement of Z.





Proof. 

Let Z be feasible for Problem (A13), and note that by Assumption 5, the map ξX,Z:=uW0−Π−ZϕX is supermodular (see Example A1). Let [image: there is no content] denote the nondecreasing Q-rearrangement of Z with respect to X. Then, by Lemma A1 and by equimeasurability of Z and [image: there is no content], the function [image: there is no content] is feasible for Problem (A13). Furthermore, by Lemma A3 and by the supermodularity of [image: there is no content], it follows that [image: there is no content] is an improvement of Z. ☐






Appendix C.3. Quantile Reformulation


Let [image: there is no content] be feasible for Problem (A13); let [image: there is no content] denote the distribution function of Z with respect to the probability measure Q; and let [image: there is no content] denote the distribution function of X with respect to the probability measure Q. Let [image: there is no content] be the left-continuous inverse of the distribution function [image: there is no content] (that is, the quantile function of Z), defined by:


FZ−1t=infz∈[image: there is no content]+:[image: there is no content]z≥t,∀t∈0,1











Let [image: there is no content] denote the nondecreasing Q-rearrangement of Z with respect to X. Since [image: there is no content], it can be written as [image: there is no content] for some nonnegative Borel-measurable and bounded map ψ on [image: there is no content]. Moreover, since [image: there is no content], ψ is a mapping of [image: there is no content] into [image: there is no content]. Let [image: there is no content] be the image measure of Q under X. By Assumption 4 (1), ζ is nonatomic. We can then define the mapping ψ˜:[image: there is no content]→[image: there is no content] as in Appendix B (see Equation (A2) on p. 14) to be the nondecreasing ζ-rearrangement of ψ, that is,


ψ˜t:=infz∈[image: there is no content]+:ζ{x∈[image: there is no content]:ψx≤z}≥ζ0,t











Then, as in Appendix B, [image: there is no content]=ψ˜∘X. Therefore, for each [image: there is no content],


[image: there is no content]s0=ψ˜Xs0=infz∈[image: there is no content]+:ζ{x∈[image: there is no content]:ψx≤z}≥ζ0,Xs0











However, for each [image: there is no content],


[image: there is no content]











Moreover,


ζ{x∈[image: there is no content]:ψx≤z}=Q∘X−1{x∈[image: there is no content]:ψx≤z}=Q{s∈S:ψXs≤z}=[image: there is no content]z











Consequently, for each [image: there is no content],


[image: there is no content]s0=infz∈[image: there is no content]+:[image: there is no content]z≥[image: there is no content]Xs0=[image: there is no content][image: there is no content]Xs0:=[image: there is no content][image: there is no content]Xs0











That is,


[image: there is no content]=[image: there is no content][image: there is no content]X



(A14)




where [image: there is no content] is the left-continuous inverse of [image: there is no content], as defined in Equation (10).



Hence, by Lemma A11 and Equation (A14), we can restrict ourselves to finding a solution to Problem (A13) of the form [image: there is no content][image: there is no content]X, where F is the distribution function of a function [image: there is no content], such that [image: there is no content] and ∫ZdT∘Q=[image: there is no content]. Moreover, since X is a nondecreasing function of X and Q-equimeasurable with X, it follows from the Q-a.s. uniqueness of the equimeasurable nondecreasing Q-rearrangement (see Appendix B) that [image: there is no content], Q-a.s. (see also [44, Lemma A.21]). Thus, for any [image: there is no content],


∫uW0−Π−[image: there is no content][image: there is no content]Xϕ[image: there is no content][image: there is no content]XdQ=∫uW0−Π−[image: there is no content]ϕXdQ≥∫uW0−Π−ZϕXdQ








where the inequality follows from the proof of Lemma A11. Moreover, since [image: there is no content] is nonatomic (by Assumption 4), it follows that [image: there is no content] has a uniform distribution over [image: there is no content] ([44] Lemma A.21), that is, [image: there is no content] for each t∈[image: there is no content]. Finally, letting [image: there is no content], we have:


∫[image: there is no content]UdT∘Q=∫0+∞TQ{s∈S:[image: there is no content]Us≥t}dt=∫0+∞TQ{s∈S:[image: there is no content]Us>t}dt=∫0+∞T1−Ftdt=∫01[image: there is no content]1−t[image: there is no content]tdt=∫[image: there is no content]1−U[image: there is no content]UdQ








where the third and last equalities above follow from the fact that U has a uniform distribution over [image: there is no content] and where the second-to-last equality follows from a standard argument7.



Now, recall from Definition 5 that [image: there is no content] given in Equation (11) is the collection of all admissible quantile functions, that is the collection of all functions f of the form [image: there is no content], where F is the distribution function of a function [image: there is no content], such that [image: there is no content], and consider the following problem:


supf∫uW0−Π−fUϕ[image: there is no content]UdQs.t.f∈AQuant,∫[image: there is no content]1−UfUdQ=[image: there is no content]



(A15)







Lemma A12. 

If [image: there is no content] is optimal for Problem (A15), then the function [image: there is no content]U is optimal for Problem (A13), where [image: there is no content]. Moreover, X−[image: there is no content]U is optimal for Problem (A12). Consequently, the function X−[image: there is no content]U1A+X1S\A is optimal for Problem (9).





Proof. 

Suppose that [image: there is no content]∈AQuant is optimal for Problem (A15), and let [image: there is no content]∈B+Σ be a corresponding function. That is, [image: there is no content] is the quantile function of [image: there is no content] and 0≤[image: there is no content]≤X. Let [image: there is no content]*:=[image: there is no content]U. Then, [image: there is no content]* is the equimeasurable nondecreasing Q-rearrangement of [image: there is no content] with respect to X, and so, 0≤[image: there is no content]*≤X by Lemma A1. Moreover,


[image: there is no content]=∫[image: there is no content]1−U[image: there is no content]UdQ=∫[image: there is no content]UdT∘Q=∫[image: there is no content]*dT∘Q=∫0+∞TQ{s∈S:[image: there is no content]*s≥t}dt=∫0+∞TQ{s∈S:[image: there is no content]s≥t}dt=∫[image: there is no content]*dT∘Q








where the second-to-last equality follows from the Q-equimeasurability of [image: there is no content] and [image: there is no content]*. Therefore, [image: there is no content]*=[image: there is no content]U is feasible for Problem (A13). To show optimality, let Z be any feasible solution for Problem (A13), and let F be the distribution function for Z. Then, by Lemma A11, the function [image: there is no content]:=[image: there is no content]U is feasible for Problem (A13), comonotonic with X and Pareto-improving. Moreover, [image: there is no content] has also F as a distribution function. To show the optimality of [image: there is no content]*=[image: there is no content]U for Problem (A13), it remains to show that:


∫uW0−Π−[image: there is no content]*ϕXdQ≥∫uW0−Π−[image: there is no content]ϕXdQ













Now, let f:=[image: there is no content], so that [image: there is no content]=fU. Since [image: there is no content] is feasible for Problem (A13), we have:


[image: there is no content]=∫[image: there is no content]dT∘Q=∫[image: there is no content]UdT∘Q=∫01[image: there is no content]1−t[image: there is no content]tdt=∫[image: there is no content]1−UfUdQ











Hence, f is feasible for Problem (A15). Since [image: there is no content] is optimal for Problem (A15), we have:


∫uW0−Π−[image: there is no content]Uϕ[image: there is no content]UdQ≥∫uW0−Π−fUϕ[image: there is no content]UdQ











Moreover, since X=[image: there is no content]U,Q-a.s., we have:


∫uW0−Π−[image: there is no content]*ϕXdQ≥∫uW0−Π−[image: there is no content]ϕXdQ











Therefore, [image: there is no content]*=[image: there is no content]U is optimal for Problem (A13). Hence, by Lemma A10, [image: there is no content]:=X−[image: there is no content]*=X−[image: there is no content]U is optimal for Problem (A12). Finally, by Lemma A10, the function X−[image: there is no content]U1A+X1S\A is optimal for Problem (9).



☐



Lemma A12 completes the proof of Theorem 2.





Appendix D. Proof of Corollary 1


Corollary A1. 

Under the assumptions of Corollary 1, an optimal solution [image: there is no content] for Problem (9) takes the following form:


[image: there is no content]=X−max0,min[image: there is no content]U,f[image: there is no content]*U1A+X1S\A








where for each t∈[image: there is no content]\{t:ϕ∘Fx−1t=0},


[image: there is no content]








and [image: there is no content] is chosen so that:


∫01[image: there is no content]1−tmax0,min[image: there is no content]t,f[image: there is no content]*tdt=[image: there is no content]













Proof. 

Recall from Equation (11) that


AQuant=f∈Quant:0≤fz≤FX−1z,foreach0<z<1








where Quant=f:[image: there is no content]→[image: there is no content]|fisnondecreasingandleft−continuous. Define the collection [image: there is no content] of functions on [image: there is no content] as follows:


[image: there is no content]=f:[image: there is no content]→[image: there is no content]|0≤fz≤FX−1z,foreach0<z<1



(A16)









Then, AQuant=Quant∩[image: there is no content]. Consider the following problem.


supf∫01uW0−Π−ftϕ[image: there is no content]tdts.t.f∈AQuant,∫01[image: there is no content]1−tftdt=[image: there is no content]



(A17)







Lemma A13. 

If [image: there is no content]∈AQuant satisfies the following:

	(1) 

	
∫01[image: there is no content]1−t[image: there is no content]tdt=[image: there is no content];




	(2) 

	
There exists [image: there is no content], such that for all t∈[image: there is no content]\{t:ϕ∘Fx−1t=0},


[image: there is no content]t=arg max0≤y≤FX−1tuW0−Π−yϕ[image: there is no content]t−λ[image: there is no content]1−ty








Then, [image: there is no content] solves Problem (A17).











Proof. 

Suppose that [image: there is no content]∈AQuant satisfies Conditions (1) and (2) above. Then, in particular, [image: there is no content] is feasible for Problem (A17). To show the optimality of [image: there is no content] for Problem (A17), let f by any other feasible solution for Problem (A17). Then, for all t∈[image: there is no content]\{t:ϕ∘Fx−1t=0},


uW0−Π−[image: there is no content]tϕ[image: there is no content]t−λ[image: there is no content]1−t[image: there is no content]t≥uW0−Π−ftϕ[image: there is no content]t−λ[image: there is no content]1−tft













That is, uW0−Π−[image: there is no content]t−uW0−Π−ftϕ[image: there is no content]t≥λ[image: there is no content]1−t[image: there is no content]t−ft. Integrating yields V[image: there is no content]−Vf≥λ[image: there is no content]−[image: there is no content]=0, that is V[image: there is no content]≥Vf, as required. ☐



Hence, in view of Lemma A13, in order to find a solution for Problem (A17), one can start by solving the problem:


[image: there is no content]



(A18)




for a given [image: there is no content] and a fixed t∈[image: there is no content]\{t:ϕ∘Fx−1t=0}.



Consider first the following problem:


[image: there is no content]



(A19)




for a given [image: there is no content] and a fixed t∈[image: there is no content]\{t:ϕ∘Fx−1t=0}.



By concavity of the utility function u, in order to solve Problem (A19), it suffices to solve for the first-order condition:


[image: there is no content]








which gives


[image: there is no content]



(A20)







Then, the function [image: there is no content] solves Problem (A19), for a given [image: there is no content] and a fixed t∈[image: there is no content]\{t:ϕ∘Fx−1t=0}.



By Assumption 7, the function [image: there is no content] is nondecreasing. By Assumption 2, the function u is strictly concave and continuously differentiable. Hence, the function [image: there is no content] is both continuous and strictly decreasing. This then implies that [image: there is no content]−1 is continuous and strictly decreasing, by the inverse function theorem ([50] pp. 221–223). Therefore, the function [image: there is no content] in Equation (A20) is nondecreasing ([image: there is no content]). Moreover, by Assumption 4, the function [image: there is no content] is continuous. Therefore, Assumption 6 then implies that [image: there is no content] is left-continuous.



Define the function [image: there is no content] by:


[image: there is no content]t=max0,min[image: there is no content]t,[image: there is no content]t



(A21)







Then, [image: there is no content]t∈[image: there is no content]. Moreover, since both [image: there is no content] and [image: there is no content] are nondecreasing and left-continuous functions, it follows that [image: there is no content] is nondecreasing and left-continuous. Consequently, [image: there is no content]t∈AQuant. Finally, it is easily seen that [image: there is no content]t solves Problem (A18) for the given λ. Now, if [image: there is no content] is chosen, so that ∫01[image: there is no content]1−tf[image: there is no content]**tdt=[image: there is no content], then by Lemma A13, f[image: there is no content]** is optimal for Problem (A17).



Hence, in view of Theorem 2 and Lemma A13, to conclude the proof of Corollary A1, it remains to show that there exists a [image: there is no content], such that ∫01[image: there is no content]1−tf[image: there is no content]**tdt=[image: there is no content]. This is given by Lemma A14 below.



Lemma A14. 

Let ψ be the function of the parameter [image: there is no content] defined by ψλ:=∫01[image: there is no content]1−t[image: there is no content]tdt. Then, there exists a [image: there is no content], such that ψ[image: there is no content]=[image: there is no content].





Proof. 

First note that ψ is a continuous and nonincreasing function of λ, where the continuity of ψ is a consequence of Lebesgue’s dominated convergence theorem ([37], Theorem 11.21). Indeed, since X is bounded and since [image: there is no content] is nondecreasing, it follows that for each [image: there is no content],


min[image: there is no content]t,[image: there is no content]t≤[image: there is no content]t≤[image: there is no content]1≤M=∥X∥s<+∞








Moreover, since T is concave and increasing, [image: there is no content] is nonincreasing and nonnegative, and so, for each [image: there is no content], 0≤[image: there is no content]1−t≤[image: there is no content]0. However, [image: there is no content]0<+∞, by Assumption 4 (since [image: there is no content] is differentiable, it is continuous and, therefore, bounded on every closed and bounded subset of [image: there is no content]). Hence, for each [image: there is no content],


min[image: there is no content]t,[image: there is no content]t[image: there is no content]1−t≤[image: there is no content]1[image: there is no content]0≤∥X∥s[image: there is no content]0<+∞













Furthermore, [image: there is no content] (by Assumption 2), and:


limλ→−∞ψλ=∫01[image: there is no content]1−tmin[image: there is no content]t,W0−Πdt=∫0[image: there is no content]W0−Π[image: there is no content]1−t[image: there is no content]tdt+W0−Π∫[image: there is no content]W0−Π1[image: there is no content]1−tdt











However, by Assumption 3, we have [image: there is no content]. This then implies that:


limλ→−∞ψλ=∫01[image: there is no content]1−t[image: there is no content]tdt=∫XdT∘Q











Now, for any [image: there is no content], which is feasible for Problem (A8), one has:

	(i)

	
[image: there is no content]; and,




	(ii)

	
∫X−YdT∘Q=[image: there is no content]









Hence, [image: there is no content], and so, by the monotonicity of the Choquet integral (Proposition A1), it follows that [image: there is no content]=∫X−YdT∘Q≤∫XdT∘Q. Consequently,


0=ψ0≤[image: there is no content]≤∫XdT∘Q=limλ→−∞ψλ











Hence, by the intermediate value theorem ([50], Theorem 4.23), there exists some [image: there is no content], such that ψ[image: there is no content]=[image: there is no content]. ☐



By Theorem 2 and Lemmatas A13 and A14, this concludes the proof of Corollary A1. ☐



Now, since the function [image: there is no content]t=max0,min[image: there is no content]t,f[image: there is no content]*t is optimal for Problem (A17), it is optimal for Problem (A15). Therefore, by Lemma A12, the function:


[image: there is no content]U=max0,min[image: there is no content]U,f[image: there is no content]*U








is optimal for Problem (A13), and the function:


X−max0,min[image: there is no content]U,f[image: there is no content]*U1A+X1S\A








is optimal for Problem (9). However, since [image: there is no content] is nonatomic (by Assumption 4), it follows that [image: there is no content] has a uniform distribution over [image: there is no content] ([44], Lemma A.21), and that X=[image: there is no content][image: there is no content]X,Q-a.s. Therefore,


[image: there is no content]U=max0,min[image: there is no content]U,f[image: there is no content]*U=max0,min[image: there is no content]U,W0−Π−[image: there is no content]−1−[image: there is no content][image: there is no content]1−Uϕ[image: there is no content]U=max0,minX,W0−Π−[image: there is no content]−1−[image: there is no content][image: there is no content]1−UϕX,Q-a.s.











This Q-a.s. equality implies that:


max0,minX,W0−Π−[image: there is no content]−1−[image: there is no content][image: there is no content]1−UϕX








is also optimal for Problem (A13). Lemma A12 then implies that the function:


X−max0,minX,W0−Π−[image: there is no content]−1−[image: there is no content][image: there is no content]1−UϕX1A+X1S\A








is optimal for Problem (9).



Finally, it can be easily verified that:


X−max0,minX,W0−Π−[image: there is no content]−1−[image: there is no content][image: there is no content]1−UϕX=minX,max0,X−W0−Π−[image: there is no content]−1−[image: there is no content][image: there is no content]1−UϕX











The rest follows form Corollary A1, noting that since X=[image: there is no content]U,Q-a.s., one has:


[image: there is no content]=∫01[image: there is no content]1−tmax0,min[image: there is no content]t,f[image: there is no content]*tdt=∫[image: there is no content]1−Umax0,min[image: there is no content]U,f[image: there is no content]*UdQ=∫[image: there is no content]1−Umax0,minX,W0−Π−[image: there is no content]−1−[image: there is no content][image: there is no content]1−UϕXdQ











This concludes the proof of Corollary 1.
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2.This is a standard assumption, and it holds in many instances, such as when it is assumed that a probability density function for X exists.



	
3.A finite nonnegative measure η on a measurable space [image: there is no content] is said to be nonatomic if for any [image: there is no content] with [image: there is no content], there is some [image: there is no content], such that [image: there is no content] and [image: there is no content].



	
4.Indeed, suppose that [image: there is no content], the identity function. Then, [image: there is no content]=1, and so, T′1−tϕ[image: there is no content]t=1ϕ[image: there is no content]t. Moreover, the function t↦[image: there is no content]t is nondecreasing, since [image: there is no content] is a quantile function. Therefore, the function t↦T′1−tϕ[image: there is no content]t is nondecreasing if and only if the function ϕ is nonincreasing.



	
5.Any monotone function is Borel-measurable and, hence, “almost continuous”, in view of Lusin’s Theorem ([49] Theorem 7.5.2). Furthermore, any monotone function is almost surely continuous for the Lebesgue measure.



	
6.Note that this variable deductible is anti-comonotonic with the loss X, since T is concave, u is increasing and concave (and hence, ([image: there is no content])−1 is decreasing by the inverse function theorem ([50] pp. 221–223)), [image: there is no content], P − a.s., and [image: there is no content] is a nondecreasing function. However, the indemnity schedule is commonotonic with X



	
7.See, e.g. Denneberg [40], Proposition 1.4 on p. 8 and the discussion on pp. 61–62. See also [45], p. 418, [46], p. 210 and p. 213, or [30], p. 207.
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